
1

Linux Security Modules: General
Security Hooks for Linux

Stephen Smalley, NAI Labs <ssmalley@nai.com>
Timothy Fraser, NAI Labs <tfraser@nai.com>

Chris Vance, NAI Labs <cvance@nai.com>

Table of Contents
Introduction .. 1
LSM Framework ... 1
LSM Capabilities Module ... 3

Introduction
In March 2001, the National Security Agency (NSA) gave a presentation about Security-Enhanced Linux
(SELinux) at the 2.5 Linux Kernel Summit. SELinux is an implementation of flexible and fine-grained
nondiscretionary access controls in the Linux kernel, originally implemented as its own particular kernel
patch. Several other security projects (e.g. RSBAC, Medusa) have also developed flexible access control
architectures for the Linux kernel, and various projects have developed particular access control models
for Linux (e.g. LIDS, DTE, SubDomain). Each project has developed and maintained its own kernel patch
to support its security needs.

In response to the NSA presentation, Linus Torvalds made a set of remarks that described a security
framework he would be willing to consider for inclusion in the mainstream Linux kernel. He described a
general framework that would provide a set of security hooks to control operations on kernel objects and
a set of opaque security fields in kernel data structures for maintaining security attributes. This framework
could then be used by loadable kernel modules to implement any desired model of security. Linus also
suggested the possibility of migrating the Linux capabilities code into such a module.

The Linux Security Modules (LSM) project was started by WireX to develop such a framework. LSM is
a joint development effort by several security projects, including Immunix, SELinux, SGI and Janus, and
several individuals, including Greg Kroah-Hartman and James Morris, to develop a Linux kernel patch that
implements this framework. The patch is currently tracking the 2.4 series and is targeted for integration
into the 2.5 development series. This technical report provides an overview of the framework and the
example capabilities security module provided by the LSM kernel patch.

LSM Framework
The LSM kernel patch provides a general kernel framework to support security modules. In particular, the
LSM framework is primarily focused on supporting access control modules, although future development
is likely to address other security needs such as auditing. By itself, the framework does not provide any
additional security; it merely provides the infrastructure to support security modules. The LSM kernel
patch also moves most of the capabilities logic into an optional security module, with the system defaulting
to the traditional superuser logic. This capabilities module is discussed further in the section called “LSM
Capabilities Module”.

Linux Security Modules: Gen-
eral Security Hooks for Linux

2

The LSM kernel patch adds security fields to kernel data structures and inserts calls to hook functions at
critical points in the kernel code to manage the security fields and to perform access control. It also adds
functions for registering and unregistering security modules, and adds a general security system call
to support new system calls for security-aware applications.

The LSM security fields are simply void* pointers. For process and program execution security informa-
tion, security fields were added to struct task_struct and struct linux_binprm. For filesystem security in-
formation, a security field was added to struct super_block. For pipe, file, and socket security informa-
tion, security fields were added to struct inode and struct file. For packet and network device security
information, security fields were added to struct sk_buff and struct net_device. For System V IPC securi-
ty information, security fields were added to struct kern_ipc_perm and struct msg_msg; additionally, the
definitions for struct msg_msg, struct msg_queue, and struct shmid_kernel were moved to header files
(include/linux/msg.h and include/linux/shm.h as appropriate) to allow the security mod-
ules to use these definitions.

Each LSM hook is a function pointer in a global table, security_ops. This table is a security_operations
structure as defined by include/linux/security.h. Detailed documentation for each hook is in-
cluded in this header file. At present, this structure consists of a collection of substructures that group
related hooks based on the kernel object (e.g. task, inode, file, sk_buff, etc) as well as some top-level
hook function pointers for system operations. This structure is likely to be flattened in the future for per-
formance. The placement of the hook calls in the kernel code is described by the "called:" lines in the
per-hook documentation in the header file. The hook calls can also be easily found in the kernel code by
looking for the string "security_ops->".

Linus mentioned per-process security hooks in his original remarks as a possible alternative to global
security hooks. However, if LSM were to start from the perspective of per-process hooks, then the base
framework would have to deal with how to handle operations that involve multiple processes (e.g. kill),
since each process might have its own hook for controlling the operation. This would require a general
mechanism for composing hooks in the base framework. Additionally, LSM would still need global hooks
for operations that have no process context (e.g. network input operations). Consequently, LSM provides
global security hooks, but a security module is free to implement per-process hooks (where that makes
sense) by storing a security_ops table in each process' security field and then invoking these per-process
hooks from the global hooks. The problem of composition is thus deferred to the module.

The global security_ops table is initialized to a set of hook functions provided by a dummy securi-
ty module that provides traditional superuser logic. A register_security function (in securi-
ty/security.c) is provided to allow a security module to set security_ops to refer to its own hook
functions, and an unregister_security function is provided to revert security_ops to the dummy
module hooks. This mechanism is used to set the primary security module, which is responsible for making
the final decision for each hook.

LSM also provides a simple mechanism for stacking additional security modules with the prima-
ry security module. It defines register_security and unregister_security hooks in the
security_operations structure and provides mod_reg_security and mod_unreg_security func-
tions that invoke these hooks after performing some sanity checking. A security module can call these
functions in order to stack with other modules. However, the actual details of how this stacking is handled
are deferred to the module, which can implement these hooks in any way it wishes (including always
returning an error if it does not wish to support stacking). In this manner, LSM again defers the problem
of composition to the module.

Although the LSM hooks are organized into substructures based on kernel object, all of the hooks can
be viewed as falling into two major categories: hooks that are used to manage the security fields and
hooks that are used to perform access control. Examples of the first category of hooks include the
alloc_security and free_security hooks defined for each kernel data structure that has a se-
curity field. These hooks are used to allocate and free security structures for kernel objects. The first cat-

Linux Security Modules: Gen-
eral Security Hooks for Linux

3

egory of hooks also includes hooks that set information in the security field after allocation, such as the
post_lookup hook in struct inode_security_ops. This hook is used to set security information for in-
odes after successful lookup operations. An example of the second category of hooks is the permission
hook in struct inode_security_ops. This hook checks permission when accessing an inode.

LSM Capabilities Module
The LSM kernel patch moves most of the existing POSIX.1e capabilities logic into an optional security
module stored in the file security/capability.c. This change allows users who do not want to use
capabilities to omit this code entirely from their kernel, instead using the dummy module for traditional
superuser logic or any other module that they desire. This change also allows the developers of the capa-
bilities logic to maintain and enhance their code more freely, without needing to integrate patches back
into the base kernel.

In addition to moving the capabilities logic, the LSM kernel patch could move the capability-related fields
from the kernel data structures into the new security fields managed by the security modules. However,
at present, the LSM kernel patch leaves the capability fields in the kernel data structures. In his original
remarks, Linus suggested that this might be preferable so that other security modules can be easily stacked
with the capabilities module without needing to chain multiple security structures on the security field. It
also avoids imposing extra overhead on the capabilities module to manage the security fields. However,
the LSM framework could certainly support such a move if it is determined to be desirable, with only a
few additional changes described below.

At present, the capabilities logic for computing process capabilities on execve and set*uid, checking
capabilities for a particular process, saving and checking capabilities for netlink messages, and handling
the capget and capset system calls have been moved into the capabilities module. There are still a
few locations in the base kernel where capability-related fields are directly examined or modified, but
the current version of the LSM patch does allow a security module to completely replace the assignment
and testing of capabilities. These few locations would need to be changed if the capability-related fields
were moved into the security field. The following is a list of known locations that still perform such direct
examination or modification of capability-related fields:

• fs/open.c:sys_access

• fs/lockd/host.c:nlm_bind_host

• fs/nfsd/auth.c:nfsd_setuser

• fs/proc/array.c:task_cap

	Linux Security Modules: General Security Hooks for Linux
	Table of Contents
	Introduction
	LSM Framework
	LSM Capabilities Module

