The Linux Kernel API

The Linux Kernel API

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY ; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

Y ou should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the file COPY ING in the source distribution of Linux.

Table of Contents

D = Y o =< PP IUPTTPRN 1
DOUDBIY LINKEA LISES ...eeeeiieieiiie ettt ettt et e et e e et e e e ana s 1
2. BasiC C Library FUNCLIONScoouiiiiiiiiii et eees 44
SING CONVEISIONS ...ttt ettt e et e et e ettt e e et et e ettt e e e e bt e e eeaaa s 44
SNG MANTPUIBLIONveieiet et e e 65
Bt OPEIEIIONS ...eeitie ettt ettt ettt ettt aaan s 98
3. Basic Kernel Library FUNCLIONScoouuiiiiiiii e 116
BitMap OPEraiONSceeetiieeiii et ettt ettt e e e e e e e e eean 116
CommaNd-liNE ParSiNgcceeuuuiiiiiii e e ettt e 135
CRC FUNCLIONS ...ttt ettt e e e et e et e e e e et e e e e ena s 138
TAN/IdE FUNCLIONS ...t e e s 143
4. Memory ManagemMent iN LINUXo.ue et e et e e eeenees 160
The SIah CaChE ...oee e e 160
USEr SPACE MEMOIY ACCESS ... cevuiireietit ettt et e et e e e e et et e e et e e et rer e eaneees 177
More Memory Management FUNCLIONSuiiiiiiiiiii e 184
5. Kernel TPC FaCIlITIESeeeeiiiiii et e 282
IPC ULHTTIES ...ttt et ettt et et e e e e ennans 282
B. FIFO BUI N ..ttt ettt ettt e e e e et e e ee e eee 306
KEITO TNEEITACE .ot et 306
7. relay INLErfaCE SUPPOIT .. ettt ettt e e e e e e ab e e eeaans 340
FEIAY TNEEITACE ...t et et e e e e e 340
8. MOAUIE SUPPOIT ...ttt ettt e ettt e ettt e e et et e e et et e e e e entaaeeeenbnaeaees 367
MOTUIE LOBAING ..ottt ettt ettt et e et eeen e e eneans 367
INtEr MOTUIE SUPPONT ...ttt et et e e ettt e e et e e e et e e eeba e eees 371
9. Hardware INEEITACESu ettt 372
INtErTUPt HaNAIINGveeiiee e 372
DIMA ChanNELS ...ttt 386
RESOUICES MaANAGEIMENToveiiit et e e e e e e enas 388
MTRR HANAING ..t e e 404
PCI SUPPOIT LIDIAIY .ottt e e 407
PCI Hotplug SUPPOIt LiBrary ..o e 543
10. FIrmWare INEEITACES it ettt e e et e ettt e e e et e e eena e eees 547
DIMI TNEEITACES ...ttt et e et e et e e e 547
EDD INEEITACES ...ttt ettt ettt et 555
11, SeCUNitY FrameWOIKcoouiiiiiii ettt et e e e e e 561
SECUNTEY TTT ettt ettt ettt e ettt e e et et e et et b e et e bt reeeenanaeeees 562
security_module enable 563
FEOISLEN _SECUNTLY .evvtneeiett ettt e ettt e ettt e ettt e ettt e et et e e et et e e e e et e e e e ebb e e eeeneaeeene 564
SECUNLYTS Creale fil@ ... e e e 565
S o U] Y (ot = (S o [PP 566
SECUNEYTS TOIMOVE ...ttt ettt ettt e et e et e et e e e e ab e e e e aaa s 567
12, AUIT TNEEITACES ..ttt ettt e e et e e e e e eeees 568
= 0o] (oo = PPt 569
=0 Co [(oo 0 21T PP 570
=0 Co [] (oo = 2 o [PPN 571
= o[oo PO P PSP 572
0o L (oo S oo o PP 573
=00 [A= 1 (o o PP 574
= 0o [O 1 (= =TSP TUPPPTPRPPPIN 575
AUt SYSCAIl_ENEIY et 576
AT SYSCAIl_EXIT vt 577

The Linux Kernel API

- 0 (o 0= 0 = P 578
B 10 (o o 1= {0 7= 0 1 T 579
- 10 (o 1 7o o L= PN 580
=00 s ol o L= A 1 o P 581
= 0o L = A LT 1 0 o P 582
- 10 (o 1 ¢ 7o [o) = P 583
- 10 (o 1 1 To T = 1o =Y N 584
- 10 (o 1 o 7o 5 To 11 Y/ 585
- 0 (o 1 010 [0 1= 5= = 11 586
AUAIT IPC OB i 587
= 0 (o] oL = Al o= 2 PP 588
- 10 (o oo (o | 589
- 10 (o 1 0 (o 1 o =11 S 590
B 10 (o = o o = o o | 591
AUt _SIgNAlL INFO ..o 592
_audit_10g_ DPrm fCaPSvuiiii i 593
- 10 (o 1 oo [o7 = . 594
= 0o L wo =0 0]00] 1P 595
= 0o Ll 0TS Y o 1 7= 1 L= 596
0o Ll 1S 0 1= = oo P 597
0= 1= oL = 598
audit_compare dname Pathiiiii e 599
13. ACCOUNEING FTamMEWOIKiiiii i e e e e e e e e e e et e e et e e e e e aana e 600
ST o o L PP PRSP 601
oo A o 1 1= ox Pt 602
oot 0] (00 == T PP PRP 603
LA, BIOCK DBVICES ...vuiieiiiii i ee ettt ettt ettt e e ettt e e e ettt e e e e et e e e e eat s e e e eatnneeaesenaeeeees 604
blk_get backing_ dev_iNfOocouiii e 605
DIK dElay QUEUEo e e 606
o] QS i Ao [0 1= L= 607
o QS (o] o I o111 1= Yt 608
BIK SYNC QUEBLIE ..o e e e e e aan s 609
CBIK TUN QUEUE ... e 610
o L 0 g T o 0= L= Y o P 611
o] 0 T o 1= L=t 612
BIK_qUEUE DYPaSS SEartceviiiiii e 613
blk_queue bypass ENdccouiiiiiii e 614
BIK_ClEBNUP QUEUEceeeeie e e e e e e e e e e e aeas 615
o] T g o [0 1= L=t 616
o1 0= S (o 01 617
o L (o T = A o (o QR o 618
DIK FEQUEUE FEOUESEieie i e e e e e et e et e e et e eanaees 619
o= 010 g To [£ P 620
blk_add request payloadccouuiiiiiiiii 621
(01 1= (1ol 10> ST (=0 0[S P 622
£ o]0 0T A oo T 623
BIK rg CheCk TIMItS ..uuiii e e e e e e 624
BIK iNSert ClONEd FEOUESLccvii e e e e e e et eeaaeens 625
o L (o T = 0.7 (- 626
o Ll o= = G (=0 0= 627
o LS = A (=0 U= 628
o L = (ot g T (=0 [0 1=- 629
o L 000 = (R (=0 V1= Pt 630
o Q0107 = o (=0 LU= 631

The Linux Kernel API

o Q= o I (=0 111 632
BIK end reqUESE allccouniiiiii e 633
o L Q= 0o I (=0 [0 1= o | P 634
o Q= 0o I (=0 101> = 1 P 635
 BIK BN TEOUESE ... 636
bk end reqUuESE_alloniiii 637
B o= 1o I =0 [0 1= A ot U | PP 638
B o1 = oo I (=0 01==S A = o 639
r_flUSN dCACNE PAGgES ..ve e 640
BIK A BUSY . e 641
o L (o T4 1= oI o o= PN 642
o L (o T o (= o T o o 1 1= TS 643
o] QS = i A o [o 644
o] o0 (T 0 1 (10T 645
bIK_pre runtime SUSPENGoouuiiiiieiii e e e e e e e e e e e aens 646
blk_post runtime SUSPENGc.uuiiiiiiiiiee e e e e e e e e e e e et e e aa e eaas 647
BIK _Pre FUNTIME FESUMIEiiiiciie e e e e e e e e e et e et e e et e e e aaaneees 648
BIK_POSt FUNTIME FESUMIE .. .ivei e e e e e e e e e e e e et e e et e e et e e eaneeeanaes 649
_bIK run_queUE UNCONAcoeiiiii e e e 650
B oo = T [0 1= U= PPt 651
(o oo P 652
B 0 (= A (=015 PP 653
[0 (= 011 1=S PP RPPRUPRPR 654
o L Q= 1= 0] o A o) 10 o [1 1= =P 655
BIK_end Didi_reUESEcoveieiiei e 656
bl end _Bidi_TEOUESEieeeii e 657
o L (o T 0= o= = o Y/ 658
o L (o TV 4o TR = 659
o L o T 107 O = 1 660
o Ll = == S ST o 101 U= N 661
o L Qo (U= T TR o = o T (o [P 662
o L Qo (V1= T TSI (g o= o (o 663
BIK qUEUE MENGE DVEC ... e 664
bIK_set_default TimitSuuiiiiiii e 665
o L Qs = S =o (L o N T 11 666
BIK_qUEUE MaKE TEOUESE ... cvii it e e e e e e e e e e aaneaes 667
blk_queue bounCe lIMit ..o e 668
BIK _[ImMitS MaxX_ W _SBCLOIScvveiiii e e e e e e e e eees 669
bl _queuEe MaX_ MW _SECLOISiiii i e e e e 670
blk_queue ChUNK SECLONScouuiiiii e e e e e e aens 671
blk_queue max_diSCard SECLOISc.uuiiii i e e e e e e e e eeaaeeees 672
blk_queue max_WIIte SAME SECLOISuuiiiieeiiiieeiii e e e e e e e e e et e e e et e e e et e e eanaeee 673
BIK_qUEUE MaX_SEOMENES ...iiii i e e e e e e e e e e e e e ean s 674
blk_queue maxX_SEgMENE SIZEiiiei i e 675
blk_queue logical BIOCK SIZEccouniiiii e 676
blk_queue physical blOCK SIZEciiuiiiiiic e 677
blk_queue alignment OffSELiiiiiii e 678
o] 1T a0 &S o T 12 o P 679
BIK QUEBUE 10 MIN .. e e e e e e 680
o] 1T a1 S o T o] o AN 681
o] Qo [U1= W TSI o T o o S 682
bl _queue StacK [IMITSoueiiii e e e 683
o] QS o G 1110 P 684
o0 (Y o S L 27 P 685

The Linux Kernel API

o TS Q= = ot S 11 011 €= 686
blk_queue dma Padcoiiiiiii e 687
blk_queue update dma Padoooiiiiiiiii 688
BIK _qUEUE AMA Arainveiii e e e e e 689
blk_queue segment_ BOUNGANYocouiiiii i e 690
blk_queue dma alignmENtccouiiiii i 691
blk_queue update dma alignmentcooouiiiiiiii e 692
BIK QUEUE FIUSN ... e 693
BIK_EXECULE IO NOWEITeeveciii e e e e e e e e e e e et e e et e e e e aeaas 694
o Q== 1 (T (o PP 695
BIKAEV ISSUE FIUSH .. cee e 696
BIKAEY ISSUE AISCANTceveciii e e e e s 697
DIKAEV ISSUE WIITE SBMEceviiiii et e e e e e e e e e e e e aaeees 698
DIKAEY ISSUE ZEIOOULuniiiiciii et e e e e e e e e e et e e e e eaneees 699
BIK quEUE FINO LA ...oovniiei e 700
o Qi =T = o =N 701
DIK QUEUE fIrEE A0S .vu it e 702
o] T = 1 703
o Qo (V1= U TSR 1 o Tt 704
DIK QUEUE TESIZE TA0S .t uiieeieiii e et e e e e e e e e e e e ean s 705
o 1 Qo (V1= U T I = oo [= P 706
DIK QUEUE SEA 180vuiieieii e e 707
blk_queue iNValidate tagScvuuiiii e 708
_ BIK QUEUE FrEB 1a0S . .evn e 709
o L (o w0 01 = | 1 VA= o P 710
o L (o T 0= oI 41 = e L1 A o 711
o L a1 =0 [AV o0 1] = (P 712
o L a1 (=0 [AV o £ (= G 713
o L a1 =0 [VY=o (= 714
o] =Y o | Pt 715
o] (= oY LU0 (0 11 o Pt 716
o1 Qo (o I €= o ST (o U PP 717
BIK add trace D0 ...coveiii i e 718
blk_add trace DO FEMaD ...covve i 719
o L Qo (o B = o oI (o (= 117! o 720
o 1 40Tl K= 111 o) P 721
o] Q= 1 (o o o L= N 722
o] ==Y =Y PPN 723
disk_replace part thl ... 724
disk_expand _part_thl ... 725
(0TS T o o o S =YL= | =P 726
ISk _UNBIOCK BVENES .. .eeicii e e e e et e et e e e e eens 727
(0TS N [0 A=Y= £ 728
(0TS T o 1=z T = Y= 0| 729
(0TS Qo (= A - P 730
(0TS Qo 7= 1 A L =1 1 PN 731
(0TS N 7= L = =>4 732
(0TS T 7= 1 L = (L S 733
(0TS T 11F= oI = (o g (o U PP 734
1= 0TS (= g o] (o L= PN 735
o o [o 1= P 736
o1 A0 = 010 [P 737
0T 0= o 1= 7P 738
T O = 0 Yo PP 739

Vi

The Linux Kernel API

register Chrdev rEgIONc.ouiii e e 740
AllOC _ChrdeV TEQION ... e e e 741
B (= 11 (< g o =Y P 742
01a1 g0 TS (< v a0 (= YA = o (oo P 743
Y 011 o 1= = o0 (o [,V AP 744
(670 = Y (o ISP 745
(o0 = Yo = 746
(o0 L= Y= |1 oo P 747
Lot L=y T PPN 748
16. MiSCEIlANEOUS DEVICESoiiiiiieieiii ettt ettt e et e et e et eeeeaan s 749
0TS ol (= o 1 = 750
0TS oo = = o 11 = 751
17. ClOCK FIaMEBWOTKceiiieie e e e e e et e e et e e e e aa e 752
LS L Tox o G 070 = 753
(S0 To A L 4 To) = g - NP 754
(o | 0 1= =0 = [(R 755
(o | 0 1= Y=o = S 756
(o] o = A ooV oY AN 757
CIK SEL PRBSE .. i 758
CIK GBL PNESE .. e 759
CIK IS MBECH L.t e e 760
(o] 0 (= o= £ TN 761
(o]] o= = PPN 762
ot |G T P 763
(0 1Y g T o | S 764
CIK _BNADIE ..o e 765
(o] o =70 - P 766
(ot | o = A = (= PP 767
ot |G | 768
(o (=Y 0 o | G | PN 769
(ot | (010 T N = = 770
(o] = Al - (=P 771
CIK NS PArENt ... 772
(o]S Al - (T =110 [T S 773
(o] = Al 1 g T = (Pt 774
(o | = Al 11 G - (= 775
(o] = Al 0 = | PPN 776
(ot |0 = A o = 0| P 77
(o]0 = AN 778
(o o (o = = 779

Vii

Chapter 1. Data Types
Doubly Linked Lists

Data Types

Name
list_add — add a new entry
Synopsis
void list_add (struct list_head * new, struct list_head * head);
Arguments
new new entry to be added
head list head to add it after
Description

Insert a new entry after the specified head. Thisis good for implementing stacks.

Data Types

Name
list_add tail — add a new entry
Synopsis
void list _add tail (struct list _head * new, struct |ist_head * head);
Arguments
new new entry to be added
head list head to add it before
Description

Insert a new entry before the specified head. Thisis useful for implementing queues.

Data Types

Name
__list_del_entry — deletes entry from list.
Synopsis
void _list _del _entry (struct list _head * entry);
Arguments
entry theeementto delete from thelist.
Note

[i st _enpty onentry does not return true after this, the entry isin an undefined state.

Data Types

Name

list_replace — replace old entry by new one

Synopsis

void list _replace (struct list _head * old, struct |ist _head * new);

Arguments
ol d theelement to be replaced

new the new element to insert

Description

If ol d was empty, it will be overwritten.

Data Types

Name
list_del_init — deletes entry from list and reinitidizeit.

Synopsis
void list _del _init (struct list _head * entry);

Arguments

entry theeementto delete from thelist.

Data Types

Name

list_move — delete from one list and add as another's head
Synopsis

void list_nove (struct list_head * list, struct |list_head * head);
Arguments

list theentrytomove

head the head that will precede our entry

Data Types

Name

list_move tail — delete from one list and add as another's tail
Synopsis

void list _nove tail (struct list _head * list, struct |list_head * head);
Arguments

list theentrytomove

head the head that will follow our entry

Data Types

Name
list_is last — testswhether | i st isthelast entry inlist head

Synopsis
int list is last (const struct list _head * |ist, const struct |ist_head
* head);

Arguments

list theentryto test

head thehead of thelist

Data Types

Name

list_empty — tests whether alist is empty
Synopsis

int list_enpty (const struct |ist_head * head);
Arguments

head thelistto test.

10

Data Types

Name

list_empty_careful — tests whether alist is empty and not being modified
Synopsis

int list _enpty careful (const struct |list_head * head);
Arguments

head thelisttotest

Description

tests whether alist is empty _and_ checks that no other CPU might be in the process of modifying either
member (next or prev)

NOTE

using | i st _enpty_car ef ul without synchronization can only be safe if the only activity that can
happentothelistentryisl i st _del _i nit.Eg.itcannotbeusedif another CPU couldrel i st _add it.

11

Data Types

Name
list_rotate left — rotate thelist to the left

Synopsis
void list rotate left (struct |list_head * head);

Arguments

head the head of thelist

12

Data Types

Name

list_is singular — tests whether alist has just one entry.
Synopsis

int list_is singular (const struct list_head * head);
Arguments

head thelistto test.

13

Data Types

Name
list_cut_position — cut alist into two
Synopsis
void list _cut position (struct list _head * list, struct list _head *

head, struct list_head * entry);

Arguments
list anew list to add all removed entries

head alist with entries

entry anentry within head, could be the head itself and if so we won't cut the list

Description

This helper movestheinitial part of head, uptoandincludingent ry, fromhead tol i st . You should
passon ent ry an element you know ison head. | i st should be an empty list or alist you do not care

about losing its data.

14

Data Types

Name
list_splice— join two lists, thisis designed for stacks

Synopsis
void list _splice (const struct list _head * list, struct list_head *
head) ;

Arguments

i st thenewlisttoadd.

head theplacetoadditinthefirstlist.

15

Data Types

Name

list_splice tail — join two lists, each list being a queue
Synopsis

voidlist _splice tail (struct list _head * list, struct |ist_head * head);
Arguments

i st thenewlisttoadd.

head theplacetoadditinthefirstlist.

16

Data Types

Name

list_splice init — join two lists and reinitialise the emptied list.

Synopsis

voidlist _splice init (struct list _head * list, struct |ist_head * head);

Arguments
[ist thenew listtoadd.

head theplacetoadditinthefirstlist.

Description

Thelistatl i st isreinitiaised

17

Data Types

Name
list_splice tail_init — join two lists and reinitialise the emptied list
Synopsis
void list _splice tail _init (struct list head * list, struct |ist_head
* head);
Arguments
[ist thenew listtoadd.
head theplacetoadditinthefirstlist.
Description

Each of thelistsisaqueue. Thelistat | i st isreinitialised

18

Data Types

Name
list_entry — get the struct for this entry

Synopsis

list _entry (ptr, type, nenber);
Arguments

ptr the struct list_head pointer.

type the type of the struct thisis embedded in.

menber the name of the list_head within the struct.

19

Data Types

Name
list_first_entry — get the first element from alist

Synopsis
list first _entry (ptr, type, nenber);
Arguments
ptr thelist head to take the element from.
type the type of the struct thisis embedded in.

menber the name of the list_head within the struct.

Description

Note, that list is expected to be not empty.

20

Data Types

Name
list_last_entry — get the last element from alist

Synopsis
list last_entry (ptr, type, nenber);
Arguments
ptr thelist head to take the element from.
type the type of the struct thisis embedded in.

menber the name of the list_head within the struct.

Description

Note, that list is expected to be not empty.

21

Data Types

Name

list_first_entry_or_null — get the first element from alist
Synopsis

list first_entry or _null (ptr, type, nenber);
Arguments

ptr thelist head to take the element from.

type the type of the struct thisis embedded in.

menber the name of the list_head within the struct.

Description

Note that if the list is empty, it returns NULL.

22

Data Types

Name

list_next_entry — get the next element in list
Synopsis

list _next_entry (pos, nenber);
Arguments

pos the type * to cursor

menber the name of the list_head within the struct.

23

Data Types

Name

list_prev_entry — get the prev element in list
Synopsis

list _prev_entry (pos, nenber);
Arguments

pos the type * to cursor

menber the name of the list_head within the struct.

24

Data Types

Name

list for_each — iterate over alist
Synopsis

list for_each (pos, head);
Arguments

pos thestruct list_head to use asaloop cursor.

head the head for your list.

25

Data Types

Name

list_for_each prev — iterate over alist backwards
Synopsis

list for_each prev (pos, head);
Arguments

pos thestruct list_head to use asaloop cursor.

head the head for your list.

26

Data Types

Name

list_for_each safe — iterate over alist safe against removal of list entry
Synopsis

list for_each_safe (pos, n, head);
Arguments

pos thestruct list_head to use asaloop cursor.

n another struct list_head to use as temporary storage

head thehead for your list.

27

Data Types

Name

list_for_each prev_safe — iterate over alist backwards safe against removal of list entry
Synopsis

list for _each _prev_safe (pos, n, head);
Arguments

pos thestruct list_head to use asaloop cursor.

n another struct list_head to use as temporary storage

head thehead for your list.

28

Data Types

Name

list_for_each entry — iterate over list of given type
Synopsis

list for _each_entry (pos, head, nenber);
Arguments

pos the type * to use as aloop cursor.

head the head for your list.

menber the name of the list_head within the struct.

29

Data Types

Name

list_for_each entry reverse — iterate backwards over list of given type.
Synopsis

list for _each_entry reverse (pos, head, nenber);
Arguments

pos the type * to use as aloop cursor.

head the head for your list.

menber the name of the list_head within the struct.

30

Data Types

Name
list_prepare_entry — prepare aposentry for useinl i st_for_each_entry_conti nue
Synopsis
list _prepare_entry (pos, head, nenber);
Arguments
pos the type * to use as a start point

head the head of thelist

menber the name of the list_head within the struct.

Description

Prepares apos entry for useasastart pointinl i st_for _each_entry_conti nue.

31

Data Types

Name

list_for_each entry_continue — continue iteration over list of given type
Synopsis

list for_each_entry continue (pos, head, nenber);
Arguments

pos the type * to use as aloop cursor.

head the head for your list.

menber the name of the list_head within the struct.

Description

Continueto iterate over list of given type, continuing after the current position.

32

Data Types

Name

list_for_each entry continue reverse — iterate backwards from the given point
Synopsis

list for_each_entry continue reverse (pos, head, nenber);
Arguments

pos the type * to use as aloop cursor.

head the head for your list.

menber the name of the list_head within the struct.

Description

Start to iterate over list of given type backwards, continuing after the current position.

33

Data Types

Name

list_for_each entry_from — iterate over list of given type from the current point
Synopsis

list for _each_entry from(pos, head, nenber);
Arguments

pos the type * to use as aloop cursor.

head the head for your list.

menber the name of the list_head within the struct.

Description

Iterate over list of given type, continuing from current position.

Data Types

Name

list_for_each entry safe— iterate over list of given type safe against removal of list entry
Synopsis

list for_each_entry safe (pos, n, head, nenber);
Arguments

pos the type * to use as aloop cursor.

n another type * to use as temporary storage

head the head for your list.

nmenber the name of thelist_head within the struct.

35

Data Types

Name

list_for_each entry safe continue — continue list iteration safe against removal
Synopsis

list for_each_entry safe continue (pos, n, head, nenber);
Arguments

pos the type * to use as aloop cursor.

n another type * to use as temporary storage

head the head for your list.

nmenber the name of thelist_head within the struct.

Description

Iterate over list of given type, continuing after current point, safe against removal of list entry.

36

Data Types

Name

list_ for_each entry safe from — iterate over list from current point safe against removal
Synopsis

list for _each _entry safe from(pos, n, head, nenber);
Arguments

pos the type * to use as aloop cursor.

n another type * to use as temporary storage

head the head for your list.

nmenber the name of thelist_head within the struct.

Description

Iterate over list of given type from current point, safe against removal of list entry.

37

Data Types

Name

list_for_each entry safe reverse — iterate backwards over list safe against removal
Synopsis

list for _each _entry safe reverse (pos, n, head, nenber);
Arguments

pos the type * to use as aloop cursor.

n another type * to use as temporary storage

head the head for your list.

nmenber the name of thelist_head within the struct.

Description

Iterate backwards over list of given type, safe against removal of list entry.

38

Data Types

Name

list_safe reset_next — reset astalelist_for_each entry safeloop
Synopsis

list safe reset_next (pos, n, nenber);
Arguments

pos the loop cursor used in the list_for_each_entry_safe loop

n temporary storage used in list_for_each _entry safe

menber the name of the list_head within the struct.
Description

list_safe reset_next is not safe to use in genera if the list may be modified concurrently (eg. the lock is
dropped in the loop body). An exception to this is if the cursor element (pos) is pinned in the list, and
list_safe reset_next is called after re-taking the lock and before completing the current iteration of the

loop body.

39

Data Types

Name

hlist_for_each_entry — iterate over list of given type
Synopsis

hlist for_each entry (pos, head, nenber);
Arguments

pos the type * to use as aloop cursor.

head the head for your list.

nmenber the name of the hlist_node within the struct.

40

Data Types

Name

hlist_for_each_entry continue — iterate over a hlist continuing after current point
Synopsis

hlist for_each _entry continue (pos, nenber);
Arguments

pos the type * to use as aloop cursor.

menber the name of the hlist_node within the struct.

41

Data Types

Name

hlist_for_each_entry from — iterate over a hlist continuing from current point
Synopsis

hlist for_each _entry from (pos, nenber);
Arguments

pos the type * to use as aloop cursor.

menber the name of the hlist_node within the struct.

42

Data Types

Name

hlist_for_each_entry safe — iterate over list of given type safe against removal of list entry
Synopsis

hlist for_each entry safe (pos, n, head, nenber);
Arguments

pos the type * to use as aloop cursor.

n another struct hlist_node to use as temporary storage

head the head for your list.

menber the name of the hlist_node within the struct.

43

Chapter 2. Basic C Library Functions

When writing drivers, you cannot in general use routines which are from the C Library. Some of the
functions have been found generally useful and they are listed below. The behaviour of these functions
may vary slightly from those defined by ANSI, and these deviations are noted in the text.

String Conversions

Basic C Library Functions

Name

simple_strtoull — convert a string to an unsigned long long

Synopsis

unsigned long long sinple_strtoull (const char * cp,
unsi gned i nt base);

Arguments
cp The start of the string
endp A pointer to the end of the parsed string will be placed here

base Thenumber baseto use

Description

This function is obsolete. Please use kstrtoull instead.

char

* %

endp,

45

Basic C Library Functions

Name
simple_strtoul — convert a string to an unsigned long

Synopsis
unsi gned long sinple_strtoul (const char * cp, char ** endp, unsigned
i nt base);

Arguments

cp The start of the string
endp A pointer to the end of the parsed string will be placed here

base Thenumber baseto use

Description

This function is obsolete. Please use kstrtoul instead.

46

Basic C Library Functions

Name

simple_strtol — convert astring to asigned long

Synopsis

long sinple_strtol (const char * cp, char ** endp, unsigned int base);

Arguments
cp The start of the string

endp A pointer to the end of the parsed string will be placed here

base Thenumber baseto use

Description

This function is obsolete. Please use kstrtol instead.

47

Basic C Library Functions

Name
simple_strtoll — convert a string to asigned long long

Synopsis
long long sinple_strtoll (const char * cp, char ** endp, unsigned int
base) ;

Arguments

cp The start of the string
endp A pointer to the end of the parsed string will be placed here

base Thenumber baseto use

Description

This function is obsolete. Please use kstrtoll instead.

48

Basic C Library Functions

Name

vsnprintf — Format a string and placeit in a buffer
Synopsis
int vsnprintf (char * buf, size t size, const char * fnt, va_ |list args);

Arguments
buf The buffer to place the result into
si ze Thesize of the buffer, including the trailing null space
fnt The format string to use

args Argumentsfor the format string

Description

This function follows C99 vsnprintf, but has some extensions: pS output the name of a text symbol with
offset ps output the name of atext symbol without offset pF output the name of afunction pointer withiits
offset pf output the name of afunction pointer without its offset pB output the name of abacktrace symbol
with its offset pR output the address range in a struct resource with decoded flags pr output the address
range in a struct resource with raw flags pb output the bitmap with field width as the number of bits pbl
output the bitmap asrange list with field width as the number of bits pMoutput a 6-byte MAC address with
colons pMR output a6-byte MA C address with colonsin reversed order p MF output a6-byte MAC address
with dashes pmoutput a 6-byte MAC address without colons pnR output a 6-byte MAC address without
colonsin reversed order pl 4 print an 1Pv4 address without leading zeros pi 4 print an 1Pv4 address with
leading zerospl 6 print an IPv6 addresswith colonspi 6 print an | Pv6 address without colonspl 6¢ print
an IPv6 address as specified by RFC 5952 pl S depending on sa_family of 'struct sockaddr *' print 1Pv4/
IPv6 address pi S depending on sa_family of 'struct sockaddr ** print |Pv4/IPv6 address pU[bBIL] print
aUUID/GUID in big or little endian using lower or upper case. %* pE[achnops] print an escaped buffer
%* ph[CDN] avariable-length hex string with a separator (supports up to 64 bytes of the input) pC output
the name (Common Clock Framework) or address (legacy clock framework) of a clock pCn output the
name (Common Clock Framework) or address (legacy clock framework) of aclock pCr output the current
rate of aclock n isignored

** Please update Documentation/printk-formats.txt when making changes **

Thereturn value is the number of characters which would be generated for the given input, excluding the
trailing \0', as per 1SO C99. If you want to have the exact number of characterswritten into buf asreturn
value (not including the trailing \0"), use vscnpri nt f . If the return is greater than or equal to si ze,
the resulting string is truncated.

If you're not already dealing with ava list consider usingsnpri ntf.

49

Basic C Library Functions

Name

vsenprintf — Format a string and place it in a buffer
Synopsis

int vscnprintf (char * buf, size t size, const char * fnt, va |list args);
Arguments

buf The buffer to place the result into

si ze Thesize of the buffer, including the trailing null space

fnt The format string to use

args Argumentsfor the format string

Description

Thereturn valueisthe number of characterswhich have beenwrittenintothebuf notincluding thetrailing
\0'. If si ze is== 0 the function returns 0.

If you're not already dealing with ava list consider using scnpri nt f .

Seethevsnpri nt f documentation for format string extensions over C99.

50

Basic C Library Functions

Name

snprintf — Format a string and place it in a buffer
Synopsis

int snprintf (char * buf, size t size, const char * fnt, ...);
Arguments

buf The buffer to place the result into
si ze Thesize of the buffer, including the trailing null space
fm The format string to use @...: Arguments for the format string

variable arguments

Description

The return value is the number of characters which would be generated for the given input, excluding the
trailing null, asper 1ISO C99. If thereturn is greater than or equal to si ze, theresulting string is truncated.

Seethevsnpri nt f documentation for format string extensions over C99.

51

Basic C Library Functions

Name

scnprintf — Format a string and placeit in abuffer
Synopsis

int scnprintf (char * buf, size t size, const char * fm, ...);
Arguments

buf The buffer to place the result into
si ze Thesize of the buffer, including the trailing null space
fm The format string to use @...: Arguments for the format string

variable arguments

Description

The return value is the number of characters written into buf not including the trailing \O'. If si ze is
== 0 the function returns O.

52

Basic C Library Functions

Name

vsprintf — Format a string and place it in a buffer

Synopsis

int vsprintf (char * buf, const char * fnt, va list args);

Arguments
buf The buffer to place the result into
fnt The format string to use

args Argumentsfor the format string

Description

The function returns the number of characters written into buf . Usevsnprintf orvscnprintf in
order to avoid buffer overflows.

If you're not already dealing with ava list consider usingspri nt f .

Seethevsnpri nt f documentation for format string extensions over C99.

53

Basic C Library Functions

Name

sprintf — Format a string and place it in a buffer
Synopsis

int sprintf (char * buf, const char * fnt, ...);
Arguments

buf The buffer to place the result into

fnt Theformat string to use @...: Arguments for the format string

variable arguments

Description

Thefunction returns the number of characterswritteninto buf . Usesnpri ntf orscnpri ntf inorder
to avoid buffer overflows.

Seethevsnpri nt f documentation for format string extensions over C99.

Basic C Library Functions

Name
vbin_printf — Parse aformat string and place args binary value in a buffer

Synopsis
int vbin printf (u32 * bin_buf, size t size, const char * fnt, va_list
args);

Arguments

bi n_buf Thebuffer to place args binary value

si ze The size of the buffer(by words(32bits), not characters)
fnt The format string to use
args Arguments for the format string

Description

The format follows C99 vsnprintf, except n isignored, and its argument is skipped.

The return value is the number of words(32bits) which would be generated for the given input.

NOTE

If the return value is greater than si ze, the resulting bin_buf isNOT valid for bstr _printf.

55

Basic C Library Functions

Name
bstr_printf — Format a string from binary arguments and place it in a buffer
Synopsis
int bstr_printf (char * buf, size t size, const char * fnt,
* bin_buf);
Arguments
buf The buffer to place the result into
si ze The size of the buffer, including the trailing null space
fnt The format string to use

bi n_buf Binary argumentsfor the format string

Description

const u32

This function like C99 vsnprintf, but the difference is that vsnprintf gets arguments from stack, and
bstr_printf gets arguments from bi n_buf which isabinary buffer that generated by vbin_printf.

The format follows C99 vsnprintf, but has some extensions. see vsnprintf comment for details.

Thereturn value is the number of characters which would be generated for the given input, excluding the
trailing \O', as per 1SO C99. If you want to have the exact number of characterswritten into buf asreturn
value (not including the trailing \0"), use vscnpri nt f . If the return is greater than or equal to si ze,

the resulting string is truncated.

56

Basic C Library Functions

Name

bprintf — Parse aformat string and place args binary value in a buffer
Synopsis

int bprintf (u32 * bin_buf, size t size, const char * fnt, ...);
Arguments

bi n_buf Thebuffer to place args binary value

si ze The size of the buffer(by words(32bits), not characters)

fm The format string to use @...: Arguments for the format string

variable arguments

Description

The function returns the number of words(u32) written into bi n_buf .

57

Basic C Library Functions

Name

vsscanf — Unformat a buffer into alist of arguments
Synopsis
i nt vsscanf (const char * buf, const char * fnt, va list args);

Arguments

buf input buffer
fmt format of buffer

args arguments

58

Basic C Library Functions

Name

sscanf — Unformat a buffer into alist of arguments
Synopsis

int sscanf (const char * buf, const char * fnt,
Arguments

buf input buffer

fnt formatting of buffer @...: resulting arguments

variable arguments

59

Basic C Library Functions

Name

kstrtol — convert a string to along
Synopsis

int kstrtol (const char * s, unsigned int base, long * res);
Arguments

S The start of the string. The string must be null-terminated, and may also include a single newline

beforeits terminating null. The first character may also be a plus sign or aminus sign.

base The number base to use. The maximum supported base is 16. If base is given as O, then the base
of the string is automatically detected with the conventional semantics - If it begins with Ox the
number will be parsed as a hexadecimal (case insensitive), if it otherwise beginswith O, it will be
parsed as an octal number. Otherwise it will be parsed as adecimal.

res Where to write the result of the conversion on success.
Description

Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. Used as a replacement for
the obsolete simple_strtoull. Return code must be checked.

60

Basic C Library Functions

Name

kstrtoul — convert a string to an unsigned long
Synopsis

int kstrtoul (const char * s, unsigned int base, unsigned |long * res);
Arguments

S The start of the string. The string must be null-terminated, and may also include a single newline

before its terminating null. The first character may also be a plus sign, but not aminus sign.

base The number base to use. The maximum supported base is 16. If base is given as O, then the base
of the string is automatically detected with the conventional semantics - If it begins with Ox the
number will be parsed as a hexadecimal (case insensitive), if it otherwise beginswith O, it will be
parsed as an octal number. Otherwise it will be parsed as adecimal.

res Where to write the result of the conversion on success.
Description

Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. Used as a replacement for
the obsolete simple_strtoull. Return code must be checked.

61

Basic C Library Functions

Name
kstrtoull — convert a string to an unsigned long long
Synopsis
int kstrtoull (const char * s, unsigned int base, unsigned |ong |ong
* res);
Arguments
S The start of the string. The string must be null-terminated, and may also include a single newline

before its terminating null. The first character may also be a plus sign, but not aminus sign.

base The number base to use. The maximum supported base is 16. If base is given as O, then the base
of the string is automatically detected with the conventional semantics - If it begins with Ox the
number will be parsed as a hexadecimal (case insensitive), if it otherwise beginswith O, it will be
parsed as an octal number. Otherwise it will be parsed as adecimal.

res Where to write the result of the conversion on success.
Description

Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. Used as a replacement for
the obsolete simple_strtoull. Return code must be checked.

62

Basic C Library Functions

Name

kstrtoll — convert a string to along long
Synopsis

int kstrtoll (const char * s, unsigned int base, long long * res);
Arguments

S The start of the string. The string must be null-terminated, and may also include a single newline

beforeits terminating null. The first character may also be a plus sign or aminus sign.

base The number base to use. The maximum supported base is 16. If base is given as O, then the base
of the string is automatically detected with the conventional semantics - If it begins with Ox the
number will be parsed as a hexadecimal (case insensitive), if it otherwise beginswith O, it will be
parsed as an octal number. Otherwise it will be parsed as adecimal.

res Where to write the result of the conversion on success.
Description

Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. Used as a replacement for
the obsolete simple_strtoull. Return code must be checked.

63

Basic C Library Functions

Name

kstrtouint — convert a string to an unsigned int
Synopsis

int kstrtouint (const char * s, unsigned int base, unsigned int * res);
Arguments

S The start of the string. The string must be null-terminated, and may also include a single newline

before its terminating null. The first character may also be a plus sign, but not aminus sign.

base The number base to use. The maximum supported base is 16. If base is given as O, then the base
of the string is automatically detected with the conventional semantics - If it begins with Ox the
number will be parsed as a hexadecimal (case insensitive), if it otherwise beginswith O, it will be
parsed as an octal number. Otherwise it will be parsed as adecimal.

res Where to write the result of the conversion on success.
Description

Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. Used as a replacement for
the obsolete simple_strtoull. Return code must be checked.

Basic C Library Functions

Name

kstrtoint — convert a string to an int
Synopsis

int kstrtoint (const char * s, unsigned int base, int * res);
Arguments

S The start of the string. The string must be null-terminated, and may also include a single newline

beforeits terminating null. The first character may also be a plus sign or aminus sign.

base The number base to use. The maximum supported base is 16. If base is given as O, then the base
of the string is automatically detected with the conventional semantics - If it begins with Ox the
number will be parsed as a hexadecimal (case insensitive), if it otherwise beginswith O, it will be
parsed as an octal number. Otherwise it will be parsed as adecimal.

res Where to write the result of the conversion on success.

Description

Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. Used as a replacement for
the obsolete simple_strtoull. Return code must be checked.

String Manipulation

65

Basic C Library Functions

Name

strncasecmp — Case insensitive, length-limited string comparison
Synopsis

int strncasecnp (const char * sl1, const char * s2, size t len);
Arguments

sl Onestring

s2 Theother string

[en the maximum number of charactersto compare

66

Basic C Library Functions

Name
strepy — Copy a NUL terminated string

Synopsis
char * strcpy (char * dest, const char * src);
Arguments

dest Whereto copy the string to

src Whereto copy the string from

67

Basic C Library Functions

Name
strncpy — Copy alength-limited, C-string
Synopsis

char * strncpy (char * dest, const char * src, size_t count);

Arguments
dest Where to copy the string to
src Where to copy the string from

count The maximum number of bytes to copy

Description

Theresultisnot NUL- t er mi nat ed if the source exceeds count bytes.

In the case where the length of sr ¢ is less than that of count, the remainder of dest will be padded
with NUL.

68

Basic C Library Functions

Name
stricpy — Copy a C-string into a sized buffer

Synopsis

size t strlcpy (char * dest, const char * src, size_ t size);
Arguments

dest Whereto copy the string to

src Whereto copy the string from

si ze sizeof destination buffer

BSD

the result is always avalid NUL-terminated string that fits in the buffer (unless, of course, the buffer size
is zero). It does not pad out the result like st r ncpy does.

69

Basic C Library Functions

Name
strcat — Append one NUL- t er mi nat ed string to another

Synopsis
char * strcat (char * dest, const char * src);
Arguments

dest Thestring to be appended to

src Thestring to append to it

70

Basic C Library Functions

Name
strncat — Append alength-limited, C-string to another

Synopsis

char * strncat (char * dest, const char * src, size_t count);
Arguments

dest The string to be appended to

src The string to append to it

count The maximum numbers of bytesto copy

Description

Note that in contrast to st r ncpy, st r ncat ensuresthe result is terminated.

71

Basic C Library Functions

Name
stricat — Append a length-limited, C-string to another

Synopsis

size t strlcat (char * dest, const char * src, size_t count);
Arguments

dest The string to be appended to

src The string to append to it

count Thesize of the destination buffer.

72

Basic C Library Functions

Name

stremp — Compare two strings
Synopsis

int strcnmp (const char * c¢s, const char * ct);
Arguments

cs Onestring

ct Another string

73

Basic C Library Functions

Name

strnemp — Compare two length-limited strings
Synopsis

int strncmp (const char * cs, const char * ct,
Arguments

(XS} One string

ct Another string

count Themaximum number of bytesto compare

size_t count);

74

Basic C Library Functions

Name

strchr — Find the first occurrence of a character in astring
Synopsis
char * strchr (const char * s, int c);

Arguments

s Thestring to be searched

¢ The character to search for

75

Basic C Library Functions

Name

strchrnul — Find and return a character in a string, or end of string

Synopsis

char * strchrnul (const char * s, int c);
Arguments

s Thestring to be searched

¢ Thecharacter to search for

Description

Returns pointer to first occurrence of 'c' in s. If ¢ is not found, then return a pointer to the null byte at
theend of s.

76

Basic C Library Functions

Name

strrchr — Find the last occurrence of acharacter in astring
Synopsis
char * strrchr (const char * s, int c);

Arguments

s Thestring to be searched

¢ The character to search for

77

Basic C Library Functions

Name

strnchr — Find a character in alength limited string
Synopsis

char * strnchr (const char * s, size t count, int c);
Arguments

S The string to be searched

count Thenumber of charactersto be searched

c The character to search for

78

Basic C Library Functions

Name

SKip_spaces — Removes leading whitespace from st r .
Synopsis

char * skip_spaces (const char * str);
Arguments

str Thestring to be stripped.
Description

Returns a pointer to the first non-whitespace character instr .

79

Basic C Library Functions

Name

strim — Removes |leading and trailing whitespace from s.
Synopsis

char * strim (char * s);
Arguments

s Thestring to be stripped.

Description

Notethat thefirst trailing whitespaceisreplaced withaNUL- t er ni nat or inthegivenstrings. Returns
apointer to the first non-whitespace character in s.

80

Basic C Library Functions

Name
strlen — Find the length of a string

Synopsis
size_t strlen (const char * s);

Arguments

s Thestring to be sized

81

Basic C Library Functions

Name

strnlen — Find the length of alength-limited string
Synopsis

size_t strnlen (const char * s, size_t count);
Arguments

S The string to be sized

count Themaximum number of bytes to search

82

Basic C Library Functions

Name

strspn — Calculate the length of theinitial substring of s which only contain lettersin accept
Synopsis

size_t strspn (const char * s, const char * accept);
Arguments

S The string to be searched

accept Thestring to search for

83

Basic C Library Functions

Name

strcspn — Calculate the length of the initial substring of s which does not contain lettersinr ej ect
Synopsis

size_t strcspn (const char * s, const char * reject);
Arguments

S The string to be searched

rej ect Thestringto avoid

Basic C Library Functions

Name

strpbrk — Find the first occurrence of a set of characters
Synopsis
char * strpbrk (const char * c¢s, const char * ct);

Arguments

cs Thestring to be searched

ct The charactersto search for

85

Basic C Library Functions

Name
strsep — Split a string into tokens

Synopsis
char * strsep (char ** s, const char * ct);
Arguments

s Thestring to be searched

ct The charactersto search for

Description
st r sep updates s to point after the token, ready for the next call.

It returns empty tokens, too, behaving exactly like the libc function of that name. In fact, it was stolen
from glibc2 and de-fancy-fied. Same semantics, slimmer shape. ;)

86

Basic C Library Functions

Name

sysfs_streq — return trueif strings are equal, modulo trailing newline

Synopsis

bool sysfs_streq (const char * sl1, const char * s2);

Arguments
sl onestring

s2 another string

Description

Thisroutine returns true iff two strings are equal, treating both NUL and newline-then-NUL as equivalent
string terminations. It's geared for use with sysfs input strings, which generally terminate with newlines
but are compared against values without newlines.

87

Basic C Library Functions

Name

strtobool — convert common user inputs into boolean values
Synopsis

int strtobool (const char * s, bool * res);
Arguments

S input string

res result

Description

Thisroutine returns O iff the first character is one of "Yy1NnQ'. Otherwise it will return -EINVAL. Vaue
pointed to by resis updated upon finding a match.

88

Basic C Library Functions

Name

memset — Fill aregion of memory with the given value
Synopsis

void * nmenset (void * s, int ¢, size t count);
Arguments

S Pointer to the start of the area.

c The byte to fill the areawith

count Thesizeof thearea

Description

Do not use nenset to access 1O space, use menset _i o instead.

89

Basic C Library Functions

Name

memzero_explicit — Fill aregion of memory (e.g. sensitive keying data) with Os.
Synopsis

void nenezero_explicit (void * s, size_ t count);
Arguments

S Pointer to the start of the area.

count Thesizeof thearea

Note

usually using menset isjust fine (1), but in cases where clearing out _|local _ data at the end of ascopeis
necessary, menezer o_expl i ci t should beused instead in order to prevent the compiler from optimising
away zeroing.

menezer o_explicit doesn't need an arch-specific version as it just invokes the one of nenset im-
plicitly.

90

Basic C Library Functions

Name

memcpy — Copy one area of memory to another

Synopsis

void * mencpy (void * dest, const void * src, size_t count);

Arguments
dest Where to copy to
src Where to copy from

count Thesizeof thearea

Description

Y ou should not use this function to access |O space, use nentpy_t oi o or nencpy_from o instead.

91

Basic C Library Functions

Name

memmove — Copy one area of memory to another

Synopsis

void * menmove (void * dest, const void * src, size_t count);

Arguments
dest Where to copy to
src Where to copy from

count Thesizeof thearea

Description

Unlike mencpy, menmmove copes with overlapping aress.

92

Basic C Library Functions

Name

memcmp — Compare two areas of memory
Synopsis

__visible int nencnp (const void * c¢s, const void * ct, size_t count);
Arguments

(XS} One area of memory

ct Another area of memory

count Thesizeof thearea

93

Basic C Library Functions

Name

memscan — Find a character in an area of memory.

Synopsis

void * menscan (void * addr, int c, size_ t size);
Arguments

addr Thememory area

c The byte to search for

si ze Thesizeof thearea

Description

returns the address of the first occurrence of c, or 1 byte past the areaif ¢ is not found

94

Basic C Library Functions

Name
strstr — Find the first substring in a NUL terminated string

Synopsis
char * strstr (const char * s1, const char * s2);
Arguments

sl The string to be searched

s2 Thestring to search for

95

Basic C Library Functions

Name
strnstr — Find the first substring in alength-limited string

Synopsis

char * strnstr (const char * sl1, const char * s2, size t len);
Arguments

sl Thestring to be searched

s2 Thestring to search for

| en the maximum number of charactersto search

96

Basic C Library Functions

Name

memchr — Find a character in an area of memory.

Synopsis

void * menchr (const void * s, int c, size t n);
Arguments

s Thememory area

¢ Thebyteto search for

n Thesize of the area

Description

returns the address of the first occurrence of ¢, or NULL if ¢ is not found

97

Basic C Library Functions

Name

memchr_inv — Find an unmatching character in an area of memory.
Synopsis

void * menchr_inv (const void * start, int c, size_ t bytes);
Arguments

start Thememory area
c Find a character other than c

bytes Thesizeof thearea

Description

returns the address of the first character other than ¢, or NULL if the whole buffer containsjust c.

Bit Operations

98

Basic C Library Functions

Name
set_bit — Atomically set abit in memory

Synopsis

void set_bit (long nr, volatile unsigned |long * addr);
Arguments

nr the bit to set

addr theaddressto start counting from
Description

This function is atomic and may not be reordered. See __set _bi t if you do not require the atomic
guarantees.

Note

there are no guarantees that this function will not be reordered on non x86 architectures, so if you are
writing portable code, make sure not to rely on its reordering guarantees.

Note that nr may be almost arbitrarily large; this function is not restricted to acting on a single-word
quantity.

99

Basic C Library Functions

Name
__set bit — Set abit in memory

Synopsis
void _set bit (long nr, volatile unsigned | ong * addr);
Arguments

nr the bit to set

addr theaddressto start counting from

Description

Unlike set _bi t, this function is non-atomic and may be reordered. If it's called on the same region of
memory simultaneously, the effect may be that only one operation succeeds.

100

Basic C Library Functions

Name

clear_bit — Clears abit in memory
Synopsis

void clear_bit (long nr, volatile unsigned | ong * addr);
Arguments

nr Bit to clear

addr Addressto start counting from

Description

clear _bit is atomic and may not be reordered. However, it does not contain a memory bar-
rier, so if it is used for locking purposes, you should call snmp_nb__ before_at om ¢ and/or
snp_nb__after_at om c inorder to ensure changes are visible on other processors.

101

Basic C Library Functions

Name

__change_bit — Toggle abit in memory
Synopsis

void _ change_bit (long nr, volatile unsigned |long * addr);
Arguments

nr the bit to change

addr theaddressto start counting from

Description

Unlikechange_bi t , thisfunction is non-atomic and may be reordered. If it's called on the same region
of memory simultaneously, the effect may be that only one operation succeeds.

102

Basic C Library Functions

Name

change bit — Toggle a bit in memory
Synopsis

void change bit (long nr, volatile unsigned |ong * addr);
Arguments

nr Bit to change

addr Addressto start counting from

Description

change_bi t isatomic and may not be reordered. Note that nr may be amost arbitrarily large; this
function is not restricted to acting on a single-word quantity.

103

Basic C Library Functions

Name
test_and_set bit — Set abit and return its old value
Synopsis
int test_and_set _bit (long nr, volatile unsigned |ong * addr);
Arguments
nr Bit to set
addr Address to count from
Description

This operation is atomic and cannot be reordered. It also implies amemory barrier.

104

Basic C Library Functions

Name
test and_set bit lock — Set abit and return its old value for lock
Synopsis
int test_and _set _bit lock (long nr, volatile unsigned |ong * addr);
Arguments
nr Bit to set
addr Addressto count from
Description

Thisisthe same astest_and _set_hit on x86.

105

Basic C Library Functions

Name

__test and_set bit — Set abit and return its old value
Synopsis

int test _and set _bit (long nr, volatile unsigned |long * addr);
Arguments

nr Bit to set

addr Addressto count from

Description

This operation is non-atomic and can be reordered. If two examples of this operation race, one can appear
to succeed but actually fail. Y ou must protect multiple accesses with alock.

106

Basic C Library Functions

Name
test_and_clear_bit — Clear abit and returnits old value
Synopsis
int test_and clear_bit (long nr, volatile unsigned |long * addr);
Arguments
nr Bit to clear
addr Addressto count from
Description

This operation is atomic and cannot be reordered. It also implies amemory barrier.

107

Basic C Library Functions

Name

__test and clear_bit — Clear abit and return its old value
Synopsis

int test _and clear_bit (long nr, volatile unsigned |long * addr);
Arguments

nr Bit to clear

addr Addressto count from

Description

This operation is non-atomic and can be reordered. If two examples of this operation race, one can appear
to succeed but actually fail. Y ou must protect multiple accesses with alock.

Note

the operation is performed atomically with respect to the local CPU, but not other CPUs. Portable code
should not rely on this behaviour. KVM relies on this behaviour on x86 for modifying memory that isalso

accessed from a hypervisor on the same CPU if running in a VM

don't change this without also updating arch/x86/kernel/kvm.c

108

Basic C Library Functions

Name
test_and_change bit — Change a bit and return its old value
Synopsis
int test _and change _bit (long nr, volatile unsigned |ong * addr);
Arguments
nr Bit to change
addr Addressto count from
Description

This operation is atomic and cannot be reordered. It also implies amemory barrier.

109

Basic C Library Functions

Name

test_bit — Determine whether a bit is set
Synopsis

int test _bit (int nr, const volatile unsigned |ong * addr);
Arguments

nr bit number to test

addr Addressto start counting from

110

Basic C Library Functions

Name
_ ffs— find first set bit in word
Synopsis
unsigned long _ ffs (unsigned | ong word);
Arguments
word Theword to search
Description

Undefined if no bit exists, so code should check against O first.

111

Basic C Library Functions

Name
ffz — find first zero bit in word
Synopsis
unsi gned long ffz (unsigned | ong word);
Arguments
word Theword to search
Description

Undefined if no zero exists, so code should check against ~OUL first.

112

Basic C Library Functions

Name
ffs— find first set bit in word

Synopsis

int ffs (int x);
Arguments

x theword to search

Description

Thisis defined the same way as the libc and compiler builtin ffs routines, therefore differsin spirit from
the other bitops.

ffs(value) returns O if value is 0 or the position of the first set bit if value is nonzero. The first (least
significant) bit is at position 1.

113

Basic C Library Functions

Name
fls— find last set bit in word

Synopsis

int fls (int x);
Arguments

x theword to search

Description

Thisis defined in a similar way as the libc and compiler builtin ffs, but returns the position of the most
significant set bit.

fls(value) returns O if valueis 0 or the position of the last set bit if valueis nonzero. The last (most signif-
icant) bit is at position 32.

114

Basic C Library Functions

Name
fls64 — find last set bit in a 64-bit word

Synopsis
int fls64 (__u64 x);

Arguments

x theword to search

Description

Thisis defined in asimilar way as the libc and compiler builtin ffsll, but returns the position of the most
significant set bit.

fls64(vaue) returns O if value is O or the position of the last set bit if value is nonzero. The last (most
significant) bit is at position 64.

115

Chapter 3. Basic Kernel Library
Functions

The Linux kernel provides more basic utility functions.

Bitmap Operations

116

Basic Kernel Library Functions

Name
__bitmap_shift_right — logical right shift of the bitsin a bitmap

Synopsis

void _bitmap_shift_right (unsigned long * dst, const unsigned |ong *
src, unsigned shift, unsigned nbits);

Arguments
dst destination bitmap
src source bitmap
shift shift by thismany bits
nbi ts bitmap size, in bits
Description

Shifting right (dividing) means moving bitsin the MS -> LS bit direction. Zeros are fed into the vacated
MS positions and the LS bits shifted off the bottom are lost.

117

Basic Kernel Library Functions

Name
__hitmap_shift_left — logical left shift of the bitsin a bitmap

Synopsis

void _ bitmap_shift left (unsigned long * dst, const unsigned |long *
src, unsigned int shift, unsigned int nbits);

Arguments
dst destination bitmap
src source bitmap
shift shift by thismany bits
nbi ts bitmap size, in bits
Description

Shifting left (multiplying) means moving bitsin the LS -> M Sdirection. Zeros arefed into the vacated LS
bit positions and those M S bits shifted off the top are lost.

118

Basic Kernel Library Functions

Name
bitmap find_next_zero area off — find a contiguous aligned zero area
Synopsis

unsi gned long bitmap_find next zero area off (unsigned |ong * map, un-
signed |l ong size, unsigned long start, unsigned int nr, unsigned |ong
al i gn_mask, unsigned long align _offset);

Arguments
map The address to base the search on
si ze The bitmap sizein bits
start The bitnumber to start searching at
nr The number of zeroed bits we're looking for
al i gn_mask Alignment mask for zero area

al i gn_of fset Alignment offset for zero area.

Description

Theal i gn_nask should be one less than a power of 2; the effect is that the bit offset of all zero areas
thisfunction findsplusal i gn_of f set ismultiple of that power of 2.

119

Basic Kernel Library Functions

Name
__bitmap_parse — convert an ASCII hex string into a bitmap.

Synopsis

int _ bitmap_parse (const char * buf, unsigned int buflen, int is_user,
unsi gned long * maskp, int nmaskbits);

Arguments
buf pointer to buffer containing string.
bufl en buffer sizein bytes. If string is smaller than this then it must be terminated with a\0.
i s_user location of buffer, O indicates kernel space
maskp pointer to bitmap array that will contain result.

nmaskbi ts sizeof bitmap, in bits.

Description

Commas group hex digits into chunks. Each chunk defines exactly 32 bits of the resultant bitmask. No
chunk may specify a vaue larger than 32 bits (- EOVERFLOW), and if a chunk specifies a smaller value
then leading O-bits are prepended. - EI NVAL isreturned for illegal characters and for grouping errors such
as“1,5","“,44",“” and "". Leading and trailing whitespace accepted, but not embedded whitespace.

120

Basic Kernel Library Functions

Name
bitmap_parse_user — convert an ASCII hex string in a user buffer into a bitmap
Synopsis
int bitmap_parse_user (const char _ _user * ubuf, unsigned int ulen,

unsi gned long * maskp, int nmaskbits);

Arguments
ubuf pointer to user buffer containing string.
ul en buffer sizein bytes. If string is smaller than this then it must be terminated with a\0.
maskp pointer to bitmap array that will contain result.

nmaskbi t s sizeof bitmap, in bits.

Description
Wrapper for __bi t map_par se, providing it with user buffer.

We cannot have this as an inline function in bitmap.h because it needs linux/uaccess.h to get the
access_ok declaration and this causes cyclic dependencies.

121

Basic Kernel Library Functions

Name
bitmap _print_to pagebuf — convert bitmap to list or hex format ASCI| string
Synopsis
int bitmap_print_to_pagebuf (bool |ist, char * buf, const unsigned | ong

* maskp, int nnaskbits);

Arguments
list indicates whether the bitmap must be list
buf page aligned buffer into which string is placed
maskp pointer to bitmap to convert

nmaskbi ts sizeof bitmap, in bits

Description

Output format is a comma-separated list of decimal numbers and ranges if list is specified or hex digits
grouped into comma-separated sets of 8 digits/set. Returns the number of characters written to buf.

122

Basic Kernel Library Functions

Name
bitmap parselist_user —

Synopsis

int bitnmap_parselist_user (const char __user * ubuf, unsigned int ulen,
unsi gned long * maskp, int nmaskbits);

Arguments
ubuf pointer to user buffer containing string.
ul en buffer sizein bytes. If string is smaller than this then it must be terminated with a\0.
maskp pointer to bitmap array that will contain result.

nmaskbi t s sizeof bitmap, in bits.

Description
Wrapper for bi t map_par sel i st, providing it with user buffer.

We cannot have this as an inline function in bitmap.h because it needs linux/uaccess.h to get the
access_ok declaration and this causes cyclic dependencies.

123

Basic Kernel Library Functions

Name
bitmap _remap — Apply map defined by a pair of bitmaps to another bitmap

Synopsis

voi d bitmap_remap (unsigned |l ong * dst, const unsigned |l ong * src, const
unsi gned long * old, const unsigned |ong * new, unsigned int nbits);

Arguments
dst remapped result
src subset to be remapped
ol d defines domain of map
new defines range of map

nbits number of bitsin each of these bitmaps

Description

Let ol d and new define amapping of bit positions, such that whatever position is held by the n-th set bit
inol d is mapped to the n-th set bit in new. In the more general case, allowing for the possibility that the
weight 'w' of newislessthan theweight of ol d, map the position of the n-th set bit in ol d to the position
of the m-th set bit in new, wherem ==n % w.

If either of the ol d and new bitmaps are empty, or if sr ¢ and dst point to the same location, then this
routine copiessr ¢ todst .

The positions of unset bitsin ol d are mapped to themselves (the identify map).

Apply the above specified mapping to sr ¢, placing the result in dst , clearing any bits previously set
indst .

For example, lets say that ol d has bits 4 through 7 set, and new has bits 12 through 15 set. This defines
the mapping of bit position4to 12, 5to 13, 6to 14 and 7 to 15, and of all other bit positions unchanged. So
if say sr ¢ comesinto thisroutinewith bits1, 5and 7 set, then dst should leave with bits 1, 13 and 15 set.

124

Basic Kernel Library Functions

Name
bitmap_bitremap — Apply map defined by a pair of bitmaps to a single bit

Synopsis

int bitmap _bitremap (int oldbit, const unsigned long * old, const un-
signed long * new, int bits);

Arguments

ol dbi t hit position to be mapped

old defines domain of map

new defines range of map

bits number of bitsin each of these bitmaps
Description

Let ol d and newdefine a mapping of bit positions, such that whatever position is held by the n-th set bit
inol d is mapped to the n-th set bit in new. In the more general case, allowing for the possibility that the
weight 'w' of newislessthan the weight of ol d, map the position of the n-th set bitin ol d to the position
of the m-th set bit in new, wherem ==n % w.

The positions of unset bitsin ol d are mapped to themselves (the identify map).
Apply the above specified mapping to bit position ol dbi t , returning the new bit position.

For example, lets say that ol d has bits 4 through 7 set, and new has bits 12 through 15 set. This defines
the mapping of bit position 4 to 12, 5to 13, 6 to 14 and 7 to 15, and of all other bit positions unchanged.
Soif say ol dbi t is5, then this routine returns 13.

125

Basic Kernel Library Functions

Name

bitmap_onto — trandate one bitmap relative to another

Synopsis

voi d bitmap_onto (unsigned | ong * dst, const unsigned |l ong * orig, const
unsi gned long * rel map, unsigned int bits);

Arguments

dst resulting translated bitmap
orig original untranglated bitmap
rel map bitmap relative to which trandated

bits number of bitsin each of these bitmaps

Description

Set the n-th bit of dst iff there exists some m such that the n-th bit of r el map isset, them-thbitof ori g
is set, and the n-th bit of r el map isalsothem-th _set hit of r el map. (If you understood the previous
sentence the first time your read it, you're overqualified for your current job.)

In other words, or i g ismapped onto (surjectively) dst , using themap { <n, m> | then-th bit of r el map
isthem-th set bit of r el map }.

Any set bitsin or i g above bit number W, where W is the weight of (number of set bitsin) r el map are
mapped nowhere. In particular, if for al bitsm set inori g, m >= W, then dst will end up empty. In
situations where the possibility of such an empty result is not desired, one way to avoid it is to use the
bi t map_f ol d operator, below, to first fold the or i g bitmap over itself so that all its set bitsx arein
the range 0 <= x < W. The bi t map_f ol d operator does this by setting the bit (m % W) in dst, for
each bit (m) setinori g.

Example[1] for bi t map_ont o: Let'ssay r el map hasbits30-39 set, and or i g hasbits1, 3,5, 7, 9 and
11 set. Then on return from thisroutine, dst will have bits 31, 33, 35, 37 and 39 set.

WhenbitOissetinori g, it meansturn onthebitindst corresponding to whatever isthefirst bit (if any)
thatisturnedoninr el map. Since bit 0 was off in the above example, weleave off that bit (bit 30) indst .

When bit 1issetinori g (asin the above example), it means turn on the bit in dst corresponding to
whatever is the second bit that isturned oninr el map. The second bitinr el map that wasturned onin
the above example was bit 31, so we turned on bit 31in dst .

Similarly, weturned on bits 33, 35, 37 and 39 in dst , because they were the 4th, 6th, 8th and 10th set bits
setinr el map, and the 4th, 6th, 8th and 10th bitsof or i g (i.e. bits 3, 5, 7 and 9) were also set.

When bit 11 issetinori g, it meansturn on the bit in dst corresponding to whatever is the twelfth bit
thatisturnedoninr el map. Inthe above example, therewere only ten bitsturnedoninr el map (30..39),
so that bit 11 wassetinor i g had no affect ondst .

Example[2] for bi t map_f ol d +bi t map_ont o: Let'ssay r el map hastheseten bits set: 40 41 42 43
45 48 53 61 74 95 (for the curious, that's 40 plus the first ten terms of the Fibonacci sequence.)

Further lets say we use the following code, invoking bi t map_f ol d then bitmap_onto, as suggested
aboveto avoid the possibility of an empty dst result:

126

Basic Kernel Library Functions

unsigned long *tmp; // atemporary bitmap's bits
bitmap fold(tmp, orig, bitmap_weight(relmap, bits), bits); bitmap_onto(dst, tmp, relmap, bits);

Then thistable showswhat various values of dst would be, for variousor i g's. | list the zero-based posi-
tions of each set bit. The tmp column showstheintermediate result, ascomputed by usingbi t map_f ol d
tofold theor i g bitmap modulo ten (the weight of r el map).

origtmpdst 00401141999510040(*)135713574143486101234012344041
42434509182709874061749501020300400112233012340414243012243602
464042455378102211128414274(*)

(*) For these marked lines, if we hadn't first done bi t nap_f ol d into tmp, then the dst result would
have been empty.

If either of ori g or r el map isempty (no set bits), then dst will be returned empty.

If (asexplained above) the only set bitsinor i g arein positionsm wherem >=W, (where W istheweight
of r el map) thendst will once again be returned empty.

All bitsindst not set by the above rule are cleared.

127

Basic Kernel Library Functions

Name
bitmap_fold — fold larger bitmap into smaller, modul o specified size

Synopsis

void bitmap _fold (unsigned long * dst, const unsigned long * orig,
unsi gned int sz, unsigned int nbits);

Arguments
dst resulting smaller bitmap
orig origina larger bitmap
sz specified size

nbi ts number of bitsin each of these bitmaps

Description

For each bit oldbit in or i g, set bit oldbit mod sz in dst . Clear &l other bitsin dst . See further the
comment and Example [2] for bi t map_ont o for why and how to use this.

128

Basic Kernel Library Functions

Name
bitmap_find_free region — find a contiguous aligned mem region
Synopsis
int bitmap_find free_ region (unsigned | ong * bitnmap, unsigned int bits,
int order);
Arguments
bi t map array of unsigned longs corresponding to the bitmap
bits number of bitsin the bitmap
or der region size (log base 2 of number of bits) to find
Description

Find a region of free (zero) bitsin a bi t map of bi t s bits and alocate them (set them to one). Only
consider regions of length apower (or der) of two, aligned to that power of two, which makes the search

algorithm much faster.

Return the bit offset in bitmap of the allocated region, or -errno on failure.

129

Basic Kernel Library Functions

Name
bitmap_release region — release allocated bitmap region
Synopsis
void bitmap_rel ease _region (unsigned long * bitnmap, unsigned int pos,
int order);
Arguments
bi t map array of unsigned longs corresponding to the bitmap
pos beginning of bit region to release
or der region size (log base 2 of number of bits) to release
Description

Thisisthecomplementto __bi t map_fi nd_free_regi on andreleasesthefound region (by clearing
it in the bitmap).

No return value.

130

Basic Kernel Library Functions

Name
bitmap_allocate _region — allocate bitmap region
Synopsis
int bitmap_allocate region (unsigned long * bitnmap, unsigned int pos,
int order);
Arguments
bi t map array of unsigned longs corresponding to the bitmap
pos beginning of bit region to allocate
or der region size (log base 2 of number of bits) to allocate
Description

Allocate (set bitsin) a specified region of abitmap.

Return 0 on success, or - EBUSY if specified region wasn't free (not al bits were zero).

131

Basic Kernel Library Functions

Name
bitmap_copy_le — copy a bitmap, putting the bitsinto little-endian order.
Synopsis
void bitmap_copy le (unsigned long * dst, const unsigned long * src,
unsi gned int nbits);
Arguments
dst destination buffer
src bitmap to copy
nbi ts number of bitsin the bitmap
Description

Require nbits % BITS PER LONG == 0.

132

Basic Kernel Library Functions

Name
__bitmap_parselist — convert list format ASCII string to bitmap
Synopsis
int _ bitmap_parselist (const char * buf, wunsigned int buflen, int

is_user, unsigned |long * maskp, int nmaskbits);

Arguments
buf read nul-terminated user string from this buffer
bufl en buffer sizein bytes. If string is smaller than this then it must be terminated with a\0.
i s_user location of buffer, O indicates kernel space
maskp write resulting mask here

nmaskbi t s number of bitsin mask to be written

Description

Input format is a comma-separated list of decimal numbers and ranges. Consecutively set bits are shown
as two hyphen-separated decimal numbers, the smallest and largest bit numbers set in the range.

Returns 0 on success, -errno on invalid input strings.
Error values

- El NVAL: second number in range smaller than first - EI NVAL: invalid character in string - ERANGE:
bit number specified too large for mask

133

Basic Kernel Library Functions

Name
bitmap_pos to_ord — find ordinal of set bit at given position in bitmap

Synopsis

int bitmap_pos to ord (const unsigned long * buf, unsigned int pos,
unsi gned int nbits);

Arguments
buf pointer to a bitmap
pos abit positioninbuf (0<=pos <nbi ts)

nbits number of valid bit positionsin buf

Description

Map the hit at position pos in buf (of length nbi t s) to the ordinal of which set bit it is. If it is not set
or if pos isnot avalid bit position, map to - 1.

If for example, just bits 4 through 7 are set in buf , then pos values 4 through 7 will get mapped to 0
through 3, respectively, and other pos values will get mapped to -1. When pos value 7 gets mapped to
(returns) or d value 3 in this example, that means that bit 7 is the 3rd (starting with Oth) set bit in buf .

The bit positions 0 through bi t s arevalid positionsin buf .

134

Basic Kernel Library Functions

Name
bitmap_ord_to_pos— find position of n-th set bit in bitmap

Synopsis

unsigned int bitmap_ord to _pos (const unsigned |l ong * buf, unsigned int
ord, unsigned int nbits);

Arguments
buf pointer to bitmap
ord ordina hit position (n-th set bit, n >=0)

nbits number of valid bit positionsin buf

Description

Map the ordinal offset of bit or d in buf to its position in buf . Value of or d should be in range 0 <=
or d < weight(buf). If or d >= weight(buf), returnsnbi t s.

If for example, just bits4 through 7 aresetinbuf , then or d values0through 3will get mapped to 4 through
7, respectively, and al other or d valuesreturnsnbi t s. When or d value 3 gets mapped to (returns) pos
value 7 in this example, that means that the 3rd set bit (starting with Oth) isat position 7 in buf .

The bit positions 0 through nbi t s-1 are valid positionsin buf .

Command-line Parsing

135

Basic Kernel Library Functions

Name

get_option — Parse integer from an option string
Synopsis

int get _option (char ** str, int * pint);
Arguments

str option string

pi nt (output) integer value parsed from st r

Description

Read an int from an option string; if available accept a subsequent comma as well.

Return values

0-nointinstring 1 - int found, no subsequent comma 2 - int found including a subsequent comma 3 -
hyphen found to denote arange

136

Basic Kernel Library Functions

Name

get_options— Parse a string into alist of integers

Synopsis

char * get _options (const char * str, int nints, int * ints);

Arguments
str String to be parsed
ni nts sizeof integer array
ints integer array
Description

This function parses a string containing a comma-separated list of integers, a hyphen-separated range of
_positive_integers, or a combination of both. The parse halts when the array is full, or when no more

numbers can be retrieved from the string.

Return value is the character in the string which caused the parse to end (typically a null terminator, if
str iscompletely parseable).

137

Basic Kernel Library Functions

Name

memparse — parse a string with mem suffixes into a number
Synopsis

unsi gned |l ong | ong nenparse (const char * ptr, char ** retptr);
Arguments

ptr Where parse begins

retptr (output) Optional pointer to next char after parse completes

Description

Parses a string into a number. The number stored at pt r is potentially suffixed withK, M, G, T, P, E.

CRC Functions

138

Basic Kernel Library Functions

Name

crc7_be — update the CRC7 for the data buffer
Synopsis

u8 crc7_be (u8 crc, const u8 * buffer, size t len);
Arguments

crc previous CRC7 value

buf f er datapointer

l en number of bytesin the buffer
Context

any
Description

Returnsthe updated CRC7 value. The CRC7 isleft-aligned in the byte (the Ishit isalways0), asthat makes
the computation easier, and al callerswant it in that form.

139

Basic Kernel Library Functions

Name
crcl6 — compute the CRC-16 for the data buffer

Synopsis

ulé crcl6 (ulé crc, u8 const * buffer, size t len);

Arguments
crc previous CRC value

buf f er datapointer

l en number of bytesin the buffer

Description

Returns the updated CRC value.

140

Basic Kernel Library Functions

Name
crc_itu_t — Compute the CRC-ITU-T for the data buffer
Synopsis
ulé crc_itu t (ul6é crc, const u8 * buffer, size t len);
Arguments
crc previous CRC value

buf f er datapointer

l en number of bytesin the buffer

Description
Returns the updated CRC value

141

Basic Kernel Library Functions

Name

Jusr/srcllinux-4.1.27-24//lib/crc32.c — Document generation inconsistency
Oops
Warning

The template for this document tried to insert the structured comment from the file/ usr/ sr c/

[inux-4.1.27-24//1ib/crc32. c atthispoint, but nonewasfound. Thisdummy section
isinserted to allow generation to continue.

142

Basic Kernel Library Functions

Name

crc_ccitt — recompute the CRC for the data buffer
Synopsis

ulé crc_ccitt (ulé crc, u8 const * buffer, size t len);
Arguments

crc previous CRC value

buf f er datapointer

l en number of bytesin the buffer

idr/ida Functions

idr synchronization (stolen from radix-tree.h)

i dr _findisableto be caled locklessly, using RCU. The caller must ensure cals to this function are
made within r cu_r ead_| ock regions. Other readers (lock-free or otherwise) and modifications may
be running concurrently.

It is still required that the caller manage the synchronization and lifetimes of the items. So if RCU lock-
free lookups are used, typically this would mean that the items have their own locks, or are amenable to
lock-free access; and that the items are freed by RCU (or only freed after having been deleted from the
idr tree*and* asynchr oni ze_r cu grace period).

IDA - IDR based ID allocator

This is id alocator without id -> pointer translation. Memory usage is much lower than full blown idr
because each id only occupiesabit. idausesacustom leaf nodewhich containsIDA_BITMAP_BITSdots.

2007-04-25 written by Tejun Heo <htejungmai | .com>

143

Basic Kernel Library Functions

Name
idr_preload — preload for i dr _al | oc

Synopsis
void idr_preload (gfp_t gf p_mask);

Arguments

of p_mask alocation mask to use for preloading

Description

Preload per-cpu layer buffer for i dr _al | oc. Can only be used from process context and each
i dr _pr el oad invocation should be matched with i dr _pr el oad_end. Note that preemption isdis-
abled while prel oaded.

Thefirsti dr _al | oc inthe preloaded section can be treated asif it were invoked with gf p_mask used
for preloading. This alows using more permissive allocation masks for idrs protected by spinlocks.

For example, if i dr _al | oc below fails, the failure can be treated asif i dr _al | oc were called with
GFP_KERNEL rather than GFP_NOWAIT.

idr_preload(GFP_KERNEL); spin_lock(lock);
id =idr_alloc(idr, ptr, start, end, GFP_NOWAIT);

spin_unlock(lock); i dr _pr el oad_end; if (id < 0) error;

144

Basic Kernel Library Functions

Name
idr_alloc — allocate new idr entry
Synopsis
int idr_alloc (struct idr * idr, void * ptr, int start, int end, gfp_t
of p_mask) ;
Arguments
idr the (initialized) idr
ptr pointer to be associated with the new id
start the minimum id (inclusive)
end the maximum id (exclusive, <= 0 for max)

gf p_mask memory alocation flags

Description

Allocate anid in [start, end) and associateit with pt r . If no ID is available in the specified range, returns
-ENOSPC. On memory allocation failure, returns -ENOMEM.

Note that end is treated as max when <= 0. Thisisto always allow using st art + N as end as long
as N isinside integer range.

The user is responsible for exclusively synchronizing all operations which may modify i dr . However,
read-only accesses such asi dr _f i nd or iteration can be performed under RCU read lock provided the
user destroys pt r in RCU-safe way after removal fromidr.

145

Basic Kernel Library Functions

Name

idr_alloc_cyclic — allocate new idr entry in acyclical fashion
Synopsis

int idr_alloc_cyclic (struct idr * idr, void * ptr, int start, int end,
gfp_t gf p_mask);

Arguments
idr the (initialized) idr
ptr pointer to be associated with the new id
start the minimum id (inclusive)
end the maximum id (exclusive, <= 0 for max)

gf p_mask memory alocation flags

Description

Essentially the same as idr_alloc, but prefers to alocate progressively higher ids if it can. If the “cur”
counter wraps, then it will start again at the “ start” end of the range and allocate one that has already been
used.

146

Basic Kernel Library Functions

Name

idr_remove — remove the given id and freeits slot
Synopsis

void idr_renove (struct idr * idp, int id);
Arguments

i dp idrhandle

id uniquekey

147

Basic Kernel Library Functions

Name

idr_destroy — release all cached layers within anidr tree
Synopsis

void idr_destroy (struct idr * idp);
Arguments

i dp idrhandle
Description

Freeall id mappingsand all idp_layers. After thisfunction, i dp iscompletely unused and can befreed/ re-
cycled. Thecaller isresponsiblefor ensuring that no one el seaccessesi dp during or afteri dr _dest r oy.

A typical clean-up sequence for objects stored in anidr treewill usei dr _f or _each to free al objects,
if necessary, theni dr _dest r oy to free up the id mappings and cached idr_layers.

148

Basic Kernel Library Functions

Name

idr_for_each — iterate through all stored pointers

Synopsis

int idr_for_each (struct
*data), void * data);

idr * idp, int (*fn) (int id, void *p, void

Arguments
i dp idr handle
fn function to be called for each pointer

dat a datapassed back to callback function

Description

Iterate over the pointers registered with the given idr. The callback function will be called for each pointer
currently registered, passing the id, the pointer and the data pointer passed to thisfunction. It is not safeto
modify theidr treewhileinthe callback, so functionssuch asidr_get new andidr_removeare not allowed.

We check thereturn of f n eachtime. If it returns anything other than 0, we break out and return that value.

The caller must serializei dr _f or _each vsi dr _get _newandi dr _r enpve.

149

Basic Kernel Library Functions

Name

idr_get_next — lookup next object of id to given id.
Synopsis

void * idr_get _next (struct idr * idp, int * nextidp);
Arguments

i dp idr handle

nextidp pointer to lookup key

Description

Returns pointer to registered object with id, which is next number to given id. After being looked up,
*next i dp will be updated for the next iteration.

This function can be called under r cu_r ead_| ock, given that the leaf pointers lifetimes are correctly
managed.

150

Basic Kernel Library Functions

Name

idr_replace — replace pointer for given id
Synopsis

void * idr_replace (struct idr * idp, void * ptr, int id);
Arguments

i dp idrhandle

ptr pointer you want associated with theid

id lookup key

Description

Replace the pointer registered with an id and return the old value. A - ENOENT return indicates that i d
was not found. A - EI NVAL return indicatesthat i d was not within valid constraints.

The caller must seriadize with writers.

151

Basic Kernel Library Functions

Name
idr_init — initialize idr handle
Synopsis
void idr_init (struct idr * idp);
Arguments
i dp idrhandle
Description

Thisfunction is useto set up the handle (i dp) that you will pass to the rest of the functions.

152

Basic Kernel Library Functions

Name

ida_pre _get — reserve resources for ida allocation
Synopsis

int ida _pre_get (struct ida * ida, gfp_t gfp_mask);
Arguments

i da idahandle

of p_mask memory alocation flag

Description

This function should be called prior to locking and calling the following function. It preallocates enough
memory to satisfy the worst possible allocation.

If the system isREALLY out of memory this function returns 0, otherwise 1.

153

Basic Kernel Library Functions

Name

ida_get_new_above — allocate new ID above or equal to astart id
Synopsis

int ida _get _new above (struct ida * ida, int starting id, int * p_id);
Arguments

i da ida handle

starting_ id idtostartsearchat

p_id pointer to the allocated handle

Description
Allocate new ID aboveor equal tost arti ng_i d. It should be called with any required locks.

If memory is required, it will return - EAGAI N, you should unlock and go back to thei da_pre_get
cal. If theidaisfull, it will return - ENOSPC.

p_i dreturnsavaueintherangestarting_id..Ox7fffffff.

154

Basic Kernel Library Functions

Name

ida_remove — remove the given ID
Synopsis

void ida_renove (struct ida * ida, int id);
Arguments

i da idahandle

id ID to free

155

Basic Kernel Library Functions

Name

ida_destroy — release all cached layers within an idatree
Synopsis
void ida_destroy (struct ida * ida);

Arguments

i da idahandle

156

Basic Kernel Library Functions

Name
ida_simple_get — get anew id.

Synopsis

int ida_sinple _get (struct ida * ida, unsigned int start, unsigned int
end, gfp_t gf p_mask);

Arguments
i da the (initialized) ida.
start the minimum id (inclusive, < 0x8000000)
end the maximum id (exclusive, < 0x8000000 or 0)

gf p_mask memory allocation flags

Description

Allocates anid in the range start <= id < end, or returns -ENOSPC. On memory allocation failure, returns
-ENOMEM.

Usei da_si npl e_renove to get rid of anid.

157

Basic Kernel Library Functions

Name

ida_simple_remove — remove an allocated id.
Synopsis

void ida_sinple renove (struct ida * ida, unsigned int id);
Arguments

i da the (initialized) ida.

id theidreturned by ida simple get.

158

Basic Kernel Library Functions

Name
ida_init — initialize ida handle
Synopsis
void ida_init (struct ida * ida);
Arguments
i da idahandle
Description

Thisfunction is useto set up the handle (i da) that you will pass to the rest of the functions.

159

Chapter 4. Memory Management in
Linux

The Slab Cache

160

Memory Management in Linux

Name

kmalloc — allocate memory
Synopsis

void * knmalloc (size t size, gfp_t flags);
Arguments

si ze how many bytes of memory are required.

flags thetypeof memory to allocate.

Description
kmalloc is the normal method of allocating memory for objects smaller than page sizein the kernel.
Thef | ags argument may be one of:
GFP_USER - Allocate memory on behalf of user. May sleep.
GFP_KERNEL - Allocate normal kernel ram. May sleep.

GFP_ATOM C- Allocationwill not sleep. May use emergency pools. For example, usethisinsideinterrupt
handlers.

GFP_HI GHUSER - Allocate pages from high memory.

GFP_NQA O- Do not do any 1/0 at al while trying to get memory.
GFP_NOFS - Do not make any fs calls while trying to get memory.
GFP_NOWAI T - Allocation will not sleep.

___GFP_THI SNODE - Allocate node-local memory only.

GFP_DMNA - Allocation suitable for DMA. Should only be used for kmal | oc caches. Otherwise, use a
dab created with SLAB_DMA.

Also it ispossible to set different flags by OR'ing in one or more of the following additional f | ags:
___GFP_COLD- Reqguest cache-cold pages instead of trying to return cache-warm pages.

__ GFP_HI GH- This allocation has high priority and may use emergency poals.

__GFP_NOCFAI L - Indicate that this allocation isin no way allowed to fail (think twice before using).
___GFP_NORETRY - If memory is not immediately available, then give up at once.

__GFP_NOWARN - If allocation fails, don't issue any warnings.

__ GFP_REPEAT - If alocation failsinitially, try once more before failing.

Thereareother flagsavailable aswell, but these are not intended for general use, and so are not documented
here. For afull list of potential flags, always refer to linux/gfp.h.

161

Memory Management in Linux

Name
kmalloc_array — allocate memory for an array.
Synopsis
void * knalloc_array (size_ t n, size t size, gfp_t flags);
Arguments
n number of elements.

size elementsize

fl ags thetypeof memory to allocate (see kmalloc).

162

Memory Management in Linux

Name

kcalloc — allocate memory for an array. The memory is set to zero.
Synopsis

void * kcalloc (size_ t n, size t size, gfp_t flags);
Arguments

n number of elements.

size elementsize

fl ags thetypeof memory to allocate (see kmalloc).

163

Memory Management in Linux

Name

kzalloc — allocate memory. The memory is set to zero.
Synopsis

void * kzalloc (size t size, gfp_t flags);
Arguments

si ze how many bytes of memory are required.

flags thetypeof memory to allocate (see kmalloc).

164

Memory Management in Linux

Name
kzalloc_node — allocate zeroed memory from a particular memory node.
Synopsis
void * kzalloc_node (size t size, gfp_t flags, int node);
Arguments

si ze how many bytes of memory are required.
flags thetypeof memory to allocate (see kmalloc).

node memory node from which to allocate

165

Memory Management in Linux

Name

kmem_cache alloc — Allocate an object
Synopsis

void * knem cache_alloc (struct kmem cache * cachep, gfp_t flags);
Arguments

cachep Thecacheto alocate from.

flags Seeknall oc.

Description

Allocate an object from this cache. The flags are only relevant if the cache has no available objects.

166

Memory Management in Linux

Name
kmem_cache alloc_node — Allocate an object on the specified node

Synopsis
void * knem cache_al |l oc_node (struct kmem cache * cachep, gfp_t flags,
i nt nodei d);

Arguments

cachep Thecacheto alocate from.
flags Seeknall oc.

nodei d node number of the target node.

Description

Identical to kmem_cache alloc but it will allocate memory on the given node, which can improve the
performance for cpu bound structures.

Fallback to other node is possible if _ GFP_THISNODE is not set.

167

Memory Management in Linux

Name
kmem_cache free — Deallocate an object
Synopsis
void knmem cache free (struct kmem cache * cachep, void * objp);
Arguments
cachep The cache the alocation was from.
obj p The previously allocated object.
Description

Free an object which was previoudly allocated from this cache.

168

Memory Management in Linux

Name

kfree — free previously allocated memory
Synopsis

void kfree (const void * objp);
Arguments

obj p pointer returned by kmalloc.
Description

If obj p isNULL, no operation is performed.

Don't free memory not originally allocated by kmal | oc or you will run into trouble.

169

Memory Management in Linux

Name

ksize — get the actual amount of memory allocated for a given object

Synopsis

size_t ksize (const void * objp);

Arguments

obj p Pointer to the object

Description

kmalloc may internally round up allocations and return more memory than requested. ksi ze can be used
to determine the actual amount of memory allocated. The caller may use this additional memory, even
though asmaller amount of memory wasinitially specified with thekmalloc call. The caller must guarantee
that objp points to a valid object previously allocated with either kmal | oc or knem cache_al | oc.
The object must not be freed during the duration of the call.

170

Memory Management in Linux

Name

kfree_const — conditionally free memory
Synopsis

void kfree const (const void * x);
Arguments

X pointer to the memory
Description

Function calls kfree only if X isnot in .rodata section.

171

Memory Management in Linux

Name
kstrdup — allocate space for and copy an existing string

Synopsis
char * kstrdup (const char * s, gfp_t gfp);
Arguments

S the string to duplicate

gf p the GFP mask used inthekmal | oc call when alocating memory

172

Memory Management in Linux

Name
kstrdup_const — conditionally duplicate an existing const string

Synopsis
const char * kstrdup_const (const char * s, gfp_t gfp);
Arguments

S the string to duplicate

gf p the GFP mask used inthekmal | oc call when alocating memory

Description

Function returns source string if it isin .rodata section otherwise it fallbacks to kstrdup. Strings allocated
by kstrdup_const should be freed by kfree_const.

173

Memory Management in Linux

Name
kstrndup — allocate space for and copy an existing string

Synopsis
char * kstrndup (const char * s, size_t max,

Arguments

S the string to duplicate

max read at most max charsfroms

gf p_t gfp);

gf p the GFP mask used in thekmal | oc call when allocating memory

174

Memory Management in Linux

Name

kmemdup — duplicate region of memory
Synopsis

void * knendup (const void * src, size t len, gfp_t gfp);
Arguments

src memory region to duplicate

| en memory region length

of p GFPmask to use

175

Memory Management in Linux

Name
memdup_user — duplicate memory region from user space
Synopsis
void * mendup_user (const void __user * src, size t |len);
Arguments
Src source addressin user space
I en number of bytesto copy
Description

Returns an ERR_PTRon failure.

176

Memory Management in Linux

Name
get_user_pages fast — pin user pages in memory

Synopsis

int get user_pages_fast (unsigned long start, int nr_pages, int wite,
struct page ** pages);

Arguments
start starting user address

nr_pages nhumber of pagesfrom start to pin

wite whether pages will be written to
pages array that receives pointers to the pages pinned. Should be at least nr_pages long.
Description

Returnsnumber of pages pinned. Thismay befewer than the number requested. If nr_pagesisO or negative,
returns 0. If no pages were pinned, returns -errno.

get_user_pages fast provides equivalent functionality to get_user_pages, operating on current and cur-
rent->mm, with force=0 and vma=NULL. However unlike get_user_pages, it must be caled without
mmap_sem held.

get_user_pages fast may take mmap_sem and page table locks, so no assumptions can be made
about lack of locking. get user_pages fast is to be implemented in a way that is advantageous (vs
get _user _pages) when the user memory areaisaready faulted in and present in ptes. However if the
pages have to be faulted in, it may turn out to be slightly slower so callers need to carefully consider what
to use. On many architectures, get_user_pages fast simply falls back to get_user_pages.

User Space Memory Access

177

Memory Management in Linux

Name

__copy_to_user_inatomic — Copy ablock of datainto user space, with less checking.
Synopsis

unsigned long _ copy to user inatomic (void __user * to, const void *
from unsigned long n);

Arguments
to Destination address, in user space.
from Sourceaddress, in kernel space.

n Number of bytesto copy.

Context

User context only.

Description

Copy datafrom kernel spaceto user space. Caller must check the specified block withaccess__ok before
calling thisfunction. The caller should also make sure he pinsthe user space address so that we don't result
in page fault and sleep.

Here we special-case 1, 2 and 4-byte copy_* _user invocations. On afault we return the initial request size

(1, 2 0or 4), ascopy_*_user should do. If astore crosses a page boundary and gets a fault, the x86 will not
write anything, so thisis accurate.

178

Memory Management in Linux

Name

__copy_to_user — Copy ablock of datainto user space, with less checking.
Synopsis

unsigned long _ copy to user (void _ _user * to, const void * from
unsi gned long n);

Arguments
to Destination address, in user space.
from Sourceaddress, in kernel space.

n Number of bytesto copy.
Context
User context only. This function may sleep.

Description

Copy datafrom kernel spaceto user space. Caller must check the specified block withaccess__ok before
calling this function.

Returns number of bytes that could not be copied. On success, thiswill be zero.

179

Memory Management in Linux

Name

__copy_from_user — Copy ablock of datafrom user space, with less checking.
Synopsis

unsigned long _ copy fromuser (void * to, const void
unsi gned long n);

Arguments
to Destination address, in kernel space.
from Sourceaddress, in user space.
n Number of bytesto copy.
Context

User context only. This function may sleep.

Description

__user

*

from

Copy datafrom user spaceto kernel space. Caller must check the specified block withaccess__ok before

calling this function.

Returns number of bytes that could not be copied. On success, thiswill be zero.

If some data could not be copied, this function will pad the copied data to the requested size using zero

bytes.

Anaternateversion- ___copy_from user _i nat oni ¢ - may be called from atomic context and will
fail rather than sleep. In this case the uncopied bytes will *NOT* be padded with zeros. See fs/filemap.h

for explanation of why thisis needed.

180

Memory Management in Linux

Name

clear_user — Zero ablock of memory in user space.
Synopsis

unsi gned long clear _user (void __user * to, unsigned long n);
Arguments

t o Destination address, in user space.

n Number of bytesto zero.

Description

Zero ablock of memory in user space.

Returns number of bytes that could not be cleared. On success, thiswill be zero.

181

Memory Management in Linux

Name

__clear_user — Zero ablock of memory in user space, with less checking.

Synopsis

unsigned long _ clear_user (void __user * to, unsigned long n);
Arguments

t o Destination address, in user space.

n Number of bytesto zero.

Description

Zero a block of memory in user space. Caller must check the specified block with access_ok before
calling this function.

Returns number of bytes that could not be cleared. On success, thiswill be zero.

182

Memory Management in Linux

Name

_copy_to_user — Copy ablock of datainto user space.
Synopsis

unsigned long _copy to user (void _ _user * to, const void * from
unsi gned n);

Arguments
to Destination address, in user space.
from Sourceaddress, in kernel space.
n Number of bytesto copy.
Context

User context only. This function may sleep.

Description

Copy datafrom kernel space to user space.

Returns number of bytes that could not be copied. On success, thiswill be zero.

183

Memory Management in Linux

Name

_copy_from_user — Copy ablock of datafrom user space.
Synopsis

unsigned long _copy fromuser (void * to, const void
unsi gned n);

Arguments
to Destination address, in kernel space.
from Sourceaddress, in user space.
n Number of bytesto copy.
Context

User context only. This function may sleep.

Description

Copy datafrom user space to kernel space.

Returns number of bytes that could not be copied. On success, thiswill be zero.

__user * from

If some data could not be copied, this function will pad the copied data to the requested size using zero

bytes.

More Memory Management Functions

184

Memory Management in Linux

Name
read_cache pages — populate an address space with some pages & start reads against them

Synopsis

int read_cache_pages (struct address_space * mapping, struct |ist_head
* pages, int (*filler) (void *, struct page *), void * data);

Arguments

mappi ng the address space

pages The address of alist_head which contains the target pages. These pages have their ->index
populated and are otherwise uninitialised.

filler callback routine for filling a single page.
data private data for the callback routine.
Description

Hides the details of the LRU cache etc from the filesystems.

185

Memory Management in Linux

Name
page _cache sync readahead — generic file readahead

Synopsis

voi d page_cache_sync_readahead (struct address_space * napping, struct
file ra state * ra, struct file * filp, pgoff _t offset, unsigned |ong
req_size);

Arguments
mappi ng address space which holds the pagecache and 1/0 vectors
ra file_ra state which holds the readahead state
filp passed on to ->r eadpage and ->r eadpages
of f set start offset into mappi ng, in pagecache page-sized units

req_si ze hint: total size of the read which the caller is performing in pagecache pages

Description

page_cache_sync_readahead should be caled when a cache miss happened: it will submit the
read. The readahead logic may decide to piggyback more pages onto the read request if access patterns
suggest it will improve performance.

186

Memory Management in Linux

Name
page cache async_readahead — file readahead for marked pages

Synopsis
voi d page_cache_async_r eadahead (struct address_space * nappi ng, struct

file ra state * ra, struct file * filp, struct page * page, pgoff _t
of fset, unsigned |ong req_size);

Arguments

mappi ng address space which holds the pagecache and 1/0 vectors

ra file_ra state which holds the readahead state
filp passed on to ->r eadpage and ->r eadpages
page the page at of f set which hasthe PG_readahead flag set

of f set start offset into mappi ng, in pagecache page-sized units

req_si ze hint: total size of the read which the caller is performing in pagecache pages
Description

page_cache_async_r eadahead should be called when apageis used which hasthe PG_readahead

flag; thisis a marker to suggest that the application has used up enough of the readahead window that we
should start pulling in more pages.

187

Memory Management in Linux

Name

delete from_page cache — delete page from page cache
Synopsis

voi d del ete _from page cache (struct page * page);
Arguments

page the page which the kernel istrying to remove from page cache
Description

This must be called only on pages that have been verified to be in the page cache and locked. It will never
put the page into the freelist, the caller has a reference on the page.

188

Memory Management in Linux

Name
filemap_flush — mostly a non-blocking flush
Synopsis
int filemap_flush (struct address_space * napping);
Arguments
mappi ng target address space
Description

This is a mostly non-blocking flush. Not suitable for data-integrity purposes - 1/0 may not be started
against all dirty pages.

189

Memory Management in Linux

Name

filemap_fdatawait_range — wait for writeback to complete

Synopsis

int filemap _fdatawait range (struct address _space * napping, |off t
start_byte, loff_t end _byte);

Arguments
mappi ng address space structure to wait for
start _byte offsetinbyteswherethe range starts

end_byte offset in bytes where the range ends (inclusive)

Description

Walk the list of under-writeback pages of the given address space in the given range and wait for al of
them.

190

Memory Management in Linux

Name

filemap_fdatawait — wait for al under-writeback pages to complete
Synopsis

int filemap fdatawait (struct address_space * mappi ng);
Arguments

mappi ng address space structure to wait for
Description

Walk the list of under-writeback pages of the given address space and wait for all of them.

191

Memory Management in Linux

Name

filemap_write_and_wait_range — write out & wait on afile range

Synopsis

int filemap_wite _and wait_range (struct address_space * nmappi ng, |off t
Istart, loff_t lend);

Arguments
mappi ng the address space for the pages
| start offset in bytes where the range starts

| end offset in bytes where the range ends (inclusive)

Description
Write out and wait upon file offsets |start->lend, inclusive.

Note that “lend' isinclusive (describes the last byte to be written) so that this function can be used to write
to the very end-of-file (end = -1).

192

Memory Management in Linux

Name
replace_page cache page — replace a pagecache page with anew one
Synopsis
i nt replace_page_cache_page (struct page * old, struct page * new, gfp_t
of p_mask) ;
Arguments
old page to be replaced
new page to replace with
gf p_mask allocation mode
Description

This function replaces a page in the pagecache with a new one. On success it acquires the pagecache
reference for the new page and dropsit for the old page. Both the old and new pages must be locked. This
function does not add the new page to the LRU, the caller must do that.

Theremove + add is atomic. The only way this function can fail is memory allocation failure.

193

Memory Management in Linux

Name
add to_page cache locked — add alocked page to the pagecache

Synopsis

int add_to_page cache_| ocked (struct page * page, struct address_space
* mappi ng, pgoff _t offset, gfp_t gof p_nmask);

Arguments
page page to add
mappi ng the page's address space
of f set page index

gf p_mask page alocation mode

Description

This function is used to add a page to the pagecache. It must be locked. This function does not add the
page to the LRU. The caller must do that.

194

Memory Management in Linux

Name
add_page wait_queue — Add an arbitrary waiter to a page's wait queue
Synopsis
voi d add_page wait_queue (struct page * page, wait_queue_t * waiter);
Arguments
page Page defining the wait queue of interest
wai t er Waiter to add to the queue
Description

Add an arbitrary wai t er to the wait queue for the nominated page.

195

Memory Management in Linux

Name
unlock_page — unlock alocked page

Synopsis

voi d unl ock_page (struct page * page);
Arguments

page thepage

Description

Unlocks the page and wakes up dleepers in ___wait_on_page_| ocked. Also wakes sleepers
inwait_on_page writeback because the wakeup mechanism between Pagel ocked pages and
PageWriteback pagesis shared. But that's OK - dleepersinwai t _on_page_wri t eback just go back

to sleep.

The mb is necessary to enforce ordering between the clear_bit and the read of the waitqueue (to avoid
SMPraceswithaparallel wai t _on_page_| ocked).

196

Memory Management in Linux

Name
end_page writeback — end writeback against a page

Synopsis
voi d end_page _witeback (struct page * page);
Arguments

page thepage

197

Memory Management in Linux

Name

__lock_page — get alock on the page, assuming we need to sleep to get it
Synopsis

void _ | ock _page (struct page * page);
Arguments

page thepageto lock

198

Memory Management in Linux

Name

page_cache next_hole— find the next hole (not-present entry)
Synopsis

pgoff t page cache_next _hole (struct address_space * napping, pgoff t
i ndex, unsigned | ong nax_scan);

Arguments
mappi ng mapping
i ndex index

max_scan maximum range to search

Description

Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the lowest indexed hole.

Returns

theindex of the holeif found, otherwise returns an index outside of the set specified (in which case 'return
- index >= max_scan' will be true). In rare cases of index wrap-around, O will be returned.

page cache next_hole may be called under rcu_read lock. However, like radix_tree _gang_lookup, this
will not atomically search a snapshot of the tree at asingle point in time. For example, if aholeis created
at index 5, then subsequently ahole is created at index 10, page _cache next_hole covering both indexes
may return 10 if called under rcu_read lock.

199

Memory Management in Linux

Name

page_cache prev_hole — find the prev hole (not-present entry)
Synopsis

pgoff t page cache prev_hole (struct address_space * napping, pgoff t
i ndex, unsigned | ong nax_scan);

Arguments
mappi ng mapping
i ndex index

max_scan maximum range to search

Description

Search backwards in the range [max(index-max_scan+1, 0), index] for the first hole.

Returns

the index of the holeif found, otherwise returns an index outside of the set specified (in which case 'index
- return >= max_scan' will betrue). In rare cases of wrap-around, ULONG_MAX will be returned.

page cache prev_hole may be called under rcu_read lock. However, like radix_tree _gang_lookup, this
will not atomically search a snapshot of the tree at asingle point in time. For example, if aholeis created
at index 10, then subsequently ahole is created at index 5, page _cache prev_hole covering both indexes
may return 5 if called under rcu_read |ock.

200

Memory Management in Linux

Name
find_get_entry — find and get a page cache entry

Synopsis
struct page * find_ get _entry (struct address_space * mapping, pgoff t
of fset);

Arguments

mappi ng the address space to search

of f set the page cache index

Description

Looks up the page cache slot at mappi ng & of f set . If there is a page cache page, it is returned with
an increased refcount.

If the slot holds a shadow entry of a previously evicted page, or a swap entry from shmem/tmpfs, it is
returned.

Otherwise, NULL is returned.

201

Memory Management in Linux

Name
find_lock_entry — locate, pin and lock a page cache entry

Synopsis
struct page * find |ock entry (struct address_space * mappi ng, pgoff t
of fset);

Arguments

mappi ng the address space to search

of f set the page cache index

Description

Looks up the page cache slot at mappi ng & of f set . If there is a page cache page, it is returned locked
and with an increased refcount.

If the slot holds a shadow entry of a previously evicted page, or a swap entry from shmem/tmpfs, it is
returned.

Otherwise, NULL is returned.

find_|l ock_entry may sleep.

202

Memory Management in Linux

Name
pagecache get page — find and get a page reference

Synopsis

struct page * pagecache _get page (struct address_space * nmapping,
pgoff t offset, int fgp flags, gfp_t gof p_nask);

Arguments
mappi ng the address_space to search
of f set the page index

fgp_flags PCG flags

gf p_mask gfp mask to use for the page cache data page alocation
Description

Looks up the page cache slot at mappi ng & of f set .

PCG flags modify how the pageis returned.

FGP_ACCESSED

the page will be marked accessed
FGP_LOCK

Page isreturn locked

FGP_CREAT

If page is not present then anew pageis allocated using gf p_nask and added to the page cache and the
VM'sLRU list. The pageisreturned locked and with an increased refcount. Otherwise, NULL is returned.

If FGP_LOCK or FGP_CREAT are specified then the function may sleep even if the GFP flags specified
for FGP_CREAT are atomic.

If thereis a page cache page, it is returned with an increased refcount.

203

Memory Management in Linux

Name
find_get_pages contig — gang contiguous pagecache lookup

Synopsis

unsi gned find_get pages_contig (struct address_space * nappi ng, pgoff t
i ndex, unsigned int nr_pages, struct page ** pages);

Arguments
mappi ng Theaddress space to search
i ndex The starting page index
nr_pages The maximum number of pages

pages Where the resulting pages are placed

Description

find_get pages_conti g worksexactly likefi nd_get _pages, except that the returned number
of pages are guaranteed to be contiguous.

fi nd_get pages_conti g returnsthe number of pages which were found.

204

Memory Management in Linux

Name
find_get_pages tag — find and return pages that match t ag

Synopsis

unsi gned find get pages _tag (struct address_space * nmappi ng, pgoff t *
i ndex, int tag, unsigned int nr_pages, struct page ** pages);

Arguments
mappi ng the address spaceto search
i ndex the starting page index
t ag the tag index
nr_pages the maximum number of pages

pages where the resulting pages are placed

Description

Likefind_get_pages, except we only return pages which aretagged witht ag. Weupdatei ndex to index
the next page for the traversal.

205

Memory Management in Linux

Name
generic_file read_iter — generic filesystem read routine

Synopsis
ssize t generic file read iter (struct kiocb * iocb, struct iov_iter
* jter);

Arguments

i ocb kernel 1/0 control block

i ter destination for the dataread

Description

Thisisthe“read_i t er ” routine for al filesystems that can use the page cache directly.

206

Memory Management in Linux

Name
filemap_fault — read in file data for page fault handling

Synopsis
int filemap fault (struct vmarea struct * vma, struct vmfault * vnf);

Arguments

v vmain which the fault was taken

vnf struct vm_fault containing details of the fault

Description

filemap_fault isinvoked viathe vma operations vector for a mapped memory region to read in file
data during a page fault.

Thegoto'sarekind of ugly, but this streamlines the normal case of having it in the page cache, and handles
the special cases reasonably without having alot of duplicated code.

vma->vm_mm->mmap_sem must be held on entry.

If our return valuehasVM_FAULT_RETRY set, it'sbecausel ock_page_or _retry returned 0. The
mmap_sem has usually been released inthiscase. See | ock_page_or _r et ry for the exception.

If our return value does not have VM_FAULT_RETRY set, the mmap_sem has not been rel eased.

We never return with VM_FAULT_RETRY and abit fromVM_FAULT_ERROR set.

207

Memory Management in Linux

Name
read_cache_page — read into page cache, fill it if needed

Synopsis

struct page * read _cache _page (struct address_space * mapping, pgoff t
i ndex, int (*filler) (void *, struct page *), void * data);

Arguments
mappi ng the page's address space
i ndex the page index
filler function to perform the read

data first arg to filler(data, page) function, often left as NULL

Description

Read into the page cache. If apage already exists, and PageUpt odat e isnot set, try to fill the page and
wait for it to become unlocked.

If the page does not get brought uptodate, return -EIO.

208

Memory Management in Linux

Name
read _cache page gfp — read into page cache, using specified page allocation flags.
Synopsis
struct page * read cache page gfp (struct address_space * nmapping,
pgoff t index, gfp_t gfp);
Arguments
mappi ng the page's address space
i ndex the page index
of p the page allocator flagsto useif allocating
Description

This is the same as “read_mapping_page(mapping, index, NULL)", but with any new page allocations
done using the specified all ocation flags.

If the page does not get brought uptodate, return -EIO.

209

Memory Management in Linux

Name
__generic_file write_iter — write datato afile

Synopsis
ssize t generic file wite iter (struct kiocb * ioch, struct iov_iter
* from;

Arguments

i ocb 10 state structure (file, offset, etc.)

from iov_iter with datato write

Description

Thisfunction does all the work needed for actually writing datato afile. It does all basic checks, removes
SUID from thefile, updates modification times and calls proper subroutines depending on whether we do
direct 10 or astandard buffered write.

It expectsi_mutex to be grabbed unless we work on a block device or similar object which does not need
locking at al.

This function does *not* take care of syncing data in case of O_SYNC write. A caller has to handle it.
Thisis mainly due to the fact that we want to avoid syncing under i_mutex.

210

Memory Management in Linux

Name
generic_file write iter — write datato afile

Synopsis
ssize t generic file wite iter (struct kiocb * iocb, struct iov_iter
* from;

Arguments

i ocb 10 state structure

from iov_iter with datato write

Description

Thisisawrapper around __generic_file_wite_iter tobeused by most filesystems. It takes
care of syncing thefilein case of O_SYNC file and acquiresi_mutex as needed.

211

Memory Management in Linux

Name
try _to_release_page — release old fs-specific metadata on a page

Synopsis
int try to _release_page (struct page * page, gfp_t gf p_mask);

Arguments
page the page which the kernel istrying to free

of p_mask memory alocation flags (and I/O mode)

Description

Theaddress_spaceistotry to release any dataagainst the page (presumably at page->private). If therelease
was successful, return “1'. Otherwise return zero.

This may also be called if PG _fscache is set on a page, indicating that the page is known to the local
caching routines.

The gf p_mask argument specifies whether I/O may be performed to release this page (__ GFP_10), and
whether the call may block (__ GFP_WAIT & _ GFP_FS).

212

Memory Management in Linux

Name

Zap_page _range — remove user pagesin agiven range
Synopsis

voi d zap_page_range (struct vmarea_struct * vma, unsigned |long start,
unsi gned long size, struct zap details * details);

Arguments
Vima vm_area_struct holding the applicable pages
start starting address of pagesto zap
si ze number of bytes to zap

det ai | s detailsof shared cache invalidation

Description

Caller must protect the VMA list

213

Memory Management in Linux

Name

zap_vma_ptes — remove ptes mapping the vma

Synopsis

int zap_vma_ptes (struct vmarea struct * vmm, unsigned |ong address,
unsi gned | ong si ze);

Arguments
Vima vm_area_struct holding ptes to be zapped
addr ess dtarting address of pagesto zap

si ze number of bytes to zap

Description
This function only unmaps ptes assigned to VM_PFNMAP vmas.
The entire address range must be fully contained within the vma

Returns O if successful.

214

Memory Management in Linux

Name

vm_insert_page — insert single page into user vma
Synopsis

int vminsert page (struct vmarea struct * vmm, unsigned |ong addr,
struct page * page);

Arguments
vim user vmato map to

addr target user address of this page

page sourcekernel page

Description
Thisallows driversto insert individual pages they've allocated into a user vma.

Thepagehastobeaniceclean_individual_kernel allocation. If you allocate acompound page, you need to
have marked it as such (__GFP_COMP), or manualy just split the page up yourself (seespl i t _page).

NOTE! Traditionally thiswasdonewith“r emap_pf n_r ange” which took an arbitrary page protection
parameter. This doesn't allow that. Y our vma protection will have to be set up correctly, which means that
if you want a shared writable mapping, you'd better ask for a shared writable mapping!

The page does not need to be reserved.

Usually this function is called from f_op->nmap handler under mm->mmap_sem write-lock, so it can
change vma->vm_flags. Caller must set VM_MIXEDMAP on vma if it wants to call this function from
other places, for example from page-fault handler.

215

Memory Management in Linux

Name

vm_insert_pfn — insert single pfn into user vma

Synopsis

int vminsert pfn (struct vmarea struct * vnm, unsigned |ong addr,
unsi gned | ong pfn);

Arguments
Vvme user vmato map to
addr target user address of this page

pfn sourcekernel pfn

Description

Similar tovm_insert_page, thisalowsdriverstoinsert individual pagesthey've allocated into auser vma.
Same comments apply.

This function should only be called from a vm_ops->fault handler, and in that case the handler should
return NULL.

vma cannot be a COW mapping.

Asthisis called only for pages that do not currently exist, we do not need to flush old virtual caches or
the TLB.

216

Memory Management in Linux

Name

remap_pfn_range — remap kernel memory to userspace
Synopsis

int remap_pfn_range (struct vmarea_struct * vma, unsigned |ong addr,
unsi gned |l ong pfn, unsigned |ong size, pgprot t prot);

Arguments
Vi user vmato map to
addr target user addressto start at
pfn physica address of kernel memory
si ze sizeof map area

prot page protection flags for this mapping

Note

thisisonly safe if the mm semaphore is held when called.

217

Memory Management in Linux

Name

vm_iomap_memory — remap memory to userspace

Synopsis

int vmionmap nenory (struct vmarea_struct * vma, phys_addr_t start,
unsi gned long | en);

Arguments
Vi user vmato map to
start startof area

| en size of area

Description

Thisisasimplifiedi o_remap_pf n_range for common driver use. The driver just needs to give us
the physical memory range to be mapped, we'll figure out the rest from the vma information.

NOTE! Some drivers might want to tweak vma->vm_page prot first to get whatever write-combining
details or similar.

218

Memory Management in Linux

Name

unmap_mapping_range — unmap the portion of all mmapsin the specified address _space corresponding
to the specified page range in the underlying file.

Synopsis

voi d unmap_nappi ng_range (struct address_space * mapping, loff_t const
hol ebegin, | off_t const holelen, int even_cows);

Arguments

mappi ng the address space containing mmaps to be unmapped.

hol ebegi n byte in first page to unmap, relative to the start of the underlying file. This will
be rounded down to a PAGE_SIZE boundary. Note that this is different from

truncat e_pagecache, which must keep the partial page. In contrast, we must get rid
of partial pages.

hol el en size of prospective hole in bytes. Thiswill be rounded up to a PAGE_SIZE boundary. A
holelen of zero truncates to the end of thefile.

even_cows lwhentruncating afile, unmap even private COWed pages; but O when invalidating page-
cache, don't throw away private data.

219

Memory Management in Linux

Name
follow_pfn — look up PFN at a user virtual address

Synopsis

int follow pfn (struct vmarea struct * vma, unsigned |ong address,
unsi gned long * pfn);

Arguments
Vima memory mapping
address uservirtual address

pfn location to store found PFN

Description
Only 10 mappings and raw PFN mappings are allowed.

Returns zero and the pfn at pf n on success, -ve otherwise.

220

Memory Management in Linux

Name

vm_unmap_aliases — unmap outstanding lazy aliasesin the vmap layer
Synopsis
void vmunmap_al i ases (void);

Arguments

voi d noarguments

Description

The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily to amortize TLB flushing over-
heads. What this meansisthat any page you have now, may, in aformer life, have been mapped into kernel
virtua address by the vmap layer and so there might be some CPUswith TLB entries till referencing that
page (additional to the regular 1.1 kernel mapping).

vm_unmap_aliases flushes all such lazy mappings. After it returns, we can be sure that none of the pages
we have control over will have any aliases from the vmap layer.

221

Memory Management in Linux

Name

vm_unmap_ram — unmap linear kernel address space set up by vm_map _ram
Synopsis

void vmunmap_ram (const void * mem unsigned int count);
Arguments

nmem the pointer returned by vm_map_ram

count the count passed to that vm_map _ram call (cannot unmap partial)

222

Memory Management in Linux

Name

vm_map_ram — map pages linearly into kernel virtual address (vmalloc space)
Synopsis

void * vmmap_ram (struct page ** pages, unsigned int count, int node,
pgprot _t prot);

Arguments
pages anarray of pointersto the pages to be mapped
count number of pages
node prefer to allocate data structures on this node
pr ot memory protection to use. PAGE_KERNEL for regular RAM
Description
If you use this function for less than VMAP_MAX_ALLOC pages, it could be faster than vmap so it's
good. But if you mix long-life and short-life objectswithvm_nmap_r am it could consume lots of address

space through fragmentation (especially on a 32bit machine). Y ou could seefailuresin the end. Please use
this function for short-lived objects.

Returns

apointer to the address that has been mapped, or NULL on failure

223

Memory Management in Linux

Name
unmap_kernel_range_noflush — unmap kernel VM area

Synopsis
void unmap_kernel _range_noflush (unsigned |ong addr, unsigned |ong
si ze);

Arguments

addr start of the VM areato unmap

si ze sizeof theVM areato unmap

Description

Unmap PFN_UP(si ze) pagesataddr . TheVM areaaddr andsi ze specify should have been allocated
using get _vm ar ea and itsfriends.

NOTE

This function does NOT do any cache flushing. The caler is responsible for call-
ing flush_cache_vunmap on to-beemapped areas before caling this function and
flush_tlb_kernel _range after.

224

Memory Management in Linux

Name

unmap_kernel_range — unmap kernel VM area and flush cacheand TLB

Synopsis

voi d unmap_kernel range (unsigned | ong addr, unsigned |ong size);
Arguments

addr start of the VM areato unmap

si ze sizeof theVM areato unmap

Description

Similar tounmap_ker nel _range_nof | ush but flushes vcache before the unmapping and tlb after.

225

Memory Management in Linux

Name

vfree — release memory alocated by viral | oc

Synopsis

void vfree (const void * addr);

Arguments

addr memory base address

Description

NOTE

Free the virtually continuous memory area starting at addr , as obtained fromvmmal | oc, vimal | oc_32
or__vmal | oc.If addr isNULL, no operation is performed.

Must not be cadled in NMI context (strictly speaking, only if we don't have
CONFIG_ARCH_HAVE_NMI_SAFE _CMPXCHG, but making the calling conventionsfor vf r ee arch-
depenedent would be areally bad idea)

assumes that the object at *addr has a size >= sizeof(llist_node)

226

Memory Management in Linux

Name

vunmap — release virtual mapping obtained by vimap
Synopsis

void vunnmap (const void * addr);
Arguments

addr memory base address

Description

Freethe virtually contiguous memory area starting at addr , which was created from the page array passed
tovimap.

Must not be called in interrupt context.

227

Memory Management in Linux

Name

vmap — map an array of pagesinto virtually contiguous space
Synopsis

void * vmap (struct page ** pages, unsigned int count, unsigned |ong
flags, pgprot_t prot);

Arguments
pages array of page pointers
count number of pagesto map
flags vm_area->flags
pr ot page protection for the mapping
Description

Maps count pagesfrom pages into contiguous kernel virtual space.

228

Memory Management in Linux

Name

vmalloc — alocate virtually contiguous memory
Synopsis
void * vnalloc (unsigned | ong size);

Arguments

si ze dlocation size Allocate enough pagesto cover si ze from the page level alocator and map them
into contiguous kernel virtual space.

Description

For tight control over page level allocator and protection flagsuse __vnal | oc instead.

229

Memory Management in Linux

Name

vzalloc — allocate virtually contiguous memory with zero fill
Synopsis
void * vzalloc (unsigned |ong size);

Arguments

si ze dlocation size Allocate enough pagesto cover si ze from the page level alocator and map them
into contiguous kernel virtual space. The memory allocated is set to zero.

Description

For tight control over page level allocator and protection flagsuse __vnal | oc instead.

230

Memory Management in Linux

Name

vmalloc_user — allocate zeroed virtually contiguous memory for userspace
Synopsis
void * vnmall oc_user (unsigned |ong size);

Arguments

si ze adlocationsize

Description

The resulting memory areais zeroed so it can be mapped to userspace without leaking data.

231

Memory Management in Linux

Name

vmalloc_node — allocate memory on a specific node
Synopsis

void * vnall oc_node (unsigned |long size, int node);
Arguments

si ze adlocationsize

node numanode

Description

Allocate enough pages to cover si ze from the page level allocator and map them into contiguous kernel
virtual space.

For tight control over page level allocator and protection flagsuse __ val | oc instead.

232

Memory Management in Linux

Name

vzalloc_node — allocate memory on a specific node with zero fill

Synopsis
void * vzall oc_node (unsigned |long size, int node);
Arguments

si ze adlocationsize

node numanode

Description

Allocate enough pages to cover si ze from the page level allocator and map them into contiguous kernel
virtua space. The memory allocated is set to zero.

For tight control over page level allocator and protection flagsuse __ vmal | oc_node instead.

233

Memory Management in Linux

Name
vmalloc_32 — alocate virtually contiguous memory (32bit addressable)

Synopsis
void * vnalloc_32 (unsigned |ong size);

Arguments

si ze adlocationsize

Description

Allocate enough 32bit PA addressable pages to cover si ze from the page level alocator and map them
into contiguous kernel virtual space.

234

Memory Management in Linux

Name

vmalloc_32_user — alocate zeroed virtually contiguous 32bit memory
Synopsis

void * vnalloc_32 user (unsigned |ong size);
Arguments

si ze adlocationsize

Description

The resulting memory area is 32bit addressable and zeroed so it can be mapped to userspace without
leaking data.

235

Memory Management in Linux

Name

remap_vmalloc_range partial — map vmalloc pages to userspace

Synopsis

int remap_vmall oc_range partial (struct vmarea_struct * vma, unsigned
| ong uaddr, void * kaddr, unsigned |ong size);

Arguments
v vmato cover
uaddr target user addressto start at
kaddr virtual address of vmalloc kernel memory

size sizeof map area

Returns

0 for success, -Exxx on failure

This function checks that kaddr isavalid vmalloc'ed area, and that it is big enough to cover the range
starting at uaddr invma. Will return failureif that criteriaisn't met.

Similar tor enap_pf n_r ange (see mm/memory.c)

236

Memory Management in Linux

Name

remap_vmalloc_range — map vmalloc pages to userspace

Synopsis

int remap_vnalloc_range (struct vmarea struct * vmm, void * addr,
unsi gned | ong pgoff);

Arguments
Vima vmato cover (map full range of vma)
addr vmalloc memory

pgof f number of pagesinto addr before first page to map

Returns

0 for success, -Exxx on failure

This function checks that addr is avalid vmalloc'ed area, and that it is big enough to cover the vma. Will
return failure if that criteriaisn't met.

Similar tor emap_pf n_r ange (see mm/memory.c)

237

Memory Management in Linux

Name

alloc_vm_area— alocate arange of kernel address space
Synopsis

struct vmstruct * alloc_vmarea (size_t size, pte_t ** ptes);
Arguments

size sizeof thearea

pt es returnsthe PTEs for the address space

Returns
NULL on failure, vm_struct on success

This function reserves a range of kernel address space, and allocates pagetables to map that range. No
actual mappings are created.

If pt es isnon-NULL, pointersto the PTEs (in init_mm) allocated for the VM area are returned.

238

Memory Management in Linux

Name

alloc_pages exact_nid — allocate an exact number of physically-contiguous pages on a node.
Synopsis

void * alloc_pages_exact _nid (int nid, size t size, gfp_t gfp_mask);
Arguments

nid the preferred node 1D where memory should be allocated

si ze the number of bytesto allocate

of p_nmask GFPflagsfor the allocation

Description

Likeal | oc_pages_exact , but try to alocate on node nid first before falling back. Note this is not
al | oc_pages_exact _node which allocates on a specific node, but is not exact.

239

Memory Management in Linux

Name

nr_free_zone pages— count number of pages beyond high watermark
Synopsis
unsi gned long nr_free_zone_pages (int offset);

Arguments

of f set Thezoneindex of the highest zone

Description

nr_free_zone_pages counts the number of counts pages which are beyond the high watermark
within all zones at or below a given zone index. For each zone, the number of pages is calculated as:

managed_pages - high_pages

240

Memory Management in Linux

Name

nr_free_pagecache pages— count number of pages beyond high watermark
Synopsis

unsi gned | ong nr_free_pagecache_pages (void);
Arguments

voi d noarguments
Description

nr_free_pagecache_pages countsthe number of pageswhich are beyond the high watermark with-
inal zones.

241

Memory Management in Linux

Name

find_next_best_node — find the next node that should appear in a given node's fallback list
Synopsis

int find next_best node (int node, nodenask t * used_node_mask);
Arguments

node node whose fallback list we're appending

used_node_nask nodemask t of already used nodes

Description

We use a number of factors to determine which is the next node that should appear on a given node's
fallback list. The node should not have appeared already in node's fallback list, and it should be the next
closest node according to the distance array (which contains arbitrary distance values from each node to
each node in the system), and should also prefer nodes with no CPUSs, since presumably they'll have very

little allocation pressure on them otherwise. It returns -1 if no nodeis found.

242

Memory Management in Linux

Name

free_bootmem_with_active regions— Call memblock_free early nid for each active range
Synopsis

void free_bootnemw th_active_regions (int nid, unsi gned

max_| ow pfn);

Arguments
nid The node to free memory on. If MAX_NUMNODES, all nodes are freed.

max_| ow _pfn Thehighest PFN that will be passed to memblock free early nid

Description

| ong

If an architecture guaranteesthat all ranges registered contain no holes and may be freed, thisthisfunction

may be used instead of calling menbl ock_free_early_ni d manualy.

243

Memory Management in Linux

Name

sparse_memory_present_with_active regions— Call memory_present for each active range
Synopsis
voi d sparse_nenory _present_wth_active_regions (int nid);

Arguments
nid Thenodeto cal memory_present for. If MAX_NUMNODES, all nodes will be used.

Description

If an architecture guarantees that all ranges registered contain no holes and may be freed, this function
may be used instead of calling menor y_pr esent manually.

244

Memory Management in Linux

Name

get_pfn_range for_nid — Return the start and end page frames for a node

Synopsis

void get _pfn_range for_nid (unsigned int nid, unsigned long * start_pfn,
unsi gned long * end_pfn);

Arguments
nid Thenidtoreturntherangefor. If MAX_NUMNODES, themin and max PFN arereturned.

start _pfn Passed by reference. On return, it will have the node start_pfn.

end_pfn Passed by reference. On return, it will have the node end_pfn.

Description

It returns the start and end page frame of a node based on information provided by
menbl ock_set node. If called for anode with no available memory, awarning is printed and the start

and end PFNs will be 0.

245

Memory Management in Linux

Name

absent_pages in_range — Return number of page framesin holes within arange

Synopsis

unsi gned | ong absent _pages_in_range (unsigned |long start_pfn, unsigned
| ong end_pfn);

Arguments
start _pfn Thestart PFN to start searching for holes

end_pfn The end PFN to stop searching for holes

Description

It returns the number of pages frames in memory holes within arange.

246

Memory Management in Linux

Name

node_map_pfn_alignment — determine the maximum internode alignment
Synopsis
unsi gned | ong node_nmap_pfn_alignment (void);

Arguments

voi d noarguments

Description
This function should be called after node map is populated and sorted. It calculates the maximum power
of two alignment which can distinguish al the nodes.

For example, if all nodes are 1GiB and aligned to 1GiB, the return value would indicate 1GiB alignment
with (1 << (30 - PAGE_SHIFT)). If the nodes are shifted by 256MiB, 256MiB. Note that if only the last
node is shifted, 1GiB is enough and this function will indicate so.

Thisis used to test whether pfn -> nid mapping of the chosen memory model has fine enough granularity
to avoid incorrect mapping for the populated node map.

Returns the determined alignment in pfn's. O if there is no alignment requirement (single node).

247

Memory Management in Linux

Name

find_min_pfn_with_active regions— Find the minimum PFN registered

Synopsis
unsigned long find mn pfn with active regions (void);
Arguments

voi d noarguments

Description

It returns the minimum PFN based on information provided vianmenbl ock_set node.

248

Memory Management in Linux

Name

free_area init_nodes— Initidise all pg_data t and zone data
Synopsis
void free area_init_nodes (unsigned |long * nmax_zone_pfn);

Arguments

max_zone_pfn anarray of max PFNsfor each zone

Description

Thiswill call free_area_i nit_node for each active node in the system. Using the page ranges pro-
vided by menbl ock_set _node, the size of each zone in each node and their holesis calculated. If the
maximum PFN between two adjacent zones match, it is assumed that the zone is empty. For example, if
arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed that arch_max_dma32_pfn has no pages. It
is also assumed that a zone starts where the previous one ended. For example, ZONE_DMA32 starts at
arch_max_dma_pfn.

249

Memory Management in Linux

Name

set_dma_reserve — set the specified number of pages reserved in the first zone

Synopsis

void set_dma_reserve (unsigned | ong new dma_reserve);

Arguments

new dma_reserve Thenumber of pagesto mark reserved

Description

The per-cpu batchsize and zone watermarks are determined by present_pages. In the DMA zone, asignif-
icant percentage may be consumed by kernel image and other unfreeable allocations which can skew the
watermarks badly. This function may optionally be used to account for unfreeable pagesin the first zone
(e.g., ZONE_DMA). The effect will be lower watermarks and smaller per-cpu batchsize.

250

Memory Management in Linux

Name

setup_per_zone wmarks — called when min_free kbytes changes or when memory is hot-{ added|re-
moved}

Synopsis
voi d setup_per_zone wrarks (void);

Arguments

voi d noarguments

Description

Ensures that the watermark[min,low,high] values for each zone are set correctly with respect to
min_free kbytes.

251

Memory Management in Linux

Name
get_pfnblock_flags mask — Return the requested group of flags for the pageblock_nr_pages block of
pages
Synopsis
unsi gned | ong get _pfnbl ock flags _nmask (struct page * page, unsigned | ong
pfn, unsigned |ong end bitidx, unsigned | ong mask);
Arguments
page The page within the block of interest
pfn The target page frame number
end_bi tidx Thelast bit of interest to retrieve
mask mask of bitsthat the caller isinterested in
Return

pageblock_bits flags

252

Memory Management in Linux

Name
set_pfnblock flags mask — Set the requested group of flags for a pageblock _nr_pages block of pages

Synopsis

voi d set _pfnblock flags mask (struct page * page, unsigned |long fl ags,
unsi gned long pfn, unsigned |ong end_bitidx, unsigned | ong mask);

Arguments
page The page within the block of interest
flags Theflagsto set
pfn The target page frame number

end_bi ti dx Thelast bit of interest

mask mask of bitsthat the caller isinterested in

253

Memory Management in Linux

Name

alloc_contig_range — - triesto allocate given range of pages
Synopsis

int alloc_contig range (unsigned | ong start, unsigned | ong end, unsi gned
nm grat et ype) ;

Arguments
start start PFN to allocate
end one-past-the-last PFN to allocate

m grat et ype migratetype of the underlaying pageblocks (either #MIGRATE_MOVABLE or
#MIGRATE_CMA). All pageblocks in range must have the same migratetype and it
must be either of the two.

Description

The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES aligned, however it's the
caler's responsibility to guarantee that we are the only thread that changes migrate type of pageblocks
the pagesfal in.

The PFN range must belong to a single zone.

Returns zero on success or negative error code. On success al pages which PFN is in [start, end) are
alocated for the caller and need to be freed withf r ee_conti g_r ange.

254

Memory Management in Linux

Name
mempool_destroy — deallocate a memory pool
Synopsis
voi d nenpool destroy (nmenpool t * pool);
Arguments
pool pointer to the memory pool which was allocated vianmenpool _cr eat e.
Description
Free all reserved elementsin pool and pool itself. Thisfunction only sleepsif the f r ee_f n function
deeps.

255

Memory Management in Linux

Name

mempool_create — create a memory pool
Synopsis

menpool t * menpool _create (int mn_nr, nenpool _alloc t * alloc_fn,
nmenpool free t * free fn, void * pool data);

Arguments
m n_nr the minimum number of elements guaranteed to be allocated for this pool.
all oc_fn user-defined element-allocation function.
free_fn user-defined element-freeing function.

pool _data optiona private data available to the user-defined functions.

Description

thisfunction creates and all ocates aguaranteed size, preallocated memory pool. The pool can be used from
themenpool _al | oc and menpool _f r ee functions. Thisfunction might sleep. Boththeal | oc_fn
and the f r ee_f n functions might sleep - as long as the menpool _al | oc function is not called from
IRQ contexts.

256

Memory Management in Linux

Name

mempool_resize — resize an existing memory pool
Synopsis

i nt menpool resize (nenmpool t * pool, int new mn_nr);
Arguments

pool pointer to the memory pool which was allocated vianmenpool _creat e.

new_m n_nr thenew minimum number of elements guaranteed to be allocated for this pooal.

Description

This function shrinks/grows the pool. In the case of growing, it cannot be guaranteed that the pool will be
grown to the new sizeimmediately, but new menpool _f r ee calswill refill it. Thisfunction may sleep.

Note, the caller must guarantee that no mempool_destroy is called while this function is running.
menpool _al | oc & nenpool _free might be called (eg. from IRQ contexts) while this function ex-
ecutes.

257

Memory Management in Linux

Name

mempool_alloc — allocate an element from a specific memory pool
Synopsis

void * menpool alloc (menpool t * pool, gfp_t gof p_nask);
Arguments

pool pointer to the memory pool which was allocated vianenpool _creat e.

of p_mask theusua alocation bitmask.

Description

thisfunction only sleepsif theal | oc_f n function sleepsor returnsNULL. Notethat dueto preallocation,
thisfunction * never* failswhen called from process contexts. (it might fail if called from an IRQ context.)

Note

using _ GFP_ZERO is not supported.

258

Memory Management in Linux

Name

mempool_free — return an element to the pool.
Synopsis

voi d nenmpool free (void * el enent, nenpool t * pool);
Arguments

el enent pool element pointer.

pool pointer to the memory pool which was allocated vianenpool _creat e.
Description

thisfunction only sleepsif thef r ee_f n function sleeps.

259

Memory Management in Linux

Name

dma_pool_create — Creates a pool of consistent memory blocks, for dma.
Synopsis

struct dma_pool * dnma_pool create (const char * name, struct device *
dev, size t size, size_t align, size_t boundary);

Arguments
namne name of pool, for diagnostics
dev device that will be doing the DMA
si ze size of the blocks in this pool.
align alignment requirement for blocks; must be a power of two

boundary returned blocks won't cross this power of two boundary

Context
lin_interrupt
Description

Returnsadmaallocation pool with the requested characteristics, or null if one can't be created. Given one of
thesepools,dma_pool _al | oc may beused to alocate memory. Such memory will al have*consistent”
DMA mappings, accessible by the device and itsdriver without using cache flushing primitives. The actua
size of blocks allocated may be larger than requested because of alignment.

If boundar y isnonzero, objectsreturned fromdma_pool _al | oc won't crossthat size boundary. This
isuseful for devices which have addressing restrictions on individual DMA transfers, such as not crossing
boundaries of 4KBytes.

260

Memory Management in Linux

Name

dma_pool_destroy — destroys a pool of dma memory blocks.
Synopsis

voi d dma_pool destroy (struct dma_pool * pool);
Arguments

pool dmapool that will be destroyed
Context

lin_interrupt
Description

Caller guarantees that no more memory from the pool isin use, and that nothing will try to use the pool
after this call.

261

Memory Management in Linux

Name
dma_pool_alloc — get ablock of consistent memory
Synopsis
void * dma_pool _alloc (struct dma_pool * pool, gfp_t nemflags,
dma_addr _t * handl e);
Arguments
pool dma pool that will produce the block
mem fl ags GFP_* bitmask
handl e pointer to dma address of block
Description

Thisreturnsthe kernel virtual address of a currently unused block, and reportsits dmaaddress through the
handle. If such amemory block can't be allocated, NULL is returned.

262

Memory Management in Linux

Name
dma_pool_free — put block back into dma pool
Synopsis
void dma_pool free (struct dma_pool * pool, void * vaddr, dnma_addr _t
dma) ;
Arguments
pool the dma pool holding the block
vaddr virtual address of block
dma dma address of block
Description

Caller promises neither device nor driver will again touch this block unlessit isfirst re-allocated.

263

Memory Management in Linux

Name

dmam_pool_create— Managed dma_pool _create

Synopsis

struct dma_pool * dnmam pool create (const char * nanme, struct device *
dev, size t size, size t align, size_ t allocation);

Arguments
namne name of pool, for diagnostics
dev device that will be doing the DMA
si ze size of the blocks in this pool.
align alignment requirement for blocks; must be a power of two

al | ocati on returned blocks won't cross this boundary (or zero)

Description

Manageddna_pool _cr eat e. DMA pool created with thisfunctionisautomatically destroyed on driver
detach.

264

Memory Management in Linux

Name

dmam_pool_destroy — Managed drra_pool _destr oy
Synopsis

voi d dmam pool destroy (struct dna_pool * pool);
Arguments

pool dmapool that will be destroyed
Description

Managed dma_pool _dest r oy.

265

Memory Management in Linux

Name
balance dirty _pages ratelimited — balance dirty memory state

Synopsis

voi d bal ance dirty pages ratelimted (struct address_space * nmpping);

Arguments

mappi ng address _space which was dirtied

Description

Processes which are dirtying memory should call in here once for each page which was newly dirtied. The
function will periodically check the system's dirty state and will initiate writeback if needed.

Onreally big machines, get_writeback stateisexpensive, sotry to avoid calling it too often (ratelimiting).
But once we're over the dirty memory limit we decrease the ratelimiting by alot, to prevent individual
processes from overshooting the limit by (ratelimit_pages) each.

266

Memory Management in Linux

Name
tag_pages for_writeback — tag pagesto be written by write_cache pages

Synopsis

void tag_pages for_witeback (struct address_space * mapping, pgoff t
start, pgoff _t end);

Arguments
mappi ng address space structure to write
start starting page index

end ending page index (inclusive)

Description

This function scans the page range from st art to end (inclusive) and tags all pages that have DIRTY
tag set with aspecial TOWRITE tag. Theideaisthat write_cache pages (or whoever calls this function)
will then use TOWRITE tag to identify pages eligible for writeback. This mechanism is used to avoid
livelocking of writeback by a process steadily creating new dirty pagesin the file (thusit isimportant for
this function to be quick so that it can tag pages faster than a dirtying process can create them).

267

Memory Management in Linux

Name
write_cache pages — walk thelist of dirty pages of the given address space and write al of them.

Synopsis

int wite cache _pages (struct address_space * nmapping, st ruct
writeback control * wbc, witepage t witepage, void * data);

Arguments
mappi ng address space structure to write
whc subtract the number of written pages from *wbc->nr_to_write
wri t epage function called for each page

data data passed to writepage function

Description

If apageisaready under I/O,wr i t e_cache_pages skipsit, evenif it'sdirty. Thisis desirable behav-
iour for memory-cleaning writeback, but itisSINCORRECT for data-integrity system callssuch asf sync.
f sync and msync need to guarantee that all the data which was dirty at the time the call was made
get new 1/O started against them. If wbe->sync_mode is WB_SYNC_ALL then we were called for data
integrity and we must wait for existing 10 to complete.

To avoid livelocks (when other process dirties new pages), we first tag pages which should be written
back with TOWRITE tag and only then start writing them. For data-integrity sync we have to be careful
so that we do not miss some pages (e.g., because some other process has cleared TOWRITE tag we set).
Therulewefollow isthat TOWRITE tag can be cleared only by the process clearing the DIRTY tag (and
submitting the page for 10).

268

Memory Management in Linux

Name
generic_writepages— walk thelist of dirty pages of the given address spaceandwr i t epage al of them.

Synopsis

int generic_witepages (struct address space * napping, struct
writeback control * wbc);

Arguments

mappi ng address space structure to write

whc subtract the number of written pages from *wbc->nr_to_write
Description

Thisisalibrary function, which implementsthewr i t epages address space operation.

269

Memory Management in Linux

Name

write_one_page — write out a single page and optionally wait on 1/O
Synopsis

int wite_one_page (struct page * page, int wait);
Arguments

page the pageto write

wai t if true, wait on writeout

Description
The page must be locked by the caller and will be unlocked upon return.

Write_one_page returns anegative error codeif 1/0 failed.

270

Memory Management in Linux

Name

wait_for_stable page — wait for writeback to finish, if necessary.
Synopsis

void wait_for_stabl e page (struct page * page);
Arguments

page The pageto wait on.

Description

This function determines if the given page is related to a backing device that requires page contents to be
held stable during writeback. If so, then it will wait for any pending writeback to complete.

271

Memory Management in Linux

Name
truncate_inode_pages range — truncate range of pages specified by start & end byte offsets

Synopsis

voi d truncat e_i node_pages_range (struct address_space * napping, |off _t
Istart, loff_t lend);

Arguments
mappi ng mapping to truncate
| start offset from which to truncate

| end offset to which to truncate (inclusive)
Description

Truncate the page cache, removing the pages that are between specified offsets (and zeroing out partial
pagesif Istart or lend + 1 is not page aligned).

Truncate takes two passes - the first pass is nonblocking. It will not block on page locks and it will not
block on writeback. The second pass will wait. Thisisto prevent as much 10 as possible in the affected
region. Thefirst pass will remove most pages, so the search cost of the second passis low.

We pass down the cache-hot hint to the page freeing code. Even if the mapping islarge, it is probably the
case that the final pages are the most recently touched, and freeing happens in ascending file offset order.

Note that since ->i nval i dat epage accepts range to invalidate truncate inode pages rangeisableto
handle cases where lend + 1 is not page aligned properly.

272

Memory Management in Linux

Name
truncate_inode_pages — truncate *all* the pages from an offset

Synopsis
void truncate_inode _pages (struct address space * mapping, |off _t
Istart);

Arguments

mappi ng mapping to truncate
I start offset from which to truncate
Description

Called under (and serialised by) inode->i_mutex.

Note

When this function returns, there can be a page in the process of deletion (inside
__del ete_from page_cache) in the specified range. Thus mapping->nrpages can be non-zero
when this function returns even after truncation of the whole mapping.

273

Memory Management in Linux

Name
truncate_inode_pages final — truncate *all* pages before inode dies
Synopsis
void truncate_i node pages final (struct address_space * napping);
Arguments
mappi ng mapping to truncate
Description

Called under (and serialized by) inode->i_mutex.

Filesystems have to use this in the .evict_inode path to inform the VM that thisis the final truncate and
theinode is going away.

274

Memory Management in Linux

Name
invalidate_mapping_pages — Invalidate all the unlocked pages of one inode
Synopsis
unsi gned | ong i nval i dat e_mappi ng_pages (struct address_space * nmappi ng,
pgoff t start, pgoff_t end);
Arguments
mappi ng the address _space which holds the pages to invalidate
start the offset ‘from’ which to invalidate
end the offset 'to’ which to invalidate (inclusive)
Description

This function only removes the unlocked pages, if you want to remove al the pages of one inode, you
must call truncate_inode _pages.

i nval i dat e_nmappi ng_pages will not block on 10 activity. It will not invalidate pages which are
dirty, locked, under writeback or mapped into pagetables.

275

Memory Management in Linux

Name
invalidate inode_pages2_range — remove range of pages from an address_space
Synopsis
int invalidate_ inode pages2 range (struct address_space
pgoff t start, pgoff_t end);
Arguments
mappi ng the address space
start the page offset 'from' which to invalidate
end the page offset 'to’ which to invalidate (inclusive)
Description

*

mappi ng,

Any pages which are found to be mapped into pagetables are unmapped prior to invalidation.

Returns -EBUSY if any pages could not be invalidated.

276

Memory Management in Linux

Name
invalidate inode_pages2 — remove all pages from an address_space
Synopsis
int invalidate_ inode pages2 (struct address_space * napping);
Arguments
mappi ng the address space
Description

Any pages which are found to be mapped into pagetables are unmapped prior to invalidation.

Returns -EBUSY if any pages could not be invalidated.

277

Memory Management in Linux

Name

truncate_pagecache — unmap and remove pagecache that has been truncated
Synopsis

voi d truncat e _pagecache (struct inode * inode, |off_t newsize);
Arguments

i node inode

newsi ze new filesize

Description
inode's new i_size must aready be written before truncate_pagecacheis called.

This function should typically be called before the filesystem rel eases resources associated with the freed
range (eg. deallocates blocks). Thisway, pagecache will always stay logically coherent with on-disk for-
mat, and the filesystem would not have to deal with situations such as writepage being called for a page

that has already had its underlying blocks deall ocated.

278

Memory Management in Linux

Name

truncate_setsize — update inode and pagecache for anew file size
Synopsis

void truncate_setsize (struct inode * inode, loff_t newsize);
Arguments

i node inode

newsi ze new filesize

Description

truncate_setsize updatesi_size and performs pagecache truncation (if necessary) to newsi ze. It will be
typically be called from the filesystem'’s setattr function when ATTR_SIZE is passed in.

Must be called with alock serializing truncates and writes (generally i_mutex but e.g. xfs uses adifferent
lock) and before all filesystem specific block truncation has been performed.

279

Memory Management in Linux

Name

pagecache isize extended — update pagecache after extension of i_size

Synopsis

voi d pagecache i size_extended (struct i node * inode, loff t from |off _t
to);

Arguments
i node inodefor whichi_size was extended
from origina inodesize

to new inode size

Description

Handle extension of inode size either caused by extending truncate or by write starting after currenti_size.
We mark the page straddling current i_size RO so that page_nkwri t e is called on the nearest write
access to the page. This way filesystem can be sure that page_nkwr i t e is called on the page before
user writes to the page viammap after thei_size has been changed.

The function must be called after i_size is updated so that page fault coming after we unlock the page
will aready see the new i_size. The function must be called while we still hold i_mutex - this not only
makes surei_sizeis stable but also that userspace cannot observe new i_size value before we are prepared
to store mmap writes at new inode size.

280

Memory Management in Linux

Name
truncate_pagecache range — unmap and remove pagecache that is hole-punched

Synopsis
void truncate pagecache range (struct inode * inode, loff _t Istart,
l[off _t lend);

Arguments

i node inode
I start offset of beginning of hole

| end offset of last byte of hole

Description

This function should typically be called before the filesystem rel eases resources associated with the freed
range (eg. deallocates blocks). Thisway, pagecache will always stay logically coherent with on-disk for-
mat, and the filesystem would not have to deal with situations such as writepage being called for a page
that has already had its underlying blocks deall ocated.

281

Chapter 5. Kernel IPC facilities
IPC utilities

282

Kernel 1PC facilities

Name

ipc_init — initialise ipc subsystem
Synopsis

int ipc_init (void);
Arguments

voi d noarguments

Description

The various sysv ipc resources (semaphores, messages and shared memory) are initialised.

A callback routine is registered into the memory hotplug notifier

chain

since msgmni scalesto lowmem this callback routine will be called upon successful memory add / remove
to recompute msmgni.

283

Kernel 1PC facilities

Name
ipc_init_ids— initialise ipc identifiers

Synopsis
void ipc_init_ids (struct ipc_ids * ids);

Arguments
i ds ipcidentifier set

Description
%et_t:jp the sequence range to use for the ipc identifier range (limited below IPCMNI) then initialise the
idsidr.

284

Kernel 1PC facilities

Name

ipc_init_proc_interface — create a proc interface for sysipc types using a seq_file interface.
Synopsis

void ipc_init_proc_interface (const char * path, const char * header,
int ids, int (*show) (struct seq file *, void *));

Arguments
pat h Path in procfs
header Banner to be printed at the beginning of thefile.
i ds ipcid tableto iterate.

show show routine.

285

Kernel 1PC facilities

Name
ipc_findkey — find akey in anipc identifier set
Synopsis
struct kern_ipc_perm* ipc_findkey (struct ipc_ids * ids, key t key);
Arguments
i ds ipcidentifier set
key keytofind
Description

Returns the locked pointer to the ipc structure if found or NULL otherwise. If key isfound ipc points to
the owning ipc structure

Called with ipc_ids.rwsem held.

286

Kernel 1PC facilities

Name
ipc_get_maxid — get the last assigned id

Synopsis

int ipc_get maxid (struct ipc_ids * ids);
Arguments

i ds ipcidentifier set

Description
Called with ipc_ids.rwsem held.

287

Kernel 1PC facilities

Name
ipc_addid — add an ipc identifier
Synopsis
int ipc_addid (struct ipc_ids * ids, struct kern_ipc_perm?* new, int
si ze);
Arguments
i ds ipcidentifier set
new new ipc permission set
si ze limit for the number of used ids
Description

Add an entry 'new' to the ipc ids idr. The permissions object isinitialised and the first free entry is set up
andtheid assigned isreturned. The 'new' entry isreturned in alocked state on success. On failure the entry

is not locked and a negative err-code is returned.

Called with writer ipc_ids.rwsem held.

288

Kernel 1PC facilities

Name
ipcget_new — create a new ipc object
Synopsis
int ipcget_new (struct ipc_nanmespace * ns, struct ipc_ids * ids, const
struct ipc_ops * ops, struct ipc_parans * parans);
Arguments
ns ipc namespace
i ds ipc identifier set
ops the actual creation routineto call
par ans itsparameters
Description

Thisroutineiscalled by sys msgget, sys_senget andsys_shnget whenthekey isIPC_PRIVATE.

289

Kernel 1PC facilities

Name

ipc_check perms— check security and permissions for an ipc object

Synopsis

int ipc_check perms (struct ipc_namespace * ns, struct kern_ipc_perm?*
i pcp, const struct ipc_ops * ops, struct ipc_parans * parans);

Arguments
ns ipc namespace
i pcp ipc permission set
ops the actual security routine to call

par ans itsparameters

Description

This routine is called by sys_mnsgget, sys_senget and sys_shnget when the key is not
IPC_PRIVATE and that key already existsin thedsIDR.

On success, theipc id is returned.

Itiscalled withipc_ids.rwsem and ipcp->lock held.

290

Kernel 1PC facilities

Name

ipcget_public — get an ipc object or creste a new one

Synopsis

int ipcget _public (struct ipc_nanmespace * ns, struct ipc_ids * ids,
const struct ipc_ops * ops, struct ipc_parans * parans);

Arguments
ns ipc namespace
i ds ipc identifier set
ops the actual creation routineto call

par ans itsparameters

Description

This routine is caled by sys msgget, sys_senget and sys_shnget when the key is not
IPC_PRIVATE. It addsanew entry if the key is not found and does some permission / security checkings

if the key isfound.

On success, theipc id is returned.

291

Kernel 1PC facilities

Name

ipc_rmid — remove an ipc identifier

Synopsis

void ipc_rmd (struct ipc_ids * ids, struct kern_ipc_perm?* ipcp);
Arguments

i ds ipcidentifier set

i pcp ipc perm structure containing the identifier to remove

Description

ipc_ids.rwsem (as awriter) and the spinlock for this 1D are held before this function is called, and remain
locked on the exit.

292

Kernel 1PC facilities

Name
ipc_alloc — alocateipc space
Synopsis
void * ipc_alloc (int size);
Arguments
Si ze sizedesired
Description
Allocate memory from the appropriate pools and return a pointer to it. NULL isreturned if the allocation
fails

293

Kernel 1PC facilities

Name

ipc_free— freeipc space
Synopsis

void ipc_free (void * ptr, int size);
Arguments

ptr pointer returned by ipc_alloc

si ze sizeof block

Description

Free ablock created withi pc_al | oc. The caller must know the size used in the allocation call.

294

Kernel 1PC facilities

Name
ipc_rcu_alloc — alocate ipc and rcu space
Synopsis
void * ipc_rcu_ alloc (int size);
Arguments
Si ze sizedesired
Description
Allocate memory for the rcu header structure + the object. Returns the pointer to the object or NULL
upon failure.

295

Kernel 1PC facilities

Name

ipcperms — check ipc permissions

Synopsis

int ipcperms (struct ipc_nanmespace * ns, struct kern_ipc_perm* ipcp,
short flag);

Arguments
ns ipc namespace
i pcp ipc permission set
flag desired permission set
Description
Check user, group, other permissions for access to ipc resources. return O if allowed

f I ag will most probably be 0 or S _...UGO from <linux/stat.h>

296

Kernel 1PC facilities

Name
kernel_to_ipc64_perm — convert kernel ipc permissions to user

Synopsis
void kernel to_ ipc64 perm(struct kern_ipc_perm* in, struct ipc64 perm
* out);

Arguments

in kernel permissions

out new styleipc permissions

Description

Turn the kernel object i n into a set of permissions descriptions for returning to userspace (out).

297

Kernel 1PC facilities

Name
ipc64_perm_to_ipc_perm — convert new ipc permissionsto old

Synopsis
void ipc64 permto ipc_perm (struct ipc64 _perm * in, struct ipc_perm
* out);

Arguments

in new styleipc permissions
out oldstyleipc permissions

Description

Turn the new style permissions object i n into acompatibility object and storeit into the out pointer.

298

Kernel 1PC facilities

Name
ipc_obtain_object —
Synopsis
struct kern_ipc_perm* ipc_obtain_object (struct ipc_ids * ids, int id);
Arguments
i ds ipcidentifier set
id ipcidtolook for
Description

Look for anidintheipcidsidr and return associated ipc object.

Call inside the RCU critical section. Theipc object is*not* locked on exit.

299

Kernel 1PC facilities

Name
ipc_lock — lock an ipc structure without rwsem held
Synopsis
struct kern_ipc_perm* ipc_lock (struct ipc_ids * ids, int id);
Arguments
i ds ipcidentifier set
id ipcidtolook for
Description

Look for anidintheipcidsidr and lock the associated ipc object.

Theipc object islocked on successful exit.

300

Kernel 1PC facilities

Name
ipc_obtain_object_check —
Synopsis
struct kern_ipc_perm * ipc_obtain_object check (struct ipc_ids * ids,
int id);
Arguments
i ds ipcidentifier set
id ipcidtolook for
Description

Similartoi pc_obt ai n_obj ect but aso checks the ipc object reference counter.

Call inside the RCU critical section. Theipc object is*not* locked on exit.

301

Kernel 1PC facilities

Name

ipcget — Common sys *get code

Synopsis

int ipcget (struct ipc_nanespace * ns, struct ipc_ids * ids, const
struct ipc_ops * ops, struct ipc_parans * parans);

Arguments
ns namespace
i ds ipc identifier set
ops operations to be called on ipc object creation, permission checks and further checks

par ans the parameters needed by the previous operations.

Description

Common routine called by sys_mnmsgget ,sys_senget andsys_shnget .

302

Kernel 1PC facilities

Name
ipc_update perm — update the permissions of an ipc object

Synopsis
int ipc_update perm (struct ipc64 perm * in, struct kern_ipc_perm *
out);

Arguments

i n thepermission given asinput.

out thepermission of theipc to set.

303

Kernel 1PC facilities

Name
ipcctl_pre_down_nolock — retrieve an ipc and check permissions for some IPC_XXX cmd
Synopsis

struct kern_ipc_perm * ipcctl_pre_down _nol ock (struct ipc_nanespace *
ns, struct ipc_ids * ids, int id, int cnd, struct ipc64 perm* perm
int extra_pernj;

Arguments
ns ipc namespace
i ds the table of ids where to look for the ipc
id theid of theipc to retrieve
cnd the cmd to check
perm the permission to set

ext ra_perm oneextrapermission parameter used by msq

Description

Thisfunction does some common audit and permissions check for some IPC_XXX cmd and iscalled from
semctl_down, shmctl_down and msgctl_down. It must be called without any lock held and - retrieves the
ipc with the given id in the given table. - performs some audit and permission check, depending on the
given cmd - returns a pointer to the ipc object or otherwise, the corresponding error.

Call holding the both the rwsem and the rcu read lock.

304

Kernel 1PC facilities

Name

ipc_parse_version — ipc cal version
Synopsis

int ipc_parse version (int * cmd);
Arguments

cnd pointer to command
Description

Return IPC_64 for new style IPC and IPC_OLD for old style IPC. The cnd value is turned from an
encoding command and version into just the command code.

305

Chapter 6. FIFO Buffer

kfifo interface

306

FIFO Buffer

Name
DECLARE_KFIFO_PTR — macro to declare afifo pointer object

Synopsis
DECLARE _KFI FO PTR (fifo, type);
Arguments

fifo nameof thedeclared fifo

type typeof thefifo elements

307

FIFO Buffer

Name
DECLARE_KFIFO — macro to declare afifo object

Synopsis
DECLARE KFI FO (fifo, type, size);
Arguments

fifo nameof thedeclared fifo
type typeof thefifo elements

si ze thenumber of elementsin the fifo, this must be a power of 2

308

FIFO Buffer

Name

INIT_KFIFO — Initialize afifo declared by DECLARE_KFIFO
Synopsis

INIT_KFIFO (fifo);
Arguments

fifo name of the declared fifo datatype

309

FIFO Buffer

Name
DEFINE_KFIFO — macro to define and initidlize afifo

Synopsis

DEFI NE_KFI FO (fifo, type, size);
Arguments

fifo name of the declared fifo datatype

type typeof thefifo elements

si ze thenumber of elementsin the fifo, this must be a power of 2

Note

the macro can be used for global and local fifo data type variables.

310

FIFO Buffer

Name

kfifo_initialized — Check if the fifo isinitialized
Synopsis

kfifo_ initialized (fifo);
Arguments

fifo addressof thefifoto check
Description

Returnt r ue if fifoisinitialized, otherwisef al se. Assumes the fifo was 0 before.

311

FIFO Buffer

Name

kfifo_esize— returns the size of the element managed by the fifo
Synopsis

kfifo_esize (fifo);
Arguments

fifo addressof thefifoto beused

312

FIFO Buffer

Name

kfifo_recsize — returns the size of the record length field
Synopsis

kfifo recsize (fifo);
Arguments

fifo addressof thefifoto beused

313

FIFO Buffer

Name

kfifo_size— returnsthe size of the fifo in elements
Synopsis

kfifo size (fifo);
Arguments

fifo addressof thefifoto beused

314

FIFO Buffer

Name

kfifo_reset — removes the entire fifo content
Synopsis

kfifo reset (fifo);
Arguments

fifo addressof thefifoto beused

Note

usageof kf i f o_r eset isdangerous. It should be only called when thefifo isexclusived locked or when
it is secured that no other thread is accessing thefifo.

315

FIFO Buffer

Name
kfifo_reset_out — skip fifo content

Synopsis

kfifo reset _out (fifo);
Arguments

fifo addressof thefifo to be used

Note

The usage of kfi f o_r eset _out issafe until it will be only called from the reader thread and there
is only one concurrent reader. Otherwise it is dangerous and must be handled in the same way as

kfifo_reset.

316

FIFO Buffer

Name

kfifo_len — returns the number of used elementsin the fifo
Synopsis

kfifo len (fifo);
Arguments

fifo addressof thefifoto beused

317

FIFO Buffer

Name

kfifo_is empty — returnstrueif the fifo is empty
Synopsis

kfifo is enmpty (fifo);
Arguments

fifo addressof thefifoto beused

318

FIFO Buffer

Name

kfifo_is full — returnstrueif thefifoisfull
Synopsis

kfifo_is_full (fifo);
Arguments

fifo addressof thefifoto beused

319

FIFO Buffer

Name

kfifo_avail — returns the number of unused elementsin the fifo
Synopsis

kfifo_avail (fifo);
Arguments

fifo addressof thefifoto beused

320

FIFO Buffer

Name
kfifo_skip — skip output data

Synopsis
kfifo_skip (fifo);
Arguments

fifo addressof thefifoto beused

321

FIFO Buffer

Name

kfifo_peek_len — getsthe size of the next fifo record
Synopsis

kfifo_peek len (fifo);
Arguments

fifo addressof thefifo to be used
Description

This function returns the size of the next fifo record in number of bytes.

322

FIFO Buffer

Name
kfifo_alloc — dynamically allocates a new fifo buffer
Synopsis
kfifo alloc (fifo, size, gfp_mask);
Arguments
fifo pointer to the fifo
si ze the number of elementsin the fifo, this must be a power of 2

of p_mask get free pages mask, passed to kmal | oc

Description
This macro dynamically allocates a new fifo buffer.

The numer of elements will be rounded-up to a power of 2. The fifo will be release withkfi fo_free.
Return O if no error, otherwise an error code.

323

FIFO Buffer

Name

kfifo_free— freesthefifo
Synopsis

kfifo free (fifo);
Arguments

fifo thefifotobefreed

324

FIFO Buffer

Name
kfifo_init — initialize afifo using a preallocated buffer

Synopsis

kfifo_init (fifo, buffer, size);
Arguments

fifo the fifo to assign the buffer

buf f er the preallocated buffer to be used

si ze the size of theinternal buffer, this have to be a power of 2

Description
Thismacro initiaize afifo using a preallocated buffer.

The numer of elements will be rounded-up to a power of 2. Return O if no error, otherwise an error code.

325

FIFO Buffer

Name
kfifo_put — put datainto the fifo

Synopsis
kfifo put (fifo, val);
Arguments
fifo addressof thefifo to be used
val the data to be added

Description

This macro copies the given value into the fifo. It returns O if the fifo was full. Otherwise it returns the
number processed elements.

Note that with only one concurrent reader and one concurrent writer, you don't need extra locking to use
these macro.

326

FIFO Buffer

Name
kfifo_get — get data from the fifo

Synopsis
kfifo get (fifo, val);
Arguments
fifo addressof thefifoto be used
val address where to store the data

Description

This macro reads the datafrom thefifo. It returns O if the fifo was empty. Otherwise it returns the number
processed elements.

Note that with only one concurrent reader and one concurrent writer, you don't need extra locking to use
these macro.

327

FIFO Buffer

Name
kfifo_peek — get data from the fifo without removing

Synopsis
kfifo _peek (fifo, val);
Arguments
fifo addressof thefifoto be used
val address where to store the data

Description

This reads the data from the fifo without removing it from the fifo. It returns O if the fifo was empty.
Otherwise it returns the number processed el ements.

Note that with only one concurrent reader and one concurrent writer, you don't need extra locking to use
these macro.

328

FIFO Buffer

Name
kfifo_in — put data into the fifo

Synopsis
kfifo in (fifo, buf, n);

Arguments
fifo addressof thefifoto beused
buf the data to be added

n number of elements to be added

Description

This macro copies the given buffer into the fifo and returns the number of copied elements.

Note that with only one concurrent reader and one concurrent writer, you don't need extra locking to use
these macro.

329

FIFO Buffer

Name
kfifo_in_spinlocked — put data into the fifo using a spinlock for locking

Synopsis

kfifo_in_spinlocked (fifo, buf, n, lock);
Arguments

fifo addressof thefifoto be used

buf thedatato be added

n number of elements to be added

| ock pointer to the spinlock to use for locking

Description

This macro copies the given values buffer into the fifo and returns the number of copied elements.

330

FIFO Buffer

Name
kfifo_out — get data from the fifo

Synopsis
kfifo out (fifo, buf, n);

Arguments
fifo addressof thefifoto beused
buf pointer to the storage buffer

n max. humber of elementsto get

Description

This macro get some data from the fifo and return the numbers of elements copied.

Note that with only one concurrent reader and one concurrent writer, you don't need extra locking to use
these macro.

331

FIFO Buffer

Name
kfifo_out_spinlocked — get data from the fifo using a spinlock for locking

Synopsis

kfifo_out _spinlocked (fifo, buf, n, |ock);
Arguments

fifo addressof thefifoto be used

buf pointer to the storage buffer

n max. humber of elementsto get

| ock pointer to the spinlock to use for locking

Description

This macro get the data from the fifo and return the numbers of elements copied.

332

FIFO Buffer

Name

kfifo_from_user — puts some data from user space into the fifo

Synopsis
kfifo fromuser (fifo, from len, copied);

Arguments
fifo address of the fifo to be used
from pointer to the data to be added
[en the length of the data to be added

copi ed pointer to output variable to store the number of copied bytes

Description

This macro copies at most | en bytes from the f r ominto the fifo, depending of the available space and
returns -EFAULT/O.

Note that with only one concurrent reader and one concurrent writer, you don't need extra locking to use
these macro.

333

FIFO Buffer

Name

kfifo_to_user — copies data from the fifo into user space

Synopsis

kfifo to user (fifo, to, len, copied);

Arguments
fifo address of the fifo to be used
to where the data must be copied
[en the size of the destination buffer

copi ed pointer to output variable to store the number of copied bytes

Description
This macro copies at most | en bytes from the fifo into the t o buffer and returns -EFAULT/O.

Note that with only one concurrent reader and one concurrent writer, you don't need extra locking to use
these macro.

334

FIFO Buffer

Name
kfifo_dma_in_prepare — setup a scatterlist for DMA input

Synopsis

kfifo dma_in_prepare (fifo, sgl, nents, |en);
Arguments

fifo addressof thefifo to be used

sgl pointer to the scatterlist array

nent s number of entriesin the scatterlist array

| en number of elements to transfer

Description
This macro fills a scatterlist for DMA input. It returns the number entriesin the scatterlist array.

Note that with only one concurrent reader and one concurrent writer, you don't need extra locking to use
these macros.

335

FIFO Buffer

Name
kfifo_dma_in_finish — finishaDMA IN operation

Synopsis

kfifo dma_in finish (fifo, len);
Arguments

fifo addressof thefifoto be used

I en number of bytesto received

Description

This macro finish a DMA IN operation. The in counter will be updated by the len parameter. No error
checking will be done.

Note that with only one concurrent reader and one concurrent writer, you don't need extra locking to use
these macros.

336

FIFO Buffer

Name
kfifo_dma_out_prepare — setup a scatterlist for DMA output

Synopsis

kfifo_dma_out prepare (fifo, sgl, nents, len);
Arguments

fifo addressof thefifo to be used

sgl pointer to the scatterlist array

nent s number of entriesin the scatterlist array

| en number of elements to transfer

Description

This macro fills a scatterlist for DMA output which at most | en bytes to transfer. It returns the number
entriesin the scatterlist array. A zero means there is no space available and the scatterlist is not filled.

Note that with only one concurrent reader and one concurrent writer, you don't need extra locking to use
these macros.

337

FIFO Buffer

Name
kfifo_dma_out_finish— finishaDMA OUT operation

Synopsis

kfifo dma_out finish (fifo, len);
Arguments

fifo addressof thefifoto be used

| en number of bytestransferred

Description

Thismacro finishaDMA OUT operation. The out counter will be updated by the len parameter. No error
checking will be done.

Note that with only one concurrent reader and one concurrent writer, you don't need extra locking to use
these macros.

338

FIFO Buffer

Name
kfifo_out_peek — gets some data from the fifo

Synopsis
kfifo_out _peek (fifo, buf, n);

Arguments
fifo addressof thefifoto beused
buf pointer to the storage buffer

n max. humber of elementsto get

Description

This macro get the data from the fifo and return the numbers of elements copied. The datais not removed
from thefifo.

Note that with only one concurrent reader and one concurrent writer, you don't need extra locking to use
these macro.

339

Chapter 7. relay interface support

Relay interface support is designed to provide an efficient mechanism for tools and facilitiesto relay large
amounts of datafrom kernel space to user space.

relay interface

relay interface support

Name

relay_buf_full — boolean, isthe channel buffer full?
Synopsis

int relay_buf full (struct rchan_buf * buf);
Arguments

buf channel buffer
Description

Returns 1 if the buffer isfull, O otherwise.

341

relay interface support

Name
relay_reset — reset the channel

Synopsis

void relay reset (struct rchan * chan);
Arguments

chan thechannel

Description

This hasthe effect of erasing all datafrom all channel buffers and restarting the channel initsinitial state.
The buffers are not freed, so any mappings are still in effect.

NOTE. Care should be taken that the channel isn't actually being used by anything when this call is made.

342

relay interface support

Name
relay_open — create anew relay channel

Synopsis
struct rchan * relay_open (const char * base filenane, struct dentry
* parent, size_ t subbuf_size, size t n_subbufs, struct rchan_call backs

* cb, void * private _data);

Arguments

base fil enane basename of filesto create, NULL for buffering only

par ent dentry of parent directory, NULL for root directory or buffer
subbuf _si ze size of sub-buffers

n_subbufs number of sub-buffers

ch client callback functions

private_data user-defined data

Description
Returns channel pointer if successful, NULL otherwise.

Creates a channel buffer for each cpu using the sizes and attributes specified. The created channel buffer
fileswill be named base filename0...base filenameN-1. File permissionswill be S_| RUSR.

relay interface support

Name
relay_switch subbuf — switch to a new sub-buffer
Synopsis
size t relay_swi tch_subbuf (struct rchan_buf * buf, size_ t length);
Arguments
buf channel buffer
| engt h sizeof current event
Description

Returns either the length passed in or O if full.

Performs sub-buffer-switch tasks such asinvoking callbacks, updating padding counts, waking up readers,
etc.

relay interface support

Name
relay_subbufs_consumed — update the buffer's sub-buffers-consumed count
Synopsis
void relay_subbufs consuned (struct rchan * chan, unsigned int cpu,
size_t subbufs_consuned);
Arguments
chan the channel
cpu the cpu associated with the channel buffer to update
subbufs_consurmed number of sub-buffersto add to current buf's count
Description

Addsto the channel buffer's consumed sub-buffer count. subbufs_consumed should be the number of sub-
buffers newly consumed, not the total consumed.

NOTE. Kernel clients don't need to call this function if the channel mode is 'overwrite'.

relay interface support

Name
relay_close — close the channel
Synopsis
void relay_close (struct rchan * chan);
Arguments
chan thechannel
Description

Closes all channel buffers and frees the channel.

346

relay interface support

Name
relay_flush — close the channel
Synopsis
void relay flush (struct rchan * chan);
Arguments
chan thechannel
Description

Flushes al channel buffers, i.e. forces buffer switch.

347

relay interface support

Name
relay_mmap_buf — mmap channel buffer to process address space
Synopsis
int relay mmp_buf (struct rchan_buf * buf, struct vmarea_struct *
Vi) ;
Arguments
buf relay channel buffer
vima vm_area_struct describing memory to be mapped
Description

Returns 0 if ok, negative on error

Caller should aready have grabbed mmap_sem.

relay interface support

Name
relay_aloc_buf — alocate a channel buffer
Synopsis
void * relay_alloc_buf (struct rchan_buf * buf, size t * size);
Arguments
buf the buffer struct
si ze total size of the buffer
Description
Returns a pointer to the resulting buffer, NULL if unsuccessful. The passed in size will get page aligned,
if it isn't already.

349

relay interface support

Name
relay create buf — allocate and initialize a channel buffer
Synopsis
struct rchan_buf * relay create buf (struct rchan * chan);
Arguments
chan therelay channel
Description

Returns channel buffer if successful, NULL otherwise.

350

relay interface support

Name

relay_destroy_channel — free the channel struct
Synopsis

void relay_destroy_channel (struct kref * kref);
Arguments

kref target kernel reference that contains the relay channel
Description

Should only be called from kr ef _put .

351

relay interface support

Name
relay_destroy _buf — destroy an rchan_buf struct and associated buffer

Synopsis
void relay_destroy buf (struct rchan_buf * buf);

Arguments

buf thebuffer struct

352

relay interface support

Name

relay_remove buf — remove a channel buffer

Synopsis

void relay_renove buf (struct kref * kref);

Arguments

kref target kernel reference that contains the relay buffer

Description

Removesthefilefrom thefilesystem, which also freestherchan_buf _struct and the channel buffer. Should
only be called fromkr ef _put .

353

relay interface support

Name

relay_buf_empty — boolean, is the channel buffer empty?
Synopsis

int relay_buf _enpty (struct rchan_buf * buf);
Arguments

buf channel buffer
Description

Returns 1 if the buffer is empty, O otherwise.

354

relay interface support

Name

wakeup_readers — wake up readers waiting on a channel
Synopsis
voi d wakeup_readers (unsigned |ong data);

Arguments

dat a containsthe channel buffer

Description

Thisisthe timer function used to defer reader waking.

355

relay interface support

Name
__relay_reset — reset achannel buffer

Synopsis

void _relay reset (struct rchan_buf * buf, unsigned int init);

Arguments

buf thechannel buffer

init 1ifthisisafirst-timeinitiaization
Description

Seer el ay_reset for description of effect.

356

relay interface support

Name
relay_close buf — close achannel buffer
Synopsis
void relay_close_buf (struct rchan_buf * buf);
Arguments
buf channel buffer
Description

Marks the buffer finalized and restores the default callbacks. The channel buffer and channel buffer data
structure are then freed automatically when the last referenceis given up.

357

relay interface support

Name
relay_hotcpu_callback — CPU hotplug callback
Synopsis
int relay hotcpu_callback (struct notifier_block * nb, unsigned |ong
action, void * hcpu);
Arguments
nb notifier block
action hotplug action to take
hcpu CPU number
Description

Returns the success/failure of the operation. (NOT1 FY_CK, NOTI FY_BAD)

358

relay interface support

Name
relay late setup_files— triggersfile creation

Synopsis

*

int relay late setup files (struct rchan * chan, const char
base fil enane, struct dentry * parent);

Arguments
chan channel to operate on
base fil enanme basename of filesto create

par ent dentry of parent directory, NULL for root directory

Description
Returns 0 if successful, non-zero otherwise.

Use to setup files for a previoudly buffer-only channel. Useful to do early tracing in kernel, before VFS
isup, for example.

359

relay interface support

Name
relay_file_open — open file op for relay files
Synopsis
int relay file_ open (struct inode * inode,
Arguments
i node theinode
filp thefile
Description

Increments the channel buffer refcount.

struct file * filp);

360

relay interface support

Name
relay_file_mmap — mmap file op for relay files
Synopsis
int relay file_ mmap (struct file * filp, struct vmarea_struct * vnm);
Arguments
filp thefile
vima the vma describing what to map
Description

Cdlsuponr el ay_mmap_buf to map thefileinto user space.

361

relay interface support

Name
relay_file_poll — poll file op for relay files

Synopsis

unsigned int relay file poll (struct file * filp, poll _table * wait);
Arguments

filp thefile

wai t poll table

Description

Poll implemention.

362

relay interface support

Name
relay_file release — release file op for relay files
Synopsis
int relay file release (struct inode * inode, struct file * filp);
Arguments
i node theinode
filp thefile
Description

Decrements the channel refcount, as the filesystem is no longer using it.

363

relay interface support

Name
relay file read subbuf_avail — return bytes available in sub-buffer

Synopsis
size t relay file_read subbuf_avail (size_t read_pos, struct rchan_buf
* puf);

Arguments

read_pos fileread position

buf relay channel buffer

364

relay interface support

Name
relay file read start pos— find thefirst available byte to read
Synopsis
size t relay file read start _pos (size_t read_pos, struct rchan_buf *
buf);
Arguments
read_pos fileread position
buf relay channel buffer
Description

If the read_pos isin the middle of padding, return the position of the first actually available byte,
otherwise return the original value.

365

relay interface support

Name
relay file read end pos— return the new read position

Synopsis

size t relay file_read _end _pos (struct rchan_buf * buf, size t read_pos,
size_t count);

Arguments
buf relay channel buffer
read_pos fileread position

count number of bytes to be read

366

Chapter 8. Module Support
Module Loading

367

Module Support

Name

__request_module — try to load a kernel module
Synopsis

int _ request _nodule (bool wait, const char * fnt, ...);
Arguments

wai t wait (or not) for the operation to complete

fnt printf style format string for the name of the module @...: arguments as specified in the format
string

variable arguments

Description

Load a module using the user mode module loader. The function returns zero on success or a negative
errno code on failure. Note that a successful module load does not mean the module did not then unload
and exit on an error of its own. Callers must check that the service they requested is now available not
blindly invokeit.

If module auto-loading support is disabled then this function becomes a no-operation.

368

Module Support

Name
call_usermodehel per_setup — prepare to call a usermode hel per

Synopsis

struct subprocess_info * call _usernodehel per_setup (char * path, char **
argv, char ** envp, gfp_t gfp_mask, int (*init) (struct subprocess info
*info, struct cred *new), void (*cleanup) (struct subprocess_info *in-
fo), void * data);

Arguments
pat h path to usermode executable
ar gv arg vector for process
envp environment for process

gf p_mask gfp mask for memory allocation
init an init function
cl eanup acleanup function

data arbitrary context sensitive data

Description

Returns either NULL on alocation failure, or a subprocess info structure. This should be passed to
call_usermodehelper_exec to exec the process and free the structure.

The init function is used to customize the hel per process prior to exec. A non-zero return code causes the
process to error out, exit, and return the failure to the calling process

The cleanup function is just before ethe subprocess info is about to be freed. This can be used for freeing
the argv and envp. The Function must be runnable in either a process context or the context in which
call_usermodehelper_exec is called.

369

Module Support

Name
call_usermodehelper_exec — start a usermode application

Synopsis
int call_usernodehel per_exec (struct subprocess info * sub_info, int
wait);

Arguments

sub_i nfo information about the subprocessa

wai t wait for the application to finish and return status. when UMH_NO_WAIT don't wait at all,
but you get no useful error back when the program couldn't be exec'ed. This makes it safe
to call from interrupt context.

Description

Runs a user-space application. The application is started asynchronoudly if wait is not set, and runs as a
child of keventd. (ie. it runswith full root capabilities).

370

Module Support

Name
call_usermodehel per — prepare and start a usermode application

Synopsis
int call _usernodehel per (char * path, char ** argv, char ** envp, int
wait);

Arguments

pat h path to usermode executable
argv arg vector for process
envp environment for process

wai t wait for the application to finish and return status. when UMH_NO_WAIT don't wait at al, but
you get no useful error back when the program couldn't be exec'ed. Thismakesit safeto call from
interrupt context.

Description

This function is the equivdent to use call_usernodehel per_setup and
cal | _user nodehel per _exec.

Inter Module support

Refer to the file kernel/module.c for more information.

371

Chapter 9. Hardware Interfaces
Interrupt Handling

372

Hardware Interfaces

Name
synchronize_hardirq — wait for pending hard IRQ handlers (on other CPUS)

Synopsis
bool synchronize_hardirq (unsigned int irq);

Arguments

i rq interrupt number to wait for

Description
This function waits for any pending hard IRQ handlers for this interrupt to complete before returning. 1f
you use this function while holding a resource the IRQ handler may need you will deadlock. It does not
take associated threaded handlers into account.

Do not use thisfor shutdown scenarios where you must be sure that all parts (hardirg and threaded handler)
have completed.

Returns

falseif athreaded handler is active.

This function may be called - with care - from IRQ context.

373

Hardware Interfaces

Name
synchronize_irq — wait for pending IRQ handlers (on other CPUs)

Synopsis
voi d synchronize_ irq (unsigned int irq);
Arguments

i rq interrupt number to wait for

Description

This function waits for any pending IRQ handlers for this interrupt to complete before returning. If you
use this function while holding a resource the IRQ handler may need you will deadlock.

This function may be called - with care - from IRQ context.

374

Hardware Interfaces

Name
irq_set_affinity_notifier — control notification of IRQ affinity changes

Synopsis
i nt irq_set _affinity notifier (unsi gned i nt irq, st ruct

irg affinity notify * notify);

Arguments

irg Interrupt for which to enable/disable notification
noti fy Contextfor notification, or NULL to disable naotification. Function pointers must beinitialised;
the other fields will be initialised by this function.

Description

Must be called in process context. Notification may only be enabled after the IRQ is allocated and must
be disabled before the IRQ isfreed usingfree_i r q.

375

Hardware Interfaces

Name

disable_irq_nosync — disable an irq without waiting
Synopsis

voi d disable_irq_nosync (unsigned int irq);
Arguments

i rq Interrupt to disable
Description

Disable the selected interrupt line. Disables and Enables are nested. Unlike di sabl e_i r g, thisfunction
does not ensure existing instances of the IRQ handler have completed before returning.

This function may be called from IRQ context.

376

Hardware Interfaces

Name
disable irqg— disable an irq and wait for completion

Synopsis
void disable irqgq (unsigned int irq);
Arguments

i rq Interrupt to disable

Description

Disable the selected interrupt line. Enables and Disables are nested. This function waits for any pending
IRQ handlers for this interrupt to complete before returning. If you use this function while holding a
resource the IRQ handler may need you will deadlock.

This function may be called - with care - from IRQ context.

377

Hardware Interfaces

Name
disable_hardirq — disables an irq and waits for hardirg completion

Synopsis

bool disable hardirqg (unsigned int irq);
Arguments

i rq Interrupt to disable

Description

Disable the selected interrupt line. Enables and Disables are nested. This function waits for any pending
hard IRQ handlers for this interrupt to complete before returning. If you use this function while holding
aresource the hard IRQ handler may need you will deadlock.

When used to optimistically disable an interrupt from atomic context the return value must be checked.

Returns
falseif athreaded handler is active.

This function may be called - with care - from IRQ context.

378

Hardware Interfaces

Name

enable_irg— enable handling of anirq
Synopsis
void enable irq (unsigned int irq);

Arguments

i rq Interrupt to enable

Description

Undoes the effect of one call to di sabl e_i r g. If this matches the last disable, processing of interrupts
on thisIRQ lineisre-enabled.

Thisfunction may be called from IRQ context only when desc->irq_data.chip->bus_lock and desc->chip-
>bus_sync_unlock are NULL !

379

Hardware Interfaces

Name
irg_set_irg wake — control irq power management wakeup
Synopsis
int irg_set _irg_wake (unsigned int irg, unsigned int on);
Arguments
i rq interrupt to control
on enable/disable power management wakeup
Description

Enabl e/disable power management wakeup mode, which isdisabled by default. Enables and disables must
match, just as they match for non-wakeup mode support.

Wakeup mode lets this IRQ wake the system from sleep states like “ suspend to RAM”.

380

Hardware Interfaces

Name

irq_wake_thread — wake the irq thread for the action identified by dev_id
Synopsis

void irg_wake thread (unsigned int irqg, void * dev_id);
Arguments

irg Interrupt line

dev_id Deviceidentity for which the thread should be woken

381

Hardware Interfaces

Name
setup_irg — setup an interrupt
Synopsis
int setup_irq (unsigned int irq, struct irgaction * act);
Arguments
i rq Interrupt lineto setup
act irgaction for the interrupt
Description

Used to statically setup interruptsin the early boot process.

382

Hardware Interfaces

Name
remove_irq— free an interrupt
Synopsis
void renmove_irq (unsigned int irq, struct irqgaction * act);
Arguments
i rq Interruptlineto free
act irgaction for the interrupt
Description

Used to remove interrupts statically setup by the early boot process.

383

Hardware Interfaces

Name

free_irg — free an interrupt allocated with request_irq
Synopsis

void free_irqg (unsigned int irg, void * dev_id);
Arguments

irg Interrupt line to free

dev_id Deviceidentity tofree

Description

Remove an interrupt handler. The handler is removed and if the interrupt line is no longer in use by any
driver it isdisabled. On a shared IRQ the caller must ensure the interrupt is disabled on the card it drives
before calling this function. The function does not return until any executing interrupts for this IRQ have

completed.

This function must not be called from interrupt context.

384

Hardware Interfaces

Name
request_threaded irq— allocate an interrupt line
Synopsis
int request _threaded irq (unsigned int irq, irq_handler_t handler,

irq_handler_t thread fn, unsigned long irqflags, const char * devnane,
void * dev_id);

Arguments

irg Interrupt line to alocate

handl er Function to be called when the IRQ occurs. Primary handler for threaded interrupts If
NULL and thread fn!= NULL the default primary handler isinstalled

t hread_fn Function caled from the irq handler thread If NULL, noirq thread is created

irgflags Interrupt typeflags

devnane An ascii name for the claiming device
dev_id A cookie passed back to the handler function
Description

Flags

This call allocates interrupt resources and enables the interrupt line and IRQ handling. From the point this
call is made your handler function may be invoked. Since your handler function must clear any interrupt
the board raises, you must take care both to initialise your hardware and to set up the interrupt handler
in the right order.

If you want to set up a threaded irq handler for your device then you need to supply handl er
and t hr ead_f n. handl er is still called in hard interrupt context and has to check whether the in-
terrupt originates from the device. If yes it needs to disable the interrupt on the device and return
IRQ_WAKE_THREAD which will wake up the handler thread and runt hr ead_f n. This split handler
design is necessary to support shared interrupts.

Dev_id must be globally unique. Normally the address of the device data structure is used as the cookie.
Since the handler receives this value it makes sense to useit.

If your interrupt is shared you must passanon NULL dev_id asthisisrequired when freeing the interrupt.

IRQF_SHARED Interrupt is shared IRQF_TRIGGER _* Specify active edge(s) or level

385

Hardware Interfaces

Name

request_any_context_irq — allocate an interrupt line
Synopsis

int request_any context _irq (unsigned int irqg, irq_handler_t handler,
unsi gned long flags, const char * nane, void * dev_id);

Arguments
irg Interrupt line to alocate
handl er Function to be called when the IRQ occurs. Threaded handler for threaded interrupts.
fl ags Interrupt type flags
namne An ascii name for the claiming device

dev_id A cookiepassed back to the handler function

Description

This cal alocates interrupt resources and enables the interrupt line and IRQ handling. It selects either a
hardirq or threaded handling method depending on the context.

On failure, it returns a negative value. On success, it returns either IRQC IS HARDIRQ or
IRQC_IS NESTED.

DMA Channels

386

Hardware Interfaces

Name

request_dma— request and reserve a system DMA channel
Synopsis

i nt request_dnma (unsigned int dnanr, const char * device_ id);
Arguments

dmanr DMA channel number

devi ce_id reserving deviceID string, used in /proc/dma

387

Hardware Interfaces

Name

free_dma— free areserved system DMA channel
Synopsis
void free_dnma (unsigned int dnmanr);

Arguments

dmanr DMA channel number

Resources Management

388

Hardware Interfaces

Name

request_resource_conflict — request and reserve an 1/O or memory resource

Synopsis

struct resource * request _resource_conflict (struct resource * root,
struct resource * new);

Arguments
r oot root resource descriptor

new resource descriptor desired by caller

Description

Returns O for success, conflict resource on error.

389

Hardware Interfaces

Name

reallocate _resource — allocate a slot in the resource tree given range & alignment. The resource will be
relocated if the new size cannot be reallocated in the current location.

Synopsis

int reallocate resource (struct resource * root, struct resource * ol d,
resource_size t newsize, struct resource_constraint * constraint);

Arguments
r oot root resource descriptor
old resource descriptor desired by caller
newsi ze new size of the resource descriptor

constraint thesizeand alignment constraints to be met.

390

Hardware Interfaces

Name

lookup_resource — find an existing resource by aresource start address
Synopsis

st ruct resource * | ookup_resource (struct

resource_size t start);

Arguments
r oot root resource descriptor

start resource start address

Description

Returns a pointer to the resource if found, NULL otherwise

resource

*

root,

391

Hardware Interfaces

Name

insert_resource_conflict — Inserts resource in the resource tree

Synopsis

struct resource * insert _resource_conflict (struct resource * parent,
struct resource * new);

Arguments
par ent parent of the new resource

new new resource to insert

Description
Returns 0 on success, conflict resource if the resource can't be inserted.

This function is equivalent to request_resource_conflict when no conflict happens. If a conflict happens,
and the conflicting resources entirely fit within the range of the new resource, then the new resource is
inserted and the conflicting resources become children of the new resource.

392

Hardware Interfaces

Name

insert_resource — Inserts aresource in the resource tree

Synopsis

int insert_resource (struct resource * parent, struct resource * new;

Arguments
par ent parent of the new resource

new new resource to insert

Description

Returns 0 on success, -EBUSY if the resource can't be inserted.

393

Hardware Interfaces

Name

insert_resource_expand_to_fit — Insert aresource into the resource tree

Synopsis

void insert_resource_expand to fit (struct resource * root, struct re-
source * new;

Arguments
r oot root resource descriptor

new new resource to insert

Description

Insert aresourceinto the resourcetree, possibly expanding it in order to make it encompass any conflicting
resources.

394

Hardware Interfaces

Name

resource_alignment — cal cul ate resource's alignment

Synopsis

resource_size t resource_alignment (struct resource * res);

Arguments

res resource pointer

Description

Returns alignment on success, 0 (invalid alignment) on failure.

395

Hardware Interfaces

Name

release mem_region_adjustable — release a previously reserved memory region

Synopsis

i nt rel ease_nmem regi on_adj ust abl e (struct resource * par ent,
resource_size t start, resource_size t size);

Arguments

par ent parent resource descriptor
start resource start address

si ze resource region size

Description

Note

Thisinterface is intended for memory hot-delete. The requested region is released from a currently busy
memory resource. The requested region must either match exactly or fit into a single busy resource entry.
In the latter case, the remaining resource is adjusted accordingly. Existing children of the busy memory
resource must be immutable in the request.

- Additional release conditions, such as overlapping region, can be supported after they are confirmed as
valid cases. - When a busy memory resource gets split into two entries, the code assumes that all children
remain in the lower address entry for simplicity. Enhance this logic when necessary.

396

Hardware Interfaces

Name

request_resource — request and reserve an /O or memory resource

Synopsis

int request_resource (struct resource * root, struct resource * new;

Arguments
r oot root resource descriptor

new resource descriptor desired by caller

Description

Returns O for success, negative error code on error.

397

Hardware Interfaces

Name

release resource — release a previously reserved resource
Synopsis
int release_resource (struct resource * old);

Arguments

ol d resource pointer

398

Hardware Interfaces

Name

allocate _resource — allocate empty slot in the resource tree given range & alignment. The resource will
be reallocated with anew sizeif it was already allocated

Synopsis

int allocate resource (struct resource * root, struct resource *
new, resource_size t size, resource_size t nin, resource_size t nmx,
resource_size t align, resource_size t (*alignf) (void *, const struct
resource *, resource_size t, resource_size t), void * alignf_data);

Arguments
r oot root resource descriptor
new resource descriptor desired by caller
si ze reguested resource region size
mn minimum boundary to allocate
nax maximum boundary to allocate
align alignment requested, in bytes
al i gnf alignment function, optional, called if not NULL

al i gnf_data arbitrary datato passtotheal i gnf function

399

Hardware Interfaces

Name

adjust_resource — modify aresource's start and size

Synopsis

int adjust _resource (struct resource * res, resource_ size t start,
resource_size t size);

Arguments
res resource to modify
start new start value

si ze new size

Description

Given an existing resource, changeits start and sizeto match the arguments. Returns 0 on success, -EBUSY
if it can't fit. Existing children of the resource are assumed to be immutable.

400

Hardware Interfaces

Name

__request_region — create anew busy resource region

Synopsis

struct

resource_size_ t start,

Arguments
par ent
start
n
nane

flags

resource * _ request_region
resource_size_ t n, const char * nane, int flags);

parent resource descriptor
resource start address
resource region size
reserving caller's ID string

10 resource flags

(struct

resource

*

par ent ,

401

Hardware Interfaces

Name

__release region — release a previously reserved resource region

Synopsis

void __release_region (struct resource * parent,
resource_size t n);

Arguments
par ent parent resource descriptor
start resource start address

n resource region size

Description

The described resource region must match a currently busy region.

resource_size t start,

402

Hardware Interfaces

Name

devm_request_resource — request and reserve an |/O or memory resource

Synopsis

i nt devmrequest _resource (struct device * dev, struct resource * root,
struct resource * new);

Arguments
dev devicefor which to request the resource
root root of the resource tree from which to request the resource

new descriptor of the resource to request

Description

Thisisadevice-managed version of r equest _r esour ce. Thereisusually no need to rel ease resources
requested by this function explicitly since that will be taken care of when the device is unbound from
its driver. If for some reason the resource needs to be released explicitly, because of ordering issues for
example, driversmust call devm r el ease_r esour ce rather thantheregularr el ease_r esour ce.

When a conflict is detected between any existing resources and the newly requested resource, an error
message will be printed.

Returns 0 on success or a negative error code on failure.

403

Hardware Interfaces

Name

devm_release resource — release a previously requested resource
Synopsis

voi d devm rel ease_resource (struct device * dev, struct resource * new);
Arguments

dev device for which to release the resource

new descriptor of the resourceto release

Description

Releases a resource previously requested using devm r equest _resour ce.

MTRR Handling

404

Hardware Interfaces

Name

mtrr_add — Add a memory type region

Synopsis

int mrr_add (unsigned | ong base, unsigned | ong size, unsigned int type,
bool increnent);

Arguments
base Physical base address of region
si ze Physical size of region
type Type of MTRR desired

i ncrenment If thisistrue do usage counting on the region

Description

BUGS

Memory type region registers control the caching on newer Intel and non Intel processors. This function
allows drivers to request an MTRR is added. The details and hardware specifics of each processor's im-
plementation are hidden from the caller, but nevertheless the caller should expect to need to provide a
power of two size on an equivalent power of two boundary.

If the region cannot be added either because all regions are in use or the CPU cannot support it a negative
value is returned. On success the register number for this entry is returned, but should be treated as a
cookie only.

On amultiprocessor machine the changes are made to all processors. Thisis required on x86 by the Intel
processors.

The available types are

MIRR_TYPE_UNCACHABLE - No caching
MIRR_TYPE_WRBACK - Write data back in bursts whenever
MIRR_TYPE_WRCOWB - Write data back soon but alow bursts

MIRR_TYPE_WRTHROUGH - Cache reads but not writes

Needs a quiet flag for the cases where drivers do not mind failures and do not wish system log messages
to be sent.

405

Hardware Interfaces

Name
mtrr_del — delete a memory type region

Synopsis

int mrr_del (int reg, unsigned |ong base, unsigned |ong size);
Arguments

reg Register returned by mtrr_add

base Physica base address

size Sizeof region
Description

If register is supplied then base and size are ignored. Thisis how drivers should call it.

Releases an MTRR region. If the usage count drops to zero the register is freed and the region returns to
default state. On success the register is returned, on failure a negative error code.

406

Hardware Interfaces

Name
arch_phys wc_add — add aWC MTRR and handle errorsif PAT is unavailable

Synopsis

int arch_phys wc_add (unsigned | ong base, unsigned |ong size);
Arguments

base Physical base address

si ze Sizeof region
Description

If PAT isavailable, thisdoes nothing. If PAT isunavailable, it attemptsto add aWC MTRR covering size
bytes starting at base and logs an error if thisfails.

Driversmust storethereturn valueto passto mtrr_del_wc _if needed, but drivers should not try tointerpret
that return value.

PCI Support Library

407

Hardware Interfaces

Name

pci_bus max_busnr — returns maximum PCI bus number of given bus' children

Synopsis
unsi gned char pci_bus_max_busnr (struct pci_bus * bus);
Arguments

bus pointer to PCI bus structure to search

Description

Given a PCI bus, returns the highest PCI bus number present in the set including the given PCI bus and
itslist of child PCI buses.

408

Hardware Interfaces

Name
pci_find_capability — query for devices' capabilities

Synopsis
int pci_find capability (struct pci_dev * dev, int cap);
Arguments

dev PCI deviceto query

cap capability code

Description

Tell if adevice supports a given PCI capability. Returns the address of the requested capability structure
within the device's PCI configuration space or 0 in case the device does not support it. Possible values
for cap:

PCI _CAP ID PM Power Management PClI_CAP I D AGP Accelerated Graphics Port
PCI _CAP ID VPD Vitad Product Data PCl_CAP_ID SLOTID Slot Identification
PClI _CAP I D MSI Message Signalled Interrupts PCI _CAP_| D CHSWP CompactPCl HotSwap
PCl _CAP_I D_PCl X PCI-X PCI _CAP_I| D_EXP PCI Express

409

Hardware Interfaces

Name
pci_bus find_capability — query for devices' capabilities
Synopsis
int pci_bus find capability (struct pci_bus * bus, unsigned int devfn,
int cap);
Arguments
bus the PCI busto query
devfn PCI deviceto query
cap capability code
Description

Likepci _find_capabi | ity butworksfor pci devicesthat do not haveapci_dev structure set up yet.

Returns the address of the requested capability structure within the device's PCI configuration space or 0
in case the device does not support it.

410

Hardware Interfaces

Name
pci_find_next_ext_capability — Find an extended capability
Synopsis
int pci_find next _ext _capability (struct pci_dev * dev, int start, int
cap) ;
Arguments
dev PCI deviceto query
start addressat which to start looking (0 to start at beginning of list)
cap capability code
Description

Returns the address of the next matching extended capability structure within the device's PCI configu-
ration space or O if the device does not support it. Some capabilities can occur several times, e.g., the
vendor-specific capability, and this provides away to find them all.

411

Hardware Interfaces

Name
pci_find_ext_capability — Find an extended capability

Synopsis

int pci_find ext _capability (struct pci_dev * dev, int cap);
Arguments

dev PCI deviceto query

cap capability code
Description

Returns the address of the requested extended capability structure within the device's PCI configuration
space or O if the device does not support it. Possible values for cap:

PCl _EXT _CAP_I D ERR Advanced Error Reporting PCI _EXT _CAP_I D VC Virtual Channel
PCI _EXT_CAP_I D_DSN Device Serial Number PCI _EXT_CAP_I D_PWR Power Budgeting

412

Hardware Interfaces

Name
pci_find_next_ht_capability — query a device's Hypertransport capabilities
Synopsis
int pci _find next_ht capability (struct pci_dev * dev,
ht _cap);
Arguments
dev PCI deviceto query
pos Position from which to continue searching
ht _cap Hypertransport capability code
Description

i nt pos,

i nt

To be used in conjunction with pci _find_ht _capabi | i ty to search for al capabilities matching
ht _cap. pos should dwaysbe avalue returned frompci _find_ht capability.

NB. To be 100% safe against broken PCI devices, the caller should take steps to avoid an infinite loop.

413

Hardware Interfaces

Name

pci_find_ht_capability — query a device's Hypertransport capabilities
Synopsis

int pci_find _ht capability (struct pci_dev * dev, int ht_cap);
Arguments

dev PCI deviceto query

ht cap Hypertransport capability code

Description

Tell if a device supports a given Hypertransport capability. Returns an address within the device's PCI
configuration space or 0 in case the device does not support the request capability. The address points to
the PCI capability, of type PCI_CAP_ID_HT, which has a Hypertransport capability matching ht _cap.

414

Hardware Interfaces

Name

pci_find_parent_resource — return resource region of parent bus of given region

Synopsis

struct resource * pci _find parent_resource (const struct pci_dev * dev,
struct resource * res);

Arguments
dev PCI device structure contains resources to be searched

res child resource record for which parent is sought

Description

For given resource region of given device, return the resource region of parent bus the given region is
contained in.

415

Hardware Interfaces

Name
__pci_complete power_transition — Complete power transition of a PCI device
Synopsis
int _ pci_conplete power transition (struct pci_dev * dev, pci_power t
state);
Arguments
dev PCI deviceto handle.

state Stateto put the deviceinto.

Description

This function should not be called directly by device drivers.

416

Hardware Interfaces

Name

pci_set_power_state — Set the power state of a PCl device
Synopsis

int pci_set power _state (struct pci_dev * dev, pci_power t state);
Arguments

dev PCI device to handle.

state PCI power state (DO, D1, D2, D3hot) to put the device into.

Description

Transition adeviceto anew power state, using the platform firmware and/or the device's PCl PM registers.

RETURN VALUE

-EINVAL if the requested state isinvalid. -EIO if device does not support PCI PM or its PM capabilities
register has a wrong version, or device doesn't support the requested state. O if device aready isin the

requested state. O if device's power state has been successfully changed.

417

Hardware Interfaces

Name

pci_choose_state — Choose the power state of a PCI device
Synopsis
pci _power t pci _choose state (struct pci _dev * dev, pm nessage t state);

Arguments

dev PCI device to be suspended
st at e target deep state for the whole system. Thisisthe value that is passed to suspend function.

Description

Returns PCI power state suitable for given device and given system message.

418

Hardware Interfaces

Name

pci_save state — save the PCI configuration space of a device before suspending
Synopsis

int pci_save state (struct pci_dev * dev);
Arguments

dev - PCI devicethat we're dealing with

419

Hardware Interfaces

Name
pci_restore state — Restore the saved state of a PCI device

Synopsis
void pci _restore_state (struct pci_dev * dev);

Arguments

dev - PCI devicethat we're dealing with

420

Hardware Interfaces

Name

pci_store saved state — Allocate and return an opaque struct containing the device saved state.

Synopsis

struct pci_saved state * pci_store saved state (struct pci_dev * dev);
Arguments

dev PCI device that we're dealing with

Description

Return NULL if no state or error.

421

Hardware Interfaces

Name
pci_load saved state — Reload the provided save state into struct pci_dev.

Synopsis
int pci_|oad saved state (struct pci_dev * dev, struct pci_saved state
* state);

Arguments

dev PCI device that we're dealing with

state Saveddstatereturned frompci _store_saved state

422

Hardware Interfaces

Name

pci_load and free saved state— Reload the save state pointed to by state, and free the memory allocated
for it.

Synopsis

int pci_load and free saved state (struct pci_dev * dev, struct
pci _saved state ** state);

Arguments
dev PCI device that we're dealing with

st at e Pointer to saved state returned frompci _st ore_saved_state

423

Hardware Interfaces

Name
pci_reenable_device — Resume abandoned device
Synopsis
int pci_reenabl e _device (struct pci_dev * dev);
Arguments
dev PCI device to be resumed
Description

Note this function is a backend of pci_default_resume and is not supposed to be called by normal code,
write proper resume handler and use it instead.

424

Hardware Interfaces

Name

pci_enable device io — Initialize a device for use with 10 space
Synopsis

int pci_enable _device io (struct pci_dev * dev);
Arguments

dev PCI deviceto beinitialized
Description

Initialize device before it's used by a driver. Ask low-level code to enable 1/0 resources. Wake up the
deviceif it was suspended. Beware, this function can fail.

425

Hardware Interfaces

Name

pci_enable device_mem — Initialize a device for use with Memory space
Synopsis

int pci _enabl e _device nmem (struct pci_dev * dev);
Arguments

dev PCI deviceto beinitialized
Description

Initialize device before it's used by a driver. Ask low-level code to enable Memory resources. Wake up
the deviceif it was suspended. Beware, this function can fail.

426

Hardware Interfaces

Name

pci_enable device — Initialize device beforeit's used by adriver.

Synopsis

int pci _enabl e_device (struct pci_dev * dev);

Arguments

dev PCI deviceto beinitialized

Description

Initialize device before it's used by a driver. Ask low-level code to enable I/O and memory. Wake up the
deviceif it was suspended. Beware, this function can fail.

Note we don't actually enable the device many timesif we call thisfunction repeatedly (wejust increment
the count).

427

Hardware Interfaces

Name

pcim_enable device— Managed pci _enabl e_devi ce
Synopsis

i nt pci menabl e_device (struct pci_dev * pdev);
Arguments

pdev PCI deviceto beinitialized
Description

Managed pci _enabl e_devi ce.

428

Hardware Interfaces

Name
pcim_pin_device— Pin managed PCI device
Synopsis
voi d pci mpin_device (struct pci_dev * pdev);
Arguments
pdev PCI deviceto pin
Description

Pin managed PCI device pdev. Pinned device won't be disabled on driver detach. pdev must have been
enabled with pci m enabl e_devi ce.

429

Hardware Interfaces

Name
pci_disable device — Disable PCI device after use

Synopsis
voi d pci _di sabl e_device (struct pci_dev * dev);
Arguments

dev PCI deviceto be disabled

Description

Signal to the system that the PCI deviceis not in use by the system anymore. Thisonly involves disabling
PCI bus-mastering, if active.

Note we don't actually disable the device until al callers of pci _enabl e_devi ce have caled
pci _di sabl e_devi ce.

430

Hardware Interfaces

Name
pci_set_pcie reset_state — set reset state for device dev
Synopsis
i nt pci _set pcie reset_state (struct pci _dev

pcie reset_state state);

Arguments
dev the PCle device reset

state Reset stateto enter into

Description

Sets the PCI reset state for the device.

dev,

enum

431

Hardware Interfaces

Name

pci_pme_capable — check the capability of PCI device to generate PME#
Synopsis

bool pci _pne_capable (struct pci_dev * dev, pci_power t state);
Arguments

dev PCI device to handle.

state PCI state from which device will issue PME#.

432

Hardware Interfaces

Name

pci_pme_active — enable or disable PCI device's PME# function
Synopsis

void pci_pnme_active (struct pci_dev * dev, bool enable);
Arguments

dev PCI device to handle.

enabl e 'true to enable PME# generation; 'false' to disable it.

Description

The caller must verify that the device is capable of generating PME# before calling this function with
enabl e equal to 'true.

433

Hardware Interfaces

Name
__pci_enable_wake — enable PCI device as wakeup event source
Synopsis
int _ pci_enable wake (struct pci_dev * dev, pci_power t state, bool

runtine, bool enable);

Arguments
dev PCI device affected
state PCI state from which device will issue wakeup events

runti nme Trueif the events are to be generated at run time

enabl e Trueto enable event generation; false to disable

Description

This enables the device as awakeup event source, or disablesit. When such eventsinvolves platform-spe-
cific hooks, those hooks are called automatically by this routine.

Devices with legacy power management (no standard PCl PM capabilities) always require such platform
hooks.

RETURN VALUE

Oisreturned on success -EINVAL isreturned if deviceis not supposed to wake up the system Error code
depending on the platform is returned if both the platform and the native mechanism fail to enable the
generation of wake-up events

Hardware Interfaces

Name

pci_wake from_d3 — enable/disable device to wake up from D3_hot or D3_cold
Synopsis

int pci_wake fromd3 (struct pci_dev * dev, bool enable);
Arguments

dev PCI deviceto prepare

enabl e Trueto enable wake-up event generation; false to disable

Description

Many drivers want the device to wake up the system from D3_hot or D3 _cold and this function allows
them to set that up cleanly - pci _enabl e_wake should not be called twice in a row to enable wake-

up dueto PCI PM vs ACPI ordering constraints.

This function only returns error code if the device is not capable of generating PM E# from both D3_hot

and D3_cold, and the platform is unable to enable wake-up power for it.

435

Hardware Interfaces

Name

pci_prepare to_sleep — prepare PCI device for system-wide transition into a leep state
Synopsis

int pci_prepare_to_sleep (struct pci_dev * dev);
Arguments

dev Deviceto handle.
Description

Choose the power state appropriate for the device depending on whether it can wake up the system and/or
is power manageable by the platform (PCl_D3hot is the default) and put the device into that state.

436

Hardware Interfaces

Name
pci_back from_sleep — turn PCI device on during system-wide transition into working state
Synopsis
int pci_back fromsleep (struct pci_dev * dev);
Arguments
dev Deviceto handle.
Description

Disable device's system wake-up capability and put it into DO.

437

Hardware Interfaces

Name

pci_dev_run_wake — Check if device can generate run-time wake-up events.
Synopsis

bool pci _dev_run_wake (struct pci_dev * dev);
Arguments

dev Deviceto check.

Description

Return true if the device itself is capable of generating wake-up events (through the platform or using
the native PCle PME) or if the device supports PME and one of its upstream bridges can generate wake-

up events.

438

Hardware Interfaces

Name

pci_common_swizzle — swizzle INTx all the way to root bridge
Synopsis

u8 pci _comon_swi zzle (struct pci_dev * dev, u8 * pinp);
Arguments

dev thePCl device
pi np pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)

Description

Perform INTx swizzling for a device. This traverses through all PCI-to-PCl bridges al the way up to a
PCI root bus.

439

Hardware Interfaces

Name

pci_release region — Release a PCl bar
Synopsis
void pci_release _region (struct pci_dev * pdev, int bar);
Arguments
pdev PCI device whose resources were previously reserved by pci_request_region
bar BAR to release

Description

Releasesthe PCI 1/0 and memory resources previously reserved by asuccessful call to pci_request_region.
Call this function only after all use of the PCI regions has ceased.

Hardware Interfaces

Name
pci_request_region — Reserve PCI |/O and memory resource
Synopsis
int pci_request _region (struct pci_dev * pdev, int bar, const char *
res_nane);
Arguments
pdev PCI device whose resources are to be reserved
bar BAR to bereserved

res_nanme Nameto be associated with resource

Description

Mark the PCI region associated with PCI devicepdev BAR bar asbeing reserved by ownerr es_nane.
Do not access any address inside the PCI regions unless this call returns successfully.

Returns 0 on success, or EBUSY on error. A warning message is also printed on failure.

441

Hardware Interfaces

Name

pci_request_region_exclusive — Reserved PCI |/O and memory resource

Synopsis

i nt pci _request _region_exclusive (struct pci_dev * pdev, int bar,
char * res_nane);

Arguments
pdev PCI device whose resources are to be reserved
bar BAR to bereserved

res_nanme Nameto be associated with resource.

Description

const

Mark the PCI region associated with PCI device pdev BR bar asbeing reserved by owner r es_narne.

Do not access any address inside the PCI regions unless this call returns successfully.

Returns 0 on success, or EBUSY on error. A warning message is also printed on failure.

The key difference that _exclusive makes it that userspace is explicitly not allowed to map the resource

via/dev/mem or sysfs.

442

Hardware Interfaces

Name
pci_release selected regions — Release selected PCI 1/0 and memory resources

Synopsis

void pci_release_sel ected regions (struct pci_dev * pdev, int bars);

Arguments
pdev PCI device whose resources were previously reserved

bars Bitmask of BARsto be released

Description

Release selected PCI 1/0O and memory resources previously reserved. Call this function only after al use
of the PCI regions has ceased.

Hardware Interfaces

Name
pci_request_selected regions — Reserve selected PCI 1/O and memory resources

Synopsis

int pci _request _sel ected regions (struct pci _dev * pdev, int bars, const
char * res_nane);

Arguments
pdev PCI device whose resources are to be reserved
bars Bitmask of BARs to be requested

res_nanme Nameto be associated with resource

Hardware Interfaces

Name

pci_release regions — Release reserved PCI 1/0 and memory resources
Synopsis

void pci_release regions (struct pci_dev * pdev);
Arguments

pdev PCI device whose resources were previously reserved by pci_request_regions
Description

Releasesall PCI I/0 and memory resourcespreviously reserved by asuccessful call to pci_request_regions.
Call thisfunction only after al use of the PCI regions has ceased.

Hardware Interfaces

Name

pci_request_regions — Reserved PCI 1/0 and memory resources
Synopsis

int pci_request _regions (struct pci_dev * pdev, const char * res_nane);
Arguments

pdev PCI device whose resources are to be reserved

res_name Nameto be associated with resource.

Description

Mark all PCI regions associated with PCI device pdev as being reserved by owner r es_nane. Do not
access any address inside the PCI regions unless this call returns successfully.

Returns 0 on success, or EBUSY on error. A warning message is also printed on failure.

446

Hardware Interfaces

Name

pci_request_regions_exclusive — Reserved PCI |/O and memory resources

Synopsis

int pci_request_regions_exclusive (struct pci_dev * pdev, const char
* res_nane);

Arguments
pdev PCI device whose resources are to be reserved

res_name Nameto be associated with resource.

Description

Mark all PCI regions associated with PCI device pdev as being reserved by owner r es_nane. Do not
access any address inside the PCI regions unless this call returns successfully.

pci _request regi ons_excl usi ve will mark the region so that /dev/mem and the sysfs MMIO
access will not be allowed.

Returns 0 on success, or EBUSY on error. A warning message is also printed on failure.

447

Hardware Interfaces

Name
pci_set_master — enables bus-mastering for device dev
Synopsis
void pci _set _naster (struct pci_dev * dev);
Arguments
dev thePCI deviceto enable
Description
Ena_lbleﬁ bus-mastering on the device and calls pci bi os_set _nast er to do the needed arch specific
settings.

Hardware Interfaces

Name

pci_clear_master — disables bus-mastering for device dev
Synopsis
void pci_clear_master (struct pci_dev * dev);

Arguments

dev thePCI deviceto disable

449

Hardware Interfaces

Name
pci_set _cacheline_size— ensurethe CACHE_LINE_SIZE register is programmed

Synopsis
int pci_set _cacheline_size (struct pci_dev * dev);
Arguments

dev thePCI device for which MWI isto be enabled

Description

Helper function for pci_set mwi. Originally copied from drivers/net/acenic.c. Copyright 1998-2001 by
Jes Sorensen, <jest r ai ned-monkey.org>.

RETURNS

An appropriate -ERRNO error value on error, or zero for success.

450

Hardware Interfaces

Name

pci_set_ mwi — enables memory-write-invalidate PCI transaction
Synopsis

int pci_set_mM (struct pci_dev * dev);
Arguments

dev the PCI device for which MWI isenabled
Description

Enables the Memory-Write-Invalidate transaction in PCl _ COMVAND.

RETURNS

An appropriate -ERRNO error value on error, or zero for success.

451

Hardware Interfaces

Name

pci_try set mwi — enables memory-write-invalidate PCI transaction
Synopsis

int pci _try set_ mnM (struct pci_dev * dev);
Arguments

dev the PCI device for which MWI isenabled

Description

Enables the Memory-Write-Invalidate transaction in PCI _ COMMAND. Callers are not required to check
the return value.

RETURNS

An appropriate -ERRNO error value on error, or zero for success.

452

Hardware Interfaces

Name

pci_clear mwi — disables Memory-Write-Invalidate for device dev
Synopsis

void pci_clear_mv (struct pci_dev * dev);
Arguments

dev thePCI deviceto disable
Description

Disables PClI Memory-Write-Invalidate transaction on the device

453

Hardware Interfaces

Name

pci_intx — enables/disables PCI INTx for device dev
Synopsis

void pci _intx (struct pci_dev * pdev, int enable);
Arguments

pdev the PCI device to operate on

enabl e boolean: whether to enable or disable PCI INTx
Description

Enables/disables PCI INTx for device dev

Hardware Interfaces

Name

pci_intx_mask_supported — probe for INTx masking support
Synopsis

bool pci _intx_mask _supported (struct pci_dev * dev);
Arguments

dev thePCI deviceto operate on
Description

Check if the device dev support INTx masking via the config space command word.

455

Hardware Interfaces

Name

pci_check_and_mask_intx — mask INTx on pending interrupt
Synopsis

bool pci _check _and mask_intx (struct pci_dev * dev);
Arguments

dev thePCI deviceto operate on
Description

Check if the device dev has its INTX line asserted, mask it and return true in that case. False is returned
if not interrupt was pending.

456

Hardware Interfaces

Name

pci_check_and_unmask_intx — unmask INTXx if no interrupt is pending

Synopsis

bool pci _check _and _unmask_intx (struct pci_dev * dev);

Arguments

dev thePCI deviceto operate on

Description

Check if the device dev hasits INTX line asserted, unmask it if not and return true. False is returned and
the mask remains active if there was till an interrupt pending.

457

Hardware Interfaces

Name

pci_msi_off — disablesany MSI or MSI-X capabilities
Synopsis

void pci_nsi_off (struct pci_dev * dev);
Arguments

dev thePCI deviceto operate on
Description

If you want to use MSI, seepci _enabl e_nsi and friends. Thisis alower-level primitive that alows
usto disable M S| operation at the device level.

458

Hardware Interfaces

Name
pci_wait_for_pending_transaction — waits for pending transaction
Synopsis
int pci_wait_for_pending transaction (struct pci_dev * dev);
Arguments
dev thePCI deviceto operate on
Description

Return O if transaction is pending 1 otherwise.

459

Hardware Interfaces

Name

pci_reset_bridge secondary bus — Reset the secondary bus on a PCl bridge.
Synopsis

void pci_reset _bridge secondary bus (struct pci_dev * dev);
Arguments

dev Bridgedevice
Description

Use the bridge control register to assert reset on the secondary bus. Devices on the secondary bus are left
in power-on state.

460

Hardware Interfaces

Name
__pci_reset_function — reset a PCI device function

Synopsis
int _ pci_reset_function (struct pci_dev * dev);

Arguments

dev PCI deviceto reset

Description

Some devices allow an individual function to be reset without affecting other functionsin the same device.
The PCI device must be responsive to PCI config space in order to use this function.

The device function is presumed to be unused when this function is called. Resetting the device will make
the contents of PCI configuration space random, so any caller of this must be prepared to reinitialise the
device including M SI, bus mastering, BARS, decoding IO and memory spaces, €etc.

Returns 0 if the device function was successfully reset or negative if the device doesn't support resetting
asingle function.

461

Hardware Interfaces

Name
__pci_reset_function_locked — reset a PCI device function while holding the dev mutex lock.

Synopsis

int _ pci_reset _function_|ocked (struct pci_dev * dev);

Arguments

dev PCI deviceto reset

Description

Some devices allow an individual function to be reset without affecting other functionsin the same device.
The PCI device must be responsive to PCI config space in order to use this function.

The device function is presumed to be unused and the caller is holding the device mutex lock when this
function is called. Resetting the device will make the contents of PCI configuration space random, so any
caller of this must be prepared to reinitialise the device including MSI, bus mastering, BARs, decoding
IO and memory spaces, €etc.

Returns 0 if the device function was successfully reset or negative if the device doesn't support resetting
asingle function.

462

Hardware Interfaces

Name

pci_reset_function — quiesce and reset a PCI device function
Synopsis
int pci_reset _function (struct pci_dev * dev);

Arguments

dev PCI deviceto reset

Description

Some devices allow an individual function to be reset without affecting other functionsin the same device.
The PCI device must be responsive to PCI config space in order to use this function.

This function does not just reset the PCI portion of a device, but clears al the state associated with the
device. Thisfunction differsfrom __pci_reset_function in that it saves and restores device state over the
reset.

Returns 0 if the device function was successfully reset or negative if the device doesn't support resetting
asingle function.

463

Hardware Interfaces

Name

pci_try reset function — quiesce and reset a PCI device function
Synopsis

int pci_try reset_function (struct pci_dev * dev);
Arguments

dev PCI device to reset
Description

Same as above, except return -EAGAIN if unable to lock device.

464

Hardware Interfaces

Name

pci_probe reset_slot — probe whether a PCI slot can be reset
Synopsis

int pci_probe reset _slot (struct pci_slot * slot);
Arguments

sl ot PCI dot to probe
Description

Return O if slot can be reset, negative if aslot reset is not supported.

465

Hardware Interfaces

Name
pci_reset slot — reset a PCl dlot

Synopsis
int pci_reset_slot (struct pci_slot * slot);
Arguments

sl ot PCIl dot to reset
Description

A PCI bus may host multiple slots, each slot may support a reset mechanism independent of other slots.
For instance, some slots may support slot power control. In the case of a1:1 bus to slot architecture, this
function may wrap the busreset to avoid spurious slot related events such as hotplug. Generally aslot reset
should be attempted before a bus reset. All of the function of the slot and any subordinate buses behind
the slot are reset through this function. PCI config space of all devices in the slot and behind the slot is
saved before and restored after reset.

Return 0 on success, hon-zero on error.

466

Hardware Interfaces

Name
pci_try reset slot — Try to reset a PCl slot

Synopsis
int pci_try reset_slot (struct pci_slot * slot);

Arguments

sl ot PCIl dot to reset

Description
Same as above except return -EAGAIN if the slot cannot be locked

467

Hardware Interfaces

Name

pci_probe reset_bus— probe whether a PCI bus can be reset
Synopsis

int pci_probe_ reset bus (struct pci_bus * bus);
Arguments

bus PCI busto probe
Description

Return O if bus can be reset, negative if abus reset is not supported.

468

Hardware Interfaces

Name
pci_reset_bus— reset aPCI bus
Synopsis
int pci_reset _bus (struct pci_bus * bus);
Arguments
bus toplevel PCI busto reset
Description

Do abus reset on the given bus and any subordinate buses, saving and restoring state of all devices.

Return 0 on success, hon-zero on error.

469

Hardware Interfaces

Name
pci_try reset bus— Try to reset a PCI bus
Synopsis
int pci_try reset _bus (struct pci_bus * bus);
Arguments
bus toplevel PCI busto reset
Description

Same as above except return -EAGAIN if the bus cannot be locked

470

Hardware Interfaces

Name

pcix_get max_mmrbc — get PCI-X maximum designed memory read byte count
Synopsis

int pcix_get max_mrbc (struct pci_dev * dev);
Arguments

dev PCI deviceto query

Returns mmrbc

maximum designed memory read count in bytes or appropriate error value.

471

Hardware Interfaces

Name

pcix_get mmrbc — get PCI-X maximum memory read byte count
Synopsis

int pcix _get _mmrbc (struct pci_dev * dev);
Arguments

dev PCI deviceto query

Returns mmrbc

maximum memory read count in bytes or appropriate error value.

472

Hardware Interfaces

Name

pcix_set_ mmrbc — set PCI-X maximum memory read byte count
Synopsis

int pcix_set_mmbc (struct pci_dev * dev, int mrbc);
Arguments

dev PCI deviceto query

nmr bc maximum memory read count in bytes valid values are 512, 1024, 2048, 4096

Description

If possible sets maximum memory read byte count, some bridges have erratas that prevent this.

473

Hardware Interfaces

Name

pcie_get readrq — get PCl Express read request size
Synopsis

int pcie_get readrq (struct pci_dev * dev);
Arguments

dev PCI deviceto query
Description

Returns maximum memory read request in bytes or appropriate error value.

474

Hardware Interfaces

Name

pcie_set_readrq — set PCI Express maximum memory read regquest
Synopsis

int pcie_set readrq (struct pci_dev * dev, int rq);
Arguments

dev PCI deviceto query

rqg maximum memory read count in bytes valid values are 128, 256, 512, 1024, 2048, 4096
Description

If possible sets maximum memory read request in bytes

475

Hardware Interfaces

Name

pcie_get mps— get PCI Express maximum payload size
Synopsis

int pcie get nps (struct pci_dev * dev);
Arguments

dev PCI deviceto query
Description

Returns maximum payload size in bytes

476

Hardware Interfaces

Name

pcie_set_mps— set PCl Express maximum payload size
Synopsis

int pcie_set_nps (struct pci_dev * dev, int nps);
Arguments

dev PCI deviceto query

nps maximum payload size in bytes valid values are 128, 256, 512, 1024, 2048, 4096
Description

If possible sets maximum payload size

477

Hardware Interfaces

Name
pcie_get_minimum_link — determine minimum link settings of a PCI device
Synopsis

int pcie get _mnimmlink (struct
speed, enumpcie link width * w dth);

pci _dev * dev, enum pci_bus_speed *

Arguments
dev PCI deviceto query
speed storage for minimum speed
wi dt h storage for minimum width

Description
This function will walk up the PCI device chain and determine the minimum link width and speed of the

device.

478

Hardware Interfaces

Name
pci_select bars— Make BAR mask from the type of resource
Synopsis
int pci_select bars (struct pci_dev * dev, unsigned |ong flags);
Arguments
dev the PCI device for which BAR mask is made
flags resourcetype mask to be selected
Description

This helper routine makes bar mask from the type of resource.

479

Hardware Interfaces

Name
pci_add dynid — add anew PCI device ID to this driver and re-probe devices
Synopsis

int pci_add _dynid (struct pci_driver * drv, unsigned int vendor, unsigned
int device, unsigned int subvendor, unsigned int subdevice, unsigned
int class, unsigned int class_mask, unsigned |ong driver_data);

Arguments
drv target pci driver
vendor PCI vendor ID
devi ce PCI device ID
subvendor PCI subvendor ID
subdevi ce PCI subdevice ID
cl ass PCI class

cl ass_mask PCI class mask
driver_data privatedriver data
Description

Adds anew dynamic pci device ID to this driver and causes the driver to probe for al devicesagain. dr v
must have been registered prior to calling this function.

CONTEXT

Does GFP_KERNEL allocation.

RETURNS

0 on success, -errno on failure.

480

Hardware Interfaces

Name
pci_match id — Seeif apci device matches agiven pci_id table

Synopsis

const struct pci_device id * pci_match_id (const struct pci_device_ id
* jids, struct pci_dev * dev);

Arguments
i ds array of PCI deviceid structuresto searchin

dev the PCI device structure to match against.

Description

Used by adriver to check whether a PCI device present in the system isin its list of supported devices.
Returns the matching pci_device_id structure or NULL if there is no match.

Deprecated, don't use this asit will not catch any dynamic ids that a driver might want to check for.

481

Hardware Interfaces

Name
__pci_register_driver — register anew pci driver
Synopsis
int _ pci_register _driver (struct pci_driver * drv, struct nodule *

owner, const char * nobd_nane);

Arguments
drv the driver structure to register
owner owner module of drv

nod_nanme module name string

Description

Addsthe driver structureto the list of registered drivers. Returns a negative value on error, otherwise 0. If
no error occurred, the driver remains registered even if no device was claimed during registration.

482

Hardware Interfaces

Name

pci_unregister_driver — unregister apci driver
Synopsis
void pci_unregister_driver (struct pci_driver * drv);

Arguments

drv thedriver structure to unregister

Description

Deletes the driver structure from the list of registered PCI drivers, givesit a chanceto clean up by calling
itsr errove function for each device it was responsible for, and marks those devices as driverless.

483

Hardware Interfaces

Name
pci_dev_driver — get the pci_driver of adevice
Synopsis
struct pci_driver * pci_dev_driver (const struct pci_dev * dev);
Arguments
dev thedeviceto query
Description

Returns the appropriate pci_driver structure or NULL if there is no registered driver for the device.

Hardware Interfaces

Name

pci_dev_get — increments the reference count of the pci device structure
Synopsis

struct pci_dev * pci_dev_get (struct pci_dev * dev);
Arguments

dev thedevice being referenced

Description
Each live reference to a device should be refcounted.

Driversfor PCI devices should normally record such referencesin their pr obe methods, when they bind
to adevice, and release them by calling pci _dev_put , intheir di sconnect methods.

A pointer to the device with the incremented reference counter is returned.

485

Hardware Interfaces

Name

pci_dev_put — release a use of the pci device structure
Synopsis

void pci _dev_put (struct pci_dev * dev);
Arguments

dev devicethat's been disconnected
Description

Must be called when a user of a device is finished with it. When the last user of the device calls this
function, the memory of the device isfreed.

486

Hardware Interfaces

Name

pci_stop_and_remove _bus device — remove a PCl device and any children
Synopsis

void pci _stop_and renove_bus_device (struct pci_dev * dev);
Arguments

dev thedevicetoremove

Description

Remove a PCI device from the device lists, informing the drivers that the device has been removed. We
also remove any subordinate buses and children in a depth-first manner.

For each device we remove, del ete the device structure from the device lists, remove the /proc entry, and
notify userspace (/shin/hotplug).

487

Hardware Interfaces

Name

pci_find_bus— locate PCI bus from a given domain and bus number

Synopsis

struct pci_bus * pci_find bus (int domain, int busnr);
Arguments

domai n number of PCI domain to search

busnr number of desired PCI bus

Description

Given aPCl bus nhumber and domain number, the desired PCI busislocated in the global list of PCI buses.
If the busisfound, a pointer to its data structure is returned. If no busisfound, NULL is returned.

488

Hardware Interfaces

Name

pci_find_next_bus— begin or continue searching for a PCl bus

Synopsis

struct pci_bus * pci_find _next_bus (const struct pci_bus * from;

Arguments

from Previous PCI busfound, or NULL for new search.

Description

Iterates through the list of known PCI buses. A new search is initiated by passing NULL as the f r om
argument. Otherwise if f r omis not NULL, searches continue from next device on the global list.

489

Hardware Interfaces

Name

pci_get_slot — locate PCI device for agiven PCI slot
Synopsis

struct pci_dev * pci_get _slot (struct pci _bus * bus, unsigned int devfn);
Arguments

bus PCI bus on which desired PCI device resides

devfn encodes number of PCl dot in which the desired PCl device resides and the logical device
number within that slot in case of multi-function devices.

Description

Given a PCI bus and dlot/function number, the desired PCI device islocated in the list of PCI devices. If
the device isfound, its reference count isincreased and this function returns a pointer to its data structure.
The caller must decrement the reference count by calling pci _dev_put . If no device is found, NULL

is returned.

490

Hardware Interfaces

Name

pci_get domain_bus and slot — locate PCI device for a given PCl domain (segment), bus, and slot

Synopsis

struct pci_dev * pci_get _donain_bus_and sl ot (int domain, unsigned int
bus, unsigned int devfn);

Arguments
dormai n PCI domain/segment on which the PCI device resides.
bus PCI bus on which desired PCI device resides

devfn encodes number of PCl dlot in which the desired PCI device resides and the logical device
number within that slot in case of multi-function devices.

Description

Given a PCl domain, bus, and slot/function number, the desired PCI device is located in the list of PCI
devices. If the device is found, its reference count is increased and this function returns a pointer to its
data structure. The caller must decrement the reference count by calling pci _dev_put . If no deviceis
found, NULL isreturned.

4901

Hardware Interfaces

Name

pci_get_subsys— begin or continue searching for a PCl device by vendor/subvendor/device/subdeviceid

Synopsis

struct pci_dev * pci_get subsys (unsigned int vendor, unsigned int
devi ce, unsigned int ss_vendor, unsigned int ss_device, struct pci_dev

* from;

Arguments
vendor PCI vendor id to match, or PCI _ANY _| Dto match all vendor ids
devi ce PCI deviceid to match, or PCI _ANY_| Dto match al deviceids

ss_vendor PCI subsystem vendor id to match, or PCl _ANY_| Dto match all vendor ids
ss_devi ce PCI subsystem deviceid to match, or PCl _ANY_I Dto match all deviceids

from Previous PCI device found in search, or NULL for new search.

Description

Iteratesthrough thelist of known PCI devices. If aPCI deviceisfound withamatchingvendor ,devi ce,
ss_vendor and ss_devi ce, apointer to its device structure is returned, and the reference count to
the device isincremented. Otherwise, NULL isreturned. A new search isinitiated by passing NULL asthe
f r omargument. Otherwise if f r omis not NULL, searches continue from next device on the global list.
The reference count for f r omis always decremented if it is not NULL.

492

Hardware Interfaces

Name

pci_get_device — begin or continue searching for a PCl device by vendor/deviceid

Synopsis

struct pci_dev * pci_get _device (unsigned int vendor, unsigned int
device, struct pci_dev * fron);

Arguments
vendor PCI vendor id to match, or PCl _ANY_| Dto match al vendor ids
devi ce PCI deviceidto match, or PCl _ANY_| Dto match al deviceids

from Previous PCI device found in search, or NULL for new search.

Description

Iterates through the list of known PCI devices. If a PCI device is found with a matching vendor and
devi ce, thereference count to the device isincremented and a pointer to its device structure is returned.
Otherwise, NULL isreturned. A new searchisinitiated by passing NULL asthef r omargument. Otherwise
if f r omisnot NULL, searches continue from next device on the global list. The reference count for f r om
isaways decremented if it isnot NULL.

493

Hardware Interfaces

Name
pci_get_class— begin or continue searching for a PCl device by class

Synopsis
struct pci_dev * pci_get _class (unsigned int class, struct pci_dev *
from;

Arguments

cl ass search for aPCl device with this class designation

from Previous PCl device found in search, or NULL for new search.

Description

Iterates through the list of known PCI devices. If a PCl device is found with a matching cl ass, the
reference count to the device is incremented and a pointer to its device structure is returned. Otherwise,
NULL isreturned. A new searchisinitiated by passing NULL asthef r omargument. Otherwiseif f r omis
not NUL L, searches continue from next device on the global list. The reference count for f r omis aways

decremented if itisnot NULL.

494

Hardware Interfaces

Name

pci_dev_present — Returns 1 if device matching the devicelist is present, O if not.
Synopsis

int pci_dev_present (const struct pci_device id * ids);
Arguments

i ds A pointer to anull terminated list of struct pci_device_id structures that describe the type of PCI
device the caler istrying to find.

Obvious fact

Y ou do not have areferenceto any device that might be found by thisfunction, soif that deviceisremoved
from the system right after thisfunction isfinished, the valuewill be stale. Usethisfunction to find devices
that are usualy built into a system, or for a general hint as to if another device happens to be present at
this specific moment in time.

495

Hardware Interfaces

Name

pci_msi_vec_count — Return the number of MSI vectors a device can send
Synopsis

int pci_nsi_vec_count (struct pci_dev * dev);
Arguments

dev deviceto report about

Description

Thisfunction returnsthe number of M SI vectorsadevice requested viaM ultiple M essage Capableregister.
It returns anegative errno if the device is not capable sending MSI interrupts. Otherwise, the call succeeds
and returns a power of two, up to a maximum of 2"5 (32), according to the MSI specification.

496

Hardware Interfaces

Name

pci_msix_vec_count — return the number of device's MSI-X table entries
Synopsis
int pci_neix_vec_count (struct pci_dev * dev);
Arguments
dev pointer to the pci_dev data structure of MSI-X device function This function returns the number

of device's MSI-X table entries and therefore the number of MSI-X vectors device is capable of
sending. It returns a negative errno if the device is not capable of sending MSI-X interrupts.

497

Hardware Interfaces

Name
pci_enable_msix — configure device's MSI-X capability structure
Synopsis
int pci _enable nsix (struct pci_dev * dev, struct nsix_entry * entries,
i nt nvec);
Arguments
dev pointer to the pci_dev data structure of MSI-X device function

entries pointertoanarray of MSI-X entries

nvec number of MSI-X irgs requested for allocation by device driver

Description

Setup the M SI-X capability structure of device function with the number of requested irgs upon its software
driver call to request for MSI-X mode enabled on its hardware device function. A return of zero indicates
the successful configuration of MSI-X capability structure with new allocated MSI-X irgs. A return of <0
indicates afailure. Or areturn of > O indicates that driver request is exceeding the number of irgs or MSI-
X vectors available. Driver should use the returned value to re-send its request.

498

Hardware Interfaces

Name

pci_msi_enabled — isM S| enabled?
Synopsis

int pci_nsi_enabled (void);
Arguments

voi d noarguments
Description

Returnstrue if MSI has not been disabled by the command-line option pci=nomsi.

499

Hardware Interfaces

Name

pci_enable msi_range — configure device's M Sl capability structure
Synopsis

i nt pci_enabl e _nsi_range (struct pci_dev * dev, int ninvec, int nmaxvec);
Arguments

dev device to configure

m nvec minima number of interrupts to configure

maxvec maximum number of interrupts to configure

Description

This function tries to alocate a maximum possible number of interrupts in a range between ni nvec
and maxvec. It returns a negative errno if an error occurs. If it succeeds, it returns the actual number
of interrupts allocated and updates the dev's irq member to the lowest new interrupt number; the other
interrupt numbers allocated to this device are consecutive.

500

Hardware Interfaces

Name

pci_enable msix_range — configure device's MSI-X capability structure
Synopsis

int pci_enable nsix_range (struct pci_dev * dev, struct nsix_entry *
entries, int mnvec, int nmaxvec);

Arguments
dev pointer to the pci_dev data structure of MSI-X device function
entries pointertoanarray of MSI-X entries
m nvec minimum number of MSI-X irgs requested

maxvec maximum number of MSI-X irgs requested

Description

Setup the MSI-X capability structure of device function with a maximum possible number of interruptsin
therange between mi nvec and maxvec upon its software driver call to request for MSI-X mode enabled
on its hardware device function. It returns a negative errno if an error occurs. If it succeeds, it returns
the actual number of interrupts allocated and indicates the successful configuration of MSI-X capability
structure with new allocated M SI-X interrupts.

501

Hardware Interfaces

Name

pci_bus alloc_resource — allocate a resource from a parent bus
Synopsis

int pci_bus_alloc_resource (struct pci_bus * bus, struct resource *
res, resource_size t size, resource_size t align, resource_size t mn,
unsi gned | ong type_mask, resource_size t (*alignf) (void *, const struct
resource *, resource_size t, resource_size t), void * alignf_data);

Arguments
bus PCI bus
res resource to allocate
si ze size of resourceto allocate
align alignment of resourceto allocate
nmn minimum /proc/iomem address to allocate

t ype_mask IORESOURCE _* type flags
al i gnf resource alignment function

al i gnf _data dataargument for resource alignment function

Description

Given the PCI bus a device resides on, the size, minimum address, alignment and type, try to find an
acceptable resource alocation for a specific device resource.

502

Hardware Interfaces

Name

pci_bus add_device — start driver for asingle device
Synopsis

void pci _bus_add _device (struct pci_dev * dev);
Arguments

dev deviceto add
Description

This adds add sysfs entries and start device drivers

503

Hardware Interfaces

Name
pci_bus add_devices — start driver for PCI devices
Synopsis
void pci _bus_add_devices (const struct pci_bus * bus);
Arguments
bus busto check for new devices
Description

Start driver for PCI devices and add some sysfs entries.

504

Hardware Interfaces

Name
pci_bus set ops— Set raw operations of pci bus
Synopsis
struct pci_ops * pci_bus_set ops (struct pci_bus * bus, struct pci_ops
* ops);
Arguments
bus pci bus struct
OpS new raw operations
Description

Return previous raw operations

505

Hardware Interfaces

Name
pci_read vpd — Read one entry from Vital Product Data
Synopsis
ssize_t pci_read vpd (struct pci_dev * dev, loff _t pos, size_t count,
void * buf);
Arguments
dev pci device struct

pos offset in vpd space
count number of bytesto read

buf pointer to where to store result

506

Hardware Interfaces

Name
pci_write_vpd — Write entry to Vital Product Data

Synopsis

ssize t pci_wite vpd (struct pci_dev * dev, loff _t pos, size_ t count,
const void * buf);

Arguments
dev pci device struct
pos offset in vpd space
count number of bytesto write

buf buffer containing write data

507

Hardware Interfaces

Name
pci_cfg_access lock — Lock PCI config reads/writes
Synopsis
void pci _cfg access | ock (struct pci_dev * dev);
Arguments
dev pci device struct
Description

When access is locked, any userspace reads or writes to config space and concurrent lock requests will
deep until accessis alowed viapci_cfg_access unlocked again.

508

Hardware Interfaces

Name

pci_cfg_access trylock — try to lock PCI config reads/writes
Synopsis

bool pci _cfg access trylock (struct pci_dev * dev);
Arguments

dev pci device struct
Description

Same as pci_cfg_access lock, but will return O if accessis aready locked, 1 otherwise. This function can
be used from atomic contexts.

509

Hardware Interfaces

Name

pci_cfg_access unlock — Unlock PCI config reads/writes
Synopsis

void pci _cfg access_unl ock (struct pci_dev * dev);
Arguments

dev pci device struct
Description

This function allows PCI config accesses to resume.

510

Hardware Interfaces

Name
pci_lost_interrupt — reports alost PCI interrupt

Synopsis
enum pci _lost_interrupt_reason pci_lost_interrupt (struct pci_dev *
pdev);

Arguments

pdev devicewhoseinterrupt islost

Description

The primary function of thisroutineisto report alost interrupt in astandard way which users can recognise
(instead of blaming the driver).

Returns

asuggestion for fixing it (although the driver is not required to act on this).

511

Hardware Interfaces

Name
__ht_create_irq— create an irq and attach it to adevice.
Synopsis
int __ht create irq (struct pci_dev * dev, int idx, ht_irq update t *
update);
Arguments
dev The hypertransport device to find the irq capability on.
i dx Which of the possible irgsto attach to.
updat e Function to be called when changing the htirg message
Description

Theirg number of the new irq or anegative error value is returned.

512

Hardware Interfaces

Name

ht_create irq— create an irq and attach it to adevice.

Synopsis

int ht create_ irq (struct pci_dev * dev, int idx);
Arguments

dev The hypertransport device to find the irq capability on.

i dx Which of the possible irgs to attach to.

Description
ht_create_irq needs to be called for al hypertransport devices that generate irgs.

Theirg number of the new irq or anegative error value is returned.

513

Hardware Interfaces

Name
ht_destroy_irq — destroy an irq created with ht_create irq
Synopsis
void ht _destroy_irq (unsigned int irq);
Arguments
i rq irgto bedestroyed
Description
This reverses ht_create irq removing the specified irq from existence. The irq should be free before this
happens.

514

Hardware Interfaces

Name

pci_scan_slot — scan a PCI slot on a bus for devices.
Synopsis

int pci_scan_slot (struct pci_bus * bus, int devfn);
Arguments

bus PCI busto scan

devfn dot number to scan (must have zero function.)

Description

Scan a PCI dlot on the specified PCI bus for devices, adding discovered devicesto the bus->devices list.
New devices will not haveis added set.

Returns the number of new devices found.

515

Hardware Interfaces

Name
pci_rescan_bus— scan a PCl bus for devices.
Synopsis
unsi gned int pci_rescan_bus (struct pci_bus * bus);
Arguments
bus PCI busto scan
Description

Scan a PCI bus and child buses for new devices, adds them, and enables them.

Returns the max number of subordinate bus discovered.

516

Hardware Interfaces

pci_create_slot — create or increment refcount for physical PCI slot

Synopsis

struct pci_slot * pci_create_slot (struct pci_bus * parent, int slot_nr,
const char * nane, struct hotplug_slot * hotplug);

Arguments

par ent struct pci_bus of parent bridge
sl ot _nr PCI_SLOT(pci_dev->devfn) or -1 for placehol der
nane user visible string presented in /sys/bus/pci/slots/<name>

hot pl ug setif calerishotplug driver, NULL otherwise

Description

PCI dots have first class attributes such as address, speed, width, and a struct pci_slot is used to manage
them. This interface will either return a new struct pci_dslot to the caller, or if the pci_slot already exists,
its refcount will be incremented.

Slots are uniquely identified by apci _bus, sl ot _nr tuple.

There are known platformswith broken firmware that assign the same name to multiple slots. Workaround
these broken platforms by renaming the slots on behalf of the caller. If firmware assigns name N to

multiple slots

Thefirst dot isassigned N The second slot is assigned N-1 The third slot is assigned N-2 etc.

Placeholder slots

In most cases, pci _bus, sl ot _nr will be sufficient to uniquely identify a slot. There is one notable
exception - pSeries (rpaphp), wherethe sl ot _nr cannot be determined until adeviceisactually inserted
into the slot. In this scenario, the caller may pass-1for sl ot _nr.

The following semantics are imposed when the caller passes sl ot _nr ==-1. First, we no longer check
for an existing st r uct pci_slot, as there may be many slotswith sl ot _nr of -1. The other changein
semanticsis user-visible, which is the ‘address' parameter presented in sysfswill

consist solely of a dddd

bb tuple, where dddd isthe PCl domain of thest r uct pci_busand bb isthe bus number. In other words,
the devfn of the "‘placeholder’ slot will not be displayed.

517

Hardware Interfaces

Name

pci_destroy_slot — decrement refcount for physical PCI slot
Synopsis

void pci_destroy_slot (struct pci_slot * slot);
Arguments

sl ot struct pci_slot to decrement
Description

st ruct pci_dlot isrefcounted, so destroying them isreally easy; wejust call kobject_put on its kobj and
let our release methods do the rest.

518

Hardware Interfaces

Name

pci_hp_create_ module_link — create symbolic link to the hotplug driver module.
Synopsis

void pci_hp create nodule |link (struct pci_slot * pci_slot);
Arguments

pci _sl ot struct pci_slot
Description

Helper function for pci_hotplug_core.c to create symbolic link to the hotplug driver module.

519

Hardware Interfaces

Name

pci_hp_remove module_link — remove symbolic link to the hotplug driver module.
Synopsis

void pci_hp_renmove nodule |ink (struct pci_slot * pci_slot);
Arguments

pci _sl ot struct pci_slot
Description

Helper function for pci_hotplug_core.c to remove symbolic link to the hotplug driver module.

520

Hardware Interfaces

Name
pci_enable rom — enable ROM decoding for a PCI device

Synopsis
int pci_enable rom (struct pci_dev * pdev);
Arguments

pdev PCI deviceto enable

Description

Enable ROM decoding on dev. Thisinvolves simply turning on the last bit of the PCI ROM BAR. Note
that some cards may share address decoders between the ROM and other resources, so enabling it may
disable accessto MMIQO registers or other card memory.

521

Hardware Interfaces

Name

pci_disable rom — disable ROM decoding for a PCI device
Synopsis

void pci _disable rom (struct pci_dev * pdev);
Arguments

pdev PCI deviceto disable
Description

Disable ROM decoding on a PCI device by turning off the last bit in the ROM BAR.

522

Hardware Interfaces

Name

pci_map_rom — map a PCl ROM to kernel space
Synopsis

void __iomem?* pci_map_rom (struct pci_dev * pdev, size t * size);
Arguments

pdev pointer to pci device struct

si ze pointer to receive size of pci window over ROM

Return

kernel virtua pointer to image of ROM

Map a PCI ROM into kernel space. If ROM is boot video ROM, the shadow BIOS copy will be returned
instead of the actual ROM.

523

Hardware Interfaces

Name
pci_unmap_rom — unmap the ROM from kernel space
Synopsis
void pci _unnap_rom (struct pci_dev * pdev, void __iomem* rom;
Arguments
pdev pointer to pci device struct
rom virtual address of the previous mapping
Description

Remove a mapping of a previously mapped ROM

524

Hardware Interfaces

Name

pci_platform_rom — provides a pointer to any ROM image provided by the platform
Synopsis

void __ionmem?* pci_platformrom(struct pci_dev * pdev, size t * size);
Arguments

pdev pointer to pci device struct

si ze pointer to receive size of pci window over ROM

525

Hardware Interfaces

Name
pci_enable_sriov — enable the SR-1I0OV capability
Synopsis
int pci_enable sriov (struct pci_dev * dev, int nr_virtfn);
Arguments
dev the PCI device
nr_virtfn number of virtua functionsto enable
Description

Returns 0 on success, or negative on failure.

526

Hardware Interfaces

Name
pci_disable sriov — disable the SR-IOV capability

Synopsis
void pci_disable sriov (struct pci_dev * dev);
Arguments

dev thePCI device

527

Hardware Interfaces

Name
pci_num_vf — return number of VFs associated with a PF device release driver
Synopsis
int pci_numvf (struct pci_dev * dev);
Arguments
dev thePCl device
Description

Returns number of VFs, or 0if SR-IOV is not enabled.

528

Hardware Interfaces

Name

pci_vfs assigned — returns number of VFs are assigned to a guest
Synopsis

int pci_vfs_assigned (struct pci_dev * dev);
Arguments

dev thePCl device
Description

Returns number of VFs belonging to this device that are assigned to a guest. If device is not a physical
function returns 0.

529

Hardware Interfaces

Name
pci_sriov_set_totalvfs — - reduce the Total VFs available

Synopsis
int pci_sriov_set totalvfs (struct pci_dev * dev, ul6é numfs);
Arguments

dev the PCI PF device

nunvfs number that should be used for Tota V Fs supported

Description
Should be called from PF driver's probe routine with device's mutex held.

Returns O if PF is an SRIOV-capable device and value of numvfs valid. If not a PF return -ENOSYS; if
numvfsisinvalid return -EINVAL; if VFsaready enabled, return -EBUSY .

530

Hardware Interfaces

Name
pci_sriov_get_totalvfs— - get total VFs supported on this device

Synopsis

int pci_sriov_get totalvfs (struct pci_dev * dev);

Arguments

dev thePCI PF device

Description

For aPCle device with SRIOV support, return the PCle SRIOV capability value of Total VFs or the value
of driver_max_VFsif the driver reduced it. Otherwise 0.

531

Hardware Interfaces

Name
pci_read legacy io— read byte(s) from legacy 1/0O port space

Synopsis

ssize t pci_read legacy io (struct file * filp, struct kobject * kobj,
struct bin_attribute * bin_attr, char * buf, loff _t off, size t count);

Arguments
filp open sysfsfile
kobj kobject corresponding to file to read from

bin_attr struct bin_attribute for thisfile

buf buffer to store results

of f offset into legacy 1/0O port space

count number of bytesto read
Description

Reads 1, 2, or 4 bytesfrom legacy /O port space using an arch specific callback routine (pci_legacy read).

532

Hardware Interfaces

Name
pci_write legacy io — write byte(s) to legacy 1/0 port space

Synopsis

ssize t pci_wite legacy io (struct file * filp, struct kobject * kobj,
struct bin_attribute * bin_attr, char * buf, loff _t off, size t count);

Arguments
filp open sysfsfile
kobj kobject corresponding to file to read from

bin_attr struct bin_attribute for thisfile

buf buffer containing value to be written

of f offset into legacy 1/0O port space

count number of bytes to write
Description

Writes 1, 2, or 4 bytes from legacy /O port space using an arch specific callback routine
(pci_legacy write).

533

Hardware Interfaces

Name

pci_mmap_legacy _mem — map legacy PCl memory into user memory space
Synopsis

int pci_nmmap_| egacy nem (struct file * filp, struct kobject * kobj,
struct bin_ attribute * attr, struct vmarea_struct * vmm);

Arguments
filp opensysfsfile
kobj kobject corresponding to device to be mapped
attr sruct bin_attribute for thisfile

vima struct vm_area struct passed to mmap

Description

Usesan arch specific callback, pci_mmap_legacy _mem_page_range, to mmap legacy memory space (first
meg of bus space) into application virtual memory space.

534

Hardware Interfaces

Name
pci_mmap_legacy io — map legacy PCI 10 into user memory space

Synopsis

int pci_nmap legacy io (struct file * filp, struct kobject * kobj,
struct bin_ attribute * attr, struct vmarea_struct * vmm);

Arguments
filp opensysfsfile
kobj kobject corresponding to device to be mapped
attr sruct bin_attribute for thisfile

vima struct vm_area struct passed to mmap

Description

Uses an arch specific callback, pci_mmap_legacy _io_page range, to mmap legacy 10 space (first meg of
bus space) into application virtual memory space. Returns -ENOSY S if the operation isn't supported

535

Hardware Interfaces

Name
pci_adjust_legacy attr — adjustment of legacy file attributes
Synopsis
void pci_adjust |legacy attr (struct pci_bus * b, enum pci_mmap_state
nmap_type) ;
Arguments
b bus to cresate files under
mrap_t ype |/O port or memory
Description

Stub implementation. Can be overridden by arch if necessary.

536

Hardware Interfaces

Name
pci_create legacy files— create legacy 1/0 port and memory files

Synopsis
void pci _create | egacy files (struct pci_bus * b);
Arguments

b busto create files under

Description

Some platforms allow access to legacy 1/0 port and ISA memory space on a per-bus basis. This routine
creates the files and ties them into their associated read, write and mmap files from pci-sysfs.c

On error unwind, but don't propagate the error to the caller asit is ok to set up the PCI bus without these
files.

537

Hardware Interfaces

Name

pci_mmap_resource — map a PCI resource into user memory space

Synopsis

int pci_mmap_resource (struct kobject * kobj, struct bin_attribute *
attr, struct vmarea_struct * vma, int wite_conbine);

Arguments
kobj kobject for mapping
attr struct bin_attribute for the file being mapped
vima struct vm_area._struct passed into the mmap

write_conbi ne 1forwrite combine mapping

Description

Use the regular PCI mapping routines to map a PCI resource into userspace.

538

Hardware Interfaces

Name
pci_remove resource files— cleanup resource files
Synopsis
void pci _renove resource files (struct pci_dev * pdev);
Arguments
pdev dev to cleanup
Description

If we created resource filesfor pdev, remove them from sysfs and free their resources.

539

Hardware Interfaces

Name

pci_create resource files— create resource filesin sysfsfor dev
Synopsis

int pci_create resource files (struct pci_dev * pdev);
Arguments

pdev devinquestion
Description

Walk the resourcesin pdev creating files for each resource available.

Hardware Interfaces

Name
pci_write_rom — used to enable access to the PCI ROM display

Synopsis

ssize t pci_wite rom(struct file * filp, struct kobject * kobj, struct
bin attribute * bin_attr, char * buf, loff _t off, size t count);

Arguments
filp sysfsfile
kobj kernel object handle

bin_attr struct bin_attribute for thisfile

buf user input

of f file offset

count number of byte in input
Description

writing anything except O enablesiit

541

Hardware Interfaces

Name
pci_read rom — read a PCl ROM

Synopsis

ssize_t pci _read rom(struct file * filp, struct kobject * kobj, struct
bin attribute * bin_attr, char * buf, loff _t off, size t count);

Arguments
filp sysfsfile
kobj kernel object handle

bin_attr struct bin_attribute for thisfile

buf where to put the data we read from the ROM
of f file offset
count number of bytesto read

Description

Put count bytes starting at of f into buf from the ROM in the PCI device corresponding to kobj .

542

Hardware Interfaces

Name

pci_remove _sysfs dev_files— cleanup PCI specific sysfsfiles
Synopsis

void pci _renove_sysfs dev files (struct pci_dev * pdev);
Arguments

pdev device whose entries we should free

Description

Cleanup when pdev isremoved from sysfs.

PCI Hotplug Support Library

Hardware Interfaces

Name
__pci_hp_register — register a hotplug_slot with the PCI hotplug subsystem
Synopsis
int _ pci_hp register (struct hotplug slot * slot, struct pci_bus *

bus, int devnr, const char * name, struct npodule * owner, const char
* nod_nane) ;

Arguments
sl ot pointer to the struct hotplug_slot to register
bus busthisslotison
devnr device number
namne name registered with kobject core
owner caller module owner

nod_nane caler module name

Description
Registers a hotplug slot with the pci hotplug subsystem, which will allow userspace interaction to the slot.

Returns 0 if successful, anything else for an error.

Hardware Interfaces

Name

pci_hp_deregister — deregister ahotplug_slot with the PCI hotplug subsystem
Synopsis

int pci_hp_deregister (struct hotplug slot * hotplug);
Arguments

hot pl ug pointer to the struct hotplug_slot to deregister
Description

The sl ot must have been registered with the pci hotplug subsystem previously with a call to
pci _hp_register.

Returns O if successful, anything else for an error.

Hardware Interfaces

Name

pci_hp_change_slot_info — changes the slot's information structure in the core

Synopsis

int pci_hp _change_slot_info (struct hotplug slot * hotplug, struct
hot pl ug_slot _info * info);

Arguments

hot pl ug pointer to the slot whose info has changed

info pointer to the info copy into the dlot'sinfo structure
Description

sl ot must have been registered with the pci hotplug subsystem previously with a cal to
pci _hp_register.

Returns 0 if successful, anything else for an error.

546

Chapter 10. Firmware Interfaces

DMI Interfaces

547

Firmware Interfaces

Name
dmi_check_system — check system DMI data

Synopsis

int dm _check_system (const struct dm _systemid * list);

Arguments

list array of dmi_system id structuresto match against All non-null elements of the list must match
their dot's (field index's) data (i.e., each list string must be a substring of the specified DMI dlot's
string data) to be considered a successful match.

Description

Walk the blacklist table running matching functions until someone returns non zero or we hit the end.
Callback function is called for each successful match. Returns the number of matches.

Firmware Interfaces

Name
dmi_first_ match — find dmi_system_id structure matching system DMI data

Synopsis
const struct dm _systemid * dm first_natch (const struct dm _system.id
* list);

Arguments

list array of dmi_system id structuresto match against All non-null elements of the list must match
their dot's (field index's) data (i.e., each list string must be a substring of the specified DMI dlot's
string data) to be considered a successful match.

Description

Walk the blacklist table until the first match is found. Return the pointer to the matching entry or NULL
if there's no match.

549

Firmware Interfaces

Name
dmi_get_system_info — return DMI data value
Synopsis
const char * dm _get _systeminfo (int field);
Arguments
field daaindex (seeenum dmi_field)
Description

Returns one DM| data value, can be used to perform complex DMI data checks.

550

Firmware Interfaces

Name

dmi_name in_vendors— Check if string isin the DMI system or board vendor name
Synopsis
int dmi _nane_in_vendors (const char * str);

Arguments

str Casesensitive Name

551

Firmware Interfaces

Name

dmi_find_device — find onboard device by type/name

Synopsis

const struct dm _device * dm _find_device (int type, const char * nane,
const struct dm _device * from;

Arguments
type devicetypeor DM _DEV_TYPE_ANY to match all device types
nane device name string or NULL to match all

from previousdevice found in search, or NULL for new search.

Description

Iterates through the list of known onboard devices. If a device is found with a matching vendor and
devi ce,apointer toitsdevicestructureisreturned. Otherwise, NULL isreturned. A new searchisinitiated
by passing NULL asthef r omargument. If f r omis not NULL, searches continue from next device.

552

Firmware Interfaces

Name
dmi_get_date — parse aDMI date

Synopsis

bool dmi get date (int field, int * yearp, int * nonthp, int * dayp);
Arguments

field dataindex (see enumdmi_field)

yearp optiona out parameter for the year

nont hp optional out parameter for the month

dayp optional out parameter for the day

Description

The date field is assumed to be in the form resembling [mm[/dd]]/yy[yy] and the result is stored in the out
parameters any or al of which can be omitted.

If thefield doesn't exist, all out parameters are set to zero and false isreturned. Otherwise, trueis returned
with any invalid part of date set to zero.

Onreturn, year, month and day are guaranteed to beintherange of [0,9999], [0,12] and [0,31] respectively.

553

Firmware Interfaces

Name
dmi_wak — Walk the DMI table and get called back for every record
Synopsis
int dmi _walk (void (*decode) (const struct dm _header *, void *), void
* private _data);
Arguments
decode Callback function
privat e _data Privatedatato be passed to the callback function
Description

Returns -1 when the DM table can't be reached, 0 on success.

554

Firmware Interfaces

Name

dmi_match — compare a string to the dmi field (if exists)
Synopsis

bool dm match (enumdm field f, const char * str);
Arguments

f DMI field identifier

str string to compare the DMI field to
Description

Returns true if the requested field equalsto the str (including NULL).

EDD Interfaces

555

Firmware Interfaces

Name
edd_show_raw_data— copies raw data to buffer for userspace to parse
Synopsis
ssize t edd_show raw data (struct edd _device * edev, char * buf);
Arguments
edev target edd device
buf output buffer
Returns

number of bytes written, or -EINVAL on failure

556

Firmware Interfaces

Name
edd_release — free edd structure
Synopsis
voi d edd_rel ease (struct kobject * kobj);
Arguments
kobj kobject of edd structure
Description

Thisiscalled when therefcount of the edd structure reaches 0. This should happen right after we unregister,
but just in case, we use the release callback anyway.

557

Firmware Interfaces

Name
edd dev_is type— isthisEDD device a'type' device?
Synopsis
int edd dev_is type (struct edd device * edev, const char * type);
Arguments
edev target edd device
t ype ahost busor interface identifier string per the EDD spec
Description

Returns 1 (TRUE) if it isa'type device, O otherwise.

558

Firmware Interfaces

Name
edd_get pci_dev — finds pci_dev that matches edev
Synopsis
struct pci_dev * edd get pci_dev (struct edd device * edev);
Arguments
edev edd_device
Description

Returns pci_dev if found, or NULL

559

Firmware Interfaces

Name
edd_init — creates sysfstree of EDD data

Synopsis
int edd_init (void);
Arguments

voi d noarguments

560

Chapter 11. Security Framework

561

Security Framework

Name

security_init — initializes the security framework
Synopsis

int security init (void);
Arguments

voi d noarguments
Description

This should be called early in the kernel initialization sequence.

562

Security Framework

Name

security_module_enable — Load given security module on boot ?
Synopsis
int security_nodul e_enabl e (struct security_operations * ops);

Arguments

ops apointer to the struct security _operations that is to be checked.

Description

Each L SM must pass this method before registering its own operations to avoid security registration races.
This method may also be used to check if your LSM is currently loaded during kernel initialization.

Return true if

-The passed LSM is the one chosen by user at boot time, -or the passed LSM is configured as the default
and the user did not choose an alternate LSM at boot time. Otherwise, return false.

563

Security Framework

Name

register_security — registers a security framework with the kernel
Synopsis
int register_security (struct security_operations * ops);

Arguments

ops apointer to the struct security_options that is to be registered

Description

This function allows a security module to register itself with the kernel security subsystem. Some rudi-
mentary checking is done onthe ops value passed to thisfunction. Y ou'll need to check first if your LSM
isalowed to register itsops by calling security_module_enable(ops).

If there is already a security module registered with the kernel, an error will be returned. Otherwise O is
returned on success.

564

Security Framework

Name
securityfs _create file— create afile in the securityfs filesystem
Synopsis

struct dentry * securityfs create file (const char * nane, unpode_t node,
struct dentry * parent, void * data, const struct file_operations *
fops);

Arguments

nane a pointer to a string containing the name of the file to create.
node the permission that the file should have

par ent apointer to the parent dentry for thisfile. This should be a directory dentry if set. If this para-
meter is NULL, then the file will be created in the root of the securityfs filesystem.

dat a a pointer to something that the caller will want to get to later on. The inode.i_private pointer
will point to thisvalue on the open call.

fops apointer to astruct file_operations that should be used for thisfile.

Description

Thisisthe basic “create afile” function for securityfs. It allows for awide range of flexibility in creating
afile, or a directory (if you want to create a directory, the securityfs_create_dir functionis
recommended to be used instead).

This function returns a pointer to a dentry if it succeeds. This pointer must be passed to the
securityfs_renmove function when the fileisto be removed (no automatic cleanup happens if your
module is unloaded, you are responsible here). If an error occurs, the function will return the error value
(viaERR_PTR).

If securityfsis not enabled in the kernel, the value - ENODEYV is returned.

565

Security Framework

Name

securityfs _create dir — create adirectory in the securityfs filesystem
Synopsis

struct dentry * securityfs create_dir (const char * name, struct dentry
* parent);

Arguments

nane a pointer to a string containing the name of the directory to create.

par ent apointer to the parent dentry for thisfile. This should be a directory dentry if set. If this para-
meter isNULL, then the directory will be created in the root of the securityfs filesystem.

Description

This function creates a directory in securityfs with the given name.

This function returns a pointer to a dentry if it succeeds. This pointer must be passed to the
securityfs_renmpve function when the fileisto be removed (no automatic cleanup happens if your
module is unloaded, you are responsible here). If an error occurs, NULL will be returned.

If securityfsis not enabled in the kernel, the value - ENODEV is returned. It is not wise to check for this
value, but rather, check for NULL or INULL instead asto eliminate the need for #ifdef in the calling code.

566

Security Framework

Name

securityfs_remove — removes afile or directory from the securityfs filesystem
Synopsis
void securityfs renmove (struct dentry * dentry);

Arguments

dentry apointer to athe dentry of thefile or directory to be removed.

Description

This function removes a file or directory in securityfs that was previously created with a call to another
securityfsfunction (likesecurityfs create fil e or variantsthereof.)

Thisfunctionisrequired to be called in order for thefile to be removed. No automatic cleanup of fileswill
happen when a module is removed; you are responsible here.

567

Chapter 12. Audit Interfaces

568

Audit Interfaces

Name

audit_log_start — obtain an audit buffer

Synopsis

struct audit_buffer * audit_log_start (struct audit_context * ctx, gfp_t
of p_mask, int type);

Arguments

ctx audit_context (may be NULL)
of p_mask typeof alocation

type audit message type

Description

Returns audit_buffer pointer on success or NULL on error.

Obtain an audit buffer. This routine doeslocking to obtain the audit buffer, but then no locking is required
for callsto audit_log *format. If the task (ctx) is a task that is currently in a syscall, then the syscall is
marked as auditable and an audit record will be written at syscall exit. If there is no associated task, then
task context (ctx) should be NULL.

569

Audit Interfaces

Name

audit_log_format — format a message into the audit buffer.

Synopsis

void audit_|og_format (struct audit_buffer * ab, const char * fnt,

Arguments

ab audit buffer

fm format string @...: optional parameters matching f nt string

variable arguments

Description

All thework isdone in audit_log_vformat.

570

Audit Interfaces

Name

audit_log_end — end one audit record

Synopsis

void audit_log _end (struct audit_buffer * ab);

Arguments

ab theaudit buffer

Description

net | i nk_uni cast cannot be called inside an irq context because it blocks (last arg, flags, is not set to
MSG_DONTWAIT), so the audit buffer is placed on a queue and a tasklet is scheduled to remove them
from the queue outside the irq context. May be called in any context.

571

Audit Interfaces

Name
audit_log — Log an audit record
Synopsis
void audit_log (struct audit_context * ctx, gfp_t gfp_mask, int type,
const char * fm, ...);
Arguments
ct X audit context

of p_mask typeof alocation
type audit message type
fnt format string to use @...: variable parameters matching the format string

variable arguments

Description

This is a convenience function that calls audit_log_start, audit_log_vformat, and audit_log_end. It may
be called in any context.

572

Audit Interfaces

Name

audit_log_secctx — Converts and logs SELinux context
Synopsis
void audit_|og_secctx (struct audit_buffer * ab, u32 secid);

Arguments

ab audit_buffer

seci d security number

Description

Thisis a helper function that calls security_secid to_secctx to convert secid to secctx and then adds the
(converted) SELinux context to the audit log by calling audit_log_format, thus also preventing leak of
internal secid to userspace. If secid cannot be converted audit_panic is called.

573

Audit Interfaces

Name

audit_alloc — allocate an audit context block for atask

Synopsis

int audit_alloc (struct task_struct * tsk);

Arguments

tsk task

Description

Filter on the task information and allocate a per-task audit context if necessary. Doing so turns on system
call auditing for the specified task. Thisis called from copy_process, so nho lock is needed.

574

Audit Interfaces

Name

__audit_free— free a per-task audit context
Synopsis

void __audit_free (struct task _struct * tsk):
Arguments

t sk task whose audit context block to free
Description

Called from copy_process and do_exit

575

Audit Interfaces

Name
__audit_syscall_entry — fill in an audit record at syscall entry

Synopsis

void __audit_syscall _entry (int major, unsigned |ong al, unsigned | ong
a2, unsigned |long a3, unsigned |ong a4);

Arguments
maj or major syscall type (function)
al additional syscall register 1
a2 additional syscall register 2
a3 additional syscall register 3
a4 additional syscall register 4

Description

Fill in audit context at syscall entry. Thisonly happensif the audit context was created when the task was
created and the state or filters demand the audit context be built. If the state from the per-task filter or from
the per-syscall filter isAUDIT_RECORD_CONTEXT, then the record will be written at syscall exit time
(otherwise, it will only be written if another part of the kernel requests that it be written).

576

Audit Interfaces

Name
__audit_syscall_exit — deallocate audit context after a system call

Synopsis
void _ _audit_syscall _exit (int success, |long return_code);

Arguments

success success value of the syscall

return_code returnvalue of the syscall

Description

Tear down after system call. If the audit context has been marked as auditable (either because of the
AUDIT_RECORD_CONTEXT state from filtering, or because some other part of the kernel wrote an
audit message), then write out the syscall information. In call cases, freethe names stored from get nane.

577

Audit Interfaces

Name

__audit_reusename — fill out filename with info from existing entry

Synopsis

struct filename * __ audit_reusename (const __user char * uptr);

Arguments

uptr userland ptr to pathname

Description

Search theaudit_nameslist for the current audit context. If thereisan existing entry with amatching “ uptr”
then return the filename associated with that audit_name. If not, return NULL.

578

Audit Interfaces

Name

__audit_getname — add a name to the list
Synopsis
void _ _audit_getnane (struct filename * nane);

Arguments

name nameto add

Description

Add anameto the list of audit names for this context. Called from fs/namei.c:get name.

579

Audit Interfaces

Name

__audit_inode — store the inode and device from alookup
Synopsis

void __audit_inode (struct fil enane * name, const struct dentry * dentry,
unsi gned int flags);

Arguments
nane name being audited
dentry dentry being audited

flags attributesfor this particular entry

580

Audit Interfaces

Name

auditsc_get_stamp — get local copies of audit_context values

Synopsis

int auditsc_get_stanp (struct audit_context * ctx, struct timespec *
t, unsigned int * serial);

Arguments
ctx audit_context for the task
t timespec to store time recorded in the audit_context

serial seria valuethat isrecorded in the audit_context

Description

Also sets the context as auditable.

581

Audit Interfaces

Name

audit_set_loginuid — set current task's audit_context loginuid
Synopsis

int audit_set |oginuid (kuid_t |oginuid);
Arguments

| ogi nui d loginuid value
Description

Returns 0.

Called (set) from fs/proc/base.c::proc_| ogi nuid_write.

582

Audit Interfaces

Name
__audit_mq_open — record audit datafor aPOSIX MQ open

Synopsis
void __audit_ny_open (int oflag, unbpde_t node, struct ng_attr * attr);

Arguments

of ag openflag
node mode bits

attr queue attributes

583

Audit Interfaces

Name

__audit_mq_sendrecv — record audit data for aPOSIX MQ timed send/receive
Synopsis

void __audit_ng_sendrecv (mgd_t mmdes, size_t nsg_len, unsigned int
msg_pri o, const struct timespec * abs_tinmeout);

Arguments
ngdes MQ descriptor
nsg | en Message length

nmsg_prio Message priority

abs_timeout Messagetimeout in absolutetime

584

Audit Interfaces

Name
__audit_mq_notify — record audit datafor a POSIX MQ notify
Synopsis
void __audit_ng_notify (nmgd_t mgdes, const struct sigevent * notifica-
tion);
Arguments
ngdes MQ descriptor

notification Notificationevent

585

Audit Interfaces

Name
__audit_mq_getsetattr — record audit datafor a POSIX MQ get/set attribute

Synopsis
void __audit_ny_getsetattr (nmgd_t nydes, struct ng_attr * nystat);
Arguments

ngdes MQ descriptor

ngstat MQflags

586

Audit Interfaces

Name

__audit_ipc_obj — record audit data for ipc object
Synopsis
void __audit_ipc_obj (struct kern_ipc_perm?* ipcp);

Arguments

i pcp ipc permissions

587

Audit Interfaces

Name

__audit_ipc_set_perm — record audit data for new ipc permissions

Synopsis

void __audit_ipc_set_perm (unsigned | ong gbytes, uid_t uid, gid_t gid,
unode_t node);

Arguments

gbyt es msgq bytes

ui d msgq user id

gid msgq group id

node msgg mode (permissions)
Description

Called only after audi t _i pc_obj .

588

Audit Interfaces

Name

__audit_socketcall — record audit datafor sys socketcall
Synopsis

int __audit_socketcall (int nargs, unsigned |ong * args);
Arguments

nar gs number of args, which should not be more than AUDITSC _ARGS.

args argsaray

589

Audit Interfaces

Name
__audit_fd_pair — record audit data for pipe and socketpair

Synopsis
void __audit _fd_pair (int fdil, int fd2);
Arguments

fdl thefirst file descriptor

fd2 thesecond file descriptor

590

Audit Interfaces

Name

__audit_sockaddr — record audit data for sys bind, sys connect, sys sendto
Synopsis
int __audit_sockaddr (int len, void * a);

Arguments

| en datalengthin user space

a data address in kernel space

Description

Returns O for success or NULL context or < O on error.

591

Audit Interfaces

Name

__audit_signal_info — record signal info for shutting down audit subsystem
Synopsis

int __audit_signal _info (int sig, struct task struct * t);
Arguments

si g signa vaue

t task being signaled
Description

If the audit subsystem is being terminated, record the task (pid) and uid that is doing that.

592

Audit Interfaces

Name

__audit_log_bprm_fcaps — store information about aloading bprm and relevant fcaps

Synopsis

int __audit_log_bprmfcaps (struct linux_binprm * bprm const struct
cred * new, const struct cred * old);

Arguments
bpr m pointer to the bprm being processed
new the proposed new credentias

old the old credentias

Description

Simply check if the proc already has the caps given by the file and if not store the priv escalation info for
later auditing at the end of the syscall

-Eric

593

Audit Interfaces

Name
__audit_log_capset — store information about the arguments to the capset syscall

Synopsis
void _ _audit_log capset (const struct cred * new, const struct cred
* old);

Arguments

new the new credentias

ol d theold (current) credentials

Description

Record the arguments userspace sent to sys _capset for later printing by the audit system if applicable

594

Audit Interfaces

Name

audit_core_dumps — record information about processes that end abnormally
Synopsis

voi d audit_core_dunps (long signr);
Arguments

si gnr signa vaue

Description

If a process ends with a core dump, something fishy is going on and we should record the event for
investigation.

595

Audit Interfaces

Name
audit_rule_change — apply all rulesto the specified message type
Synopsis
int audit_rule_change (int type, _ u32 portid, int seq, void * data,

size_t datasz);

Arguments

type audit message type

portid target portidfor netlink audit messages

seq netlink audit message sequence (serial) number
dat a payload data

dat asz size of payload data

596

Audit Interfaces

Name

audit_list_rules_send — list the audit rules
Synopsis
int audit_list_rules_send (struct sk_buff * request_skb, int seq);

Arguments

request _skb skb of request we are replying to (used to target the reply)

seq netlink audit message sequence (serial) number

597

Audit Interfaces

Name

parent_len — find the length of the parent portion of a pathname
Synopsis
int parent_len (const char * path);

Arguments

pat h pathname of which to determine length

598

Audit Interfaces

Name

audit_compare_dname_path — compare given dentry name with last component in given path. Return of
0 indicates a match.

Synopsis

i nt audit_conpare_dnane_path (const char * dnane, const char * path,
i nt parentlen);

Arguments
dnane dentry name that we're comparing
pat h full pathname that we're comparing

par ent | en length of the parent if known. Passing in AUDIT_NAME_FULL here indicates that we
must compute this value.

599

Chapter 13. Accounting Framework

600

Accounting Framework

Name

sys acct — enable/disable process accounting
Synopsis
| ong sys_acct (const char __user * name);

Arguments

nane file name for accounting records or NULL to shutdown accounting

Description

Returns O for success or negative errno values for failure.

sys_acct istheonly system call needed to implement process accounting. It takes the name of the file
where accounting records should be written. If the filename is NULL, accounting will be shutdown.

601

Accounting Framework

Name

acct_collect — collect accounting information into pacct_struct
Synopsis
voi d acct_collect (long exitcode, int group_dead);

Arguments

exi t code task exit code

group_dead not O, if thisthread is the last one in the process.

602

Accounting Framework

Name

acct_process —
Synopsis
voi d acct _process (void);

Arguments

voi d noarguments

Description

handles process accounting for an exiting task

603

Chapter 14. Block Devices

604

Block Devices

Name
blk_get_backing_dev_info — get the address of a queue's backing_dev_info

Synopsis

struct backing_dev_info * bl k_get backi ng_dev_info (struct bl ock_devi ce
* bdev);

Arguments

bdev device

Description

Locates the passed device's request queue and returns the address of its backing_dev_info. This function
can only be called if bdev is opened and the return value is never NULL.

605

Block Devices

Name
blk_delay queue — restart queueing after defined interval

Synopsis

voi d bl k_del ay_queue (struct request_queue * g, unsigned |ong nsecs);

Arguments
q The struct request_queue in question

nsecs Delay in msecs

Description

Sometimes queueing needsto be postponed for alittlewhile, to allow resourcesto come back. Thisfunction
will make sure that queueing is restarted around the specified time. Queue lock must be held.

606

Block Devices

Name

blk_start_queue — restart a previously stopped queue
Synopsis

void bl k_start_queue (struct request_queue * q);
Arguments

g Thestruct request_gueuein question
Description

bl k_start_queue will clear the stop flag on the queue, and call the request_fn for the queueiif it was
in astopped state when entered. Also seebl k_st op_queue. Queue lock must be held.

607

Block Devices

Name

blk_stop_queue — stop a queue
Synopsis
voi d bl k_stop_queue (struct request_queue * q);

Arguments

g The struct request_queue in question

Description

The Linux block layer assumes that a block driver will consume al entries on the request queue when
therequest_fn strategy is called. Often thiswill not happen, because of hardware limitations (queue depth
settings). If a device driver gets a 'queue full' response, or if it ssimply chooses not to queue more 1/O at
one point, it can cal thisfunction to prevent the request_fn from being called until the driver has signalled
it's ready to go again. This happens by calling bl k_st art _queue to restart queue operations. Queue
lock must be held.

608

Block Devices

Name

blk_sync_queue — cancel any pending callbacks on a queue

Synopsis

voi d bl k_sync_queue (struct request_queue * q);

Arguments

g thequeue

Description

The block layer may perform asynchronous callback activity on a queue, such as calling the unplug func-
tion after atimeout. A block device may call blk_sync_queueto ensure that any such activity is cancelled,
thus allowing it to release resources that the callbacks might use. The caller must already have made sure
that its ->make_request_fn will not re-add plugging prior to calling this function.

This function does not cancel any asynchronous activity arising out of elevator or throttling code. That
would requireel evat or _exit andbl kcg_exi t _queue to be called with queue lock initialized.

609

Block Devices

Name

__blk_run_queue — run a single device queue
Synopsis
void _ bl k _run_queue (struct request_queue * Q);

Arguments

g Thequeuetorun

Description

Seebl k_run_queue. Thisvariant must be called with the queue lock held and interrupts disabled.

610

Block Devices

Name

blk_run_queue_async — run a single device queue in workqueue context

Synopsis

voi d bl k_run_queue_async (struct request_queue * q);

Arguments

g Thequeuetorun

Description

Tells kblockd to perform the equivalent of bl k_r un_queue on behalf of us. The caller must hold the
gueue lock.

611

Block Devices

Name

blk_run_gqueue — run a single device queue

Synopsis

void bl k_run_queue (struct request_queue * Q);

Arguments

g Thequeuetorun

Description

Invoke request handling on this queue, if it has pending work to do. May be used to restart queueing when
arequest has completed.

612

Block Devices

Name

blk_queue bypass start — enter queue bypass mode

Synopsis

voi d bl k_queue_bypass_start (struct request_queue * q);

Arguments

g queue of interest

Description

In bypass mode, only the dispatch FIFO queue of q isused. This function makes g enter bypass mode and
drainsal requests which were throttled or issued before. On return, it's guaranteed that no request isbeing
throttled or has ELVPRIV set and bl k_queue_bypass t r ue inside queue or RCU read lock.

613

Block Devices

Name

blk_queue bypass end — leave queue bypass mode
Synopsis
voi d bl k_queue_bypass_end (struct request_queue * Q);

Arguments

g queue of interest

Description

L eave bypass mode and restore the normal queueing behavior.

614

Block Devices

Name
blk_cleanup_queue — shutdown a request queue
Synopsis
voi d bl k_cl eanup_queue (struct request_queue * q);
Arguments
g request queue to shutdown
Description

Mark g DYING, drain al pending requests, mark q DEAD, destroy and put it. All future requests will
be failed immediately with -ENODEV.

615

Block Devices

Name
blk_init_queue — prepare arequest queue for use with a block device
Synopsis

struct request _queue * bl k_init_queue (request_fn_proc * rfn, spinlock_t
* | ock);

Arguments

rfn Thefunction to be caled to process requests that have been placed on the queue.

| ock Request queue spin lock

Description

If ablock device wishesto usethe standard request handling procedures, which sortsrequests and coal esces
adjacent requests, then it must call bl k_i ni t _queue. Thefunctionr f n will be called when there are
requests on the queue that need to be processed. If the device supports plugging, then r f n may not be
called immediately when requests are available on the queue, but may be called at sometimelater instead.
Plugged queues are generally unplugged when a buffer belonging to one of the requests on the queue is
needed, or due to memory pressure.

r f n is not required, or even expected, to remove all requests off the queue, but only as many as it can
handle at atime. If it does leave requests on the queue, it is responsible for arranging that the requests
get dealt with eventually.

The queue spin lock must be held while manipulating the requests on the request queue; this lock will be
taken also from interrupt context, so irq disabling is needed for it.

Function returns a pointer to the initialized request queue, or NULL if it didn't succeed.

Note

bl k_init_queue must bepairedwithabl k_cl eanup_queue cal when the block device is deac-
tivated (such as at module unload).

616

Block Devices

Name
blk_make_request — given abio, allocate a corresponding struct request.

Synopsis

struct request * bl k_rmake_request (struct request_queue * (q, struct bio
* bio, gfp_t gfp_mask);

Arguments
q target request queue
bi o The bio describing the memory mappingsthat will be submitted for 10. It may be achained-

bio properly constructed by block/bio layer.

of p_mask gfp flagsto be used for memory allocation

Description

blk_make request is the parallel of generic_make request for BLOCK_PC type commands. Where the
struct request needs to be farther initialized by the caller. It is passed a struct bio, which describes the
memory info of the 1/0 transfer.

The caler of blk_make request must make sure that bi_io_vec are set to describe the memory buffers.
That bi o_dat a_di r will return the needed direction of the request. (And al bio's in the passed bio-
chain are properly set accordingly)

If called under none-sleepable conditions, mapped bio buffers must not need bouncing, by calling
the appropriate masked or flagged allocator, suitable for the target device. Otherwise the call to
blk_queue _bounce will BUG.

WARNING

When allocating/cloning a bio-chain, careful consideration should be given to how you allocate bios. In
particular, you cannot use _ GFP_WAIT for anything but the first bio in the chain. Otherwise you risk
waiting for 1O completion of a bio that hasn't been submitted yet, thus resulting in a deadlock. Alterna-
tively bios should be allocated usingbi o_kmal | oc instead of bi o_al | oc, asthat avoidsthe mempool
deadlock. If possible a hig 10 should be split into smaller parts when allocation fails. Partial allocation
should not be an error, or you risk alive-lock.

617

Block Devices

Name
blk_rq_set_block_pc — initialize a request to type BLOCK_PC

Synopsis
void bl k_rq_set_block_pc (struct request * rq);

Arguments

rq requesttobeinitialized

618

Block Devices

Name
blk_requeue request — put a request back on queue

Synopsis

void bl k_requeue_request (struct request_queue * g, struct request *
ra);

Arguments
g request queue where request should be inserted

rq requestto beinserted

Description

Drivers often keep queueing requests until the hardware cannot accept more, when that condition happens
we need to put the request back on the queue. Must be called with queue lock held.

619

Block Devices

Name
part_round_stats — Round off the performance stats on a struct disk_stats.

Synopsis

void part_round_stats (int cpu, struct hd_struct * part);

Arguments

cpu cpunumber for stats access

part target partition

Description

The average 10 queue length and utilisation statistics are maintained by observing the current state of the
gueue length and the amount of time it has been in this state for.

Normally, that accounting is done on 10 completion, but that can result in more than a second's worth of
1O being accounted for within any one second, leading to >100% utilisation. To deal with that, we call
this function to do a round-off before returning the results when reading /proc/diskstats. This accounts
immediately for al queue usage up to the current jiffies and restarts the counters again.

620

Block Devices

Name
blk_add request_payload — add a payload to a request

Synopsis

voi d bl k_add_request _payl oad (struct request * rqg, struct page * page,
unsi gned int |en);

Arguments
rq reguest to update
page page backing the payload

Il en length of the payload.

Description

This allows to later add a payload to an already submitted request by a block driver. The driver needs to
take care of freeing the payload itself.

Note that thisis a quite horrible hack and nothing but handling of discard requests should ever useit.

621

Block Devices

Name
generic_make_request — hand a buffer to its device driver for 1/O
Synopsis

voi d generic_nake_request (struct bio * bio);

Arguments

bi 0 Thebio describing the location in memory and on the device.

Description

generi c_make_r equest isusedto makel/O requestsof block devices. It ispassed astruct bio, which
describes the 1/0 that needs to be done.

generi c_make_r equest does not return any status. The success/failure status of the request, along
with notification of completion, is delivered asynchronously through the bio->bi_end_io function de-
scribed (one day) else where.

The caller of generic_make request must make surethat bi_io_vec are set to describe the memory buffer,
and that bi_dev and bi_sector are set to describe the device address, and the bi_end io and optionally
bi_private are set to describe how completion notification should be signaled.

generic_make_request and the driversit callsmay usebi_next if this bio happensto be merged with some-
one else, and may resubmit the bio to alower device by calling into generic_make request recursively,
which means the bio should NOT be touched after the call to ->make request_fn.

622

Block Devices

Name

submit_bio — submit a bio to the block device layer for 1/0

Synopsis
void submit_bio (int rw, struct bio * bio);
Arguments

rw whether to READ or WRI TE, or maybe to READA (read ahead)

bi o The struct bio which describes the 1/0

Description

subm t _bi o isvery similar in purpose to generi c_make_r equest , and uses that function to do
most of the work. Both are fairly rough interfaces; bi o must be presetup and ready for 1/O.

623

Block Devices

Name
blk_rqg_check_limits— Helper function to check arequest for the queue limit
Synopsis

int blk rqg_check_Iimts (struct request_queue * g, struct request * rq);

Arguments

g thequeue

rq therequest being checked

Description

r g may have been made based on weaker limitations of upper-level queues in request stacking drivers,
and it may violate the limitation of q. Since the block layer and the underlying device driver trust r q after
itisinserted to q, it should be checked against q before the insertion using this generic function.

Thisfunction should also be useful for request stacking driversin some casesbel ow, so export thisfunction.
Request stacking drivers like request-based dm may change the queue limits while requests are in the
gueue (e.g. dm's table swapping). Such request stacking drivers should check those requests against the
new gueue limits again when they dispatch those requests, although such checkings are also done against
the old queue limits when submitting requests.

624

Block Devices

Name
blk_insert_cloned request — Helper for stacking drivers to submit a request

Synopsis
int blk_insert_cloned request (struct request_queue * g, struct request
*ra);

Arguments

g thequeueto submit the request

rq therequest being queued

625

Block Devices

Name

blk_rq_err_bytes— determine number of bytestill the next failure boundary
Synopsis
unsigned int blk rq_err_bytes (const struct request * rq);

Arguments

rgq requesttoexamine

Description
A request could be merge of 10s which require different failure handling. This function determines the

number of bytes which can be failed from the beginning of the request without crossing into area which
need to be retried further.

Return

The number of bytesto fail.

Context

gueue_lock must be held.

626

Block Devices

Name
blk_peek request — peek at the top of arequest queue

Synopsis

struct request * bl k_peek_request (struct request_queue * q);
Arguments

g request queue to peek at

Description

Return the request at the top of q. The returned regquest should be started using bl k_start _r equest
before LLD starts processing it.

Return

Pointer to the request at the top of q if available. Null otherwise.

Context

gueue_lock must be held.

627

Block Devices

Name
blk_start request — start request processing on the driver

Synopsis
void bl k_start_request (struct request * req);

Arguments

req requesttodequeue

Description

Degueuer eq and start timeout timer on it. This hands off the request to the driver.

Block internal functions which don't want to start timer should call bl k_dequeue_r equest .

Context

gueue_lock must be held.

628

Block Devices

Name
blk_fetch request — fetch arequest from arequest queue
Synopsis
struct request * blk fetch_request (struct request_queue * Q);
Arguments
g request queue to fetch arequest from
Description
Return the request at the top of q. The request is started on return and LLD can start processing it imme-
diately.
Return

Pointer to the request at the top of q if available. Null otherwise.

Context

gueue_lock must be held.

629

Block Devices

Name
blk_update request — Specia helper function for request stacking drivers

Synopsis

bool bl k_update_request (struct request * req, int error,

nr_bytes);

Arguments
req the request being processed
error 0 for success, < 0 for error

nr_bytes number of bytesto completer eq

Description

unsi gned int

Ends I/O on a number of bytes attached to r eq, but doesn't complete the request structure even if r eq

doesn't have leftover. If r eq hasleftover, setsit up for the next range of segments.

This specia helper function is only for request stacking drivers (e.g. request-based dm) so that they can

handle partial completion. Actual device drivers should use blk_end_request instead.

Passing the result of bl k_r q_byt es asnr _byt es guaranteesf al se return from this function.

Return

f al se - thisrequest doesn't have any more datat r ue - this request has more data

630

Block Devices

Name
blk_unprep_request — unprepare a reguest

Synopsis

voi d bl k_unprep_request (struct request * req);
Arguments

req thereguest

Description

This function makes a request ready for compl ete resubmission (or completion). It happens only after all
error handling is complete, so represents the appropriate moment to deallocate any resources that were
allocated to the request in the prep_rq_fn. The queue lock is held when calling this.

631

Block Devices

Name
blk_end request — Helper function for drivers to complete the request.

Synopsis

bool bl k_end_request (struct request * rq, int error, unsigned int

nr_bytes);

Arguments
rq the request being processed
error 0 for success, < 0 for error

nr_bytes number of bytesto complete

Description

Ends I/0 on anumber of bytes attached tor q. If r g hasleftover, setsit up for the next range of segments.

Return

f al se - we aredone with thisrequest t r ue - still buffers pending for this request

632

Block Devices

Name

blk_end request_all — Helper function for drives to finish the request.
Synopsis

void bl k_end_request_all (struct request * rq, int error);
Arguments

rq the request to finish

error O for success, <0 for error
Description

Completely finishr q.

633

Block Devices

Name
blk_end request_cur — Helper function to finish the current request chunk.

Synopsis
bool bl k_end_request_cur (struct request * rq, int error);

Arguments

rq the request to finish the current chunk for

error O for success, <0 for error

Description

Complete the current consecutively mapped chunk fromr q.

Return

f al se - wearedone with thisrequest t r ue - till buffers pending for this request

634

Block Devices

Name
blk_end request_err — Finish arequest till the next failure boundary.

Synopsis
bool blk_end_request_err (struct request * rq, int error);

Arguments

rq the request to finish till the next failure boundary for

error must be negative errno

Description

Completer q till the next failure boundary.

Return

f al se - wearedone with thisrequest t r ue - till buffers pending for this request

635

Block Devices

Name
__blk_end_request — Helper function for driversto complete the request.

Synopsis

bool _ bl k _end_request (struct request * rqg, int error,
nr_bytes);

Arguments

rq the request being processed
error 0 for success, < 0 for error

nr_bytes number of bytesto complete

Description

Must be called with queue lock held unlike bl k_end_r equest .

Return

f al se - we aredone with thisrequest t r ue - still buffers pending for this request

unsi gned i nt

636

Block Devices

Name

__blk_end_request_all — Helper function for drives to finish the request.
Synopsis

void __blk end_request_all (struct request * rqg, int error);
Arguments

rq the request to finish

error O for success, <0 for error
Description

Completely finish r q. Must be called with queue lock held.

637

Block Devices

Name
__blk_end_request_cur — Helper function to finish the current request chunk.

Synopsis

bool _ bl k_end_request_cur (struct request * rq, int error);
Arguments
rq the request to finish the current chunk for

error O for success, <0 for error

Description

Complete the current consecutively mapped chunk from r g. Must be called with queue lock held.

Return

f al se - wearedone with thisrequest t r ue - till buffers pending for this request

638

Block Devices

Name
__blk_end_request_err — Finish arequest till the next failure boundary.

Synopsis

bool _ bl k_end request_err (struct request * rq, int error);
Arguments
rq the request to finish till the next failure boundary for

error must be negative errno

Description

Completer q till the next failure boundary. Must be called with queue lock held.

Return

f al se - wearedone with thisrequest t r ue - till buffers pending for this request

639

Block Devices

Name

rq_flush_dcache pages — Helper function to flush all pagesin a request
Synopsis

void rqg_flush_dcache_pages (struct request * rq);
Arguments

rq therequestto beflushed
Description

Flush all pagesinr g.

Block Devices

Name
blk_Ild_busy — Check if underlying low-level drivers of adevice are busy

Synopsis
int blk_Ild _busy (struct request_queue * q);

Arguments

g thequeue of the device being checked
Description

Check if underlying low-level drivers of a device are busy. If the drivers want to export their busy state,
they must set own exporting function using bl k_queue_I | d_busy first.

Basically, thisfunction is used only by request stacking driversto stop dispatching requests to underlying

devices when underlying devices are busy. This behavior helps more 1/0O merging on the queue of the
request stacking driver and prevents 1/0O throughput regression on burst 1/0 load.

Return

0 - Not busy (The request stacking driver should dispatch request) 1 - Busy (The request stacking driver
should stop dispatching request)

641

Block Devices

Name

blk_rq_unprep_clone — Helper function to free al biosin a cloned request
Synopsis

void bl k_rq_unprep_clone (struct request * rq);
Arguments

rgq theclonerequest to be cleaned up
Description

Free all biosinr g for acloned request.

642

Block Devices

Name
blk_rg prep_clone — Helper function to setup clone request
Synopsis
int blk rq_prep_clone (struct request * rq, struct request * rq_src,

struct bio_set * bs, gfp_t gfp_mask, int (*bio_ctr) (struct bio *
struct bio *, void *), void * data);

Arguments

rq the request to be setup

rg_src original request to be cloned

bs bio_set that bios for clone are allocated from

gf p_mask memory allocation mask for bio

bio _ctr setup function to be called for each clone bio. Returns O for success, non O for failure.

dat a private datato be passedto bi o_ctr

Description

Cloneshbiosinrg_src tor g, and copies attributesof r g_sr ¢ tor g. The actual datapartsof r g_sr c
(e.g. ->cmd, ->sense) are not copied, and copying such parts is the caller's responsibility. Also, pages
which the original bios are pointing to are not copied and the cloned bios just point same pages. So cloned
bios must be completed before original bios, which means the caller must completer g beforer g_src.

Block Devices

Name
blk_start_plug — initialize blk_plug and track it inside the task_struct

Synopsis
void bl k_start_plug (struct blk_plug * plug);

Arguments

pl ug Thestruct blk plug that needsto be initialized

Description

Trackingblk_pluginsidethetask_struct will help with auto-flushing the pending I/O should the task end up
blocking betweenbl k_start _plugandbl k_fi ni sh_pl ug. Thisisimportant from a performance
perspective, but also ensures that we don't deadlock. For instance, if the task is blocking for a memory
allocation, memory reclaim could end up wanting to free a page belonging to that request that is currently
residing in our private plug. By flushing the pending 1/0 when the process goes to sleep, we avoid this
kind of deadlock.

Block Devices

Name
blk_pm_runtime_init — Block layer runtime PM initialization routine
Synopsis

void blk_ pmruntine_init (struct request_queue * ¢, struct device *
dev);

Arguments

q the queue of the device

dev the device the queue belongsto

Description

Initialize runtime-PM-related fields for q and start auto suspend for dev. Driversthat want to take advan-
tage of request-based runtime PM should call this function after dev has been initialized, and its request
gueue g has been allocated, and runtime PM for it can not happen yet(either due to disabled/forbidden or
itsusage_count > 0). In most cases, driver should call this function before any 1/0 has taken place.

This function takes care of setting up using auto suspend for the device, the autosuspend delay is set to
-1 to make runtime suspend impossible until an updated value is either set by user or by driver. Drivers
do not need to touch other autosuspend settings.

The block layer runtime PM is request based, so only works for drivers that use request as their 10 unit
instead of those directly use bio's.

Block Devices

Name

blk_pre runtime_suspend — Pre runtime suspend check
Synopsis
int blk_pre_runtime_suspend (struct request_queue * Q);

Arguments

g thequeue of thedevice

Description

Thisfunction will check if runtime suspend is allowed for the device by examining if there are any requests
pending in the queue. If there are requests pending, the device can not be runtime suspended; otherwise,
the queue's status will be updated to SUSPENDING and the driver can proceed to suspend the device.

For the not allowed case, we mark last busy for the device so that runtime PM core will try to autosuspend
it sometime later.

This function should be called near the start of the device's runtime_suspend callback.

Return

0 - OK to runtime suspend the device -EBUSY - Device should not be runtime suspended

646

Block Devices

Name

blk_post_runtime_suspend — Post runtime suspend processing
Synopsis
voi d bl k_post_runti me_suspend (struct request_queue * ¢, int err);

Arguments

q the queue of the device

err return value of the device's runtime_suspend function

Description

Update the queue's runtime status according to the return value of the device's runtime suspend function
and mark last busy for the device so that PM core will try to auto suspend the device at alater time.

This function should be called near the end of the device's runtime_suspend callback.

647

Block Devices

Name

blk_pre_runtime_resume — Pre runtime resume processing

Synopsis

void bl k_pre_runtinme_resume (struct request_queue * q);

Arguments

g thequeue of thedevice

Description
Update the queue's runtime status to RESUMING in preparation for the runtime resume of the device.

This function should be called near the start of the device's runtime_resume callback.

Block Devices

Name

blk_post_runtime_resume — Post runtime resume processing

Synopsis

void bl k_post_runtime_resune (struct request_queue * g, int err);

Arguments

q the queue of the device

err return value of the device's runtime_resume function

Description

Update the queue's runtime status according to the return val ue of the device'sruntime_resume function. If
it is successfully resumed, process the requests that are queued into the device's queue when it is resuming
and then mark last busy and initiate autosuspend for it.

This function should be called near the end of the device's runtime_resume callback.

649

Block Devices

Name

__blk_run_queue_uncond — run a queue whether or not it has been stopped

Synopsis

void __ bl k _run_queue_uncond (struct request_queue * q);

Arguments

g Thequeuetorun

Description

Invoke request handling on a queue if there are any pending requests. May be used to restart request
handling after a request has completed. This variant runs the queue whether or not the queue has been
stopped. Must be called with the queue lock held and interrupts disabled. Seeadso bl k_run_queue.

650

Block Devices

Name

__blk_drain_queue — drain requests from request_queue

Synopsis

void _ bl k drain_queue (struct request_queue * q, bool drain_all);

Arguments

q queuetodrain

drai n_al | whether to drain all requests or only the onesw/ ELVPRIV

Description

Drain requestsfrom q. If dr ai n_al | isset, all requests are drained. If not, only ELVPRIV requests are
drained. The caller isresponsible for ensuring that no new requests which need to be drained are queued.

651

Block Devices

Name

rq_ioc — determine io_context for request allocation
Synopsis
struct io_context * rqg_ioc (struct bio * bio);

Arguments

bi 0 request being alocated isfor this bio (can be NULL)

Description

Determine io_context to use for request alocation for bi 0. May return NULL if cur r ent - >io_context
doesn't exist.

652

Block Devices

Name
__get_request — get afree request
Synopsis
struct request * _ get_request (struct request_list * rl, int rw flags,

struct bio * bio, gfp_t gfp_mask);

Arguments
ri regquest list to allocate from
rw flags RW and SYNC flags
bi o bio to allocate request for (can be NULL)

gf p_nmask alocation mask

Description

Get afree request from g. This function may fail under memory pressure or if q is dead.

Must be called with g->queue _lock held and, Returns ERR_PTR on failure, with g->queue_lock held.
Returns request pointer on success, with g->queue_lock *not held*.

653

Block Devices

Name
get_request — get afree request
Synopsis

struct request * get_request (struct request_queue * q, int rw flags,
struct bio * bio, gfp_t gfp_mask);

Arguments

q reguest_queue to allocate request from
rw flags RW and SYNC flags
bi o bio to allocate request for (can be NULL)

gf p_nmask alocation mask

Description

Get afreerequest fromq. If __GFP_WAI T issetingf p_nask, thisfunction keeps retrying under mem-
ory pressure and failsiff g is dead.

Must be called with g->queue lock held and, Returns ERR_PTR on failure, with g->queue_lock held.
Returns request pointer on success, with g->queue_lock *not held*.

654

Block Devices

Name
blk_attempt_plug_merge — try to merge with cur r ent 's plugged list

Synopsis

bool bl k_attenpt_plug_nerge (struct request_queue * q, struct bio * bio,
unsi gned int * request_count);

Arguments
q reguest_queue new bio is being queued at
bi o new bio being queued

request _count out parameter for number of traversed plugged requests

Description

Determine whether bi o being queued on g can be merged with a request on cur r ent 's plugged list.
Returnst r ue if merge was successful, otherwisef al se.

Plugging coalesces |Os from the sameissuer for the same purpose without going through g->queue_lock.
Assuch it's more of an issuing mechanism than scheduling, and the request, while may have elvpriv data,
is not added on the elevator at this point. In addition, we don't have reliable access to the elevator outside
gueue lock. Only check basic merging parameters without querying the elevator.

Caller must ensure Iblk_queue_nomerges(q) beforehand.

655

Block Devices

Name
blk_end bidi_request — Complete a bidi request

Synopsis

bool bl k_end_bi di _request (struct request * rq, int error, unsigned int
nr_bytes, unsigned int bidi_bytes);

Arguments
rq the request to complete
error 0 for success, <0 for error
nr_bytes number of bytesto completer q

bi di _bytes number of bytesto completer g->next_rq

Description

Ends I/0O on anumber of bytes attached tor g and r g->next_rg. Driversthat supports bidi can safely call
this member for any type of request, bidi or uni. In the later case bi di _byt es isjust ignored.

Return

f al se - we are done with thisrequest t r ue - till buffers pending for this request

656

Block Devices

Name
__blk_end_bidi_regquest — Complete abidi request with queue lock held

Synopsis

bool _ bl k_end_bidi _request (struct request * rq, int error, unsigned
int nr_bytes, unsigned int bidi_bytes);

Arguments
rq the request to complete
error 0 for success, <0 for error
nr_bytes number of bytesto completer q

bi di _bytes number of bytesto completer g->next_rq

Description

Identical to bl k_end_bi di _request except that queue lock is assumed to be locked on entry and
remains so on return.

Return

f al se - we are done with thisrequest t r ue - till buffers pending for this request

657

Block Devices

Name
blk_rq_map _user_iov — map user datato arequest, for REQ_TYPE_BLOCK_PC usage

Synopsis

int blk_rq_map_user_iov (struct request_queue * ¢, struct request *
rgq, struct rq_map_data * map_data, const struct iov_iter * iter, gfp_t

of p_nmask) ;

Arguments
q reguest queue where request should be inserted
rq reguest to map datato

map_dat a pointer to therq map_data holding pages (if necessary)
iter iovec iterator

of p_mask memory alocation flags

Description

Datawill be mapped directly for zero copy /O, if possible. Otherwise akernel bounce buffer is used.

A matching bl k_r g_unnmap_user must beissued at the end of I/O, while still in process context.

Note

The mapped bio may need to be bounced through bl k_queue_bounce before being submitted to the
device, as pages mapped may be out of reach. It'sthe callers responsibility to make sure this happens. The
original bio must be passed back into bl k_r q_unnmap_user for proper unmapping.

658

Block Devices

Name

blk_rq_unmap_user — unmap arequest with user data
Synopsis

int blk_rog_unmap_user (struct bio * bio);
Arguments

bi o start of biolist
Description

Unmap a rq previously mapped by bl k_rq_map_user. The caller must supply the origina rg->bio
fromthebl k_r q_map_user return, since the I/O completion may have changed rg->bio.

659

Block Devices

Name
blk_rq_map _kern — map kernel datato arequest, for REQ _TYPE_BLOCK_PC usage

Synopsis

int blk rg_mp_kern (struct request_queue * ¢, struct request * rqg, void
* kbuf, unsigned int len, gfp_t gfp_mask);

Arguments
q reguest queue where request should be inserted
rq request to fill
kbuf the kernel buffer
I en length of user data

of p_mask memory alocation flags

Description

Datawill be mapped directly if possible. Otherwise a bounce buffer is used. Can be called multiple times
to append multiple buffers.

660

Block Devices

Name

blk_release queue — release a struct request_queue when it is no longer needed
Synopsis
voi d bl k_rel ease_queue (struct kobject * kobj);

Arguments

kobj thekobj belonging to the request queue to be released

Description

blk release queueisthe pair to bl k_i nit _queue or bl k_queue_nake_request . It should be
called when arequest queue is being released; typically when ablock device is being de-registered. Cur-
rently, its primary task it to free al the struct request structures that were allocated to the queue and the
gueue itself.

Note

Thelow level driver must have finished any outstanding requestsfirst viabl k_cl eanup_queue.

661

Block Devices

Name

blk_queue prep rq— set aprepare_request function for queue
Synopsis

void bl k_queue_prep_rq (struct request_queue * q, prep_rqg_fn * pfn);
Arguments

q queue

pfn prepare request function

Description

It'spossiblefor aqueueto register aprepare_request callback which isinvoked beforetherequest ishanded
to the request_fn. The goa of the function is to prepare a request for 1/0, it can be used to build a cdb
from the request data for instance.

662

Block Devices

Name

blk_queue _unprep_rq — set an unprepare_request function for queue

Synopsis

voi d bl k_queue_unprep_rq (struct request_queue * q, unprep_rqg_fn * ufn);
Arguments

q queue

uf n unprepare_request function

Description

It's possible for aqueueto register an unprepare_request callback which isinvoked before the request isfi-
nally completed. Thegoal of the functionisto deallocate any datathat wasallocated in the prepare_request

callback.

663

Block Devices

Name

blk_queue_merge bvec — set amerge bvec function for queue

Synopsis

void bl k_queue_nerge_bvec (struct request_queue * g, nerge_bvec fn *
nbf n) ;

Arguments

q queue

nbf n merge bvec fn

Description

Usually queues have static limitations on the max sectors or segmentsthat we can put in areguest. Stacking
drivers may have some settings that are dynamic, and thus we have to query the queue whether it is ok
to add a new bio_vec to a bio a a given offset or not. If the block device has such limitations, it needs
to register a merge_bvec fn to control the size of bio's sent to it. Note that a block device *must* allow
a single page to be added to an empty bio. The block device driver may want to use the bi o_spl i t
function to deal with these bio's. By default no merge_bvec fnis defined for a queue, and only the fixed
limits are honored.

664

Block Devices

Name
blk_set_default_limits — reset limits to default values
Synopsis
void bl k_set _default linits (struct queue limts * lim;
Arguments
lim thequeue limits structure to reset
Description

Returns a queue_limit struct to its default state.

665

Block Devices

Name
blk_set stacking_limits — set default limits for stacking devices
Synopsis
void bl k_set _stacking_limts (struct queue_limts * |im;
Arguments
[i m thequeue limits structure to reset
Description
Returns aqueue_limit struct to its default state. Should be used by stacking driverslike DM that have no
internal limits.

666

Block Devices

Name
blk_queue_make request — define an alternate make_request function for adevice

Synopsis

voi d bl k_queue_make_request (struct request_queue * g, nmake_request_fn
* nfn);

Arguments

q the request queue for the device to be affected

nfn the aternate make request function

Description

The normal way for struct bios to be passed to a device driver isfor them to be collected into requests on
arequest queue, and then to allow the device driver to select requests off that queue when it isready. This
workswell for many block devices. However some block devices (typically virtual devices such asmd or
Ivm) do not benefit from the processing on the request queue, and are served best by having the requests
passed directly to them. This can be achieved by providing afunctiontobl k_queue_make_r equest .

Caveat

The driver that does this *must* be able to deal appropriately with buffersin “highmemory”. This can be
accomplished by either calling ___bi o_knap_at omi ¢ to get atemporary kernel mapping, or by caling
bl k_queue_bounce to create a buffer in normal memory.

667

Block Devices

Name

blk_queue bounce_limit — set bounce buffer limit for queue
Synopsis
voi d bl k_queue_bounce_limt (struct request_queue * q, u64 max_addr);

Arguments

q the request queue for the device

max_addr the maximum address the device can handle

Description

Different hardware can have different requirements as to what pagesit can do 1/0 directly to. A low level
driver can call blk_queue_bounce_limit to havelower memory pages allocated as bounce buffersfor doing

1/O to pages residing above max_addr .

668

Block Devices

Name
blk_limits max_hw_sectors — set hard and soft limit of max sectors for request

Synopsis

void blk_limts_max_hw sectors (struct queue limts * limts, unsigned
i nt max_hw sectors);

Arguments

limts the queue limits

max_hw _sectors max hardware sectorsin the usual 512b unit

Description

Enables a low level driver to set a hard upper limit, max_hw_sectors, on the size of requests.
max_hw_sectorsis set by the device driver based upon the capabilities of the I/O controller.

max_dev_sectors is a hard limit imposed by the storage device for READ/WRITE requests. It is set by
the disk driver.

max_sectors is a soft limit imposed by the block layer for filesystem type requests. This value can be
overridden on a per-device basis in /sys/block/<device>/queue/max_sectors kb. The soft limit can not
exceed max_hw_sectors.

669

Block Devices

Name

blk_queue_max_hw_sectors — set max sectors for a request for this queue

Synopsis

voi d bl k_queue_max_hw sectors (struct request_queue * g, unsigned int
max_hw _sectors);

Arguments
q the request queue for the device

max_hw _sectors max hardware sectorsin the usual 512b unit

Description

See descriptionfor bl k_limts_max_hw sectors.

670

Block Devices

Name

blk_queue_chunk_sectors — set size of the chunk for this queue

Synopsis

voi d bl k_queue_chunk_sectors (struct request_queue * ¢, unsigned int
chunk_sectors);

Arguments

q the request queue for the device

chunk_sectors chunk sectorsin the usual 512b unit

Description

If adriver doesn't want 10s to cross a given chunk size, it can set this limit and prevent merging across
chunks. Note that the chunk size must currently be a power-of-2 in sectors. Also note that the block layer
must accept a page worth of data at any offset. So if the crossing of chunks is a hard limitation in the

driver, it must still be prepared to split single page bios.

671

Block Devices

Name

blk_queue_max_discard_sectors — set max sectors for asingle discard
Synopsis

voi d bl k_queue_max_di scard_sectors (struct request_queue * ¢, unsigned
i nt max_di scard_sectors);

Arguments

q the request queue for the device

max_di scard_sectors maximum number of sectors to discard

672

Block Devices

Name

blk_queue_max_write_same_sectors — set max sectors for a single write same
Synopsis

void bl k_queue_max_wite_same_sectors (struct request_queue * ¢, un-
signed int max_wite_same_sectors);

Arguments

q the request queue for the device

max_write_sane_sectors maximum number of sectorsto write per command

673

Block Devices

Name

blk_queue_max_segments — set max hw segments for arequest for this queue

Synopsis

voi d bl k_queue_max_segments (struct request_queue * ¢, unsigned short
max_segnent s) ;

Arguments
q the request queue for the device

max_segnents max number of segments

Description

Enables alow level driver to set an upper limit on the number of hw data segmentsin a request.

674

Block Devices

Name

blk_queue_max_segment_size — set max segment size for blk_rq map_sg

Synopsis

voi d bl k_queue_max_segnent _si ze (struct request_queue * g, unsigned int
max_si ze);

Arguments
q the request queue for the device

max_si ze max sizeof segment in bytes

Description

Enables alow level driver to set an upper limit on the size of a coalesced segment

675

Block Devices

Name

blk_queue logical_block size — set logical block size for the queue

Synopsis

voi d bl k_queue_| ogi cal _bl ock_size (struct request_queue * ¢, unsigned
short size);

Arguments

q the request queue for the device

si ze thelogical block size, in bytes

Description

This should be set to the lowest possible block size that the storage device can address. The default of
512 covers most hardware.

676

Block Devices

Name
blk_queue physical_block size — set physical block size for the queue

Synopsis

voi d bl k_queue_physi cal _bl ock_si ze (struct request_queue * g, unsigned
int size);

Arguments

q the request queue for the device

si ze thephysical block size, in bytes

Description

This should be set to the lowest possible sector size that the hardware can operate on without reverting
to read-modify-write operations.

677

Block Devices

Name
blk_queue alignment_offset — set physical block alignment offset
Synopsis
voi d bl k_queue_al i gnment _of f set (struct request_queue * g, unsigned int
of fset);
Arguments
q the request queue for the device

of f set alignment offset in bytes

Description

Some devices are naturally misaligned to compensate for things like the legacy DOS partition table 63-
sector offset. Low-level drivers should call this function for devices whose first sector is not naturally

aligned.

678

Block Devices

Name

blk_limits io_min — set minimum request size for adevice

Synopsis

voidblk limts_ io mn (struct queue_linmts * limts, unsignedint mn);

Arguments

limts thequeuelimits

nn smallest 1/0O size in bytes

Description

Some devices have an internal block size bigger than the reported hardware sector size. This function can
be used to signal the smallest 1/0 the device can perform without incurring a performance penalty.

679

Block Devices

Name

blk_queue io_min — set minimum request size for the queue

Synopsis

void bl k_queue_io_mn (struct request_queue * ¢, unsigned int mn);

Arguments

q the request queue for the device

m n smallest 1/O size in bytes

Description

Storage devices may report a granularity or preferred minimum 1/0 size which is the smallest request the
device can perform without incurring a performance penalty. For disk drivesthisisoften the physical block
size. For RAID arraysit is often the stripe chunk size. A properly aligned multiple of minimum_io_size
isthe preferred request size for workloads where a high number of 1/0 operationsis desired.

680

Block Devices

Name
blk_limits io_opt — set optimal request size for adevice
Synopsis

void blk limts_io_opt (struct queue_linmits * limts, unsignedint opt);

Arguments

limts thequeuelimits

opt smallest 1/0O size in bytes

Description

Storage devices may report an optimal 1/O size, which isthe device's preferred unit for sustained 1/0. This
israrely reported for disk drives. For RAID arraysit isusually the stripe width or the internal track size. A
properly aligned multiple of optimal_io_size is the preferred request size for workloads where sustained

throughput is desired.

681

Block Devices

Name
blk_queue io_opt — set optimal request size for the queue

Synopsis

voi d bl k_queue_io_opt (struct request_queue * ¢, unsigned int opt);

Arguments

q the request queue for the device

opt optimal request sizein bytes

Description

Storage devices may report an optimal 1/O size, which isthe device's preferred unit for sustained 1/0. This
israrely reported for disk drives. For RAID arraysit isusually the stripe width or the internal track size. A
properly aligned multiple of optimal_io_size is the preferred request size for workloads where sustained

throughput is desired.

682

Block Devices

Name
blk_queue_stack_limits— inherit underlying queue limits for stacked drivers
Synopsis
void blk _queue_stack limts (struct request _queue * t, st ruct

request _queue * b);

Arguments

t the stacking driver (top)

b the underlying device (bottom)

683

Block Devices

Name

blk_stack_limits — adjust queue_limits for stacked devices

Synopsis

int blk stack Iimts (struct queue_limts * t, struct queue_limts *
b, sector_t start);

Arguments
t the stacking driver limits (top device)
b the underlying queue limits (bottom, component device)

start first data sector within component device

Description

This function is used by stacking drivers like MD and DM to ensure that all component devices have
compatible block sizes and alignments. The stacking driver must provide a queue_limits struct (top) and
then iteratively call the stacking function for all component (bottom) devices. The stacking function will
attempt to combine the values and ensure proper aignment.

Returns 0 if the top and bottom queue_limits are compatible. The top device's block sizes and alignment
offsets may be adjusted to ensure alignment with the bottom device. If no compatible sizes and alignments
exist, -1 is returned and the resulting top queue_limits will have the misaligned flag set to indicate that
the alignment_offset is undefined.

684

Block Devices

Name

bdev_stack_limits — adjust queue limits for stacked drivers

Synopsis

int bdev_stack limts (struct queue_linmts * t, struct block_device *
bdev, sector_t start);

Arguments
t the stacking driver limits (top device)
bdev the component block_device (bottom)

start first data sector within component device

Description

Merges queue limits for atop device and a block_device. Returns 0 if alignment didn't change. Returns
-1if adding the bottom device caused misalignment.

685

Block Devices

Name
disk_stack limits— adjust queue limits for stacked drivers
Synopsis
void disk_stack limts (struct gendisk * disk, struct block _device *
bdev, sector_t offset);
Arguments
di sk MD/DM gendisk (top)
bdev the underlying block device (bottom)
of f set offset to beginning of data within component device
Description

Mergesthe limitsfor atop level gendisk and a bottom level block _device.

686

Block Devices

Name
blk_queue_dma pad — set pad mask

Synopsis

voi d bl k_queue_dna_pad (struct request_queue * q, unsigned int nask);

Arguments

q the request queue for the device

mask pad mask

Description

Set dma pad mask.
Appending pad buffer to arequest modifiesthelast entry of ascatter list such that it includesthe pad buffer.

687

Block Devices

Name
blk_queue update dma pad — update pad mask

Synopsis

voi d bl k_queue_updat e_dma_pad (struct request_queue * g, unsigned int
mask) ;

Arguments

q the request queue for the device

mask pad mask

Description

Update dma pad mask.

Appending pad buffer to arequest modifiesthelast entry of ascatter list such that it includesthe pad buffer.

688

Block Devices

Name

blk_queue dma drain — Set up adrain buffer for excess dma.

Synopsis

i nt bl k_queue_dnma_drain (struct request_queue * ¢, dna_drai n_needed_fn
* dma_drai n_needed, void * buf, unsigned int size);

Arguments

Descr

Note

q the request queue for the device

drme_dr ai n_needed fnwhich returns non-zero if drain is necessary

buf physically contiguous buffer
si ze size of the buffer in bytes
iption

Some devices have excess DMA problems and can't simply discard (or zero fill) the unwanted piece of
the transfer. They have to have area area of memory to transfer it into. The use case for thisis ATAPI
devicesin DMA mode. If the packet command causes a transfer bigger than the transfer size some HBASs
will lock up if there aren't DMA elements to contain the excess transfer. What this APl does is adjust the
gueue so that the buf is always appended silently to the scatterlist.

This routine adjusts max_hw_segments to make room for appending the drain buffer. If you call
bl k_queue_nax_segment s after calling this routine, you must set the limit to one fewer than your
device can support otherwise there won't be room for the drain buffer.

689

Block Devices

Name

blk_queue _segment_boundary — set boundary rules for segment merging
Synopsis

voi d bl k_queue_segnent _boundary (struct request_queue * g, unsigned | ong
mask) ;

Arguments

q the request queue for the device

mask the memory boundary mask

690

Block Devices

Name
blk_queue_dma_alignment — set dma length and memory alignment
Synopsis
voi d bl k_queue_dna_al i gnnent (struct request_queue * g, int nmask);
Arguments
q the request queue for the device
mask alignment mask
description

set required memory and length alignment for direct dma transactions. this is used when building direct
io requests for the queue.

691

Block Devices

Name

blk_queue update dma_alignment — update dma length and memory alignment

Synopsis

void bl k_queue_update_dna_alignnent (struct request_queue * q, int
mask) ;

Arguments

q the request queue for the device

mask alignment mask

description

update required memory and length alignment for direct dma transactions. If the requested alignment is
larger than the current alignment, then the current queue alignment is updated to the new value, otherwise
it is left alone. The design of thisis to allow multiple objects (driver, device, transport etc) to set their
respective alignments without having them interfere.

692

Block Devices

Name
blk_queue flush — configure queue's cache flush capability

Synopsis

voi d bl k_queue_flush (struct request_queue * g, unsigned int flush);

Arguments
q the request queue for the device

flush 0, REQ FLUSH or REQ FLUSH |REQ FUA

Description

Tell block layer cache flush capability of g. If it supports flushing, REQ_FLUSH should be set. If it
supports bypassing write cache for individual writes, REQ FUA should be set.

693

Block Devices

Name

blk_execute rq _nowait — insert a request into queue for execution

Synopsis

void bl k_execute_rq_nowait (struct request_queue * (g, struct gendi sk *
bd_di sk, struct request * rqg, int at_head, rq_end_io_fn * done);

Arguments

q gueue to insert the request in

bd_di sk matching gendisk

rq reguest to insert

at _head insertrequest at head or tail of queue

done 1/0 completion handler

Description

Insert afully prepared request at the back of the I/0O scheduler queue for execution. Don't wait for com-
pletion.

Note

Thisfunction will invoke done directly if the queue is dead.

694

Block Devices

Name

blk_execute rq— insert arequest into queue for execution

Synopsis

int blk execute_rq (struct request_queue * q, struct gendi sk * bd_di sk,
struct request * rqg, int at_head);

Arguments
q gueue to insert the request in
bd_di sk matching gendisk
rq reguest to insert

at _head insertrequest at head or tail of queue

Description

Insert afully prepared request at the back of the I/O scheduler queue for execution and wait for compl etion.

695

Block Devices

Name

blkdev_issue flush — queue aflush

Synopsis

int blkdev_issue_flush (struct block device * bdev, gfp_t gfp_nask,
sector_t * error_sector);

Arguments
bdev blockdev to issue flush for
of p_nmask memory allocation flags (for bio_alloc)

error_sector error sector

Description

Issue aflush for the block device in question. Caller can supply room for storing the error offset in case
of aflush error, if they wish to. If WAIT flag is not passed then caller may check only what request was

pushed in someinternal queue for later handling.

696

Block Devices

Name

blkdev_issue discard — queue a discard

Synopsis

i nt bl kdev_i ssue_discard (struct bl ock _device * bdev, sector_t sector,
sector_t nr_sects, gfp_t gf p_mask, unsigned long flags);

Arguments
bdev blockdev to issue discard for
sect or start sector

nr_sects number of sectorsto discard
gf p_mask memory allocation flags (for bio_alloc)
fl ags BLKDEV_IFL_* flagsto control behaviour

Description

Issue a discard request for the sectors in question.

697

Block Devices

Name

blkdev_issue write_same — queue awrite same operation

Synopsis

int bl kdev_i ssue_wite_same (struct bl ock _device * bdev, sector_t sec-
tor, sector_t nr_sects, gfp_t gfp_mask, struct page * page);

Arguments
bdev target blockdev
sect or start sector

nr_sects number of sectorsto write
gf p_mask memory allocation flags (for bio_alloc)

page page containing datato write

Description

I ssue a write same request for the sectorsin question.

698

Block Devices

Name

blkdev_issue zeroout — zero-fill ablock range
Synopsis

i nt bl kdev_i ssue_zeroout (struct block _device * bdev, sector_t sector,
sector_t nr_sects, gfp_t gof p_mask, bool discard);

Arguments
bdev blockdev to write
sect or start sector

nr_sects number of sectorsto write
gf p_mask memory allocation flags (for bio_alloc)

di scard whether to discard the block range

Description

Zero-fill ablock range. If the discard flag is set and the block device guarantees that subsequent READ
operationsto the block rangein question will return zeroes, the blockswill be discarded. Should the discard
request fail, if the discard flag is not set, or if discard _zeroes data is not supported, this function will
resort to zeroing the blocks manually, thus provisioning (allocating, anchoring) them. If the block device
supports the WRITE SAME command bl kdev_i ssue_zer oout will use it to optimize the process
of clearing the block range. Otherwise the zeroing will be performed using regular WRITE calls.

699

Block Devices

Name
blk_queue find_tag — find arequest by itstag and queue

Synopsis

struct request * bl k_queue_find_ tag (struct request_queue * q, int tag);

Arguments

q The request queue for the device

tag Thetag of the request

Notes
Should be used when a device returns atag and you want to match it with a request.

no locks need be held.

700

Block Devices

Name

blk_free tags— release agiven set of tag maintenance info
Synopsis

void blk free tags (struct bl k_queue tag * bqt);
Arguments

bat thetag map to free
Description

Drop the reference count on bgt and freesit when the last referenceis dropped.

701

Block Devices

Name

blk_queue free tags — release tag maintenanceinfo
Synopsis
voi d bl k_queue_free_tags (struct request_queue * q);

Arguments

g therequest queue for the device

Notes

Thisis used to disable tagged queuing to adevice, yet leave queue in function.

702

Block Devices

Name

blk_init_tags — initialize the tag info for an external tag map
Synopsis

struct bl k _queue_tag * blk_init_tags (int depth, int alloc_policy);
Arguments

depth the maximum queue depth supported

al |l oc_policy tagalocation policy

703

Block Devices

Name

blk_queue init_tags— initialize the queue tag info
Synopsis

int blk queue_init_tags (struct request_queue * (g, int depth,

bl k_queue_tag * tags, int alloc_policy);
Arguments

q the request queue for the device

depth the maximum queue depth supported

t ags the tag to use

al | oc_policy tagallocation policy
Description

Queue lock must be held hereif the function is called to resize an existing map.

struct

704

Block Devices

Name

blk_queue resize tags— change the queueing depth
Synopsis

int bl k_queue_resize tags (struct request_queue * (g, int new depth);

Arguments

q the request queue for the device

new_dept h the new max command queueing depth

Notes

Must be called with the queue lock held.

705

Block Devices

Name
blk_queue end_tag — end tag operations for a request

Synopsis

voi d bl k_queue_end_tag (struct request_queue * ¢, struct request * rq);
Arguments

g therequest queue for the device

rq therequest that has completed
Description

Typically called when end_t hat _request _fi rst returns 0, meaning al transfers have been done

for arequest. It'simportant to call thisfunction beforeend_t hat _r equest _I ast, asthat will put the
request back on the free list thus corrupting the internal tag list.

Notes

gueue lock must be held.

706

Block Devices

Name

blk_queue start tag — find afree tag and assign it

Synopsis

int blk queue_start_tag (struct request_queue * g, struct request * rq);

Arguments

Descr

Notes

g therequest queue for the device
rq theblock request that needs tagging
iption

This can either be used as a stand-alone helper, or possibly be assigned as the queue prep_rqg_fn (in which
case struct request automagically gets a tag assigned). Note that this function assumes that any type of
request can be queued! if thisis not true for your device, you must check the request type before calling
thisfunction. The request will also be removed from the request queue, so it's the drivers responsibility to
readd it if it should need to be restarted for some reason.

gueue lock must be held.

707

Block Devices

Name
blk_queue invalidate tags— invalidate all pending tags

Synopsis
voi d bl k_queue_invalidate_tags (struct request_queue * Q);

Arguments

g therequest queue for the device

Description

Hardware conditions may dictate a need to stop al pending requests. In this case, we will safely clear the
block side of the tag queue and readd all requests to the request queue in the right order.

Notes

gueue lock must be held.

708

Block Devices

Name

__blk_queue free tags — release tag maintenance info

Synopsis

void _ bl k _queue_free_tags (struct request_queue * q);

Arguments

g therequest queue for the device

Notes

bl k_cl eanup_queue will take care of calling this function, if tagging has been used. So there's no
need to call thisdirectly.

709

Block Devices

Name
blk_rq_count_integrity sg— Count number of integrity scatterlist elements

Synopsis
int blk rg_count_integrity_sg (struct request_queue * q, struct bio *
bi 0) ;

Arguments

q request queue

bi o bio with integrity metadata attached

Description

Returns the number of elements required in a scatterlist corresponding to the integrity metadatain a bio.

710

Block Devices

Name
blk_rg map_integrity_sg — Map integrity metadata into a scatterlist
Synopsis
int blk_ rg_map_integrity_sg (struct request_queue * q, struct bio * bio,
struct scatterlist * sglist);
Arguments
q request queue
bi o bio with integrity metadata attached
sgli st target scatterlist
Description

Map theintegrity vectorsinrequest into ascatterlist. The scatterlist must be big enoughto hold all elements.
l.e.sizedusingbl k_rg_count _integrity_sg.

711

Block Devices

Name

blk_integrity compare — Compare integrity profile of two disks
Synopsis
int blk integrity _conpare (struct gendi sk * gdl, struct gendisk * gd2);

Arguments

gdl Disktocompare

gd2 Disk to compare

Description

Meta-devices like DM and MD need to verify that all sub-devices use the same integrity format before
advertising to upper layers that they can send/receive integrity metadata. This function can be used to
check whether two gendisk devices have compatible integrity formats.

712

Block Devices

Name
blk_integrity_register — Register a gendisk as being integrity-capable
Synopsis

int blk_integrity register (struct gendisk * disk, struct blk_integrity
* tenpl ate);

Arguments
di sk struct gendisk pointer to make integrity-aware

tenpl at e optional integrity profile to register

Description

When a device needs to advertise itself as being able to send/receive integrity metadata it must use this
function to register the capability with the block layer. The template is a blk_integrity struct with values
appropriate for the underlying hardware. If template is NULL the new profile is allocated but not filled

out. See Documentation/block/data-integrity.txt.

713

Block Devices

Name
blk_integrity_unregister — Remove block integrity profile
Synopsis
void bl k_integrity_unregister (struct gendisk * disk);
Arguments
di sk disk whoseintegrity profile to deallocate
Description

This function frees all memory used by the block integrity profile. To be called at device teardown.

714

Block Devices

Name

blk_trace ioctl — handle the ioctls associated with tracing
Synopsis

int blk trace_ioctl (struct block_device * bdev, unsigned cnd, char
_user * arg);

Arguments

bdev theblock device
cnmd theioctl cmd

arg theargument data, if any

715

Block Devices

Name

blk_trace shutdown — stop and cleanup trace structures
Synopsis
void bl k_trace_shutdown (struct request_queue * Q);

Arguments

g therequest queue associated with the device

716

Block Devices

Name
blk_add trace rqg— Add atrace for arequest oriented action

Synopsis

void blk _add_trace_rq (struct request_queue * q,
unsi gned int nr_bytes, u32 what);

Arguments
q queuetheioisfor
rq the source request

nr_bytes number of completed bytes

what the action

Description

Records an action against arequest. Will log the bio offset + size.

struct

request

*

rq,

717

Block Devices

Name
blk_add trace bio — Add atrace for abio oriented action

Synopsis

void bl k_add_trace_bio (struct request_queue * ¢, struct bio * bio, u32
what, int error);

Arguments
q queuetheioisfor
bi o the source bio
what the action

error eror,if any

Description

Records an action against abio. Will log the bio offset + size.

718

Block Devices

Name

blk_add trace bio_remap — Add atrace for a bio-remap operation

Synopsis

void bl k_add_trace_bio_remap (void * ignore, struct request_queue * q,
struct bio * bio, dev_t dev, sector_t from;

Arguments
i gnor e trace callback data parameter (not used)
o} queuetheioisfor
bi o the source bio
dev target device

from source sector

Description

Device mapper or raid target sometimes need to split a bio because it spans a stripe (or similar). Add a
trace for that action.

719

Block Devices

Name
blk_add trace rq remap — Add atrace for arequest-remap operation

Synopsis

void blk_add _trace rqg_remap (void * ignore, struct request_queue * q,
struct request * rqg, dev_t dev, sector_t from;

Arguments
i gnor e trace callback data parameter (not used)
o} queuetheioisfor
rq the source request
dev target device

from source sector

Description

Device mapper remaps request to other devices. Add atrace for that action.

720

Block Devices

Name

blk_mangle_minor — scatter minor numbers apart
Synopsis

int bl k_mangl e_ninor (int ninor);
Arguments

nm nor minor number to mangle

Description

Scatter consecutively alocated mi nor number apart if MANGLE _DEVT is enabled. Mangling twice
givesthe original value.

RETURNS

Mangled value.

CONTEXT

Don't care.

721

Block Devices

Name

blk_aloc_devt — allocate adev_t for a partition
Synopsis
int blk_alloc_devt (struct hd_struct * part, dev_t * devt);

Arguments

part partitionto alocate dev_t for

devt out parameter for resulting dev_t

Description

Allocate adev_t for block device.

RETURNS

0 on success, alocated dev_tisreturned in *devt . -errno on failure.

CONTEXT

Might sleep.

722

Block Devices

Name

blk_free devt — freeadev_t
Synopsis

void bl k_free devt (dev_t devt);
Arguments

devt dev_ttofree
Description

Freedevt whichwasallocated using bl k_al | oc_devt .
CONTEXT

Might sleep.

723

Block Devices

Name
disk_replace part_tbl — replace disk->part_tbl in RCU-safe way
Synopsis
voi d di sk_replace_part_tbl (struct gendisk * disk, struct disk_part_tbl
* new _pthl);
Arguments
di sk disk to replace part_tbl for

new_pt bl new part_tbl to install

Description

Replace disk->part_tbl withnew_pt bl in RCU-safeway. The original ptbl isfreed using RCU callback.

LOCKING

Matching bd_mutx locked.

724

Block Devices

Name
disk_expand_part_tbl — expand disk->part_tbl

Synopsis

i nt disk_expand_part_tbl (struct gendisk * disk, int partno);
Arguments

di sk disk to expand part_tbl for

partno expand such that this partno can fit in

Description

Expand disk->part_tbl such that par t no can fit in. disk->part_thl uses RCU to alow unlocked derefer-
encing for stats and other stuff.

LOCKING

Matching bd_mutex locked, might sleep.

RETURNS

0 on success, -errno on failure.

725

Block Devices

Name
disk_block_events — block and flush disk event checking

Synopsis
voi d di sk_bl ock_events (struct gendi sk * disk);

Arguments

di sk disk to block eventsfor

Description
On return from this function, it is guaranteed that event checking isn't in progress and won't happen until

unblocked by di sk_unbl ock_event s. Eventsblocking is counted and the actual unblocking happens
after the matching number of unblocks are done.

Note that this intentionally does not block event checking from di sk_cl ear _events.

CONTEXT

Might sleep.

726

Block Devices

Name

disk_unblock_events — unblock disk event checking
Synopsis
voi d di sk_unbl ock_events (struct gendi sk * disk);

Arguments

di sk disk to unblock events for

Description

Undo di sk_bl ock_event s. When the block count reaches zero, it starts events polling if configured.

CONTEXT

Don't care. Safeto call from irq context.

727

Block Devices

Name
disk_flush_events — schedule immediate event checking and flushing

Synopsis

voi d disk_flush_events (struct gendi sk * disk, unsigned int nask);
Arguments

di sk disk to check and flush events for

mask eventsto flush

Description

Schedule immediate event checking on di sk if not blocked. Eventsin mask are scheduled to be cleared
from the driver. Note that this doesn't clear the events from di sk->ev.

CONTEXT

If mask is non-zero must be called with bdev->bd_mutex held.

728

Block Devices

Name
disk_clear_events — synchronously check, clear and return pending events

Synopsis
unsi gned int disk clear_events (struct gendisk * disk, unsigned int
mask) ;

Arguments

di sk disk to fetch and clear events from
mask mask of eventsto be fetched and cleared

Description

Disk events are synchronously checked and pending eventsin mask are cleared and returned. Thisignores
the block count.

CONTEXT

Might sleep.

729

Block Devices

Name
disk_get part — get partition

Synopsis
struct hd_struct * disk get_part (struct gendisk * disk, int partno);

Arguments

di sk disk to look partition from

partno partition number

Description

Look for partition par t no from di sk. If found, increment reference count and return it.

CONTEXT

Don't care.

RETURNS

Pointer to the found partition on success, NULL if not found.

730

Block Devices

Name
disk_part_iter_init — initialize partition iterator

Synopsis

void disk _part_iter_init (struct disk part_iter * piter, struct gendi sk
* di sk, unsigned int flags);

Arguments

pi ter iterator toinitiaize
di sk disktoiterate over
flags DISK_PITER * flags

Description

Initialize pi t er sothat it iterates over partitions of di sk.

CONTEXT

Don't care.

731

Block Devices

Name

disk_part_iter _next — proceed iterator to the next partition and return it
Synopsis
struct hd_struct * disk_part_iter_next (struct disk part_iter * piter);

Arguments

pi ter iterator of interest

Description

Proceed pi t er tothe next partition and return it.

CONTEXT

Don't care.

732

Block Devices

Name
disk_part_iter_exit — finish up partition iteration

Synopsis
void disk part_iter_exit (struct disk part_iter * piter);

Arguments

pi ter iter of interest

Description

Called when iteration isover. Cleansup pi t er .

CONTEXT

Don't care.

733

Block Devices

Name
disk_map_sector_rcu — map sector to partition

Synopsis
struct hd_struct * disk_map_sector_rcu (struct gendi sk * di sk, sector_t
sector);

Arguments

di sk gendisk of interest

sector sector to map

Description

Find out which partition sect or mapsto ondi sk. Thisis primarily used for stats accounting.

CONTEXT

RCU read locked. The returned partition pointer is valid only while preemption is disabled.

RETURNS

Found partition on success, partO is returned if no partition matches

734

Block Devices

Name

register_blkdev — register a new block device

Synopsis

int register_blkdev (unsigned int major, const char * nane);

Arguments

maj or therequested major device number [1..255]. If maj or =0, try to allocate any unused major num-
ber.

name the name of the new block device as a zero terminated string

Description

The name must be unique within the system.

The return value depends on the maj or input parameter. - if a major device number was requested in
range [1..255] then the function returns zero on success, or a negative error code - if any unused major
number was requested with maj or =0 parameter then the return value is the allocated major number in
range [1..255] or a negative error code otherwise

735

Block Devices

Name
add_disk — add partitioning information to kernel list

Synopsis

voi d add_di sk (struct gendisk * disk);
Arguments

di sk per-device partitioning information

Description

This function registers the partitioning information in di sk with the kernel.

FIXME

error handling

736

Block Devices

Name

get_gendisk — get partitioning information for a given device
Synopsis
struct gendi sk * get_gendi sk (dev_t devt, int * partno);

Arguments

devt deviceto get partitioning information for

partno returned partition index

Description

This function gets the structure containing partitioning information for the given device devt .

737

Block Devices

Name
bdget disk — do bdget by gendisk and partition number

Synopsis
struct bl ock_device * bdget _di sk (struct gendisk * disk, int partno);

Arguments

di sk gendisk of interest

partno partition number

Description

Find partition par t no from di sk, do bdget onit.

CONTEXT

Don't care.

RETURNS

Resulting block_device on success, NULL on failure.

738

Chapter 15. Char devices

739

Char devices

Name

register_chrdev_region — register arange of device numbers

Synopsis

int register_chrdev_region (dev_t from unsigned count, const char *
nane) ;

Arguments
from thefirst inthe desired range of device numbers; must include the major number.
count the number of consecutive device numbers required

nane the name of the device or driver.

Description

Return value is zero on success, a negative error code on failure.

740

Char devices

Name

alloc_chrdev_region — register arange of char device numbers

Synopsis

int alloc_chrdev_region (dev_t * dev, unsigned basem nor, unsigned
count, const char * nane);

Arguments

dev output parameter for first assigned number

basem nor first of the requested range of minor numbers

count the number of minor numbers required
name the name of the associated device or driver
Description

Allocates a range of char device numbers. The major number will be chosen dynamically, and returned
(along with the first minor number) in dev. Returns zero or anegative error code.

741

Char devices

Name

__register_chrdev — create and register a cdev occupying a range of minors

Synopsis

int __register_chrdev (unsigned int major, unsigned int basem nor, un-
signed int count, const char * nanme, const struct file_operations *

fops);

Arguments

naj or major device number or O for dynamic allocation

basem nor first of the requested range of minor numbers

count the number of minor numbers required

nane name of this range of devices

f ops file operations associated with this devices
Description

If maj or == 0 thisfunctionswill dynamically allocate a major and return its number.

If maj or > 0 this function will attempt to reserve a device with the given major number and will return
Zero on SUCCESS.

Returns a-ve errno on failure.

The name of this device has nothing to do with the name of the device in /dev. It only helpsto keep track
of the different owners of devices. If your module name has only one type of devicesit's ok to use e.g.
the name of the module here.

742

Char devices

Name

unregister_chrdev_region — return arange of device numbers

Synopsis

voi d unregi ster_chrdev_region (dev_t from unsigned count);

Arguments

from thefirst inthe range of numbersto unregister

count the number of device numbersto unregister

Description

This function will unregister a range of count device numbers, starting with f r om The caller should
normally be the one who allocated those numbersin the first place...

743

Char devices

Name

__unregister_chrdev — unregister and destroy a cdev

Synopsis

void _ _unregister_chrdev (unsigned int major, unsigned int basem nor,
unsi gned int count, const char * nane);

Arguments

naj or major device number

basem nor first of the range of minor numbers

count the number of minor numbers this cdev is occupying
nane name of this range of devices
Description

Unregister and destroy the cdev occupying the region described by maj or , basemni nor and count .
Thisfunction undoeswhat __r egi st er _chr dev did.

744

Char devices

Name
cdev_add — add a char device to the system

Synopsis
int cdev_add (struct cdev * p, dev_t dev, unsigned count);

Arguments

p the cdev structure for the device
dev the first device number for which this device is responsible

count the number of consecutive minor numbers corresponding to this device

Description

cdev_add adds the device represented by p to the system, making it live immediately. A negative error
code isreturned on failure.

745

Char devices

Name

cdev_del — remove a cdev from the system
Synopsis
voi d cdev_del (struct cdev * p);

Arguments

p thecdev structure to be removed

Description

cdev_del removesp from the system, possibly freeing the structure itself.

746

Char devices

Name

cdev_alloc — allocate a cdev structure
Synopsis
struct cdev * cdev_alloc (void);

Arguments

voi d noarguments

Description

Allocates and returns a cdev structure, or NULL on failure.

747

Char devices

Name

cdev_init — initialize a cdev structure

Synopsis

void cdev_init (struct cdev * cdev, const struct fil e_operations * fops);

Arguments

cdev thestructuretoinitialize

f ops thefile operationsfor this device

Description

Initializes cdev, remembering f ops, making it ready to add to the system with cdev_add.

748

Chapter 16. Miscellaneous Devices

749

Miscellaneous Devices

Name

misc_register — register a miscellaneous device
Synopsis

int msc_register (struct mscdevice * msc);
Arguments

m sc device structure

Register a miscellaneous device with the kernel. If the minor number is set to
M SC_DYNAM C_M NORaminor number is assigned and placed in the minor field of the struc-
ture. For other cases the minor number requested is used.

Description

The structure passed is linked into the kernel and may not be destroyed until it has been unregistered. By
default, an open syscall to the device sets file->private _data to point to the structure. Drivers don't need
openin fopsfor this.

A zero isreturned on success and a negative errno code for failure.

750

Miscellaneous Devices

Name

misc_deregister — unregister a miscellaneous device

Synopsis

int msc_deregister (struct m scdevice * msc);

Arguments

m sc deviceto unregister

Description

Unregister a miscellaneous device that was previously successfully registered with m sc_r egi st er.
Successisindicated by a zero return, a negative errno code indicates an error.

751

Chapter 17. Clock Framework

Theclock framework defines programming interfacesto support software management of the system clock
tree. Thisframework iswidely used with System-On-Chip (SOC) platformsto support power management
and various devices which may need custom clock rates. Note that these "clocks' don't relate to timekeep-
ing or real time clocks (RTCs), each of which have separate frameworks. These struct clk instances may
be used to manage for example a 96 MHz signal that is used to shift bits into and out of peripherals or
busses, or otherwise trigger synchronous state machine transitions in system hardware.

Power management is supported by explicit software clock gating: unused clocks are disabled, so the
system doesn't waste power changing the state of transistors that aren't in active use. On some systems
this may be backed by hardware clock gating, where clocks are gated without being disabled in software.
Sections of chips that are powered but not clocked may be able to retain their last state. This low power
state is often called aretention mode. This mode still incurs leakage currents, especialy with finer circuit
geometries, but for CMOS circuits power is mostly used by clocked state changes.

Power-aware drivers only enable their clocks when the device they manage isin active use. Also, system
deep states often differ according to which clock domains are active: while a "standby" state may allow
wakeup from several active domains, a "mem" (suspend-to-RAM) state may require a more wholesale
shutdown of clocks derived from higher speed PLLsand oscillators, limiting the number of possible wake-
up event sources. A driver's suspend method may need to be aware of system-specific clock constraints
on the target sleep state.

Some platforms support programmable clock generators. These can be used by external chips of various
kinds, such as other CPUs, multimedia codecs, and devices with strict requirements for interface clocking.

752

Clock Framework

Name

struct clk_notifier — associate a clk with a notifier

Synopsis

struct clk_notifier {
struct clk * clk;
struct srcu _notifier_head notifier_ head,
struct list_head node;

I
Members
clk struct clk * to associate the notifier with
notifier_head ablocking_notifier_head for this clk
node linked list pointers
Description

A list of struct clk_notifier is maintained by the notifier code. An entry is created whenever code registers
the first notifier on a particular cl k. Future notifierson that cl k are added tothenot i fi er _head.

753

Clock Framework

Name
struct clk_notifier_data— rate data to pass to the notifier callback

Synopsis

struct clk_notifier_data {
struct clk * clk;
unsi gned long ol d_rate;
unsi gned | ong new rate;

I

Members
clk struct clk * being changed
old_rate previous rate of this clk

new_rate new rate of thisclk

Description

For a pre-natifier, old_rate is the clk's rate before this rate change, and new_rate is what the rate will be
in the future. For a post-notifier, old_rate and new_rate are both set to the clk's current rate (this was done
to optimize the implementation).

754

Clock Framework

Name

clk_notifier_register — change notifier callback

Synopsis

int clk _notifier_register (struct clk * clk, struct notifier_block *
nb) ;

Arguments

cl k clock whose rate we are interested in

nb notifier block with callback function pointer

ProTip

debugging across notifier chains can be frustrating. Make sure that your notifier callback function prints
anice big warning in case of failure.

755

Clock Framework

Name

clk_notifier_unregister — change notifier callback
Synopsis

int clk_notifier_unregister (struct clk * clk, struct notifier_block
* nb);

Arguments

cl k clock whose rate we are no longer interested in

nb notifier block which will be unregistered

756

Clock Framework

Name

clk_get_accuracy — obtain the clock accuracy in ppb (parts per billion) for a clock source.
Synopsis
I ong cl k_get_accuracy (struct clk * clk);

Arguments

cl k clock source

Description

This gets the clock source accuracy expressed in ppb. A perfect clock returns 0.

757

Clock Framework

Name

clk_set phase — adjust the phase shift of aclock signal
Synopsis

int clk_set_phase (struct clk * clk, int degrees);
Arguments

clk clock signal source

degrees number of degreesthe signal is shifted
Description

Shifts the phase of a clock signal by the specified degrees. Returns 0 on success, -EERROR otherwise.

758

Clock Framework

Name
clk_get_phase — return the phase shift of aclock signal

Synopsis
int clk_get_phase (struct clk * clk);

Arguments

cl k clock signal source

Description

Returns the phase shift of a clock node in degrees, otherwise returns -EERROR.

759

Clock Framework

Name

clk_is_match — check if two clk's point to the same hardware clock

Synopsis

bool clk_is_match (const struct clk * p, const struct clk * q);
Arguments

p clk compared against q

g clk compared against p

Description

Returns true if the two struct clk pointers both point to the same hardware clock node. Put differently,
returns true if struct clk *p and struct clk * g share the same struct clk_core object.

Returns false otherwise. Note that two NULL clks are treated as matching.

760

Clock Framework

Name

clk_prepare — prepare a clock source
Synopsis
int clk_prepare (struct clk * clk);

Arguments

cl k clock source

Description

This prepares the clock source for use.

Must not be called from within atomic context.

761

Clock Framework

Name

clk_unprepare — undo preparation of a clock source
Synopsis

void cl k_unprepare (struct clk * clk);
Arguments

cl k clock source

Description

This undoes a previously prepared clock. The caller must balance the number of prepare and unprepare
cals.

Must not be called from within atomic context.

762

Clock Framework

Name

clk_get — lookup and obtain a reference to a clock producer.

Synopsis

struct clk * clk_get (struct device * dev, const char * id);

Arguments

dev devicefor clock “consumer”

id clock consumer 1D

Description

Returns a struct clk corresponding to the clock producer, or valid I S_ERR condition containing errno.
The implementation uses dev and i d to determine the clock consumer, and thereby the clock producer.
(IOW, i d may beidentical strings, but clk_get may return different clock producers depending on dev.)

Drivers must assume that the clock source is not enabled.

clk_get should not be called from within interrupt context.

763

Clock Framework

Name

devm_clk_get — lookup and obtain a managed reference to a clock producer.

Synopsis

struct clk * devmclk _get (struct device * dev, const char * id);

Arguments

dev devicefor clock “consumer”

id clock consumer 1D

Description

Returns a struct clk corresponding to the clock producer, or valid I S_ERR condition containing errno.
The implementation uses dev and i d to determine the clock consumer, and thereby the clock producer.
(IOW, i d may beidentical strings, but clk_get may return different clock producers depending on dev.)

Drivers must assume that the clock sourceis not enabled.
devm_clk_get should not be called from within interrupt context.

The clock will automatically be freed when the device is unbound from the bus.

764

Clock Framework

Name

clk_enable — inform the system when the clock source should be running.

Synopsis

int clk_enable (struct clk * clk);

Arguments

cl k clock source

Description
If the clock can not be enabled/disabled, this should return success.
May be called from atomic contexts.

Returns success (0) or negative errno.

765

Clock Framework

Name

clk_disable — inform the system when the clock sourceis no longer required.
Synopsis
void clk_disable (struct clk * clk);

Arguments

cl k clock source

Description

Inform the system that a clock source is ho longer required by a driver and may be shut down.

May be called from atomic contexts.

Implementation detail

if the clock sourceis shared between multiple drivers, ¢l k_enabl e calls must be balanced by the same
number of cl k_di sabl e callsfor the clock source to be disabled.

766

Clock Framework

Name

clk_get rate — obtain the current clock rate (in Hz) for a clock source. Thisis only valid once the clock
source has been enabled.

Synopsis
unsi gned long clk _get _rate (struct clk * clk);

Arguments

cl k clock source

767

Clock Framework

Name

clk_put — "free" the clock source
Synopsis

void clk_put (struct clk * clk);
Arguments

cl k clock source

Note

drivers must ensure that all clk_enable calls made on this clock source are balanced by clk_disable calls
prior to calling this function.

clk_put should not be called from within interrupt context.

768

Clock Framework

Name

devm_clk_put — "free" a managed clock source
Synopsis
void devm cl k_put (struct device * dev, struct clk * clk);

Arguments

dev device used to acquire the clock

cl k clock source acquired withdevm cl k_get

Note

drivers must ensure that all clk_enable calls made on this clock source are balanced by clk_disable calls
prior to calling this function.

clk_put should not be called from within interrupt context.

769

Clock Framework

Name

clk_round_rate — adjust arate to the exact rate a clock can provide

Synopsis

long clk _round_rate (struct clk * clk, unsigned long rate);

Arguments

clk clock source

rat e desredclock ratein Hz

Description

Returns rounded clock rate in Hz, or negative errno.

770

Clock Framework

Name

clk_set rate— set the clock rate for a clock source
Synopsis
int clk_set_rate (struct clk * clk, unsigned |long rate);

Arguments

clk clock source

rat e desredclock ratein Hz

Description

Returns success (0) or negative errno.

771

Clock Framework

Name

clk_has_parent — check if aclock isa possible parent for another
Synopsis
bool clk_has_parent (struct clk * clk, struct clk * parent);

Arguments

clk clock source

parent parent clock source

Description

This function can be used in drivers that need to check that a clock can be the parent of another without
actually changing the parent.

Returnstrueif par ent isapossible parent for cl k, false otherwise.

772

Clock Framework

Name

clk_set rate range — set arate range for a clock source

Synopsis

int clk set_rate_range (struct clk * clk, unsigned long nin, unsigned
| ong nmax);

Arguments

cl k clock source
m n desired minimum clock rate in Hz, inclusive

max desired maximum clock rate in Hz, inclusive

Description

Returns success (0) or negative errno.

773

Clock Framework

Name

clk_set min_rate — set aminimum clock rate for a clock source

Synopsis

int clk_set_mn_rate (struct clk * clk, unsigned long rate);

Arguments

clk clock source

rat e desired minimum clock ratein Hz, inclusive

Description

Returns success (0) or negative errno.

774

Clock Framework

Name

clk_set max_rate— set amaximum clock rate for a clock source
Synopsis
int clk_set_max_rate (struct clk * clk, unsigned long rate);

Arguments

clk clock source

rat e desired maximum clock ratein Hz, inclusive

Description

Returns success (0) or negative errno.

775

Clock Framework

Name

clk_set_parent — set the parent clock source for this clock
Synopsis
int clk_set _parent (struct clk * clk, struct clk * parent);

Arguments

clk clock source

parent parent clock source

Description

Returns success (0) or negative errno.

776

Clock Framework

Name

clk_get_parent — get the parent clock source for this clock
Synopsis
struct clk * clk_get_parent (struct clk * clk);

Arguments

cl k clock source

Description

Returns struct clk corresponding to parent clock source, or valid | S_ERR condition containing errno.

7

Clock Framework

Name
clk_get_sys— get aclock based upon the device name

Synopsis

struct clk * clk_get_sys (const char * dev_id, const char * con_id);

Arguments

dev_id devicename

con_id connectionID

Description

Returns a struct clk corresponding to the clock producer, or valid I S_ERR condition containing errno.
The implementation usesdev_i d and con_i d to determine the clock consumer, and thereby the clock
producer. In contrast to cl k_get this function takes the device name instead of the device itself for
identification.

Drivers must assume that the clock source is not enabled.

clk_get_sys should not be called from within interrupt context.

778

Clock Framework

Name
clk_add_alias— add anew clock alias

Synopsis

int clk _add_alias (const char * alias, const char * alias_dev_nane, char
* id, struct device * dev);

Arguments

alias name for clock aias

al i as_dev_nanme device name

id platform specific clock name
dev device
Description
Allows using generic clock names for drivers by adding a new alias. Assumes clkdev, see clkdev.h for
more info.

779

	The Linux Kernel API
	Table of Contents
	Chapter 1. Data Types
	Doubly Linked Lists
	list_add
	list_add_tail
	__list_del_entry
	list_replace
	list_del_init
	list_move
	list_move_tail
	list_is_last
	list_empty
	list_empty_careful
	list_rotate_left
	list_is_singular
	list_cut_position
	list_splice
	list_splice_tail
	list_splice_init
	list_splice_tail_init
	list_entry
	list_first_entry
	list_last_entry
	list_first_entry_or_null
	list_next_entry
	list_prev_entry
	list_for_each
	list_for_each_prev
	list_for_each_safe
	list_for_each_prev_safe
	list_for_each_entry
	list_for_each_entry_reverse
	list_prepare_entry
	list_for_each_entry_continue
	list_for_each_entry_continue_reverse
	list_for_each_entry_from
	list_for_each_entry_safe
	list_for_each_entry_safe_continue
	list_for_each_entry_safe_from
	list_for_each_entry_safe_reverse
	list_safe_reset_next
	hlist_for_each_entry
	hlist_for_each_entry_continue
	hlist_for_each_entry_from
	hlist_for_each_entry_safe

	Chapter 2. Basic C Library Functions
	String Conversions
	simple_strtoull
	simple_strtoul
	simple_strtol
	simple_strtoll
	vsnprintf
	vscnprintf
	snprintf
	scnprintf
	vsprintf
	sprintf
	vbin_printf
	bstr_printf
	bprintf
	vsscanf
	sscanf
	kstrtol
	kstrtoul
	kstrtoull
	kstrtoll
	kstrtouint
	kstrtoint

	String Manipulation
	strncasecmp
	strcpy
	strncpy
	strlcpy
	strcat
	strncat
	strlcat
	strcmp
	strncmp
	strchr
	strchrnul
	strrchr
	strnchr
	skip_spaces
	strim
	strlen
	strnlen
	strspn
	strcspn
	strpbrk
	strsep
	sysfs_streq
	strtobool
	memset
	memzero_explicit
	memcpy
	memmove
	memcmp
	memscan
	strstr
	strnstr
	memchr
	memchr_inv

	Bit Operations
	set_bit
	__set_bit
	clear_bit
	__change_bit
	change_bit
	test_and_set_bit
	test_and_set_bit_lock
	__test_and_set_bit
	test_and_clear_bit
	__test_and_clear_bit
	test_and_change_bit
	test_bit
	__ffs
	ffz
	ffs
	fls
	fls64

	Chapter 3. Basic Kernel Library Functions
	Bitmap Operations
	__bitmap_shift_right
	__bitmap_shift_left
	bitmap_find_next_zero_area_off
	__bitmap_parse
	bitmap_parse_user
	bitmap_print_to_pagebuf
	bitmap_parselist_user
	bitmap_remap
	bitmap_bitremap
	bitmap_onto
	bitmap_fold
	bitmap_find_free_region
	bitmap_release_region
	bitmap_allocate_region
	bitmap_copy_le
	__bitmap_parselist
	bitmap_pos_to_ord
	bitmap_ord_to_pos

	Command-line Parsing
	get_option
	get_options
	memparse

	CRC Functions
	crc7_be
	crc16
	crc_itu_t
	/usr/src/linux-4.1.27-24//lib/crc32.c
	crc_ccitt

	idr/ida Functions
	idr_preload
	idr_alloc
	idr_alloc_cyclic
	idr_remove
	idr_destroy
	idr_for_each
	idr_get_next
	idr_replace
	idr_init
	ida_pre_get
	ida_get_new_above
	ida_remove
	ida_destroy
	ida_simple_get
	ida_simple_remove
	ida_init

	Chapter 4. Memory Management in Linux
	The Slab Cache
	kmalloc
	kmalloc_array
	kcalloc
	kzalloc
	kzalloc_node
	kmem_cache_alloc
	kmem_cache_alloc_node
	kmem_cache_free
	kfree
	ksize
	kfree_const
	kstrdup
	kstrdup_const
	kstrndup
	kmemdup
	memdup_user
	get_user_pages_fast

	User Space Memory Access
	__copy_to_user_inatomic
	__copy_to_user
	__copy_from_user
	clear_user
	__clear_user
	_copy_to_user
	_copy_from_user

	More Memory Management Functions
	read_cache_pages
	page_cache_sync_readahead
	page_cache_async_readahead
	delete_from_page_cache
	filemap_flush
	filemap_fdatawait_range
	filemap_fdatawait
	filemap_write_and_wait_range
	replace_page_cache_page
	add_to_page_cache_locked
	add_page_wait_queue
	unlock_page
	end_page_writeback
	__lock_page
	page_cache_next_hole
	page_cache_prev_hole
	find_get_entry
	find_lock_entry
	pagecache_get_page
	find_get_pages_contig
	find_get_pages_tag
	generic_file_read_iter
	filemap_fault
	read_cache_page
	read_cache_page_gfp
	__generic_file_write_iter
	generic_file_write_iter
	try_to_release_page
	zap_page_range
	zap_vma_ptes
	vm_insert_page
	vm_insert_pfn
	remap_pfn_range
	vm_iomap_memory
	unmap_mapping_range
	follow_pfn
	vm_unmap_aliases
	vm_unmap_ram
	vm_map_ram
	unmap_kernel_range_noflush
	unmap_kernel_range
	vfree
	vunmap
	vmap
	vmalloc
	vzalloc
	vmalloc_user
	vmalloc_node
	vzalloc_node
	vmalloc_32
	vmalloc_32_user
	remap_vmalloc_range_partial
	remap_vmalloc_range
	alloc_vm_area
	alloc_pages_exact_nid
	nr_free_zone_pages
	nr_free_pagecache_pages
	find_next_best_node
	free_bootmem_with_active_regions
	sparse_memory_present_with_active_regions
	get_pfn_range_for_nid
	absent_pages_in_range
	node_map_pfn_alignment
	find_min_pfn_with_active_regions
	free_area_init_nodes
	set_dma_reserve
	setup_per_zone_wmarks
	get_pfnblock_flags_mask
	set_pfnblock_flags_mask
	alloc_contig_range
	mempool_destroy
	mempool_create
	mempool_resize
	mempool_alloc
	mempool_free
	dma_pool_create
	dma_pool_destroy
	dma_pool_alloc
	dma_pool_free
	dmam_pool_create
	dmam_pool_destroy
	balance_dirty_pages_ratelimited
	tag_pages_for_writeback
	write_cache_pages
	generic_writepages
	write_one_page
	wait_for_stable_page
	truncate_inode_pages_range
	truncate_inode_pages
	truncate_inode_pages_final
	invalidate_mapping_pages
	invalidate_inode_pages2_range
	invalidate_inode_pages2
	truncate_pagecache
	truncate_setsize
	pagecache_isize_extended
	truncate_pagecache_range

	Chapter 5. Kernel IPC facilities
	IPC utilities
	ipc_init
	ipc_init_ids
	ipc_init_proc_interface
	ipc_findkey
	ipc_get_maxid
	ipc_addid
	ipcget_new
	ipc_check_perms
	ipcget_public
	ipc_rmid
	ipc_alloc
	ipc_free
	ipc_rcu_alloc
	ipcperms
	kernel_to_ipc64_perm
	ipc64_perm_to_ipc_perm
	ipc_obtain_object
	ipc_lock
	ipc_obtain_object_check
	ipcget
	ipc_update_perm
	ipcctl_pre_down_nolock
	ipc_parse_version

	Chapter 6. FIFO Buffer
	kfifo interface
	DECLARE_KFIFO_PTR
	DECLARE_KFIFO
	INIT_KFIFO
	DEFINE_KFIFO
	kfifo_initialized
	kfifo_esize
	kfifo_recsize
	kfifo_size
	kfifo_reset
	kfifo_reset_out
	kfifo_len
	kfifo_is_empty
	kfifo_is_full
	kfifo_avail
	kfifo_skip
	kfifo_peek_len
	kfifo_alloc
	kfifo_free
	kfifo_init
	kfifo_put
	kfifo_get
	kfifo_peek
	kfifo_in
	kfifo_in_spinlocked
	kfifo_out
	kfifo_out_spinlocked
	kfifo_from_user
	kfifo_to_user
	kfifo_dma_in_prepare
	kfifo_dma_in_finish
	kfifo_dma_out_prepare
	kfifo_dma_out_finish
	kfifo_out_peek

	Chapter 7. relay interface support
	relay interface
	relay_buf_full
	relay_reset
	relay_open
	relay_switch_subbuf
	relay_subbufs_consumed
	relay_close
	relay_flush
	relay_mmap_buf
	relay_alloc_buf
	relay_create_buf
	relay_destroy_channel
	relay_destroy_buf
	relay_remove_buf
	relay_buf_empty
	wakeup_readers
	__relay_reset
	relay_close_buf
	relay_hotcpu_callback
	relay_late_setup_files
	relay_file_open
	relay_file_mmap
	relay_file_poll
	relay_file_release
	relay_file_read_subbuf_avail
	relay_file_read_start_pos
	relay_file_read_end_pos

	Chapter 8. Module Support
	Module Loading
	__request_module
	call_usermodehelper_setup
	call_usermodehelper_exec
	call_usermodehelper

	Inter Module support

	Chapter 9. Hardware Interfaces
	Interrupt Handling
	synchronize_hardirq
	synchronize_irq
	irq_set_affinity_notifier
	disable_irq_nosync
	disable_irq
	disable_hardirq
	enable_irq
	irq_set_irq_wake
	irq_wake_thread
	setup_irq
	remove_irq
	free_irq
	request_threaded_irq
	request_any_context_irq

	DMA Channels
	request_dma
	free_dma

	Resources Management
	request_resource_conflict
	reallocate_resource
	lookup_resource
	insert_resource_conflict
	insert_resource
	insert_resource_expand_to_fit
	resource_alignment
	release_mem_region_adjustable
	request_resource
	release_resource
	allocate_resource
	adjust_resource
	__request_region
	__release_region
	devm_request_resource
	devm_release_resource

	MTRR Handling
	mtrr_add
	mtrr_del
	arch_phys_wc_add

	PCI Support Library
	pci_bus_max_busnr
	pci_find_capability
	pci_bus_find_capability
	pci_find_next_ext_capability
	pci_find_ext_capability
	pci_find_next_ht_capability
	pci_find_ht_capability
	pci_find_parent_resource
	__pci_complete_power_transition
	pci_set_power_state
	pci_choose_state
	pci_save_state
	pci_restore_state
	pci_store_saved_state
	pci_load_saved_state
	pci_load_and_free_saved_state
	pci_reenable_device
	pci_enable_device_io
	pci_enable_device_mem
	pci_enable_device
	pcim_enable_device
	pcim_pin_device
	pci_disable_device
	pci_set_pcie_reset_state
	pci_pme_capable
	pci_pme_active
	__pci_enable_wake
	pci_wake_from_d3
	pci_prepare_to_sleep
	pci_back_from_sleep
	pci_dev_run_wake
	pci_common_swizzle
	pci_release_region
	pci_request_region
	pci_request_region_exclusive
	pci_release_selected_regions
	pci_request_selected_regions
	pci_release_regions
	pci_request_regions
	pci_request_regions_exclusive
	pci_set_master
	pci_clear_master
	pci_set_cacheline_size
	pci_set_mwi
	pci_try_set_mwi
	pci_clear_mwi
	pci_intx
	pci_intx_mask_supported
	pci_check_and_mask_intx
	pci_check_and_unmask_intx
	pci_msi_off
	pci_wait_for_pending_transaction
	pci_reset_bridge_secondary_bus
	__pci_reset_function
	__pci_reset_function_locked
	pci_reset_function
	pci_try_reset_function
	pci_probe_reset_slot
	pci_reset_slot
	pci_try_reset_slot
	pci_probe_reset_bus
	pci_reset_bus
	pci_try_reset_bus
	pcix_get_max_mmrbc
	pcix_get_mmrbc
	pcix_set_mmrbc
	pcie_get_readrq
	pcie_set_readrq
	pcie_get_mps
	pcie_set_mps
	pcie_get_minimum_link
	pci_select_bars
	pci_add_dynid
	pci_match_id
	__pci_register_driver
	pci_unregister_driver
	pci_dev_driver
	pci_dev_get
	pci_dev_put
	pci_stop_and_remove_bus_device
	pci_find_bus
	pci_find_next_bus
	pci_get_slot
	pci_get_domain_bus_and_slot
	pci_get_subsys
	pci_get_device
	pci_get_class
	pci_dev_present
	pci_msi_vec_count
	pci_msix_vec_count
	pci_enable_msix
	pci_msi_enabled
	pci_enable_msi_range
	pci_enable_msix_range
	pci_bus_alloc_resource
	pci_bus_add_device
	pci_bus_add_devices
	pci_bus_set_ops
	pci_read_vpd
	pci_write_vpd
	pci_cfg_access_lock
	pci_cfg_access_trylock
	pci_cfg_access_unlock
	pci_lost_interrupt
	__ht_create_irq
	ht_create_irq
	ht_destroy_irq
	pci_scan_slot
	pci_rescan_bus
	pci_create_slot
	pci_destroy_slot
	pci_hp_create_module_link
	pci_hp_remove_module_link
	pci_enable_rom
	pci_disable_rom
	pci_map_rom
	pci_unmap_rom
	pci_platform_rom
	pci_enable_sriov
	pci_disable_sriov
	pci_num_vf
	pci_vfs_assigned
	pci_sriov_set_totalvfs
	pci_sriov_get_totalvfs
	pci_read_legacy_io
	pci_write_legacy_io
	pci_mmap_legacy_mem
	pci_mmap_legacy_io
	pci_adjust_legacy_attr
	pci_create_legacy_files
	pci_mmap_resource
	pci_remove_resource_files
	pci_create_resource_files
	pci_write_rom
	pci_read_rom
	pci_remove_sysfs_dev_files

	PCI Hotplug Support Library
	__pci_hp_register
	pci_hp_deregister
	pci_hp_change_slot_info

	Chapter 10. Firmware Interfaces
	DMI Interfaces
	dmi_check_system
	dmi_first_match
	dmi_get_system_info
	dmi_name_in_vendors
	dmi_find_device
	dmi_get_date
	dmi_walk
	dmi_match

	EDD Interfaces
	edd_show_raw_data
	edd_release
	edd_dev_is_type
	edd_get_pci_dev
	edd_init

	Chapter 11. Security Framework
	security_init
	security_module_enable
	register_security
	securityfs_create_file
	securityfs_create_dir
	securityfs_remove

	Chapter 12. Audit Interfaces
	audit_log_start
	audit_log_format
	audit_log_end
	audit_log
	audit_log_secctx
	audit_alloc
	__audit_free
	__audit_syscall_entry
	__audit_syscall_exit
	__audit_reusename
	__audit_getname
	__audit_inode
	auditsc_get_stamp
	audit_set_loginuid
	__audit_mq_open
	__audit_mq_sendrecv
	__audit_mq_notify
	__audit_mq_getsetattr
	__audit_ipc_obj
	__audit_ipc_set_perm
	__audit_socketcall
	__audit_fd_pair
	__audit_sockaddr
	__audit_signal_info
	__audit_log_bprm_fcaps
	__audit_log_capset
	audit_core_dumps
	audit_rule_change
	audit_list_rules_send
	parent_len
	audit_compare_dname_path

	Chapter 13. Accounting Framework
	sys_acct
	acct_collect
	acct_process

	Chapter 14. Block Devices
	blk_get_backing_dev_info
	blk_delay_queue
	blk_start_queue
	blk_stop_queue
	blk_sync_queue
	__blk_run_queue
	blk_run_queue_async
	blk_run_queue
	blk_queue_bypass_start
	blk_queue_bypass_end
	blk_cleanup_queue
	blk_init_queue
	blk_make_request
	blk_rq_set_block_pc
	blk_requeue_request
	part_round_stats
	blk_add_request_payload
	generic_make_request
	submit_bio
	blk_rq_check_limits
	blk_insert_cloned_request
	blk_rq_err_bytes
	blk_peek_request
	blk_start_request
	blk_fetch_request
	blk_update_request
	blk_unprep_request
	blk_end_request
	blk_end_request_all
	blk_end_request_cur
	blk_end_request_err
	__blk_end_request
	__blk_end_request_all
	__blk_end_request_cur
	__blk_end_request_err
	rq_flush_dcache_pages
	blk_lld_busy
	blk_rq_unprep_clone
	blk_rq_prep_clone
	blk_start_plug
	blk_pm_runtime_init
	blk_pre_runtime_suspend
	blk_post_runtime_suspend
	blk_pre_runtime_resume
	blk_post_runtime_resume
	__blk_run_queue_uncond
	__blk_drain_queue
	rq_ioc
	__get_request
	get_request
	blk_attempt_plug_merge
	blk_end_bidi_request
	__blk_end_bidi_request
	blk_rq_map_user_iov
	blk_rq_unmap_user
	blk_rq_map_kern
	blk_release_queue
	blk_queue_prep_rq
	blk_queue_unprep_rq
	blk_queue_merge_bvec
	blk_set_default_limits
	blk_set_stacking_limits
	blk_queue_make_request
	blk_queue_bounce_limit
	blk_limits_max_hw_sectors
	blk_queue_max_hw_sectors
	blk_queue_chunk_sectors
	blk_queue_max_discard_sectors
	blk_queue_max_write_same_sectors
	blk_queue_max_segments
	blk_queue_max_segment_size
	blk_queue_logical_block_size
	blk_queue_physical_block_size
	blk_queue_alignment_offset
	blk_limits_io_min
	blk_queue_io_min
	blk_limits_io_opt
	blk_queue_io_opt
	blk_queue_stack_limits
	blk_stack_limits
	bdev_stack_limits
	disk_stack_limits
	blk_queue_dma_pad
	blk_queue_update_dma_pad
	blk_queue_dma_drain
	blk_queue_segment_boundary
	blk_queue_dma_alignment
	blk_queue_update_dma_alignment
	blk_queue_flush
	blk_execute_rq_nowait
	blk_execute_rq
	blkdev_issue_flush
	blkdev_issue_discard
	blkdev_issue_write_same
	blkdev_issue_zeroout
	blk_queue_find_tag
	blk_free_tags
	blk_queue_free_tags
	blk_init_tags
	blk_queue_init_tags
	blk_queue_resize_tags
	blk_queue_end_tag
	blk_queue_start_tag
	blk_queue_invalidate_tags
	__blk_queue_free_tags
	blk_rq_count_integrity_sg
	blk_rq_map_integrity_sg
	blk_integrity_compare
	blk_integrity_register
	blk_integrity_unregister
	blk_trace_ioctl
	blk_trace_shutdown
	blk_add_trace_rq
	blk_add_trace_bio
	blk_add_trace_bio_remap
	blk_add_trace_rq_remap
	blk_mangle_minor
	blk_alloc_devt
	blk_free_devt
	disk_replace_part_tbl
	disk_expand_part_tbl
	disk_block_events
	disk_unblock_events
	disk_flush_events
	disk_clear_events
	disk_get_part
	disk_part_iter_init
	disk_part_iter_next
	disk_part_iter_exit
	disk_map_sector_rcu
	register_blkdev
	add_disk
	get_gendisk
	bdget_disk

	Chapter 15. Char devices
	register_chrdev_region
	alloc_chrdev_region
	__register_chrdev
	unregister_chrdev_region
	__unregister_chrdev
	cdev_add
	cdev_del
	cdev_alloc
	cdev_init

	Chapter 16. Miscellaneous Devices
	misc_register
	misc_deregister

	Chapter 17. Clock Framework
	struct clk_notifier
	struct clk_notifier_data
	clk_notifier_register
	clk_notifier_unregister
	clk_get_accuracy
	clk_set_phase
	clk_get_phase
	clk_is_match
	clk_prepare
	clk_unprepare
	clk_get
	devm_clk_get
	clk_enable
	clk_disable
	clk_get_rate
	clk_put
	devm_clk_put
	clk_round_rate
	clk_set_rate
	clk_has_parent
	clk_set_rate_range
	clk_set_min_rate
	clk_set_max_rate
	clk_set_parent
	clk_get_parent
	clk_get_sys
	clk_add_alias

