Z8530 Programming Guide

Alan Cox <al an@ xor guk. ukuu. or g. uk>

Z8530 Programming Guide
by Alan Cox
Copyright © 2000 Alan Cox

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY ; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

Y ou should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the file COPY ING in the source distribution of Linux.

Table of Contents

O g 11 oo 1o (o o PP 1
A B 1 41 1Y oo =SSP 2
3. USING the Z85230 AriVEScoueiieiiiiii ettt ettt et e e e e e e 3
4. Attaching NetWOrK INEEITECESuu i 4
5. Configuring And Activating The POITiiiiieie e 5
6. NEWOrK Layer FUNCLIONSottt ettt et e e e e e e e 6
7. POrting THe Z8530 DIIVELuuuieiiiiiiee ettt ettt ettt ettt e et e e e e e e enaans 7
8. KNown Bugs ANd ASSUMPLIONSceuuueiiitieeeietii e ettt e ettt e et e et e e e et e e e e et e e e eeteaeeeen 8
9. PUBIiC FUNCLIONS Providedc..iiiiiii et e e et e et e e e e 9
Z8530 INEEITUDE vttt e ettt ettt e e et e e ettt e e et e et e e e e e 10
Z8530 _SYNC_OPEN ..ttt et 11
Z8530 SYNC ClOSE ... evieeiiee et et aa s 12
PSR OISV aTog o 07 W o] o 1< o [PP 13
78530 _SYNC AMA ClOSE ...t e e e 14
78530 _SYNC EXAMA OPEN ...ieiiieii ettt e et e et e e e e e et e e e eanns 15
28530 _SYNC tXAMA CIOSE .. eviieiiie e e e e e eens 16
Z8530 AESCIIE . e e 17
25130 O 1 o 11 PPN 18
Z8530 SNULAOWN ..ttt e e e e et e e et e e et e e et e e et e e et e eanaeeannns 19
28530 _ChanNEl_T080couniiiii i 20
Z8530 NUIL_EX ettt aaas 21
Z8530 _UEUE XIMIT .. ietieeei et ettt e e et e et e et e e e e e et e e e et e e et e e et e e et e eean e aenneeennaes 22
10. INtErN@l FUNCHIONSieeieei et et e e e e et e e et e e et e e et e eeaneeeens 23
Z8530_FEAO_JIOIT ...ttt ettt 24
Z8530 _WITEE PIONT ettt ettt ettt ettt ettt e ettt e e et e e et et e e et e e e e e e e e e e aee 25
(=7 S (= o R TP OPPPTPUPUPPPTRRPPPIN 26
(=720 [o = - L PP 27
LR (= o R PP PTTRUPPPTTRPPPPIN 28
L 4= 1 PR PPN 29
] R4S o - - PP 30
Z8530 FIUSN_FIfO v e 31
P81 3e O 4 o L1 S PSPPI 32
Z8530 X ettt ettt et et et e et e ea e ea e an e anaaans 33
P25 1o | o G TP PRPP 34
P e o O = LU PP UPTP 35
5130 O o 10> T PSP 36
P& 13 O o 10> PP 37
Z8530 AMA SEBEUS ... ettt e e ettt e et aa e ean s 38
P s 1o O o o L= PR 39
Z8530 IX ClBAN et e 40
Z8530 _SHAIUS ClEAK ..iieieiii e e e 41
Z8530 tX_B0IN .ot 42
s 13e O B oG o (o] 0= PP 43
Z8530 X _AONE <.t e ea s 44
SPANS DOUNTAIY ... ettt ettt ettt e et e e et et e e e et e e e enae e eene 45

Chapter 1. Introduction

The Z85x30 family synchronous/asynchronous controller chips are used on alarge number of cheap net-
work interface cards. The kernel provides a core interface layer that is designed to make it easy to provide
WAN services using this chip.

The current driver only support synchronous operation. Merging the asynchronous driver support into this
code to alow any Z85x30 device to be used as both a tty interface and as a synchronous controller is a
project for Linux post the 2.4 release

Chapter 2. Driver Modes

The Z85230 driver layer can drive Z8530, Z85C30 and 285230 devices in three different modes. Each
mode can be applied to an individual channel on the chip (each chip hastwo channels).

The PO synchronous mode supports the most common Z8530 wiring. Herethe chip isinterface to the /O
and interrupt facilities of the host machine but not to the DMA subsystem. When running PIO the Z8530
has extremely tight timing requirements. Doing high speeds, even with aZ85230 will betricky. Typically
you should expect to achieve at best 9600 baud with a Z8C530 and 64K bits with a Z85230.

The DMA mode supports the chip when it is configured to use dual DMA channels on an ISA bus. The
better cards tend to support this mode of operation for a single channel. With DMA running the 285230
tops out when it startsto hit ISA DMA constraints at about 512K bits. It isworth noting here that many PC
machines hang or crash when the chip is driven fast enough to hold the | SA bus solid.

Transmit DMA mode uses a single DMA channel. The DMA channel is used for transmission as the
transmit FIFO is smaller than the receive FIFO. it gives better performance than pure PIO mode but is
nowhere near asidea as pure DMA mode.

Chapter 3. Using the Z85230 driver

The 285230 driver provides the back end interface to your board. To configure a Z8530 interface you
need to detect the board and to identify its ports and interrupt resources. It is aso your problem to verify
the resources are available.

Having identified the chip you need to fill in a struct z8530_dev, which describes each chip. This object
must exist until you finally shutdown the board. Firstly zero the active field. This ensures nothing goes off
without you intending it. The irq field should be set to the interrupt number of the chip. (Each chip hasa
singleinterrupt source rather than each channel). Y ou are responsible for allocating the interrupt line. The
interrupt handler should be set to z8530_i nt er r upt . The device id should be set to the z8530_dev
structure pointer. Whether the interrupt can be shared or not is board dependent, and up to you toinitialise.

The structure holds two channel structures. Initialise chanA.ctrlio and chanA .dataio with the address of
the control and data ports. You can or this with Z8530 PORT_SL EEP to indicate your interface needs
the 5uS delay for chip settling done in software. The PORT _SL EEP option is architecture specific. Other
flags may become available on future platforms, eg for MMIO. Initialise the chanA.irgs to &z8530_nop
to start the chip up as disabled and discarding interrupt events. This ensures that stray interrupts will be
mopped up and not hang the bus. Set chanA.dev to point to the device structure itself. The private and
name field you may use as you wish. The private field is unused by the 285230 layer. The name is used
for error reporting and it may thus make sense to make it match the network name.

Repeat the same operation with the B channel if your chip has both channels wired to something useful.
This isn't aways the case. If it is not wired then the I/O values do not matter, but you must initialise
chanB.dev.

If your board has DMA facilitiesthen initialise the txdma and rxdmafields for the relevant channels. You
must also allocatethe | SA DMA channelsand do any necessary board level initialisation to configurethem.
Thelow level driver will do the 28530 and DMA controller programming but not board specific magic.

Having initialised the device you can then call z8530_i ni t . Thiswill probe the chip and reset it into a
known state. An identification sequence is then run to identify the chip type. If the checksfail to passthe
function returns a non zero error code. Typically this indicates that the port given is not valid. After this
call the type field of the z8530_dev structure isinitialised to either 28530, Z85C30 or 285230 according
to the chip found.

Once you have called z8530_init you can aso make use of the utility functionz8530_descri be. This
provides a consistent reporting format for the Z8530 devices, and alows al the driversto provide consis-
tent reporting.

Chapter 4. Attaching Network
Interfaces

If you wish to use the network interface facilities of the driver, then you need to attach a network device
to each channel that is present and in use. In addition to use the generic HDL C you need to follow some
additional plumbing rules. They may seem complex but alook at the example hostess sv11 driver should
reassure you.

The network device used for each channel should be pointed to by the netdevice field of each channel.
The hdlc-> priv field of the network device points to your private data - you will need to be able to find
your private data from this.

The way most drivers approach this particular problem is to create a structure holding the 28530 device
definition and put that into the privatefiel d of the network device. The network devicefieldsof the channels
then point back to the network devices.

If you wish to use the generic HDL C then you need to register the HDL C device.

Before you register your network device you will also need to provide suitable handlers for most of the
network device callbacks. See the network device documentation for more details on this.

Chapter 5. Configuring And Activating
The Port

The zZ85230 driver provides helper functions and tablesto load the port registers on the Z8530 chips. When
programming the register settingsfor achannel be awarethat the documentation recommendsinitialisation
orders. Strange things happen when these are not followed.

z8530_channel _| oad takes an array of pairs of initialisation valuesin an array of u8 type. The first
valueis the 28530 register number. Add 16 to indicate the alternate register bank on the later chips. The
array isterminated by a 255.

The driver provides a pair of public tables. The z8530_hdlc_kilostream table is for the UK 'Kilostream'’
service and a so happensto cover most other end host configurations. The z8530_hdlc_kilostream 85230
table is the same configuration using the enhancements of the 85230 chip. The configuration loaded is
standard NRZ encoded synchronous datawith HDL C bitstuffing. All of the timing is taken from the other
end of thelink.

When writing your own tables be aware that the driver internally tracks register values. It may need to
reload values. You should therefore be sure to set registers 1-7, 9-11, 14 and 15 in al configurations.
Where the register settings depend on DMA selection the driver will update the bits itself when you open
or close. Loading a new table with the interface open is not recommended.

There are three standard configurations supported by the core code. In PIO mode the interface is pro-
grammed up to use interrupt driven PIO. This places high demands on the host processor to avoid latency.
Thedriver iswritten to take account of latency issuesbut it cannot avoid | atencies caused by other drivers,
notably IDE in PIO mode. Because the drivers all ocate buffers you must also prevent MTU changes while
the port is open.

Once the port is open it will call the rx_function of each channel whenever a completed packet arrived.
Thisisinvoked from interrupt context and passes you the channel and a network buffer (struct sk_buff)
holding the data. The dataincludesthe CRC bytes so most users will want to trim the last two bytes before
processing the data. Thisfunctionisvery timing critical. When you wish to simply discard datathe support
code provides the function z8530_nul | _r x to discard the data.

To active PIO mode sending and receivingthe z8530_sync_open iscalled. Thisexpectsto be passed
the network device and the channel. Typically thisis called from your network device open callback. Ona
failureanon zero error statusisreturned. Thez8530_sync_cl ose function shutsdown aPlO channel.
This must be done before the channel is opened again and before the driver shuts down and unloads.

Theideal mode of operationisdual channel DMA mode. Herethe kernel driver will configurethe board for
DMA in both directions. Thedriver also handles| SA DMA issues such as controller programming and the
memory range limit for you. This mode is activated by calling the z8530_sync_dma_open function.
On failure anon zero error value is returned. Once this mode is activated it can be shut down by calling
thez8530_sync_dna_cl ose. You must call the close function matching the open mode you used.

The final supported mode uses a single DMA channel to drive the transmit side. As the Z85C30 has
alarger FIFO on the receive channel this tends to increase the maximum speed a little. This is activat-
ed by calling the z8530_sync_t xdnma_open . This returns a non zero error code on failure. The
z8530_sync_t xdma_cl ose function closes down the Z8530 interface from this mode.

Chapter 6. Network Layer Functions

The Z8530 layer provides functions to queue packets for transmission. The driver internally buffers the
frame currently being transmitted and one further frame (in order to keep back to back transmission run-
ning). Any further buffering is up to the caler.

Thefunctionz8530_queue_xni t takesanetwork buffer in sk_buff format and queuesit for transmis-
sion. The caller must provide the entire packet with the exception of the bitstuffing and CRC. Thisisnor-
mally done by the caller viathe generic HDLC interface layer. It returns O if the buffer has been queued
and non zero values for queue full. If the function accepts the buffer it becomes property of the 28530
layer and the caller should not free it.

The function z8530_get _st at s returns a pointer to an internally maintained per interface statistics
block. This provides most of the interface code needed to implement the network layer get_stats callback.

Chapter 7. Porting The Z8530 Driver

The Z8530 driver is written to be portable. In DMA mode it makes assumptions about the use of ISA
DMA. These are probably warranted in most cases as the 285230 in particular was designed to glue to PC
type machines. The PIO mode makes no real assumptions.

Should you need to retarget the 28530 driver to another architecture the only code that should need chang-
ing are the port 1/O functions. At the moment these assume PC |/O port accesses. This may not be appro-
priate for all platforms. Replacing z8530_r ead_port andz8530_write_port isintendedtobe
all that isrequired to port this driver layer.

Chapter 8. Known Bugs And

Assumptions

Interrupt Locking

Occasiona Failures

Thelocking in the driver is done viathe global cli/sti lock. This makes for
relatively poor SMP performance. Switching this to use a per device spin
lock would probably materially improve performance.

We have reports of occasional failures when run for very long periods of
time and the driver starts to receive junk frames. At the moment the cause
of thisisnot clear.

Chapter 9. Public Functions Provided

Public Functions Provided

Name

28530 _interrupt — Handle an interrupt from a 28530
Synopsis

irqreturn_t z8530 interrupt (int irqg, void * dev_id);
Arguments

irq Interrupt number

dev_i d Thez8530 devicethat isinterrupting.

Description

A 785[2]30 device has stuck its hand in the air for attention. We scan both the channels on the chip for
events and then call the channel specific call backs for each channel that has events. We have to use
callback functions because the two channels can be in different modes.

Locking is done for the handlers. Note that locking is done at the chip level (the 5uS delay issueis per
chip not per channel). c->lock for both channels points to dev->lock

10

Public Functions Provided

Name
28530 _sync_open — Open a Z8530 channel for PIO

Synopsis

i nt z8530_sync_open (struct net_device * dev, struct z8530_channel * c);

Arguments

dev The network interface we are using

c The 28530 channel to open in synchronous PIO mode

Description

Switch a 28530 into synchronous mode without DMA assist. We raise the RTS/DTR and commence
network operation.

11

Public Functions Provided

Name
28530 _sync_close — Close a PlO 78530 channel

Synopsis
int z8530_sync_close (struct net_device * dev, struct z8530 channel *
c);

Arguments

dev Network deviceto close

c 78530 channel to disassociate and movetoidle

Description

Close down a Z8530 interface and switch its interrupt handlers to discard future events.

12

Public Functions Provided

Name
28530 _sync_dma_open — Open a 28530 for DMA 1/0O

Synopsis
i nt z8530_sync_dma_open (struct net _device * dev, struct z8530_channel
* C);

Arguments

dev The network device to attach

c The 28530 channel to configure in sync DMA mode.

Description

Set up aZ85x30 device for synchronous DMA in both directions. Two ISA DMA channels must be avail-
ablefor thisto work. We assume ISA DMA driven I/O and PC limits on access.

13

Public Functions Provided

Name
28530 _sync_dma _close — Close down DMA /O

Synopsis
i nt z8530_sync_dma_cl ose (struct net_device * dev, struct z8530_channel
* C),

Arguments

dev Network device to detach

c 78530 channel to move into discard mode

Description

Shut down a DMA mode synchronous interface. Halt the DMA, and free the buffers.

14

Public Functions Provided

Name
28530 _sync_txdma_open — Open aZ8530 for TX driven DMA

Synopsis
i nt z8530_sync_t xdma_open (struct net_devi ce * dev, struct z8530_channel
* C);

Arguments

dev The network device to attach

c The 28530 channel to configure in sync DMA mode.

Description

Set up a Z85x30 device for synchronous DMA tranmission. One |SA DMA channel must be available for
thisto work. The receive sideisrunin PIO mode, but then it has the bigger FIFO.

15

Public Functions Provided

Name
28530 _sync_txdma _close — Close down a TX driven DMA channel
Synopsis
i nt z8530_sync_t xdma_cl ose (struct net device * dev, struct

z8530_channel * c¢);

Arguments

dev Network device to detach

c 78530 channel to move into discard mode

Description

Shut down a DMA/PIO split mode synchronous interface. Halt the DMA, and free the buffers.

16

Public Functions Provided

Name
28530_describe — Uniformly describe a 28530 port
Synopsis
voi d z8530 _descri be (struct z8530 _dev * dev, char * mapping, unsigned
| ong io0);
Arguments
dev 78530 device to describe
mappi ng string holding mapping type (eg “1/0” or “Mem”)
io the port value in question
Description

Describe aZ8530 in astandard format. We must passthe /O as the port offset isn't predictable. The main
reason for thisfunction is to try and get a common format of report.

17

Public Functions Provided

Name
28530 init — Initialise a Z8530 device

Synopsis

int z8530 _init (struct z8530_dev * dev);

Arguments

dev 78530 deviceto initialise.

Description

Configure up a Z8530/285C30 or 285230 chip. We check the device is present, identify the type and
then program it to hopefully keep quite and behave. This matters alot, a Z8530 in the wrong state will
sometimes get into stupid modes generating 10K hz interrupt streams and the like.

We set the interrupt handler up to discard any events, in case we get them during reset or setp.

Return O for success, or a negative value indicating the problem in errno form.

18

Public Functions Provided

Name
z8530_shutdown — Shutdown a Z8530 device

Synopsis

i nt z8530_shutdown (struct z8530_dev * dev);

Arguments

dev The Z8530 chip to shutdown

Description

We set the interrupt handlers to silence any interrupts. We then reset the chip and wait 100uS to be sure
the reset completed. Just in case the caller then tries to do stuff.

Thisis called without the lock held

19

Public Functions Provided

Name
28530 _channel_load — Load channel data

Synopsis

i nt z8530_channel _| oad (struct z8530_channel * c, u8 * rtable);

Arguments

c 28530 channel to configure

rtabl e tableof register, value pairs

FIXME

ioctl to allow user uploaded tables

Load a Z8530 channel up from the system data. We use +16 to indicate the “prime” registers. The value
255 terminates the table.

20

Public Functions Provided

Name
28530 _null_rx — Discard a packet

Synopsis

void z8530 _null _rx (struct z8530_channel * c, struct sk_buff * skb);

Arguments

c The channel the packet arrived on

skb Thebuffer

Description
We point the receive handler at this function when idle. Instead of processing the frames we get to throw
them away.

21

Public Functions Provided

Name
28530 _queue xmit — Queue a packet
Synopsis
netdev_tx_t z8530 _queue_xmt (struct z8530_channel * c, struct sk_buff
* skb);
Arguments
c The channel to use

skb The packet to kick down the channel

Description

Queue a packet for transmission. Because we have rather hard to hit interrupt latencies for the 285230 per
packet even in DMA mode we do the flip to DMA buffer if needed here not in the IRQ.

Called from the network code. The lock is not held at this point.

22

Chapter 10. Internal Functions

23

Internal Functions

Name
z8530_read_port — Architecture specific interface function

Synopsis

int z8530 _read_port (unsigned long p);

Arguments

p porttoread

Description

Provided port access methods. The Comtrol SV 11 requires no delays between accesses and uses PC 1/0.
Some drivers may need a 5uS delay

In the longer term this should become an architecture specific section so that this can become a generic
driver interface for al platforms. For now we only handle PC /O ports with or without the dread 5uS

sanity delay.

The caller must hold sufficient locks to avoid violating the horrible 5uS delay rule.

24

Internal Functions

Name

z8530_write_port — Architecture specific interface function

Synopsis

void z8530_ wite_port (unsigned |long p, u8 d);

Arguments

p porttowrite

d vauetowrite

Description

Write a value to a port with delays if need be. Note that the caller must hold locks to avoid read/writes
from other contexts violating the 5uS rule

In the longer term this should become an architecture specific section so that this can become a generic
driver interface for al platforms. For now we only handle PC /O ports with or without the dread 5uS

sanity delay.

25

Internal Functions

Name

read_zsreg — Read aregister from a 285230
Synopsis

u8 read_zsreg (struct z8530 channel * c, u8 reg);
Arguments

c 28530 channel to read from (2 per chip)

reg Registertoread

FIXME

Use a spinlock.

Most of the Z8530 registers are indexed off the control registers. A read is done by writing to the control
register and reading the register back. The caller must hold the lock

26

Internal Functions

Name
read zsdata— Read the data port of a 28530 channel

Synopsis
u8 read_zsdata (struct z8530_channel * c);

Arguments

¢ The Z8530 channd to read the data port from

Description

The data port provides fast access to some things. We still have all the 5uS delays to worry about.

27

Internal Functions

Name
write_zsreg — Write to a 28530 channel register

Synopsis

void wite_zsreg (struct z8530_channel * ¢, u8 reg, u8 val);

Arguments
c The 28530 channel
reg Register number

val Vauetowrite

Description

Write avalue to an indexed register. The caller must hold the lock to honour theirritating delay rules. We
know about register 0 being fast to access.

Assumes c->lock is held.

28

Internal Functions

Name
write_zsctrl — Write to a Z8530 control register

Synopsis

void wite_zsctrl (struct z8530_channel * c, u8 val);

Arguments

c The 28530 channel

val Vauetowrite

Description

Write directly to the control register on the 28530

29

Internal Functions

Name
write_zsdata— Write to a 28530 control register

Synopsis

void wite_zsdata (struct z8530_channel * c, u8 val);

Arguments

c The 28530 channel

val Vauetowrite

Description

Write directly to the data register on the Z8530

30

Internal Functions

Name
28530 flush_fifo — Flush on chip RX FIFO

Synopsis

void z8530 _flush_fifo (struct z8530_channel * c);

Arguments
¢ Channel toflush

Description

Flush the receive FIFO. There is no specific option for this, we blindly read bytes and discard them.
Reading when there is no datais harmless. The 8530 has a4 byte FIFO, the 85230 has 8 bytes.

All locking is handled for the caller. On return data may still be present if it arrived during the flush.

31

Internal Functions

Name
28530 _rtsdtr — Control the outgoing DTS/RTS line

Synopsis

void z8530 rtsdtr (struct z8530_channel * c, int set);

Arguments

c The 28530 channel to control;

set 1toset, Otoclear

Description

Setsor clears DTR/RTS on the requested line. All locking is handled by the caller. For now we assume all
boards use the actual RTS/DTR on the chip. Apparently one or two don't. We'll scream about them later.

32

Internal Functions

Name

z8530_rx — Handle a PIO receive event

Synopsis

void z8530 _rx (struct z8530_channel * c);

Arguments

Cc Z8530 channel to process

Description

Note

Receive handler for receiving in PIO mode. This is much like the async one but not quite the same or
as complex

Itsintended that this handler can easily be separated from the main code to run realtime. That'll be needed
for some machines (eg to ever clock 64kbits on a sparc ;)).

The RT_LOCK macros don't do anything now. Keep the code covered by them as short as possible in
all circumstances - clocks cost baud. The interrupt handler is assumed to be atomic w.r.t. to other code
- thisistruein the RT case too.

We only cover the sync cases for this. If you want 2Mbit async do it yourself but consider medical assis-
tance first. This non DMA synchronous mode is portable code. The DMA mode assumes PCI like 1SA
DMA

Called with the device lock held

33

Internal Functions

Name

z8530_tx — Handle a PIO transmit event
Synopsis
void z8530 _tx (struct z8530_channel * c);

Arguments

Cc Z8530 channel to process

Description

28530 transmit interrupt handler for the PIO mode. The basic ideaisto attempt to keep the FIFO fed. We
fill asmany bytesin as possible, its quite possible that we won't keep up with the data rate otherwise.

Internal Functions

Name
z8530_status — Handle a Pl O status exception

Synopsis

voi d z8530_status (struct z8530 _channel * chan);

Arguments

chan 78530 channdl to process

Description

A status event occurred in PO synchronous mode. There are several reasons the chip will bother us here.
A transmit underrun means we failed to feed the chip fast enough and just broke a packet. A DCD change

isaline up or down.

35

Internal Functions

Name
z8530_dma rx — HandleaDMA RX event

Synopsis

void z8530 _dma_rx (struct z8530 _channel * chan);

Arguments

chan Channel to handle

Description

Non bus mastering DMA interfaces for the Z8x30 devices. Thisis really pretty PC specific. The DMA
mode means that most receive events are handled by the DMA hardware. We get a kick here only if a

frame ended.

36

Internal Functions

Name
z8530 _dma tx — HandleaDMA TX event
Synopsis
void z8530 _dma_tx (struct z8530 _channel * chan);
Arguments
chan The Z8530 channel to handle
Description
\éVe have received an interrupt while doing DMA transmissions. It shouldn't happen. Scream loudly if it
oes.

37

Internal Functions

Name
z8530_dma _status— Handle a DMA status exception

Synopsis
voi d z8530_dma_status (struct z8530_channel * chan);

Arguments

chan 78530 channdl to process

A status event occurred on the Z8530. We receive these for two reasons when in DMA mode.
Firstly if we finished a packet transfer we get one and kick the next packet out. Secondly we may
see aDCD change.

38

Internal Functions

Name
z8530_rx_clear — Handle RX events from a stopped chip

Synopsis
voi d z8530 _rx_clear (struct z8530 channel * c);

Arguments

Cc 28530 channel to shut up

Description

Receive interrupt vectors for a 28530 that isin 'parked’ mode. For machines with PCl Z85x30 cards, or
level triggered interrupts (eg the Macll) we must clear the interrupt cause or die.

39

Internal Functions

Name
28530 _tx_clear — Handle TX events from a stopped chip

Synopsis
void z8530 _tx_clear (struct z8530 channel * c);

Arguments

Cc 28530 channel to shut up

Description

Transmit interrupt vectors for a 28530 that isin 'parked' mode. For machines with PCl Z85x30 cards, or
level triggered interrupts (eg the Macll) we must clear the interrupt cause or die.

40

Internal Functions

Name
z8530_status_clear — Handle status events from a stopped chip

Synopsis

voi d z8530_status_clear (struct z8530_channel * chan);

Arguments

chan Z8530 channel to shut up

Description

Statusinterrupt vectorsfor az8530 that isin ‘parked' mode. For machineswith PCI Z85x30 cards, or level
triggered interrupts (eg the Macll) we must clear the interrupt cause or die.

41

Internal Functions

Name
z8530_tx_begin — Begin packet transmission

Synopsis

voi d z8530 tx_begin (struct z8530 channel * c);
Arguments

¢ The zZ8530 channd to kick

Description

This is the speed sensitive side of transmission. If we are called and no buffer is being transmitted we
commence the next buffer. If nothing is queued we idle the sync.

Note

We are handling this code path in the interrupt path, keep it fast or bad things will happen.
Called with the lock held.

42

Internal Functions

Name
28530 _tx_done— TX complete callback

Synopsis

voi d z8530_t x_done (struct z8530_channel * c);

Arguments

¢ The channel that completed atransmit.

Description

Thisis called when we complete a packet send. We wake the queue, start the next packet going and then
free the buffer of the existing packet. This codeisfairly timing sensitive.

Called with the register lock held.

43

Internal Functions

Name

28530 _rx_done — Receive completion callback
Synopsis
voi d z8530_rx_done (struct z8530_channel * c);

Arguments

¢ The channel that completed areceive

Description

A new packet iscomplete. Our goal hereisto get back into receive mode asfast as possible. On the 285230
we could change to using ESCC mode, but on the older chips we have no choice. We flip to the new
buffer immediately in DMA mode so that the DMA of the next frame can occur while we are copying
the previous buffer to an sk_buff

Called with the lock held

Internal Functions

Name

spans_boundary — Check a packet can be ISA DMA'd
Synopsis

int spans_boundary (struct sk_buff * skb);
Arguments

skb The buffer to check
Description

Returns true if the buffer cross a DMA boundary on a PC. The poor thing can only DMA within a 64K
block not across the edges of it.

45

	Z8530 Programming Guide
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Driver Modes
	Chapter 3. Using the Z85230 driver
	Chapter 4. Attaching Network Interfaces
	Chapter 5. Configuring And Activating The Port
	Chapter 6. Network Layer Functions
	Chapter 7. Porting The Z8530 Driver
	Chapter 8. Known Bugs And Assumptions
	Chapter 9. Public Functions Provided
	z8530_interrupt
	z8530_sync_open
	z8530_sync_close
	z8530_sync_dma_open
	z8530_sync_dma_close
	z8530_sync_txdma_open
	z8530_sync_txdma_close
	z8530_describe
	z8530_init
	z8530_shutdown
	z8530_channel_load
	z8530_null_rx
	z8530_queue_xmit

	Chapter 10. Internal Functions
	z8530_read_port
	z8530_write_port
	read_zsreg
	read_zsdata
	write_zsreg
	write_zsctrl
	write_zsdata
	z8530_flush_fifo
	z8530_rtsdtr
	z8530_rx
	z8530_tx
	z8530_status
	z8530_dma_rx
	z8530_dma_tx
	z8530_dma_status
	z8530_rx_clear
	z8530_tx_clear
	z8530_status_clear
	z8530_tx_begin
	z8530_tx_done
	z8530_rx_done
	spans_boundary

