SciPy

numpy.polynomial.chebyshev.chebvander

numpy.polynomial.chebyshev.chebvander(x, deg)[source]

Pseudo-Vandermonde matrix of given degree.

Returns the pseudo-Vandermonde matrix of degree deg and sample points x. The pseudo-Vandermonde matrix is defined by

System Message: WARNING/2 (V[..., i] = T_i(x), )

latex exited with error [stdout] This is pdfTeX, Version 3.14159265-2.6-1.40.16 (TeX Live 2015/TeX Live for SUSE Linux) (preloaded format=latex) restricted \write18 enabled. entering extended mode (./math.tex LaTeX2e <2015/01/01> patch level 2 Babel <3.9m> and hyphenation patterns for 79 languages loaded. (/usr/share/texmf/tex/latex/base/article.cls Document Class: article 2014/09/29 v1.4h Standard LaTeX document class (/usr/share/texmf/tex/latex/base/size12.clo)) (/usr/share/texmf/tex/latex/base/inputenc.sty ! LaTeX Error: File `utf8x.def’ not found. Type X to quit or <RETURN> to proceed, or enter new name. (Default extension: def) Enter file name: ! Emergency stop. <read *> l.173 \endinput ^^M No pages of output. Transcript written on math.log.

where 0 <= i <= deg. The leading indices of V index the elements of x and the last index is the degree of the Chebyshev polynomial.

If c is a 1-D array of coefficients of length n + 1 and V is the matrix V = chebvander(x, n), then np.dot(V, c) and chebval(x, c) are the same up to roundoff. This equivalence is useful both for least squares fitting and for the evaluation of a large number of Chebyshev series of the same degree and sample points.

Parameters:

x : array_like

Array of points. The dtype is converted to float64 or complex128 depending on whether any of the elements are complex. If x is scalar it is converted to a 1-D array.

deg : int

Degree of the resulting matrix.

Returns:

vander : ndarray

The pseudo Vandermonde matrix. The shape of the returned matrix is x.shape + (deg + 1,), where The last index is the degree of the corresponding Chebyshev polynomial. The dtype will be the same as the converted x.