Draw samples from the geometric distribution.
Bernoulli trials are experiments with one of two outcomes:
success or failure (an example of such an experiment is flipping
a coin). The geometric distribution models the number of trials
that must be run in order to achieve success. It is therefore
supported on the positive integers, k = 1, 2, ....
The probability mass function of the geometric distribution is
System Message: WARNING/2 (f(k) = (1 - p)^{k - 1} p
)
latex exited with error:
[stderr]
[stdout]
This is pdfTeX, Version 3.1415926-2.5-1.40.14 (TeX Live 2013/TeX Live for SUSE Linux)
restricted \write18 enabled.
entering extended mode
(./math.tex
LaTeX2e <2011/06/27>
Babel <3.9f> and hyphenation patterns for 78 languages loaded.
(/usr/share/texmf/tex/latex/base/article.cls
Document Class: article 2007/10/19 v1.4h Standard LaTeX document class
(/usr/share/texmf/tex/latex/base/size12.clo))
(/usr/share/texmf/tex/latex/base/inputenc.sty
! LaTeX Error: File `utf8x.def’ not found.
Type X to quit or <RETURN> to proceed,
or enter new name. (Default extension: def)
Enter file name:
! Emergency stop.
<read *>
l.131 \endinput
^^M
No pages of output.
Transcript written on math.log.
where p is the probability of success of an individual trial.
Parameters : | p : float
The probability of success of an individual trial.
size : tuple of ints
Number of values to draw from the distribution. The output
is shaped according to size.
|
Returns : | out : ndarray
Samples from the geometric distribution, shaped according to
size.
|
Examples
Draw ten thousand values from the geometric distribution,
with the probability of an individual success equal to 0.35:
>>> z = np.random.geometric(p=0.35, size=10000)
How many trials succeeded after a single run?
>>> (z == 1).sum() / 10000.
0.34889999999999999 #random