Writing s390 channel device drivers

Cornelia Huck <cor nel i a. huck@le. i bm conp

Writing s390 channel device drivers
by Cornelia Huck
Copyright © 2007 IBM Corp.

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY ; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

Y ou should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the file COPY ING in the source distribution of Linux.

Table of Contents

O | gL oo (8 1o o R PO PRSPPI 1
2. TRE COW US ...ttt ettt ettt e ettt e e ettt e e eentaeeees 2
I/O functions for channel-attached deviCeso 2
COW AEVICES ...ttt ettt ettt ettt et e e et e et e bt e et e b e et e eeeeba s 15
The channel-measurement faCilityoooouuiiiiiii e 48
3. THE COWGIOUP US ...ttt e e e e e 54
COW QFOUD AEVICES ... iieitii ettt ettt ettt ettt ettt et e et e et et e e e eaa e e enaens 54
4. GENENIC INTEITACES ...ttt ettt e e et e et et e e e ena e eeees 64
register_adapter INEEITUDLiiiiiie ettt e e e e e e e eeanns 65
unregister_adapter INTEITUDE et 66
(o I A o (== (=SSOSO UPPPPTRUPPPPPN 67
BTG IV _TEIEBSE ..ot 68
BTG IV_AIOC ..t 69
2 (o I AV 1 TSP PT T PPPPTTR 70
(o I AV o= | LTSS PP PPPPTTRUPPPN 71

Chapter 1. Introduction

This document describes the interfaces available for device driversthat drive s390 based channel attached
I/0 devices. Thisincludesinterfaces for interaction with the hardware and interfaces for interacting with
the common driver core. Those interfaces are provided by the s390 common 1/O layer.

The document assumes a familarity with the technical terms associated with the s390 channel 1/0 archi-
tecture. For adescription of thisarchitecture, please refer to the "z/Architecture: Principles of Operation”,
IBM publication no. SA22-7832.

Whilemost 1/0 deviceson as390 system aretypically driven through the channel 1/O mechanism described
here, there are various other methods (like the diag interface). These are out of the scope of this document.

Some additiona information can also be found in the kernel source under Documentation/s390/dri-
ver-model.txt.

Chapter 2. The ccw bus

The ccw bustypically containsthe majority of devicesavailable to as390 system. Named after the channel
command word (ccw), the basic command structure used to address its devices, the ccw bus contains so-
called channel attached devices. They are addressed via I/O subchannels, visible on the css bus. A device
driver for channel-attached devices, however, will never interact with the subchannel directly, but only
viathe 1/O device on the ccw bus, the ccw device.

/O functions for channel-attached devices

Some hardware structures have been trandated into C structures for use by the common I/O layer and

devicedrivers. For more information on the hardware structures represented here, please consult the Prin-
ciples of Operation.

The ccw bus

Name

struct ccwl — channel command word

Synopsis

struct ccwl {
__u8 cnd_code;
__u8 flags;
__ul6 count;
__u32 cda;

b
Members

cmd_code command code

flags flags, like IDA addressing, etc.

count byte count

cda data address
Description

The ccw is the basic structure to build channel programs that perform operations with the device or the
control unit. Only Format-1 channel command words are supported.

The ccw bus

Name

struct erw — extended report word

Synopsis

struct erw {
__u32 resO0: 3;
__u32 auth:1;
_u32 pvrf:1;
__u32 cpt:1;
_u32 fsavf:1;
__u32 cons: 1;
_u32 scavf:1;
_u32 fsaf:1;
__u32 scnt: 6;
__u32 resl6: 16;

1
Members
resO
auth
pvrf
cpt
fsavf
cons
scavf
fsaf
scnt

resl6

reserved

authorization check
path-verification-required flag
channel-path timeout

failing storage address vaidity flag
concurrent sense

secondary ccw address validity flag
failing storage address format
sense count, if cons ==

reserved

The ccw bus

Name
struct erw_eadm — EADM Subchannel extended report word

Synopsis

struct erw eadm {
_u32 h:1;
_u32 r:1;

s

Members

b aoberror

r arsberror

The ccw bus

Name

struct sublog — subchannel logout area

Synopsis

struct subl og {
__u32 res0:1;
_u32 esf:7;
__u32 | pum 8;
__u32 arep:1;
_u32 fvf:5;
__u32 sacc: 2;
__u32 ternt: 2;
__u32 devsc: 1;
__u32 serr:1;
_u32 ioerr:1;
__u32 seqc: 3;

1
Members
resO
esf
[pum
arep
fuf
sacc
termc
devsc
serr
ioerr

Seqce

reserved

extended status flags
last path used mask
ancillary report
field-validity flags
storage access code
termination code
device-status check
secondary error
i/o-error aert

sequence code

The ccw bus

Name
struct esw0 — Format O Extended Status Word (ESW)

Synopsis

struct esw0 {
struct subl og subl og;
struct erw erw
_u32 faddr[2];

__u32 saddr;
b
Members
sublog subchannel logout
erw extended report word

faddr[2] failing storage address

saddr secondary ccw address

The ccw bus

Name
struct eswl — Format 1 Extended Status Word (ESW)

Synopsis

struct eswl {
__u8 zero0;
__u8 | pum
__ul6 zerolé;
struct erw erw;
__u32 zeros[3];

b

Members
zero0 reserved zeros
[pum last path used mask
zerol6 reserved zeros
erw extended report word
zeroq 3] three fullwords of zeros

The ccw bus

Name
struct esw2 — Format 2 Extended Status Word (ESW)

Synopsis

struct esw2 {
__u8 zero0;
__u8 | pum
_ulé dcti;
struct erw erw;
__u32 zeros[3];

b
Members
zero0 reserved zeros
[pum last path used mask
dcti device-connect-time interval
erw extended report word
zeroq 3] three fullwords of zeros

The ccw bus

Name
struct esw3 — Format 3 Extended Status Word (ESW)

Synopsis

struct esw3 {
__u8 zero0;
__u8 | pum
__ulb6 res;
struct erw erw;
__u32 zeros[3];

b
Members
zero0 reserved zeros
[pum last path used mask
res reserved
erw extended report word
zeroq 3] three fullwords of zeros

10

The ccw bus

Name
struct esw_eadm — EADM Subchannel Extended Status Word (ESW)

Synopsis

struct esw eadm {
__u32 subl og;
struct erw_eadmerw,

b
Members

sublog subchannel logout

erw extended report word

11

The ccw bus

Name

struct irb — interruption response block
Synopsis
struct irb {

uni on SCSW SCSW,
uni on esw,

__u8 ecw 32];
1
Members
SCSW subchannel status word
esw extended status word

ecw[32] extended control word

Description

Theirb that is handed to the device driver when an interrupt occurs. For solicited interrupts, the common
I/O layer already performs checks whether afield is valid; afield not being valid is always passed as 0.
If aunit check occurred, ecw may contain sense data; thisis retrieved by the common I/O layer itself if
the device doesn't support concurrent sense (so that the device driver never needs to perform basic sene
itself). For unsolicited interrupts, theirb is passed as-is (expect for sense data, if applicable).

12

The ccw bus

Name

struct ciw — command information word (CIW) layout

Synopsis

struct ciw{
_u32 et:2;
__u32 reserved: 2;
_u32 ct: 4
__u32 cnd: 8;
__u32 count: 16;
s

Members
et entry type
reserved reserved bits
ct command type
cmd command code

count command count

13

The ccw bus

Name

struct ccw_dev_id — unique identifier for ccw devices

Synopsis

struct ccw dev_id {
u8 ssid;
ulé devno;

1
Members

ssid subchannel setid

devno device number
Description

This structure is not directly based on any hardware structure. The hardware identifies a device by its

device number and its subchannel, which isin turn identified by itsid. In order to get a unique identifier
for ccw devices across subchannel sets, st ruct ccw_dev_id has been introduced.

14

The ccw bus

Name
ccw_dev_id_is equal — compare two ccw_dev_ids

Synopsis
int ccwdev_ id is equal (struct ccw dev_ id * dev_idl, struct ccw dev_ id
* dev_id2);

Arguments

dev_idl accw_dev id

dev_i d2 another ccw _dev_id
Returns

1 if the two structures are equal field-by-field, O if not.
Context

any

ccw devices

Devices that want to initiate channel 1/0O need to attach to the ccw bus. Interaction with the driver coreis
done via the common I/O layer, which provides the abstractions of ccw devices and ccw device drivers.

The functions that initiate or terminate channel 1/0 all act upon a ccw device structure. Device drivers
must not bypass those functions or strange side effects may happen.

15

The ccw bus

Name

struct ccw_device — channel attached device

Synopsis

struct ccw device {
spinlock t * ccw ock;
struct ccw device id id;
struct ccw. driver * drv;
struct device dev;
int online;
void (* handler) (struct ccw device *, unsigned long, struct irb *);

b
Members

ccwlock pointer to device lock

id id of thisdevice

drv ccw driver for this device

dev embedded device structure

online online status of device

handler interrupt handler
Description

handl er is a member of the device rather than the driver since a driver can have different interrupt
handlers for different ccw devices (multi-subchannel drivers).

16

The ccw bus

Name

struct ccw_driver — device driver for channel attached devices

Synopsis

struct ccw. driver {
struct ccw device_id * ids;
int (* probe) (struct ccw_device *);
void (* renpve) (struct ccw device *);
int (* set_online) (struct ccw device *);
int (* set_offline) (struct ccw_device *);
int (* notify) (struct ccw device *, int);
void (* path_event) (struct ccw_ device *, int *);
void (* shutdown) (struct ccw_ device *);
int (* prepare) (struct ccw_device *);
void (* conmplete) (struct ccw_device *);
int (* freeze) (struct ccw device *);
int (* thaw) (struct ccw device *);
int (* restore) (struct ccw_device *);
enum uc_todo (* uc_handler) (struct ccw device *, struct irb *);
struct device_driver driver;
enuminterruption_class int_class;

b

Members
ids ids supported by this driver
probe function called on probe
remove function called on remove
set_online called when setting device online
set_offline called when setting device offline
notify notify driver of device state changes
path_event notify driver of channel path events
shutdown called at device shutdown
prepare prepare for pm state transition
complete undo work donein pr epar e
freeze callback for freezing during hibernation snapshotting
thaw undo work doneinfreeze
restore callback for restoring after hibernation
uc_handler callback for unit check handler
driver embedded device driver structure

17

The ccw bus

int_class interruption class to use for accounting interrupts

18

The ccw bus

Name

ccw_device set offline— disable a ccw device for I/O
Synopsis
int ccw device_set _offline (struct ccw device * cdev);
Arguments
cdev target ccw device
Description
Thisfunction callsthedriver'sset _of f | i ne function for cdev, if given, and then disablescdev.
Returns

0 on success and a negative error value on failure.

Context

enabled, ccw device lock not held

19

The ccw bus

Name

ccw_device set_online— enable a ccw device for I/O
Synopsis

int ccw device_set_online (struct ccw device * cdev);
Arguments

cdev target ccw device

Description

Thisfunction first enablescdev and then callsthedriver'sset _onl i ne functionfor cdev, if given. If
set _onl i ne returnsan error, cdev isdisabled again.

Returns

0 on success and a negative error value on failure.

Context

enabled, ccw device lock not held

20

The ccw bus

Name

get_ccwdev_by dev_id — obtain device from a ccw deviceid
Synopsis

struct ccw device * get _ccwdev_by dev_id (struct ccw dev_ id * dev_id);
Arguments

dev_i d idof thedeviceto be searched

Description

This function searches al devices attached to the ccw bus for a device matching dev_i d.

Returns

If adeviceisfound its reference count isincreased and returned; else NULL is returned.

21

The ccw bus

Name

get_ccwdev_by busid — obtain device from abusid
Synopsis

struct ccw device * get_ccwdev_by busid (struct ccw driver * cdrv, const
char * bus_id);

Arguments

cdrv driver the device is owned by

bus_id busid of the deviceto be searched
Description

This function searches all devices owned by cdr v for adevice with abusid matching bus_i d.

Returns

If amatch is found, its reference count of the found device isincreased and it is returned; else NULL is
returned.

22

The ccw bus

Name

ccw_driver_register — register accw driver
Synopsis
int ccw driver _register (struct ccw. driver * cdriver);

Arguments

cdriver drivertoberegistered

Description

Thisfunction is mainly awrapper around dr i ver _r egi ster.

Returns

0 on success and a negative error value on failure.

23

The ccw bus

Name
ccw_driver_unregister — deregister a ccw driver
Synopsis
void ccw driver_unregister (struct ccw. driver * cdriver);
Arguments
cdriver driverto be deregistered
Description

Thisfunction is mainly awrapper around dr i ver _unr egi st er.

24

The ccw bus

Name

ccw_device sios — initiate logging
Synopsis

int ccw device_siosl (struct ccw device * cdev);

Arguments

cdev ccw device

Description

This function is used to invoke model-dependent 1ogging within the channel subsystem.

25

The ccw bus

Name
ccw_device set options_mask — set some options and unset the rest

Synopsis
int ccw device _set_options_mask (struct ccw device * cdev, unsigned | ong
flags);

Arguments

cdev devicefor which the options are to be set

flags optionsto be set

Description

All flags specified inf | ags are set, al flags not specifiedinf | ags are cleared.

Returns

0 on success, -El NVAL on an invalid flag combination.

26

The ccw bus

Name
ccw_device set options — set some options

Synopsis
int ccw device set options (struct ccw device * cdev, unsigned |ong
flags);

Arguments

cdev devicefor which the options are to be set

flags optionsto be set

Description

All flags specified inf | ags are set, the remainder is left untouched.

Returns

0 on success, -El NVAL if an invalid flag combination would ensue.

27

The ccw bus

Name
ccw_device clear_options — clear some options

Synopsis
voi d ccw device clear_options (struct ccw device * cdev, unsigned | ong
flags);

Arguments

cdev devicefor which the options are to be cleared

flags optionsto becleared

Description

All flags specified inf | ags are cleared, the remainder is|eft untouched.

28

The ccw bus

Name

ccw_device is_pathgroup — determine if paths to this device are grouped
Synopsis
int ccw device_ is_pathgroup (struct ccw device * cdev);

Arguments

cdev ccw device

Description

Return non-zero if there is a path group, zero otherwise.

29

The ccw bus

Name

ccw_device is multipath — determine if device is operating in multipath mode

Synopsis

int ccw device is nultipath (struct ccw device * cdev);

Arguments

cdev ccw device

Description

Return non-zero if deviceis operating in multipath mode, zero otherwise.

30

The ccw bus

Name

ccw_device clear — terminate I/O request processing
Synopsis
int ccw device clear (struct ccw device * cdev, unsigned |l ong i ntparm;

Arguments

cdev target ccw device

i nt par m interruption parameter; value is only used if no I/O is outstanding, otherwise the intparm
associated with the 1/0 request is returned

Description
ccw_devi ce_cl ear calscschon cdev's subchannel.
Returns

0 on success, -ENCDEV on device not operational, -El NVAL on invalid device state.

Context

Interrupts disabled, ccw device lock held

31

The ccw bus

Name
ccw_device start_key — start a s390 channel program with key

Synopsis

int ccw device start_key (struct ccw device * cdev, struct ccwl * cpa,
unsigned long intparm _ u8 Ipm _ u8 key, unsigned |long flags);

Arguments
cdev target ccw device
cpa logical start address of channel program

i nt par m user specific interruption parameter; will be presented back to cdev'sinterrupt handler. Al-
lows a device driver to associate the interrupt with a particular 1/O request.

| pm defines the channel path to be used for a specific I/O request. A value of 0 will make cio
use the opm.
key storage key to be used for the I/O

fl ags additional flags; defines the action to be performed for 1/0O processing.

Description

Start a /390 channel program. When the interrupt arrives, the IRQ handler is called, either immediately,
delayed (dev-end missing, or sense required) or never (no IRQ handler registered).

Returns

0, if the operation was successful; -EBUSY, if the device is busy, or status pending; -EACCES, if no path
specified in | pmis operational; -ENCDEYV, if the device is not operational.

Context

Interrupts disabled, ccw device lock held

32

The ccw bus

Name

ccw_device start_timeout_key — start a s390 channel program with timeout and key
Synopsis
int ccw device start_tineout_key (struct ccw device * cdev, struct ccwl

* cpa, unsigned long intparm _ u8 Ipm _ u8 key, unsigned |ong flags,
int expires);

Arguments
cdev target ccw device
cpa logical start address of channel program

i nt par m user specific interruption parameter; will be presented back to cdev'sinterrupt handler. Al-
lows a device driver to associate the interrupt with a particular 1/O request.

| pm defines the channel path to be used for a specific I/O request. A value of 0 will make cio
use the opm.
key storage key to be used for the I/O

fl ags additional flags; defines the action to be performed for 1/0O processing.
expi res timeout valuein jiffies

Description
Start a S/390 channel program. When the interrupt arrives, the IRQ handler is called, either immediately,
delayed (dev-end missing, or sense required) or never (no IRQ handler registered). This function notifies
the device driver if the channel program has not completed during the time specified by expi res. If a

timeout occurs, the channel program isterminated viaxsch, hsch or csch, and the device'sinterrupt handler
will be called with an irb containing ERR_PTR(-ETI MEDOUT).

Returns

0, if the operation was successful; -EBUSY, if the deviceis busy, or status pending; -EACCES, if no path
specified in | pmis operational; -ENODEV, if the deviceis not operational.

Context

Interrupts disabled, ccw device lock held

33

The ccw bus

Name

ccw_device start — start a s390 channel program
Synopsis

int ccw device start (struct ccw device * cdev, struct ccwl * cpa,
unsigned long intparm _ u8 | pm unsigned | ong flags);

Arguments
cdev target ccw device
cpa logical start address of channel program

i nt par m user specific interruption parameter; will be presented back to cdev'sinterrupt handler. Al-
lows a device driver to associate the interrupt with a particular 1/O request.

| pm defines the channel path to be used for a specific I/O request. A value of 0 will make cio
use the opm.

flags additional flags; defines the action to be performed for 1/O processing.
Description

Start a §/390 channel program. When the interrupt arrives, the IRQ handler is called, either immediately,
delayed (dev-end missing, or sense required) or never (no IRQ handler registered).

Returns

0, if the operation was successful; -EBUSY, if the device is busy, or status pending; -EACCES, if no path
specified in | pmis operational; -ENCDEYV, if the deviceis not operational .

Context

Interrupts disabled, ccw device lock held

The ccw bus

Name

ccw_device start_timeout — start a s390 channel program with timeout
Synopsis

int ccw device start _tineout (struct ccw device * cdev, struct ccwl *
cpa, unsigned long intparm _ u8 | pm unsigned long flags, int expires);

Arguments
cdev target ccw device
cpa logical start address of channel program

i nt par m user specific interruption parameter; will be presented back to cdev'sinterrupt handler. Al-
lows a device driver to associate the interrupt with a particular 1/O request.

| pm defines the channel path to be used for a specific I/O request. A value of 0 will make cio
use the opm.

flags additional flags; defines the action to be performed for 1/O processing.
expi res timeout valueinjiffies

Description
Start a /390 channel program. When the interrupt arrives, the IRQ handler is called, either immediately,
delayed (dev-end missing, or sense required) or never (no IRQ handler registered). This function notifies
the device driver if the channel program has not completed during the time specified by expi res. If a

timeout occurs, the channel program isterminated viaxsch, hsch or csch, and the device'sinterrupt handler
will be called with an irb containing ERR_PTR(-ETI MEDOUT).

Returns

0, if the operation was successful; -EBUSY, if the device is busy, or status pending; -EACCES, if no path
specified in | pmis operational; -ENCDEYV, if the device is not operational.

Context

Interrupts disabled, ccw device lock held

35

The ccw bus

Name
ccw_device _halt — halt 1/0 request processing

Synopsis
int ccw device halt (struct ccw device * cdev, unsigned long intparm;

Arguments

cdev target ccw device

i nt par m interruption parameter; value is only used if no I/O is outstanding, otherwise the intparm
associated with the 1/0 request is returned

Description

ccw_devi ce_hal t calshschon cdev's subchannel.

Returns

0 on success, -ENODEV on device not operational, -El NVAL on invalid device state, -EBUSY on device
busy or interrupt pending.

Context

Interrupts disabled, ccw device lock held

36

The ccw bus

Name

ccw_device resume — resume channel program execution
Synopsis

int ccw device resune (struct ccw device * cdev);
Arguments

cdev target ccw device
Description

ccw _devi ce_resune calsrsch on cdev's subchannel.

Returns

0 on success, -ENCDEV on device not operational, -EI NVAL on invalid device state, -EBUSY on device
busy or interrupt pending.

Context

Interrupts disabled, ccw device lock held

37

The ccw bus

Name

ccw_device get_ciw — Search for CIW command in extended sense data.
Synopsis

struct ciw* ccw device _get ciw (struct ccw device * cdev, _ u32 ct);
Arguments

cdev ccw device to inspect

ct command typeto look for
Description
During Sensel D, command information words (CIWSs) describing special commands available to the de-

vice may have been stored in the extended sense data. This function searches for CIWs of a specified
command type in the extended sense data.

Returns

NULL if no extended sense data has been stored or if no CIW of the specified command type could be
found, else a pointer to the CIW of the specified command type.

38

The ccw bus

Name
ccw_device get_path mask — get currently available paths
Synopsis
__uB ccw device_get path _mask (struct ccw device * cdev);
Arguments
cdev ccw deviceto be queried
Returns
0 if no subchannel for the deviceisavailable, el sethe mask of currently available pathsfor the ccw device's
subchannel.

39

The ccw bus

Name

ccw_device get_chp_desc — return newly allocated channel -path descriptor

Synopsis

struct channel path_desc * ccw device get chp _desc (struct ccw device
* cdev, int chp_idx);

Arguments
cdev device to obtain the descriptor for

chp_i dx index of the channd path

Description

On success return a newly allocated copy of the channel-path description data associated with the given
channel path. Return NULL on error.

40

The ccw bus

Name
ccw_device get_id — obtain accw deviceid
Synopsis
void ccw device get _id (struct ccw device * cdev, struct ccwdev_ id *
dev_id);
Arguments
cdev deviceto obtain theid for

dev_id wheretofill inthevalues

41

The ccw bus

Name

ccw_device tm_start_key — perform start function
Synopsis

int ccw device tmstart_key (struct ccw device * cdev, struct tcw* tcw,
unsigned long intparm u8 | pm u8 key);

Arguments
cdev ccw device on which to perform the start function
tcw transport-command word to be started

i nt par m user defined parameter to be passed to the interrupt handler

| pm mask of pathsto use
key storage key to use for storage access
Description

Start the tcw on the given ccw device. Return zero on success, hon-zero otherwise.

42

The ccw bus

Name

ccw_device tm_start_timeout_key — perform start function
Synopsis

int ccw device tmstart _tinmeout_key (struct ccw device * cdev,
tcw * tcw, unsigned long intparm u8 |pm u8 key, int expires);

Arguments
cdev ccw device on which to perform the start function
tcw transport-command word to be started

i nt par m user defined parameter to be passed to the interrupt handler
| pm mask of pathsto use
key storage key to use for storage access

expi res timespan injiffies after which to abort request

Description

Start the tcw on the given ccw device. Return zero on success, non-zero otherwise.

struct

43

The ccw bus

Name

ccw_device tm_start — perform start function

Synopsis

int ccwdevice tmstart (struct ccw device * cdev, struct tcw * tcw,
unsigned long intparm u8 | pm;

Arguments
cdev ccw device on which to perform the start function
tcw transport-command word to be started

i nt par m user defined parameter to be passed to the interrupt handler

| pm mask of pathsto use

Description

Start the tcw on the given ccw device. Return zero on success, hon-zero otherwise.

The ccw bus

Name

ccw_device tm_start_timeout — perform start function

Synopsis

int ccw device tmstart _tineout (struct ccw device * cdev, struct tcw
* tcw, unsigned long intparm u8 | pm int expires);

Arguments
cdev ccw device on which to perform the start function
tcw transport-command word to be started

i nt par m user defined parameter to be passed to the interrupt handler
| pm mask of pathsto use

expi res timespaninjiffies after which to abort request

Description

Start the tcw on the given ccw device. Return zero on success, hon-zero otherwise.

45

The ccw bus

Name

ccw_device get_mdc — accumulate max data count

Synopsis

int ccw device_get ndc (struct ccw device * cdev, u8 mask);

Arguments

cdev ccw device for which the max data count is accumul ated
mask mask of pathsto use

Description

Return the number of 64K-bytes blocks all paths at least support for a transport command. Return values
<=0indicate failures.

46

The ccw bus

Name

ccw_device tm_intrg — perform interrogate function
Synopsis
int ccw device tmintrg (struct ccw device * cdev);

Arguments

cdev ccw device on which to perform the interrogate function

Description

Perform an interrogate function on the given ccw device. Return zero on success, non-zero otherwise.

47

The ccw bus

Name
ccw_device get_schid — obtain a subchannel id

Synopsis
void ccw device get _schid (struct ccw device % cdev, st ruct
subchannel _id * schid);

Arguments

cdev deviceto obtain theid for

schi d wheretofill inthevaues

The channel-measurement facility

The channel-measurement facility provides a means to collect measurement data which is made available
by the channel subsystem for each channel attached device.

48

The ccw bus

Name
Jusr/src/linux-4.1.27-24//arch/s390/include/asm/cmb.h — Document generation inconsistency

Oops
Warning
The template for this document tried to insert the structured comment from the file / usr/

src/linux-4.1.27-24//arch/s390/incl ude/ asnm crb. h at this point, but none
was found. Thisdummy section is inserted to allow generation to continue.

49

The ccw bus

Name

enable_cmf — switch on the channel measurement for a specific device
Synopsis

int enable_cnf (struct ccw device * cdev);
Arguments

cdev The ccw device to be enabled
Description

Returns O for success or a negative error value.

Context

non-atomic

50

The ccw bus

Name

disable_cmf — switch off the channel measurement for a specific device
Synopsis

int disable cnf (struct ccw device * cdev);
Arguments

cdev The ccw device to be disabled
Description

Returns O for success or a negative error value.

Context

non-atomic

51

The ccw bus

Name

cmf_read — read one value from the current channel measurement block
Synopsis

u64 cnf _read (struct ccw device * cdev, int index);
Arguments

cdev the channel to beread

i ndex theindex of the valueto be read
Description

Returnsthe value read or O if the value cannot be read.

Context

any

52

The ccw bus

Name

cmf_readall — read the current channel measurement block
Synopsis

int cnf_readall (struct ccw device * cdev, struct cnbdata * data);
Arguments

cdev thechannel to be read

dat a apointer to adatablock that will befilled

Description

Returns 0 on success, a negative error value otherwise.

Context

any

53

Chapter 3. The ccwgroup bus

Theccwgroup busonly containsartificial devices, created by the user. Many networking devices(e.g. geth)
are in fact composed of severa ccw devices (like read, write and data channel for geth). The ccwgroup

bus provides a mechanism to create a meta-device which contains those ccw devices as slave devices and
can be associated with the netdevice.

CCW group devices

The ccwgroup bus

Name

struct ccwgroup_device — ccw group device

Synopsis

struct ccwgroup_device {
enum st ate
unsi gned int count;
struct device dev;
struct work_struct ungroup_work;
struct ccw device * cdev[O0];

b
Members
state online/offline state
count number of attached slave devices
dev embedded device structure
ungroup_work work to be done when a ccwgroup notifier has
BUS_NOTI FY_UNBI ND_DRI VER
cdev[Q] variable number of slave devices, allocated as needed

action

type

55

The ccwgroup bus

Name

struct ccwgroup_driver — driver for ccw group devices

Synopsis

struct ccwgroup_driver {
int (* setup) (struct ccwgroup_device *);
void (* renove) (struct ccwgroup_device *);
int (* set_online) (struct ccwgroup_device *);
int (* set_offline) (struct ccwgroup_device *);
void (* shutdown) (struct ccwgroup_device *);
int (* prepare) (struct ccwgroup_device *);
void (* conplete) (struct ccwgroup_device *);
int (* freeze) (struct ccwgroup_device *);
int (* thaw) (struct ccwgroup_device *);
int (* restore) (struct ccwgroup_device *);
struct device driver driver;

b
Members
setup function called during device creation to setup the device
remove function called on remove
set_online function called when deviceis set online
set_offline function called when deviceis set offline
shutdown function called when deviceis shut down
prepare prepare for pm state transition
complete undo work donein pr epar e
freeze callback for freezing during hibernation snapshotting
thaw undo work doneinfreeze
restore callback for restoring after hibernation
driver embedded driver structure

56

The ccwgroup bus

Name

ccwgroup_set_online — enable a ccwgroup device
Synopsis
int ccwgroup_set_online (struct ccwgroup_device * gdev);

Arguments

gdev target ccwgroup device

Description

This function attempts to put the ccwgroup device into the online state.

Returns

0 on success and a negative error value on failure.

57

The ccwgroup bus

Name

ccwgroup_set_offline — disable a ccwgroup device
Synopsis
int ccwgroup_set _offline (struct ccwgroup_device * gdev);

Arguments

gdev target ccwgroup device

Description

This function attempts to put the ccwgroup device into the offline state.

Returns

0 on success and a negative error value on failure.

58

The ccwgroup bus

Name

ccwgroup_create_dev — create and register a ccw group device
Synopsis

int ccwgroup_create_dev (struct device * parent, struct ccwgroup_driver
* gdrv, int numdevices, const char * buf);

Arguments
par ent parent device for the new device
gdrv driver for the new group device

num devi ces nhumber of slave devices
buf buffer containing comma separated bus ids of slave devices
Description

Create and register a new ccw group device as a child of par ent . Slave devices are obtained from the
list of busids giveninbuf .

Returns

0 on success and an error code on failure.

Context

non-atomic

59

The ccwgroup bus

Name
ccwgroup_driver_register — register accw group driver
Synopsis
int ccwgroup_driver _register (struct ccwgroup_driver * cdriver);
Arguments
cdriver drivertoberegistered
Description

Thisfunction is mainly awrapper around dr i ver _r egi ster.

60

The ccwgroup bus

Name
ccwgroup_driver_unregister — deregister a ccw group driver
Synopsis
voi d ccwgroup_driver_unregi ster (struct ccwgroup_driver * cdriver);
Arguments
cdriver driverto be deregistered
Description

Thisfunction is mainly awrapper around dr i ver _unr egi st er.

61

The ccwgroup bus

Name

ccwgroup_probe_ccwdev — probe function for lave devices
Synopsis
i nt ccwgroup_probe _ccwdev (struct ccw device * cdev);

Arguments

cdev ccw device to be probed

Description

Thisisadummy probe function for ccw devices that are dlave devicesin accw group device.

Returns

aways0

62

The ccwgroup bus

Name

ccwgroup_remove_ccwdev — remove function for slave devices

Synopsis

voi d ccwgroup_renbve_ccwdev (struct ccw device * cdev);

Arguments

cdev ccw deviceto be removed

Description

Thisis a remove function for ccw devices that are slave devices in a ccw group device. It sets the ccw
device offline and al so deregisters the embedding ccw group device.

63

Chapter 4. Generic interfaces

Some interfaces are available to other drivers that do not necessarily have anything to do with the busses
described above, but still are indirectly using basic infrastructure in the common 1/O layer. One example
isthe support for adapter interrupts.

Generic interfaces

Name
register_adapter_interrupt — register adapter interrupt handler

Synopsis
int register_adapter_interrupt (struct airg_struct * airq);

Arguments

ai rq pointer to adapter interrupt descriptor

Description

Returns 0 on success, or -EINVAL.

65

Generic interfaces

Name
unregister_adapter_interrupt — unregister adapter interrupt handler

Synopsis
voi d unregi ster_adapter_interrupt (struct airg_struct * airq);

Arguments

ai rq pointer to adapter interrupt descriptor

66

Generic interfaces

Name

airg_iv_create — create an interrupt vector

Synopsis

struct airq_iv * airq_iv_create (unsigned long bits, unsigned |ong
flags);

Arguments
bits number of bitsin the interrupt vector

fl ags alocation flags

Description

Returns a pointer to an interrupt vector structure

67

Generic interfaces

Name

airg_iv_release — release an interrupt vector
Synopsis
void airg_iv_release (struct airg_iv * iv);

Arguments

i v pointer to interrupt vector structure

68

Generic interfaces

Name

airg_iv_aloc — alocate irg bits from an interrupt vector

Synopsis

unsigned long airq_iv_alloc (struct airg_iv * iv, unsigned |long num;

Arguments

i v pointer to an interrupt vector structure

num number of consecutiveirq bitsto allocate

Description

Returns the bit number of the first irq in the alocated block of irgs, or -1UL if no bit is available or the
AIRQ_IV_ALLOC flag has not been specified

69

Generic interfaces

Name

airg_iv_free— freeirq bits of an interrupt vector
Synopsis

void airqg_iv_free (struct airqg_iv * iv, unsigned long bit, unsigned
[ong num ;

Arguments

i v pointer tointerrupt vector structure
bit number of thefirst irg bit to free

num number of consecutive irq bitsto free

70

Generic interfaces

Name

airg_iv_scan — scan interrupt vector for non-zero bits

Synopsis

unsigned long airg_iv_scan (struct airqg_iv * iv, unsigned |long start,
unsi gned | ong end);

Arguments
iv pointer to interrupt vector structure
start bit number to start the search

end bit number to end the search

Description

Returns the bit number of the next non-zero interrupt bit, or -1UL if the scan completed without finding
any more any non-zero hits.

71

	Writing s390 channel device drivers
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. The ccw bus
	I/O functions for channel-attached devices
	struct ccw1
	struct erw
	struct erw_eadm
	struct sublog
	struct esw0
	struct esw1
	struct esw2
	struct esw3
	struct esw_eadm
	struct irb
	struct ciw
	struct ccw_dev_id
	ccw_dev_id_is_equal

	ccw devices
	struct ccw_device
	struct ccw_driver
	ccw_device_set_offline
	ccw_device_set_online
	get_ccwdev_by_dev_id
	get_ccwdev_by_busid
	ccw_driver_register
	ccw_driver_unregister
	ccw_device_siosl
	ccw_device_set_options_mask
	ccw_device_set_options
	ccw_device_clear_options
	ccw_device_is_pathgroup
	ccw_device_is_multipath
	ccw_device_clear
	ccw_device_start_key
	ccw_device_start_timeout_key
	ccw_device_start
	ccw_device_start_timeout
	ccw_device_halt
	ccw_device_resume
	ccw_device_get_ciw
	ccw_device_get_path_mask
	ccw_device_get_chp_desc
	ccw_device_get_id
	ccw_device_tm_start_key
	ccw_device_tm_start_timeout_key
	ccw_device_tm_start
	ccw_device_tm_start_timeout
	ccw_device_get_mdc
	ccw_device_tm_intrg
	ccw_device_get_schid

	The channel-measurement facility
	/usr/src/linux-4.1.27-24//arch/s390/include/asm/cmb.h
	enable_cmf
	disable_cmf
	cmf_read
	cmf_readall

	Chapter 3. The ccwgroup bus
	ccw group devices
	struct ccwgroup_device
	struct ccwgroup_driver
	ccwgroup_set_online
	ccwgroup_set_offline
	ccwgroup_create_dev
	ccwgroup_driver_register
	ccwgroup_driver_unregister
	ccwgroup_probe_ccwdev
	ccwgroup_remove_ccwdev

	Chapter 4. Generic interfaces
	register_adapter_interrupt
	unregister_adapter_interrupt
	airq_iv_create
	airq_iv_release
	airq_iv_alloc
	airq_iv_free
	airq_iv_scan

