MTD NAND Driver
Programming Interface

Thomas Gleixner <t gl x@ i nutroni x. de>



MTD NAND Driver Programming Interface

by Thomas Gleixner
Copyright © 2004 Thomas Gleixner

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as
published by the Free Software Foundation.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY ; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

Y ou should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the file COPY ING in the source distribution of Linux.




Table of Contents

O g 11 oo 1o (o o PP 1
2. KNown Bugs ANd ASSUMPLIONS .....ceuuueiiitiee ittt e et e et e et e et et e e et e e e eett e eeenanaeeeen 2
3. DOCUMENEEEION NINES ....eeei e e e e e e e e et e e e e een s 3
FUNCEION TAENtITIErS [XXXT vttt et e e et e e e e e e e 3
Struct member identifiers [XXX] .. 3

ST S Lol o = o o [ 1Y/ PPN 5
BaSIC TEfINES ...t ean e 5
Partition AEfINES ... e e 5
Hardware control fUNCLION .........cooueiii e e e e 5
Device ready FUNCLION ........oooiiiiii et et e 6

TN 0o Tox £ o o PP 6

L A {0 o o o T PP 7

5. Advanced board driver TUNCHIONS ..........oiiueiii e 9
MUItiple Chip CONIOL .....eeeeeee e e e e 9
Hardware ECC SUDPPOIT .......eieiitee ettt ettt e e e e e na e e enanns 10
FUNCLIONS @N0 CONSEANTS ....eeneeei e e e e e e ean e eees 10

Hardware ECC with syndrome calCulation ...............ooveiiiiiiiiiiiiiiic e 10

Bad block table SUPPOIT .....ceveieiei e 11
Flash based tahleS ......c.uniii i e e 11

User defined tales .......ooeei e 12

Spare area (AULO)PIBCEIMENT ... .coeuti it e e 13
Placement defined Dy fS riVEr .........uiiiiiii e 14

AULOMELIC PLACEIMENT ....ceeete ettt et e et e e e e e eeba e eeees 14

Spare area autoplacement default SChEMES ...........cooviiiiiii 15

256 DYIE PAOESIZE ... ettt 15

512 DYIE PAGESIZE ... ettt 15

2048 DYLE PAGESIZE .. .ceeee et 16

6. FIlESYSIEM SUDPPOIT ...ttt et e e e et e e e rb e e e b 18
728 1o o <SP PPT 19
8. CONSIANES ... eeiete et ettt e a e ea et et e 20
Chip OPLION CONSLANTS .....eeete ettt e ettt e e et e e et e e eebe e eeees 20
Constants for chip id tale ... 20

Constants for ruNtime OPLIONS ........ceuuuiiiiii et e e 20

ECC SElECHON CONSLANES .....uiieteiiie e ettt e e e e e e e et e e et e e et n e e e e eenaaes 20
Hardware control related CONSLANES ...........uuiiiiiiieeiii et 21

Bad block table related CONSLANES ........oveuiiiie e 21

O, SHTUCLUIES ...ttt ettt et et et e e et et et e et et e et e e ea e e aa e e e e et e ea e en e ena et aeannas 23
Struct NANA_NW_CONEIOL ...oee e e e e e e e eees 24
LS Tox =T To = o o o g PP 25
SEUCE NANA_DUFFEIS L. e 27
SEUCE NANO_CRI vttt ettt ettt e et eeeba s 28
Struct NANA_FlASN BV ....eeeeee e e 32
Struct NANA._MANUFACTUPET'S ... ettt e e e e e e et e e e e ean s 33
struct platform_NaNd_ChipP ........oooiii e e 34
struct platform_Nand CHIT ........ii e 35
struct platform NaNA GaEA .......cevu e 36

(gr= g Te [ o] oo o (oI &1 o ) £ PP 37

10. Public FUNCHIONS ProVIded ..........iiiiiiiiii ettt e e e e et e eea e ees 38
(= g To [ 001 Vo G P 39
= To oot - PP 40

g g Te I o= T Lo (= o PP 41




MTD NAND Driver
Programming Interface

NANA_SCAN TaI] ...iee e 42
=0 [ o P 43
= aTo B 1= =S P 44
NANA_SCAN DL ... e 45
B 1 0o I o= [0 L (Y= o o 46
g1 gTo [ oz o U1 = L= = o 47
I 1 0o I o 4= ox A o - - L 48
= g Lo oo = v Ao - P 49
11. Internal FUNCLIONS PrOVIAEA ........iiiiiiiiiei e e 50
NANA_TEIEASE TEVICE ...u it e e e e e e e et e e e eaans 51
= oo [ == I o)V (= 52
= aTo B =0 I 0)V7 (= PP 53
=T aTo [ =0 o (o 54
NANA_SEIECE CNIP Leuiii i e 55
= aTo BT € (=T o) (PP 56
= Lo BT € (=T o) (1 T 57
NANA_WHTE DUF ...oe e e e e e e aaas 58
g To B 1= I o PPN 59
NANA_WHTE DUFLE ....ooeii e e e e e e e e e e e eeen 60
= oo I == o0 PN 61
NaNd _BIOCK Bad ..........ooiii 62
nand_default_block markbad .............ccoiiiiiiii s 63
nand_block_markbad TOWIEVEL ............ooiiiiiii e 64
=g To [ 0= G o TP 65
NANd_BIOCK ISIESEIVEA .....ouiiiic e e e e eans 66
nand_block Checkbad ...........ccooiiii 67
o= g Tog 7= 0o BT LA == Y/ 68
NaNd_Wait StAtUS TEAAY .......viiiiiii i e e e e e e e 69
a1 aTo [ oo 001017 o [ 70
g =T aTo [ oo a0 n17= o To [N | o 71
o= aTog 7= a 1o o (= Al o [=:Y, [ TS 72
=T aTo [0 1= o (=Y o P 73
o= g TTog 7= 1o A7 1 S P 74
=0 =T P 75
T 1 0o N oo 76
ar= aTo I == o I 0= o LT - 1T 77
nand _read page raw_SYNAIOIME ........ccuuieiiii e e e e e e e e e e e e e e e e e e et e e e e eenaas 78
gr= g To B == o I 0o LT T o o PP 79
NANd _read SUDPAgE ......iveiiii i 80
NaNd _read Page NWECC .......ciiiiiii e e e 81
nand_read page hweCC 000D First .....c.iiiiiiiiiii e 82
Nand_read Page SYNAIrOMIE ......uuiii e e e e e e e e e e et e e et e e et 83
= aTo I (=S = oo o N 84
NANA_SELUP TAH TEIIY .ovuiiit i e e e e e e e e aaaas 85
g aTo [ o o == o o TP 86
= To 1= 87
NANd _read 00D SO ......iiiiiii e 88
Nand _read 00D SYNATOMIE ... .ovuiiiii e e e e e e e e e e e ees 89
= Lo BT g (=T oo o T o [P 90
Nand_Write 00D SYNAIOME ......ccouiiiii e e e e e eaaes 91
NANA_dO Fead 00D .....coiiii i 92
g aTo [ =T o) o 93
T Lo RN L (T o= o [T - L AP 94
Nand_Write Page raW_SYNATOMIE ...u.eeeiiii i eei e eee e e e e e e e e e et e et e e et e e e e e et e e e e e eaneeeen 95




MTD NAND Driver
Programming Interface

NANA_WITE PAJE SWECCT .uvuiiiieeiiieeiee et e e e e e e e et e e et e e et e e e et e e st e e et e e et e et e ean e esnnaeeens 96
NaNd_WILE PAJE NWECE .....cvviiiii e e e e e e e aens 97
nand_Write SUDPAgE NWECC ......coviiii e e e e e e e eaas 98
nNand_Write Page SYNAIOME ......couuiiiiii e e e e e e e e e e et e e et e e e e eeas 99
g oo BT G (=T o= o[ 100
NANA_FITL 00D .o e 101
= aTo [ o o T ) (=T o) = 102
o= g T og 7= 0 o LY 1 1= T 103
=0 T -t 104
=T aTo [ o o T 1 (=T oo o T 105
L= oo BT € (=T oo o 106
LS Tl L=T = = = 107
L= o = = Pt 108
= aTo [ = =S T 7= oo Ot 109
=00 [ 110
NaNd_BIOCK IS8 .......covii 111
nand_block Markbad ............coouiii i 112
NaNd_ONfi_SEL FEAIUIES .....u.iiii i e e e e e e e e ee 113
gl aTo [ oo e = A = (0 =P 114
= g To JE WS o P 115
L= o B 1= 4= PN 116
L= o [ 1o (01 o Pt 117
(01 01C o Qo 7= 1 (=1 1PN 118
(o0 C o SR g (0 A o1 = o P 119
=0 (o [ 10 G G = o SN 120
(== o [ o PP 121
read @S Dbt ... 122
SCAN 1A 00D ...oeiii e 123
read @S BES ... 124
(ot 1= L= o] o (P 125
SEAICN Bt oo 126
search read BBtS ... 127
1T L= oo POt 128
nand_memory BBt ... 129
ot 0o o = = PP 130
0= S o) o R (= o [T o 131
A= 1V o o) o (= o LN 132
nand_update bt ... 133
nand_create badbloCK Pattern ...........cooiiiiiii 134
nand_default bt ... 135
NaNd_ISrESErVEd Dbt ......oiii i 136
(0T Te [ 0= o [ o o 137
nand_markbad bbt ... 138
I 1= [PPSR 139




Chapter 1. Introduction

The generic NAND driver supports almost all NAND and AG-AND based chips and connects them to the
Memory Technology Devices (MTD) subsystem of the Linux Kernel.

This documentation is provided for devel opers who want to implement board drivers or filesystem drivers
suitable for NAND devices.




Chapter 2. Known Bugs And
Assumptions

None.




Chapter 3. Documentation hints

Thefunction and structure docs are autogenerated. Each function and struct member has ashort description
whichismarked with an [ XXX] identifier. Thefollowing chapters explain the meaning of thoseidentifiers.

Function identifiers [XXX]

The functions are marked with [ XXX] identifiersin the short comment. The identifiers explain the usage
and scope of the functions. Following identifiers are used:

e [MTD Interface]

These functions provide the interface to the MTD kernel API. They are not replaceable and provide
functionality which is complete hardware independent.

* [NAND Interface]
These functions are exported and provide the interface to the NAND kernel API.
» [GENERIC]

Generic functions are not replaceable and provide functionality which is complete hardware indepen-
dent.

« [DEFAULT]

Default functions provide hardware related functionality which is suitable for most of the implementa-
tions. These functions can be replaced by the board driver if necessary. Those functions are called via
pointers in the NAND chip description structure. The board driver can set the functions which should
be replaced by board dependent functions before calling nand_scan(). If the function pointer is NULL
on entry to nand_scan() then the pointer is set to the default function which is suitable for the detected
chip type.

Struct member identifiers [ XXX]

The struct members are marked with [ XXX] identifiers in the comment. The identifiers explain the usage
and scope of the members. Following identifiers are used:

« [INTERN]

These members are for NAND driver internal use only and must not be modified. Most of these values
are calculated from the chip geometry information which is evaluated during nand_scan().

« [REPLACEABLE]

Replaceable members hold hardware related functions which can be provided by the board driver. The
board driver can set the functions which should be replaced by board dependent functions before calling
nand_scan(). If thefunction pointer isNULL on entry to nand_scan() then the pointer is set to the default
function which is suitable for the detected chip type.

» [BOARDSPECIFIC]

Board specific members hold hardware related information which must be provided by the board driver.
The board driver must set the function pointers and datafields before calling nand_scan().




Documentation hints

« [OPTIONAL]

Optional members can hold information relevant for the board driver. The generic NAND driver code
does not use thisinformation.




Chapter 4. Basic board driver

For most boards it will be sufficient to provide just the basic functions and fill out some really board
dependent members in the nand chip description structure.

Basic defines

At least you haveto provide amtd structure and astorage for theioremap'ed chip address. Y ou can allocate
the mtd structure using kmalloc or you can alocate it statically. In case of static allocation you have to
alocate anand_chip structure too.

Kmalloc based example

static struct ntd_info *board ntd;
static void __ionem *baseaddr;

Static example

static struct ntd_info board_ntd;
static struct nand_chip board_chip;
static void __ionem *baseaddr;

Partition defines

If you want to divide your device into partitions, then define a partitioning scheme suitable to your board.

#defi ne NUM _PARTI TI ONS 2
static struct ntd_partition partition_info[] = {

{ .name = "Fl ash partition 1",
.offset = O,
.size = 8 * 1024 * 1024 1},
{ .name = "Flash partition 2",
.of fset = MIDPART_OFS_NEXT,
.size = MIDPART_SI Z_FULL },
b

Hardware control function

The hardware control function provides access to the control pins of the NAND chip(s). The access can
be done by GPIO pinsor by addresslines. If you use address lines, make sure that the timing requirements
are met.

GPIO based example

static void board_hwcontrol (struct ntd_info *ntd, int cnd)




Basic board driver

{
swi tch(cnd) {

case NAND CTL_SETCLE: /* Set CLE pin high */ break;
case NAND CTL_CLRCLE: /* Set CLE pin low */ break;
case NAND CTL_SETALE: /* Set ALE pin high */ break;
case NAND CTL_CLRALE: /* Set ALE pin low */ break;
case NAND CTL_SETNCE: /* Set nCE pin |low */ break;
case NAND CTL_CLRNCE: /* Set nCE pin high */ break;
}

}

Address lines based example. It's assumed that the nCE pin is driven by a chip select decoder.

static void board_hweontrol (struct ntd_info *md, int cnd)
{
struct nand_chip *this = (struct nand_chip *) ntd->priv;
swi tch(crd){
case NAND CTL_SETCLE: this-> O ADDR W|= CLE ADRR BIT; break;
case NAND CTL_CLRCLE: this->1 O ADDR W &= ~CLE ADRR BIT; break;
case NAND CTL_SETALE: this-> O ADDR W|= ALE ADRR BIT; break;
case NAND CTL_CLRALE: this->1 O ADDR W &= ~ALE ADRR BIT; break;
}
}

Device ready function

If the hardwareinterface hasthe ready busy pin of the NAND chip connected to aGPI O or other accessible
I/0 pin, this function is used to read back the state of the pin. The function has no arguments and should
return O, if thedeviceisbusy (R/B pinislow) and 1, if thedeviceisready (R/B pinishigh). If the hardware
interface does not give accessto the ready busy pin, then the function must not be defined and the function
pointer this->dev_ready is set to NULL.

Init function

The init function allocates memory and sets up all the board specific parameters and function pointers.
When everything is set up nand_scan() is called. This function tries to detect and identify then chip. If a
chip isfound all the internal data fields are initialized accordingly. The structure(s) have to be zeroed out
first and then filled with the necessary information about the device.

static int __init board_init (void)
{

struct nand_chip *this;

int err = O;

/* Allocate menory for MID device structure and private data */

board_mtd = kzal |l oc(sizeof (struct ntd_info) + sizeof(struct nand_chip), G-P_KERNE
if (!board_ntd) {

printk ("Unable to all ocate NAND MID devi ce structure.\n");

err = - ENOVEM




Basic board driver

goto out;

}

/* map physical address */
baseaddr = i oremap(CH P_PHYSI CAL_ADDRESS, 1024);
if (!baseaddr) {
printk("loremap to access NAND chip failed\n");
err = -EIQ
goto out_ntd;
}

/* Get pointer to private data */

this = (struct nand_chip *) ();

/* Link the private data with the MID structure */
board_mtd->priv = this;

/* Set address of NAND IO |ines */

thi s-> O ADDR R = baseaddr;

thi s-> O ADDR W = baseaddr;

/* Reference hardware control function */

thi s->hwcontrol = board_hwcontrol ;

/* Set command delay time, see datasheet for correct value */
t hi s->chi p_del ay = CH P_DEPENDEND COVIVAND_ DELAY;

/* Assign the device ready function, if available */

t hi s->dev_ready = board_dev_ready;

t hi s- >eccnode = NAND _ECC SOFT;

/* Scan to find existence of the device */
if (nand_scan (board_ntd, 1)) {

err = -ENXI G

goto out _ior;

}

add_ntd_partitions(board_ntd, partition_info, NUM PARTITI ONS);
goto out;

out _ior:

i ounmap( baseaddr) ;
out _md:

kfree (board_ntd);
out:

return err;

}

nmodul e_init(board_init);

Exit function

The exit function is only necessary if the driver is compiled as a module. It releases all resources which
are held by the chip driver and unregisters the partitionsin the MTD layer.

#i f def MODULE




Basic board driver

static void __exit board_cleanup (void)
{

/* Rel ease resources, unregister device */
nand_r el ease (board_ntd);

/* unmap physical address */
i ounmap( baseaddr) ;

/* Free the MID device structure */
kfree (board_ntd);

}

nodul e_exi t (boar d_cl eanup) ;

#endi f




Chapter 5. Advanced board driver
functions

This chapter describes the advanced functionality of the NAND driver. For alist of functions which can
be overridden by the board driver see the documentation of the nand_chip structure.

Multiple chip control

The nand driver can control chip arrays. Therefore the board driver must provide an own select_chip
function. Thisfunction must (de)select the requested chip. The function pointer in the nand_chip structure
must be set before calling nand_scan(). The maxchip parameter of nand_scan() defines the maximum
number of chips to scan for. Make sure that the select_chip function can handle the requested number
of chips.

The nand driver concatenates the chipsto one virtual chip and providesthisvirtual chiptothe MTD layer.

Note: Thedriver can only handlelinear chip arrays of equally sized chips. Thereisno support for parallel
arrays which extend the buswidth.

GPIO based example

static void board _select chip (struct nmd_info *ntd, int chip)
{
/* Deselect all chips, set all nCE pins high */
GPl O BOARD _NAND NCE) |= Oxff;
if (chip >=0)
GPl O(BOARD_NAND NCE) &= ~ (1 << chip);
}

Address lines based example. Its assumed that the nCE pins are connected to an address decoder.

static void board_select_chip (struct nd_info *ntd, int chip)
{

struct nand_chip *this = (struct nand_chip *) ntd->priv;

/* Deselect all chips */

t hi s->1 O _ADDR_R &= ~BOARD_NAND_ADDR_MASK;
t hi s->1 O_ADDR_W &= ~BOARD_NAND_ADDR_MASK;
switch (chip) {

case 0O:

t hi s->1 O _ADDR_R | = BOARD_NAND_ADDR_CHI PO;
t hi s->1 O_ADDR_W | = BOARD_NAND_ADDR_CHI PO;
br eak;

case n:

this->1 O ADDR R
t hi s-> O ADDR W
br eak;

OARD_NAND_ADDR_CHI Pn;

| = B
| = BOARD_NAND_ADDR_CHI Pn;




Advanced board driver functions

Hardware ECC support

Functions and constants

The nand driver supports three different types of hardware ECC.

« NAND_ECC_HW3 256
Hardware ECC generator providing 3 bytes ECC per 256 byte.

« NAND_ECC_HW3 512
Hardware ECC generator providing 3 bytes ECC per 512 byte.

« NAND_ECC_HW6 512
Hardware ECC generator providing 6 bytes ECC per 512 byte.

« NAND_ECC_HWS8 512
Hardware ECC generator providing 6 bytes ECC per 512 byte.

If your hardware generator has a different functionality add it at the appropriate place in nand_base.c

The board driver must provide following functions:

» enable_hwecc
This function is called before reading / writing to the chip. Reset or initialize the hardware generator
in this function. The function is called with an argument which let you distinguish between read and
write operations.

 calculate_ecc
Thisfunction is called after read / write from / to the chip. Transfer the ECC from the hardware to the
buffer. If the option NAND_HWECC_SYNDROME is set then the function is only called on write.
See below.

e correct_data
In case of an ECC error thisfunction is called for error detection and correction. Return 1 respectively
2 in case the error can be corrected. If the error is not correctable return -1. If your hardware generator

matches the default algorithm of the nand_ecc software generator then use the correction function pro-
vided by nand_ecc instead of implementing duplicated code.

Hardware ECC with syndrome calculation

Many hardware ECC implementations provide Reed-Solomon codes and calculate an error syndrome on
read. The syndrome must be converted to a standard Reed-Solomon syndrome before calling the error
correction code in the generic Reed-Solomon library.

10



Advanced board driver functions

The ECC bytes must be placed immediately after the data bytes in order to make the syndrome generator
work. Thisiscontrary to theusual layout used by software ECC. The separation of dataand out of band area
isnot longer possible. The nand driver code handlesthislayout and the remaining free bytesinthe oob area
are managed by the autoplacement code. Provide a matching oob-layout in this case. Seerts fromd.c and
diskonchip.c for implementation reference. In those cases we must also use bad block tables on FLASH,
because the ECC layout is interfering with the bad block marker positions. See bad block table support
for details.

Bad block table support

Most NAND chips mark the bad blocks at a defined position in the spare area. Those blocks must not be
erased under any circumstances as the bad block information would be lost. It is possible to check the bad
block mark each time when the blocks are accessed by reading the spare area of thefirst page in the block.
Thisistime consuming so a bad block tableis used.

The nand driver supports various types of bad block tables.
* Per device
The bad block table contains all bad block information of the device which can consist of multiple chips.
* Per chip
A bad block table is used per chip and contains the bad block information for this particular chip.
* Fixed offset

The bad block tableislocated at afixed offset in the chip (device). This applies to various DiskOnChip
devices.

» Automatic placed

The bad block table is automatically placed and detected either at the end or at the beginning of a chip
(device)

e Mirrored tables

The bad block table is mirrored on the chip (device) to allow updates of the bad block table without
dataloss.

nand_scan() calls the function nand_default_bbt(). nand_default_bbt() selects appropriate default bad
block table descriptors depending on the chip information which was retrieved by nand_scan().

The standard policy is scanning the device for bad blocks and build a ram based bad block table which
allows faster access than always checking the bad block information on the flash chip itself.

Flash based tables

It may be desired or necessary to keep abad block tablein FLASH. For AG-AND chipsthisis mandatory,
as they have no factory marked bad blocks. They have factory marked good blocks. The marker pattern
is erased when the block is erased to be reused. So in case of powerloss before writing the pattern back
to the chip this block would be lost and added to the bad blocks. Therefore we scan the chip(s) when we
detect them the first time for good blocks and store this information in a bad block table before erasing
any of the blocks.

11



Advanced board driver functions

The blocks in which the tables are stored are protected against accidental access by marking them bad in
the memory bad block table. The bad block table management functions are allowed to circumvent this
protection.

The simplest way to activate the FLASH based bad block table support is to set the option
NAND_BBT_USE FLASH inthebbt option field of the nand chip structure before calling nand_scan().
For AG-AND chipsisthisdone by default. This activates the default FLASH based bad block table func-
tionality of the NAND driver. The default bad block table options are

* Store bad block table per chip

e Use 2 bits per block

» Automatic placement at the end of the chip
* Use mirrored tables with version numbers

» Reserve 4 blocks at the end of the chip

User defined tables

User defined tables are created by filling out a nand_bbt_descr structure and storing the pointer in the
nand_chip structure member bbt_td before calling nand_scan(). If a mirror table is necessary a second
structure must be created and a pointer to this structure must be stored in bbt_md inside the nand_chip
structure. If the bbt_md member is set to NULL then only the main table is used and no scan for the
mirrored table is performed.

The most important field in the nand_bbt_descr structure is the options field. The options define most of
the table properties. Use the predefined constants from nand.h to define the options.

» Number of bits per block
The supported number of bitsis 1, 2, 4, 8.
» Table per chip

Setting the constant NAND_BBT_PERCHIP selects that a bad block table is managed for each chipin
achip array. If thisoption is not set then a per device bad block tableis used.

» Tablelocation is absolute

Use the option constant NAND_BBT_ABSPAGE and define the absolute page number where the bad
block table startsin the field pages. If you have selected bad block tables per chip and you have amulti
chip array then the start page must be given for each chip in the chip array. Note: there is no scan for a
table ident pattern performed, so the fields pattern, veroffs, offs, len can be left uninitialized

» Tablelocation is automatically detected

The table can either be located in the first or the last good blocks of the chip (device). Set
NAND_BBT_LASTBLOCK to placethe bad block table at the end of the chip (device). The bad block
tablesare marked and identified by apattern which isstored in the spare area of thefirst pagein the block
which holds the bad block table. Store a pointer to the pattern in the pattern field. Further the length of
the pattern has to be stored in len and the offset in the spare area must be given in the offs member of
the nand_bbt_descr structure. For mirrored bad block tables different patterns are mandatory.

» Table creation

12



Advanced board driver functions

Set the option NAND_BBT_CREATE to enable the table creation if no table can be found during the
scan. Usually thisis done only onceif anew chipisfound.

» Tablewrite support

Set the option NAND_BBT_WRITE to enable the table write support. This allows the update of the
bad block table(s) in case a block has to be marked bad due to wear. The MTD interface function
block_markbad is calling the update function of the bad block table. If the write support is enabled then
the table is updated on FLASH.

Note: Write support should only be enabled for mirrored tables with version control.
» Tableversion control

Set the option NAND_BBT_VERSION to enable the table version control. It's highly recommended to
enable this for mirrored tables with write support. It makes sure that the risk of losing the bad block
table information is reduced to the loss of the information about the one worn out block which should
be marked bad. The version is stored in 4 consecutive bytesin the spare area of the device. The position
of the version number is defined by the member veroffs in the bad block table descriptor.

» Save block contents on write
In case that the block which holds the bad block table does contain other useful information, set the
option NAND_BBT_SAVECONTENT. When the bad block table is written then the whole block is
read the bad block table is updated and the block is erased and everything is written back. If this option
is not set only the bad block table is written and everything else in the block isignored and erased.

* Number of reserved blocks
For automatic placement some blocks must be reserved for bad block table storage. The number of re-
served blocksis defined in the maxblocks member of the bad block table description structure. Reserv-

ing 4 blocks for mirrored tables should be a reasonable number. This also limits the number of blocks
which are scanned for the bad block table ident pattern.

Spare area (auto)placement

The nand driver implements different possibilities for placement of filesystem datain the spare area,
» Placement defined by fsdriver
» Automatic placement

The default placement function is automatic placement. The nand driver has built in default placement
schemes for the various chiptypes. If due to hardware ECC functionality the default placement does not
fit then the board driver can provide a own placement scheme.

File system drivers can provide a own placement scheme which is used instead of the default placement
scheme.

Placement schemes are defined by anand_oobinfo structure

struct nand_oobi nfo {
i nt useecc;

13



Advanced board driver functions

i nt ecchytes;
i nt eccpos| 24];
int oobfree[8][2];
b
* useecc
The useecc member controls the ecc and placement function. The header file include/mtd/mtd-abi.h
contains constants to select ecc and placement. MTD_NANDECC_OFF switches off the ecc complete.
Thisis not recommended and available for testing and diagnosis only. MTD_NANDECC_PLACE se-
lects caller defined placement, MTD_NANDECC_ AUTOPLACE sdlects automatic placement.
* ecchytes
The ecchytes member defines the number of ecc bytes per page.
* eccpos
The eccpos array holds the byte offsets in the spare area where the ecc codes are placed.
» oobfree
The oobfree array defines the areas in the spare area which can be used for automatic placement. The

informationisgivenintheformat { offset, size} . offset definesthe start of the usable area, sizethe length
in bytes. More than one area can be defined. The list isterminated by an {0, O} entry.

Placement defined by fs driver

The calling function provides a pointer to a nand_oobinfo structure which defines the ecc placement. For
writes the caller must provide a spare area buffer along with the data buffer. The spare area buffer sizeis
(number of pages) * (size of spare area). For reads the buffer size is (number of pages) * ((size of spare
area) + (number of ecc steps per page) * sizeof (int)). The driver storesthe result of the ecc check for each
tuple in the spare buffer. The storage sequenceis

<gpare data page 0><ecc result 0>...<ecc result n>

<spare data page n><ecc result 0>...<ecc result n>
Thisisalegacy mode used by YAFFSL1.

If the spare area buffer is NULL then only the ECC placement is done according to the given schemein
the nand_oobinfo structure.

Automatic placement

Automatic placement uses the built in defaults to place the ecc bytes in the spare area. If filesystem data
have to be stored / read into the spare area then the calling function must provide a buffer. The buffer size
per page is determined by the oobfree array in the nand_oobinfo structure.

If the spare area buffer is NULL then only the ECC placement is done according to the default builtin
scheme.

14



Advanced board driver functions

Spare area autoplacement default schemes
256 byte pagesize

Offset Content Comment

0x00 ECC byte 0 Error correction code byte 0
0x01 ECC byte 1 Error correction code byte 1
0x02 ECC byte 2 Error correction code byte 2

0x03 Autoplace 0

0x04 Autoplace 1

0x05 Bad block marker If any bit in this byteis zero, then

this block is bad. This applies on-
ly to the first page in a block. In
theremaining pagesthisbyteisre-

served

0x06 Autoplace 2

0x07 Autoplace 3

512 byte pagesize

Offset Content Comment

0x00 ECC byte 0 Error correction code byte O of the
lower 256 Byte datain this page

0x01 ECC byte 1 Error correction code byte 1 of the
lower 256 Bytes of data in this
page

0x02 ECC byte 2 Error correction code byte 2 of the
lower 256 Bytes of data in this
page

0x03 ECC byte 3 Error correction code byte 0 of the
upper 256 Bytes of data in this
page

0x04 reserved reserved

0x05 Bad block marker If any bit in this byteis zero, then

this block is bad. This applies on-
ly to the first page in a block. In
theremaining pagesthisbyteisre-
served

0x06 ECC byte 4 Error correction code byte 1 of the
upper 256 Bytes of data in this

page

0x07 ECC byte 5 Error correction code byte 2 of the
upper 256 Bytes of data in this

page

0x08 - OxOF Autoplace0- 7

15



Advanced board driver functions

2048 byte pagesize

Offset

Content

Comment

0x00

Bad block marker

If any bit in this byte is zero, then
this block is bad. This applies on-
ly to the first page in a block. In
theremaining pagesthisbyteisre-
served

0x01

Reserved

Reserved

0x02-0x27

Autoplace 0 - 37

0x28

ECC byte 0

Error correction code byte O of the
first 256 Byte datain this page

0x29

ECC byte 1

Error correction code byte 1 of the
first 256 Bytes of datain this page

Ox2A

ECC byte 2

Error correction code byte 2 of the
first 256 Bytes datain this page

0x2B

ECC byte 3

Error correction code byte O of the
second 256 Bytes of data in this

page

0x2C

ECC byte 4

Error correction code byte 1 of the
second 256 Bytes of data in this

page

0x2D

ECC byte 5

Error correction code byte 2 of the
second 256 Bytes of data in this

page

Ox2E

ECC byte 6

Error correction code byte O of the
third 256 Bytes of datain this page

Ox2F

ECC byte 7

Error correction code byte 1 of the
third 256 Bytes of datain thispage

0x30

ECC byte 8

Error correction code byte 2 of the
third 256 Bytes of datain thispage

0x31

ECC byte 9

Error correction code byte O of the
fourth 256 Bytes of data in this

page

0x32

ECC byte 10

Error correction code byte 1 of the
fourth 256 Bytes of data in this

page

0x33

ECC byte 11

Error correction code byte 2 of the
fourth 256 Bytes of data in this

page

0x34

ECC byte 12

Error correction code byte O of the
fifth 256 Bytes of datain thispage

0x35

ECC byte 13

Error correction code byte 1 of the
fifth 256 Bytes of datain thispage

0x36

ECC byte 14

Error correction code byte 2 of the
fifth 256 Bytes of datain thispage

16




Advanced board driver functions

0x37

ECC byte 15

Error correction code byte O of the
Sixt 256 Bytes of datain this page

0x38

ECC byte 16

Error correction code byte 1 of the
sixt 256 Bytes of datain this page

0x39

ECC byte 17

Error correction code byte 2 of the
sixt 256 Bytes of datain this page

Ox3A

ECC byte 18

Error correction code byte O of the
seventh 256 Bytes of data in this

page

0x3B

ECC byte 19

Error correction code byte 1 of the
seventh 256 Bytes of data in this

page

0x3C

ECC byte 20

Error correction code byte 2 of the
seventh 256 Bytes of data in this

page

0x3D

ECC byte 21

Error correction code byte O of the
eighth 256 Bytes of data in this

page

Ox3E

ECC byte 22

Error correction code byte 1 of the
eighth 256 Bytes of data in this

page

Ox3F

ECC byte 23

Error correction code byte 2 of the
eighth 256 Bytes of data in this

page

17




Chapter 6. Filesystem support

The NAND driver provides all necessary functions for afilesystem viathe MTD interface.

Filesystems must be aware of the NAND peculiarities and restrictions. One mgjor restrictions of NAND
Flash is, that you cannot write as often as you want to a page. The consecutive writes to a page, before
erasing it again, are restricted to 1-3 writes, depending on the manufacturers specifications. This applies
similar to the spare area.

Therefore NAND aware filesystems must either write in page size chunks or hold a writebuffer to collect
smaller writes until they sum up to pagesize. Available NAND aware filesystems: JFFS2, Y AFFS.

The spare area usage to store filesystemn datais controlled by the spare area placement functionality which
is described in one of the earlier chapters.

18



Chapter 7. Tools

The MTD project provides a couple of helpful toolsto handle NAND Flash.
» flasherase, flasheraseall: Erase and format FLASH partitions

* nandwrite: write filesystem images to NAND FLASH

» nanddump: dump the contents of aNAND FLASH partitions

Thesetools are aware of the NAND restrictions. Please use those tool sinstead of complaining about errors
which are caused by non NAND aware access methods.

19



Chapter 8. Constants

This chapter describes the constants which might be relevant for adriver devel oper.

Chip option constants

Constants for chip id table

These constants are defined in nand.h. They are ored together to describe the chip functionality.

/* Buswitdh is 16 bit */

#defi ne NAND _BUSW DTH_16 0x00000002

/* Device supports partial progranmm ng w thout padding */
#defi ne NAND_NO _PADDI NG 0x00000004

/* Chip has cache program function */

#defi ne NAND_CACHEPRG 0x00000008

[* Chip has copy back function */

#defi ne NAND_COPYBACK 0x00000010

/* AND Chi p which has 4 banks and a confusing page / bl ock
* assignnent. See Renesas datasheet for further information */
#define NAND | S AND 0x00000020

/* Chip has a array of 4 pages which can be read without

* additional ready /busy waits */

#defi ne NAND_4PAGE_ARRAY 0x00000040

Constants for runtime options

These constants are defined in nand.h. They are ored together to describe the functionality.

/* The hw ecc generator provides a syndronme instead a ecc value on read

* This can only work if we have the ecc bytes directly behind the

* data bytes. Applies for DOC and AG AND Renesas HW Reed Sol onbn generators */
#defi ne NAND_HWECC SYNDROME 0x00020000

ECC selection constants

Use these constants to select the ECC algorithm.

/* No ECC. Usage is not recommended ! */

#defi ne NAND_ECC NONE O

/* Software ECC 3 byte ECC per 256 Byte data */
#define NAND ECC SOFT 1

/* Hardware ECC 3 byte ECC per 256 Byte data */
#defi ne NAND_ECC HWB_256 2

/* Hardware ECC 3 byte ECC per 512 Byte data */
#defi ne NAND _ECC HWB_512 3

20



Constants

/* Hardware ECC 6 byte ECC per 512 Byte data */
#defi ne NAND ECC HW_512 4
/* Hardware ECC 6 byte ECC per 512 Byte data */
#defi ne NAND_ECC HW3_512 6

Hardware control related constants

These constants describe the requested hardware access function when the boardspecific hardware control
functioniscalled

/* Select the chip by setting nCE to | ow */

#define NAND CTL_SETNCE 1

/* Deselect the chip by setting nCE to high */

#define NAND CTL_CLRNCE 2

/* Select the conmand | atch by setting CLE to high */
#define NAND CTL_SETCLE 3

/* Deselect the command | atch by setting CLE to | ow */
#define NAND CTL_CLRCLE 4

/* Select the address latch by setting ALE to high */
#define NAND CTL_SETALE 5

/* Desel ect the address latch by setting ALE to | ow */
#define NAND CTL_CLRALE 6

/* Set wite protection by setting WP to high. Not used! */
#define NAND CTL_SETW 7

/* Clear wite protection by setting WP to | ow. Not used! */
#define NAND CTL_CLRW 8

Bad block table related constants

These constants describe the options used for bad block table descriptors.

/* Options for the bad bl ock table descriptors */

[* The nunber of bits used per block in the bbt on the device */

#defi ne NAND BBT_NRBI TS_MSK 0x0000000F

#define NAND BBT_1BIT 0x00000001

#define NAND BBT_2BIT 0x00000002

#define NAND BBT_4BIT 0x00000004

#define NAND BBT_8BIT 0x00000008

/* The bad block table is in the |last good bl ock of the device */
#defi ne NAND BBT_LASTBLOCK 0x00000010

/* The bbt is at the given page, else we nmust scan for the bbt */
#def i ne NAND_BBT_ABSPAGE 0x00000020

/* bbt is stored per chip on nultichip devices */

#defi ne NAND_BBT_PERCH P 0x00000080

/* bbt has a version counter at offset veroffs */

#defi ne NAND_BBT_VERS|I ON 0x00000100

/* Create a bbt if none axists */

#defi ne NAND BBT_CREATE 0x00000200

21



Constants

/* Wite bbt if necessary */

#defi ne NAND BBT_WRI TE 0x00001000

/* Read and wite back block contents when witing bbt */
#defi ne NAND_BBT_SAVECONTENT 0x00002000

22



Chapter 9. Structures

This chapter contains the autogenerated documentation of the structures which are used in the NAND
driver and might be relevant for a driver developer. Each struct member has a short description which is
marked with an [XXX] identifier. See the chapter "Documentation hints" for an explanation.

23



Structures

Name
struct nand_hw_control — Control structure for hardware controller (e.g ECC generator) shared among
independent devices

Synopsis

struct nand_hw control {

spi nl ock_t | ock;

struct nand_chip * active;
wai t _queue_head_t wg;

}i
Members

lock protection lock
active the mtd device which holds the controller currently

wq wait queue to sleep on if a NAND operation isin progress used instead of the per chip wait
queue when a hw controller is available.

24



Structures

Name

struct nand_ecc_ctrl — Control structure for ECC

Synopsis

struct nand_ecc_ctrl {
nand _ecc_nodes_t node;
int steps;
int size;

int bytes;

int total;

int strength;

i nt prepad,;

i nt post pad;

struct nand_eccl ayout * |ayout;

void * priv;

void (* hwetl) (struct md_info *ntd, int node);

[
[
[
[
[
[
[
[
[
[
int (* read_oob) (struct nmtd_info *md, struct nand_chip *chip,
[

i
Members
mode ECC mode
steps number of ECC steps per page
size data bytes per ECC step
bytes ECC bytes per step
total total number of ECC bytes per page
strength max number of correctible bits per ECC step
prepad padding information for syndrome based ECC generators
postpad padding information for syndrome based ECC generators
layout ECC layout control struct pointer
priv pointer to private ECC control data

nt (* calculate) (struct nmd_info *ntd, const uint8_t *dat, uint8_t
nt (* correct) (struct nd_info *ntd, uint8_t *dat, uint8_t *read_ecc,uint8_t
nt (* read_page_raw) (struct mtd_info *ntd, struct nand_chip *chip,uint8_t
nt (* wite_page_raw) (struct ntd_info *ntd, struct nand_chip *chip, const
nt (* read_page) (struct nmtd_info *ntd, struct nand_chip *chip, uint8_t
nt (* read_subpage) (struct ntd_info *nmtd, struct nand_chip *chip,uint32_t offs
nt (* wite_subpage) (struct ntd_info *md, struct nand_chip *chip,uint32_t off
nt (* wite_page) (struct ntd_info *ntd, struct nand_chip *chip, const
nt (* wite_oob_raw) (struct nmtd_info *ntd, struct nand_chip *chip,int
nt (* read_oob_raw) (struct ntd_info *ntd, struct nand_chip *chip,int

*ecc_code);

nt (* wite_oob) (struct md_info *ntd, struct nand_chip *chip,int

25



Structures

hwectl

calculate
correct

read page raw

write_page raw

read page

read subpage
write_subpage
write_page
write_oob_raw
read oob raw
read_oob

write_oob

function to control hardware ECC generator. Must only be provided if an hardware
ECCisavalable

function for ECC calculation or readback from ECC hardware
function for ECC correction, matching to ECC generator (sw/hw)

function to read a raw page without ECC. This function should hide the specif-
ic layout used by the ECC controller and always return contiguous in-band and
out-of-band data even if they're not stored contiguously on the NAND chip (e.g.
NAND_ECC HW_SYNDROME interleaves in-band and out-of-band data).

function to write a raw page without ECC. This function should hide the
specific layout used by the ECC controller and consider the passed data as
contiguous in-band and out-of-band data. ECC controller is responsible for
doing the appropriate transformations to adapt to its specific layout (e.g.
NAND_ECC_HW_SYNDROME interleaves in-band and out-of-band data).

function to read a page according to the ECC generator requirements; returns max-
imum number of bitflips corrected in any single ECC step, O if bitflips uncor-
rectable, -EIO hw error

function to read parts of the page covered by ECC; returns same asr ead_page
function to write parts of the page covered by ECC.

function to write a page according to the ECC generator requirements.

function to write chip OOB data without ECC

function to read chip OOB data without ECC

function to read chip OOB data

function to write chip OOB data

26



Structures

Name

struct nand_buffers — buffer structure for read/write

Synopsis

struct nand_buffers {
uint8 t * ecccalc;
uint8 t * ecccode;
uint8 t * databuf;

}i
Members

ecccalc buffer pointer for calculated ECC, sizeis oobsize.
ecccode buffer pointer for ECC read from flash, size is oobsize.

databuf buffer pointer for data, sizeis (page size + oobsize).

Description

Do not change the order of buffers. databuf and oobrbuf must be in consecutive order.

27



Structures

Name
struct nand_chip — NAND Private Flash Chip Data

Synopsis

struct nand_chip {
void __iomem* | O ADDR R
void __iomem* | O ADDR W
uint8 t (* read_byte) (struct md_info *ntd);
ulé (* read _word) (struct ntd_info *ntd);
void (* wite_byte) (struct md_info *ntd, uint8_t byte);
void (* wite_buf) (struct md_info *ntd, const uint8 t *buf, int len);
void (* read_buf) (struct ntd_info *md, uint8_t *buf, int len);
void (* select_chip) (struct ntd_info *ntd, int chip);
int (* block_bad) (struct ntd_info *ntd, loff_t ofs, int getchip);
int (* block_markbad) (struct md_info *md, |off_t ofs);
void (* cmd_ctrl) (struct md_info *md, int dat, unsigned int ctrl);

i nt
i nt

(* init_size) (struct struct

(* dev_ready) (struct

md_ info *md,
nd_info *ntd);

nand_chip *this,u8 *id_data);

void (* cmdfunc) (struct mtd_info *nmtd, unsigned command, int columm,int page_ad

int(* waitfunc) (struct md_info *ntd, struct
int (* erase) (struct md_info *ntd, int page);
int (* scan_bbt) (struct md_info *md);

int (* errstat) (struct md_info *ntd, struct
int (* wite_page) (struct md_info *ntd, struct
int (* onfi_set_features) (struct ntd_info *ntd,
int (* onfi_get_features) (struct ntd_info *ntd,
int (* setup_read_retry) (struct nmd_info *md

i nt chip_del ay;

unsi gned int options;

unsi gned int bbt_options;

i nt page_shift;

i nt phys_erase_shift;

int bbt_erase_shift;

int chip_shift;

i nt nunchi ps;

ui nt 64_t chi psi ze;

i nt pagemask;

i nt pagebuf;

unsi gned int pagebuf_bitflips;
i nt subpagesi ze;

uint8 t bits_per_cell
uint16_t ecc_strength_ds;
uint16_t ecc_step_ds;

int onfi _timng_node_default;
i nt badbl ockpos;

i nt badbl ockbits;

int onfi _version;

i nt jedec_version;

uni on {unnamed_uni on};

int read _retries;

flstate t state;

nand_chip *this,

nand_chip *this);

int state,int sta

nand_chi p *chi p,uint32_t offset
struct nand_chip *chip,int feat
struct nand_chip *chip,int feat
int retry_node);

28



Structures

uint8_ t * oob_poi;
struct nand_hw control

* controller;

struct nand_ecc_ctrl ecc;
struct nand_buffers * buffers;

struct nand_hw control
uint8 t * bbt;
struct nand_bbt descr *
struct nand_bbt descr *
struct nand_bbt descr *
void * priv;
b
Members

|I0_ADDR R
|0_ADDR_W

read byte
read_word

write_byte

write_buf
read_buf
select_chip
block bad
block_markbad

cmd_ctrl

init_size

dev_ready

cmdfunc

waitfunc
erase

scan_bbt

hwcontrol ;

bbt _td;
bbt _nd;
badbl ock_pattern;

[BOARDSPECIFIC] address to read the 8 1/0 lines of the flash
device

[BOARDSPECIFIC] address to write the 8 I/O lines of the flash
device.

[REPLACEABLE] read one byte from the chip
[REPLACEABLE] read one word from the chip

[REPLACEABLE] write a single byte to the chip on the low 8 I/
O lines

[REPLACEABLE] write data from the buffer to the chip
[REPLACEABLE] read data from the chip into the buffer
[REPLACEABLE] select chip nr

[REPLACEABLE] check if ablock is bad, using OOB markers
[REPLACEABLE] mark ablock bad

[BOARDSPECIFIC] hardwarespecific function for controlling
ALE/CLE/nCE. Also used to write command and address

[BOARDSPECIFIC] hardwarespecific function for setting mtd-
>o00bsize, mtd->writesizeand soon. i d_dat a containsthe 8 bytes
values of NAND_CMD_READID. Return with the bus width.

[BOARDSPECIFIC] hardwarespecific function for accessing de-
vice ready/busy line. If set to NULL no access to ready/busy is
available and the ready/busy information is read from the chip sta-
tus register.

[REPLACEABLE] hardwarespecific function for writing com-
mands to the chip.

[REPLACEABLE] hardwarespecific function for wait on ready.
[REPLACEABLE] erase function

[REPLACEABLE] function to scan bad block table

29



Structures

errstat

write_page
onfi_set features
onfi_get_features

setup_read retry

chip_delay

options

bbt_options

page_shift

phys erase shift
bbt_erase shift
chip_shift
numchips
chipsize
pagemask
pagebuf
pagebuf_bitflips

subpagesize

bits per_cell

ecc_strength_ds

ecc_step ds

onfi_timing_mode_default

[OPTIONAL] hardware specific function to perform additional er-
ror status checks (determine if errors are correctable).

[REPLACEABLE] High-level page write function
[REPLACEABLE] set the features for ONFI nand
[REPLACEABLE] get the features for ONFI nand

[FLASHSPECIFIC] flash (vendor) specific function for setting the
read-retry mode. Mostly needed for MLC NAND.

[BOARDSPECIFIC] chip dependent delay for transferring data
from array to read regs (tR).

[BOARDSPECIFIC] various chip options. They can partly be set
toinform nand_scan about special functionality. Seethe definesfor
further explanation.

[INTERN] bad block specific options. All options used here must
come from bbm.h. By default, these options will be copied to the
appropriate nand_bbt_descr's.

[INTERN] number of address bitsin a page (column address hits).
[INTERN] number of address bitsin a physical eraseblock
[INTERN] number of address bitsin a bbt entry

[INTERN] number of address bitsin one chip

[INTERN] number of physical chips

[INTERN] the size of one chip for multichip arrays

[INTERN] page number mask = number of (pages/ chip) - 1
[INTERN] holds the pagenumber which is currently in data_buf.

[INTERN] holds the bitflip count for the page which is currently
in data_buf.

[INTERN] holds the subpagesize
[INTERN] number of bits per cell.i.e.,, 1 means SLC.

[INTERN] ECC correctability from the datasheet. Minimum
amount of bit errors per ecc_st ep_ds guaranteed to be cor-
rectable. If unknown, set to zero.

[INTERN] ECC step required by the ecc_st r engt h_ds, also
from the datasheet. It isthe recommended ECC step size, if known;
if unknown, set to zero.

[INTERN] default ONFI timing mode. Thisfield is either deduced
from the datasheet if the NAND chip is not ONFI compliant or set
to O if itis (an ONFI chip is aways configured in mode O after a
NAND reset)

30



Structures

badbl ockpos
badbl ockbits

onfi_version

jedec version

{ unnamed_union}
read retries

state

oob_poi

controller

ecc
buffers
hwcontrol
bbt
bbt_td
bbt_md

badblock_pattern

priv

[INTERN] position of the bad block marker in the oob area.

[INTERN] minimum number of set bitsin agood block's bad block
marker position; i.e.,, BBM == 11110111b is not bad when bad-
blockbits ==

[INTERN] holds the chip ONFI version (BCD encoded), non O if
ONFI supported.

[INTERN] holds the chip JEDEC version (BCD encoded), non O if
JEDEC supported.

anonymous

[INTERN] the number of read retry modes supported

[INTERN] the current state of the NAND device

"poison value buffer," used for laying out OOB data before writing

[REPLACEABLE] a pointer to a hardware controller structure
which is shared among multiple independent devices.

[BOARDSPECIFIC] ECC control structure

buffer structure for read/write

platform-specific hardware control structure

[INTERN] bad block table pointer

[REPLACEABLE] bad block table descriptor for flash lookup.
[REPLACEABLE] bad block table mirror descriptor

[REPLACEABLE] bad block scan pattern used for initial bad block
scan.

[OPTIONAL] pointer to private chip data

31



Structures

Name
struct nand_flash_dev — NAND Flash Device ID Structure

Synopsis

struct nand_fl ash_dev {
char * nane;
uni on ecc;
int onfi _timng_node_default;

1
Members

name a human-readable name of the NAND chip

ecc ECC correctability and step information from the datasheet.
ecc.strength ds: The ECC correctability from the datasheet,
same as the ecc_st r engt h_ds in nand_chip{}. ecc.step_ds:
The ECC step required by the ecc.strength_ds, same as the
ecc_step_ds in nand_chip{}, adso from the datasheet. For
example, the “4bit ECC for each 512Byte” can be set with
NAND_ECC_INFO(4, 512).

onfi_timing_mode_default the default ONFI timing mode entered after aNAND reset. Should

be deduced from timings described in the datasheet.

32



Structures

Name

struct nand_manufacturers — NAND Flash Manufacturer ID Structure

Synopsis

struct nand_manufacturers {

int id;
char * nane;
}s
Members
id manufacturer 1D code of device.

name Manufacturer name

33



Structures

Name

struct platform_nand_chip — chip level device structure

Synopsis

struct platformnand_chip {

i nt nr_chips;
int chip_offset;

int nr_partitions;
struct md_partition * partitions;
struct nand_eccl ayout * eccl ayout;

i nt chip_del ay;

unsi gned int options;

unsi gned int

bbt _opti ons;

const char ** part_probe_types;

I
Members
nr_chips
chip_offset
nr_partitions
partitions
ecclayout
chip_delay
options
bbt_options

part_probe_types

max. humber of chipsto scan for

chip number offset

number of partitions pointed to by partitions (or zero)
mtd partition list

ECC layout info structure

R/B delay valuein us

Option flags, e.g. 16bit buswidth

BBT option flags, e.g. NAND_BBT_USE _FLASH

NULL-terminated array of probe types




Structures

Name

struct platform_nand_ctrl — controller level device structure

Synopsis

struct platformnand_ctrl {
int (* probe) (struct platformdevice *pdev);
void (* remove) (struct platformdevice *pdev);
void (* hwcontrol) (struct md_info *ntd, int cnd);
int (* dev_ready) (struct ntd_info *ntd);
void (* select_chip) (struct ntd_info *ntd, int chip);

void (* cmd_ctrl) (struct md_info *md, int dat, unsigned int ctrl);

void (* wite_buf) (struct nd_info *ntd, const uint8 t *buf,

void (* read_buf) (struct ntd_info *md, uint8_t *buf, int len);

unsi gned char (* read_byte) (struct nd_info *md);
void * priv;

I
Members
probe platform specific function to probe/setup hardware
remove platform specific function to remove/teardown hardware
hwcontrol platform specific hardware control structure
dev_ready platform specific function to read ready/busy pin
select_chip platform specific chip select function
cmd_ctrl platform specific function for controlling ALE/CLE/nCE. Also used to write command
and address
write_buf platform specific function for write buffer
read_buf platform specific function for read buffer
read byte platform specific function to read one byte from chip
priv private data to transport driver specific settings
Description

All fields are optional and depend on the hardware driver requirements

35



Structures

Name

struct platform_nand_data— container structure for platform-specific data

Synopsis

struct platformnand_data {
struct platformnand_chip chip;
struct platformunand_ctrl ctrl;

b
Members

chip  chipleve chip structure

ctrl controller level device structure

36



Structures

Name

nand_opcode_8bits —
Synopsis
i nt nand_opcode_8bits (unsigned int comrand);

Arguments

conmand opcode to check

37



Chapter 10. Public Functions Provided

This chapter contains the autogenerated documentation of the NAND kernel API functions which are
exported. Each function has a short description which is marked with an [ XX X] identifier. See the chapter
"Documentation hints" for an explanation.

38



Public Functions Provided

Name

nand_unlock — [REPLACEABLE] unlocks specified locked blocks
Synopsis

i nt nand_unl ock (struct md_info * md, loff_t ofs, uinté4_t len);
Arguments

nd mtdinfo

of s offset to start unlock from

I en length to unlock

Description

Returns unlock status.

39



Public Functions Provided

Name

nand_lock — [REPLACEABLE] locks al blocks present in the device
Synopsis

int nand_lock (struct md_info * md, loff_t ofs, uinté4_t len);
Arguments

nd mtdinfo

of s offset to start unlock from

I en length to unlock

Description

Thisfeatureisnot supported in many NAND parts. 'Micron' NAND partsdo have thisfeature, but it allows
only to lock all blocks, not for specified range for block. Implementing 'lock’ feature by making use of
‘unlock’, for now.

Returns lock status.

40



Public Functions Provided

Name
nand_scan_ident — [NAND Interface] Scan for the NAND device
Synopsis
int nand_scan_ident (struct md_info * ntd, int maxchips, struct

nand_fl ash_dev * table);

Arguments
ntd MTD device structure
maxchi ps  number of chipsto scan for

tabl e adternative NAND ID table

Description

Thisisthefirst phase of the normal nand_scan function. It reads the flash ID and sets up MTD fields
accordingly.

The mtd->owner field must be set to the module of the caller.

41



Public Functions Provided

Name
nand_scan_tail — [NAND Interface] Scan for the NAND device

Synopsis
int nand_scan_tail (struct md_info * md);

Arguments

ntd MTD device structure

Description

This is the second phase of the normal nand_scan function. It fills out al the uninitialized function
pointers with the defaults and scans for a bad block table if appropriate.

42



Public Functions Provided

Name

nand_scan — [NAND Interface] Scan for the NAND device
Synopsis

i nt nand_scan (struct md_info * ntd, int maxchips);
Arguments

ntd MTD device structure

maxchi ps  number of chipsto scan for

Description

This fills out al the uninitialized function pointers with the defaults. The flash ID is read and the mtd/
chip structures are filled with the appropriate values. The mtd->owner field must be set to the module of

the caller.

43



Public Functions Provided

Name
nand_release — [NAND Interface] Free resources held by the NAND device

Synopsis
void nand_rel ease (struct md_info * ntd);

Arguments

ntd MTD device structure




Public Functions Provided

Name
nand_scan_bbt — [NAND Interface] scan, find, read and maybe create bad block table(s)

Synopsis
i nt nand_scan_bbt (struct ntd_info * nmtd, struct nand_bbt_descr * bd);

Arguments

ntd MTD device structure

bd  descriptor for the good/bad block search pattern

Description

Thefunction checks, if abad block table(s) is/are already available. If not it scans the device for manufac-
turer marked good / bad blocks and writes the bad block table(s) to the selected place.

The bad block table memory is allocated here. It must be freed by calling the nand_free _bbt function.

45



Public Functions Provided

Name

__nand_calculate_ecc — [NAND Interface] Calculate 3-byte ECC for 256/512-byte block
Synopsis

void _ nand_cal cul ate_ecc (const unsigned char * buf, unsigned int

eccsi ze, unsigned char * code);

Arguments

buf input buffer with raw data
eccsi ze databytesper ECC step (256 or 512)

code output buffer with ECC

46



Public Functions Provided

Name
nand_calculate_ecc — [NAND Interface] Calculate 3-byte ECC for 256/512-byte block

Synopsis

int nand_cal cul ate_ecc (struct md_info * nmtd, const unsigned char *
buf, unsigned char * code);

Arguments

ntd MTD block structure
buf input buffer with raw data

code output buffer with ECC

47



Public Functions Provided

Name
__nand_correct_data— [NAND Interface] Detect and correct bit error(s)

Synopsis

int _ nand_correct_data (unsigned char * buf, unsigned char * read_ecc,
unsi gned char * cal c_ecc, unsigned int eccsize);

Arguments

buf raw data read from the chip
read_ecc ECC from the chip
cal c_ecc theECC caculated from raw data

eccsi ze  databytes per ECC step (256 or 512)

Description

Detect and correct a1 bit error for eccsize byte block

48



Public Functions Provided

Name

nand_correct_data— [NAND Interface] Detect and correct bit error(s)

Synopsis

int nand_correct_data (struct ntd_info * ntd, unsigned char * buf,
unsi gned char * read_ecc, unsigned char * cal c_ecc);

Arguments
ntd MTD block structure
buf raw data read from the chip

read_ecc ECC from thechip

cal c_ecc theECC caculated from raw data

Description

Detect and correct a1 bit error for 256/512 byte block

49



Chapter 11. Internal Functions
Provided

This chapter contains the autogenerated documentation of the NAND driver internal functions. Each func-
tion has a short description which is marked with an [XXX] identifier. See the chapter "Documentation
hints" for an explanation. The functions marked with [DEFAULT] might be relevant for a board driver
developer.

50



Internal Functions Provided

Name
nand_release_device — [GENERIC] release chip
Synopsis
voi d nand_rel ease_device (struct nmtd_info * ntd);
Arguments
ntd MTD device structure
Description

Release chip lock and wake up anyone waiting on the device.

51



Internal Functions Provided

Name
nand_read byte — [DEFAULT] read one byte from the chip

Synopsis
uint8 t nand_read_byte (struct ntd_info * ntd);

Arguments

ntd MTD device structure

Description

Default read function for 8bit buswidth

52



Internal Functions Provided

Name

nand_read_bytel6 — [DEFAULT] read one byte endianness aware from the chip
Synopsis

uint8 t nand_read bytel6 (struct ntd_info * ntd);
Arguments

ntd MTD device structure
Description

Default read function for 16bit buswidth with endianness conversion.

53



Internal Functions Provided

Name

nand_read word — [DEFAULT] read one word from the chip
Synopsis

ulé nand_read_word (struct mtd_info * ntd);
Arguments

ntd MTD device structure
Description

Default read function for 16bit buswidth without endianness conversion.




Internal Functions Provided

Name
nand_select_chip — [DEFAULT] control CE line
Synopsis
voi d nand_sel ect _chip (struct md_info * md, int chipnr);
Arguments
ntd MTD device structure
chi pnr  chipnumber to select, -1 for deselect
Description

Default select function for 1 chip devices.

55



Internal Functions Provided

Name
nand_write_byte — [DEFAULT] write single byte to chip
Synopsis
void nand_wite byte (struct ntd_info * ntd, uint8_t byte);
Arguments
nd MTD devicestructure
byt e vauetowrite
Description

Default function to write abyte to 1/0[7:0]

56



Internal Functions Provided

Name
nand_write_bytel6 — [DEFAULT] write single byte to a chip with width 16

Synopsis

void nand_wite bytel6 (struct md_info * ntd, uint8_t byte);
Arguments

nt d MTD device structure

byt e vauetowrite

Description

Default function to write abyte to 1/0[7:0] on a 16-bit wide chip.

57



Internal Functions Provided

Name
nand_write_buf — [DEFAULT] write buffer to chip

Synopsis
void nand_wite_buf (struct md_info * nmd, const uint8_t * buf, int
l en);

Arguments

ntd MTD device structure
buf databuffer

| en number of bytesto write

Description

Default write function for 8bit buswidth.

58



Internal Functions Provided

Name
nand_read buf — [DEFAULT] read chip datainto buffer

Synopsis

voi d nand_read_buf (struct nmd_info * ntd, uint8 t * buf, int len);

Arguments

ntd MTD device structure
buf buffer to store date

| en  number of bytesto read

Description

Default read function for 8bit buswidth.

59



Internal Functions Provided

Name
nand_write_buf16 — [DEFAULT] write buffer to chip

Synopsis
void nand_wite buf16 (struct md_info * md, const uint8_t * buf, int
l en);

Arguments

ntd MTD device structure
buf databuffer

| en number of bytesto write

Description

Default write function for 16bit buswidth.

60



Internal Functions Provided

Name
nand_read buf16 — [DEFAULT] read chip datainto buffer

Synopsis

void nand_read_buf16 (struct ntd_info * ntd, uint8_t * buf, int len);

Arguments

ntd MTD device structure
buf buffer to store date

| en  number of bytesto read

Description

Default read function for 16bit buswidth.

61



Internal Functions Provided

Name
nand_block_bad — [DEFAULT] Read bad block marker from the chip

Synopsis

i nt nand_bl ock_bad (struct nmtd_info * md, loff_t ofs,

Arguments
nt d MTD device structure
of s offset from device start

getchi p O, if thechipisaready selected

Description
Check, if the block is bad.

i nt getchip);

62



Internal Functions Provided

Name
nand_default_block_markbad — [DEFAULT] mark a block bad via bad block marker

Synopsis

i nt nand_defaul t _bl ock_markbad (struct ntd_info * ntd, |off_t ofs);

Arguments

ntd MTD device structure

of s offset from device start

Description

Thisisthe default implementation, which can be overridden by a hardware specific driver. It provides the
details for writing a bad block marker to a block.

63



Internal Functions Provided

Name
nand_block_markbad lowlevel — mark a block bad

Synopsis
i nt nand_bl ock_narkbad_| ow evel (struct md_info * md, loff_t ofs);

Arguments

ntd MTD device structure

of s offset from device start

Description

This function performs the generic NAND bad block marking steps (i.e., bad block table(s) and/or
marker(s)). We only allow the hardware driver to specify how to write bad block markers to OOB (chip-
>block_markbad).

We try operations in the following order

(1) erasethe affected block, to allow OOB marker to bewritten cleanly (2) write bad block marker to OOB
area of affected block (unless flag NAND_BBT_NO_OOB_BBM is present) (3) update the BBT Note
that weretain thefirst error encountered in (2) or (3), finish the procedures, and dump the error in the end.




Internal Functions Provided

Name

nand_check_wp — [GENERIC] check if the chip is write protected
Synopsis

int nand_check_wp (struct mtd_info * ntd);
Arguments

ntd MTD device structure
Description

Check, if the device is write protected. The function expects, that the device is already selected.

65



Internal Functions Provided

Name
nand_block_isreserved — [GENERIC] Check if ablock is marked reserved.

Synopsis

i nt nand_bl ock_isreserved (struct ntd_info * nmd, loff_t ofs);

Arguments

ntd MTD device structure

of s offset from device start

Description

Check if the block is marked as reserved.

66



Internal Functions Provided

Name
nand_block_checkbad — [GENERIC] Check if ablock is marked bad
Synopsis
i nt nand_bl ock_checkbad (struct ntd_info * ntd, |off_t ofs, int getchip,
int allowbbt);
Arguments
ntd MTD device structure
of s offset from device start

getchip 0,if thechipisalready selected

al | owbbt 1, if itsalowed to access the bbt area

Description

Check, if the block is bad. Either by reading the bad block table or calling of the scan function.

67



Internal Functions Provided

Name
panic_nand wait_ready — [GENERIC] Wait for the ready pin after commands.

Synopsis

voi d pani c_nand_wait_ready (struct md_info * md, unsigned |ong tineo);

Arguments
ntd MTD device structure

ti meo Timeout

Description

Helper function for nand_wait_ready used when needing to wait in interrupt context.

68



Internal Functions Provided

Name
nand_wait_status ready — [GENERIC] Wait for the ready status after commands.

Synopsis
void nand_wait_status ready (struct ntd_info * md, unsigned |ong
timeo);

Arguments

nt d MTD device structure

timeo Timeoutinms

Description

Wait for status ready (i.e. command done) or timeout.

69



Internal Functions Provided

Name
nand_command — [DEFAULT] Send command to NAND device

Synopsis

void nand_command (struct mtd_info * md, unsigned int command, int
colum, int page_addr);

Arguments
ntd MTD device structure
comrand the command to be sent
col um the column address for this command, -1 if none

page_addr the page address for this command, -1 if none

Description

Send command to NAND device. Thisfunction is used for small page devices (512 Bytes per page).

70



Internal Functions Provided

Name
nand_command_Ip — [DEFAULT] Send command to NAND large page device

Synopsis

voi d nand_command_| p (struct ntd_info * nmtd, unsigned int conmand, int
colum, int page_addr);

Arguments
ntd MTD device structure
comrand the command to be sent
col um the column address for this command, -1 if none

page_addr the page address for this command, -1 if none

Description

Send command to NAND device. Thisis the version for the new large page devices. We don't have the
separate regions as we have in the small page devices. We must emulate NAND_CMD_READOOB to

keep the code compatible.

71



Internal Functions Provided

Name
panic_nand_get _device — [GENERIC] Get chip for selected access
Synopsis
voi d pani c_nand_get device (struct nand_chip * chip, struct ntd_info *
nd, int new state);
Arguments
chip the nand chip descriptor
ntd MTD device structure
new_st at e thestate which isrequested
Description

Used when in panic, no locks are taken.

72



Internal Functions Provided

Name

nand_get_device— [GENERIC] Get chip for selected access
Synopsis

i nt nand_get _device (struct ntd_info * ntd, int new state);
Arguments

ntd MTD device structure

new_st at e thestate whichisrequested

Description

Get the device and lock it for exclusive access

73



Internal Functions Provided

Name

panic_nand_wait — [GENERIC] wait until the command is done

Synopsis

void panic_nand wait (struct ntd_info * ntd, struct nand_chip * chip,
unsi gned | ong timeo);

Arguments

nt d MTD device structure
chip  NAND chip structure

ti meo timeout

Description

Wait for command done. This is a helper function for nand_wait used when we are in interrupt context.
May happen when in panic and trying to write an oops through mtdoops.

74



Internal Functions Provided

Name

nand_wait — [DEFAULT] wait until the command is done

Synopsis

int nand_wait (struct md_info * md, struct nand_chip * chip);

Arguments

nt d MTD device structure

chi p NAND chip structure

Description

Wait for command done. Thisappliesto erase and program only. Erase can take up to 400ms and program
up to 20ms according to general NAND and SmartM edia specs.

75



Internal Functions Provided

Name
__nand_unlock — [REPLACEABLE] unlocks specified locked blocks

Synopsis

int _ nand_unlock (struct md_info * ntd, loff_t ofs,
int invert);

Arguments
ntd mtd info
of s offset to start unlock from
l en length to unlock

uinté4 t Ilen,

i nvert when =0, unlock the range of blocks within the lower and upper boundary address when = 1,
unlock the range of blocks outside the boundaries of the lower and upper boundary address

Description

Returs unlock status.

76



Internal Functions Provided

Name
nand_read page raw — [INTERN] read raw page data without ecc

Synopsis

i nt nand_read_page_raw (struct ntd_info * md, struct nand_chip * chip,
uint8 t * buf, int oob_required, int page);

Arguments
ntd mtd info structure
chip nand chip info structure
buf buffer to store read data

oob_required caller requires OOB dataread to chip->oob_poi

page page number to read

Description

Not for syndrome cal culating ECC controllers, which use a specia oob layout.

77



Internal Functions Provided

Name
nand_read page raw_syndrome — [INTERN] read raw page data without ecc

Synopsis

i nt nand_read_page_raw syndrome (struct ntd_info * ntd, struct nand_chip
* chip, uint8_t * buf, int oob_required, int page);

Arguments
ntd mtd info structure
chip nand chip info structure
buf buffer to store read data

oob_required caller requires OOB dataread to chip->oob_poi

page page number to read

Description

We need a special oob layout and handling even when OOB isn't used.

78



Internal Functions Provided

Name
nand_read page swecc — [REPLACEABLE] software ECC based page read function

Synopsis

int nand_read_page_swecc (struct ntd_info * ntd, struct nand_chip *
chip, uint8_t * buf, int oob_required, int page);

Arguments
ntd mtd info structure
chip nand chip info structure
buf buffer to store read data

oob_required caller requires OOB dataread to chip->oob_poi

page page number to read

79



Internal Functions Provided

Name
nand_read subpage — [REPLACEABLE] ECC based sub-page read function

Synopsis

i nt nand_read_subpage (struct md_info * nmd, struct nand_chip * chip,
uint32_t data_offs, uint32_t readlen, uint8_t * bufpoi, int page);

Arguments
ntd mtd info structure
chip nand chip info structure

dat a_of fs offset of requested data within the page

readl en datalength
buf poi buffer to store read data
page page number to read

80



Internal Functions Provided

Name
nand_read page hwecc — [REPLACEABLE] hardware ECC based page read function

Synopsis

int nand_read_page_hwecc (struct ntd_info * ntd, struct nand_chip *
chip, uint8_t * buf, int oob_required, int page);

Arguments
ntd mtd info structure
chip nand chip info structure
buf buffer to store read data

oob_required caller requires OOB dataread to chip->oob_poi

page page number to read

Description

Not for syndrome cal culating ECC controllers which need a special oob layout.

81



Internal Functions Provided

Name
nand_read page hwecc oob first — [REPLACEABLE] hw ecc, read oob first

Synopsis

int nand_read_page_hwecc_oob_first (struct md_info * ntd, struct
nand_chip * chip, uint8_t * buf, int oob_required, int page);

Arguments
ntd mtd info structure
chip nand chip info structure
buf buffer to store read data

oob_required caller requires OOB dataread to chip->oob_poi

page page number to read

Description

Hardware ECC for large page chips, require OOB to be read first. For this ECC mode, the write_page
method is re-used from ECC_HW. These methods read/write ECC from the OOB area, unlike the
ECC_HW_SYNDROME support with multiple ECC steps, follows the “infix ECC” scheme and reads/
writes ECC from the data area, by overwriting the NAND manufacturer bad block markings.

82



Internal Functions Provided

Name
nand_read page syndrome — [REPLACEABLE] hardware ECC syndrome based page read

Synopsis

i nt nand_read_page_syndrone (struct ntd_info * ntd, struct nand_chip *
chip, uint8_t * buf, int oob_required, int page);

Arguments
ntd mtd info structure
chip nand chip info structure
buf buffer to store read data

oob_required caller requires OOB dataread to chip->oob_poi

page page number to read

Description
The hw generator calculates the error syndrome automatically. Therefore we need a special oob layout
and handling.

83



Internal Functions Provided

Name
nand_transfer_oob — [INTERN] Transfer oob to client buffer

Synopsis

uint8 t * nand_transfer_oob (struct nand_chip * chip, uint8_t * oob,
struct nmtd_oob_ops * ops, size_t len);

Arguments
chi p nand chip structure
oob  oob destination address
ops  0ob ops structure

| en  sizeof oob to transfer




Internal Functions Provided

Name

nand_setup_read retry — [INTERN] Set the READ RETRY mode
Synopsis

int nand_setup read retry (struct nd_info * nmtd, int retry_node);
Arguments

ntd MTD device structure

retry_node theretry modeto use

Description

Some vendors supply a special command to shift the Vt threshold, to be used when there are too many
bitflipsin apage (i.e., ECC error). After setting a new threshold, the host should retry reading the page.

85



Internal Functions Provided

Name
nand_do_read ops— [INTERN] Read datawith ECC

Synopsis

int nand_do_read_ops (struct md_info * ntd,
nt d_oob_ops * ops);

Arguments

nt d MTD device structure
from offset toread from

ops  0ob ops structure

Description

Internal function. Called with chip held.

| of f _t

from

struct

86



Internal Functions Provided

Name
nand_read — [MTD Interface] MTD compatibility function for nand_do read ecc

Synopsis

int nand_read (struct md_info * ntd, loff_t from size_t len, size_t
* retlen, uint8_t * buf);

Arguments

ntd MTD device structure

from offset to read from

l en number of bytesto read

retl en pointerto variableto store the number of read bytes

buf the databuffer to put data

Description

Get hold of the chip and call nand_do_read.

87



Internal Functions Provided

Name
nand_read oob_std — [REPLACEABLE] the most common OOB data read function
Synopsis
int nand_read_oob_std (struct md_info * nmd, struct nand_chip * chip,
i nt page);
Arguments

nt d mtd info structure
chi p nand chip info structure

page page number to read

88



Internal Functions Provided

Name
nand_read oob_syndrome — [REPLACEABLE] OOB data read function for HW ECC with syndromes

Synopsis

i nt nand_read_oob_syndrome (struct ntd_info * ntd, struct nand_chip *
chip, int page);

Arguments
ntd  mtdinfo structure
chi p nand chip info structure

page page number to read

89



Internal Functions Provided

Name
nand_write_oob_std — [REPLACEABLE] the most common OOB data write function
Synopsis
int nand_ wite_ oob_std (struct ntd_info * md, struct nand_chip * chip,
i nt page);
Arguments

nt d mtd info structure
chi p nand chip info structure

page page number to write

90



Internal Functions Provided

Name

nand_write_oob_syndrome — [REPLACEABLE] OOB data write function for HW ECC with syndrome
- only for large page flash

Synopsis

int nand_wite_oob_syndronme (struct mtd_info * ntd, struct nand_chip
* chip, int page);

Arguments
ntd  mtdinfo structure
chi p nand chip info structure

page page number to write

91



Internal Functions Provided

Name
nand_do_read oob — [INTERN] NAND read out-of-band

Synopsis

int nand_do_read_oob (struct nmd_info * ntd,
nt d_oob_ops * ops);

Arguments

nt d MTD device structure
from offset toread from

ops  o0ob operations description structure

Description

NAND read out-of-band data from the spare area.

| of f _t

from

struct

92



Internal Functions Provided

Name
nand_read oob — [MTD Interface] NAND read data and/or out-of-band

Synopsis
i nt nand_read_oob (struct md_info* md, loff _t from struct ntd_oob_ops
* 0ops);

Arguments

nt d MTD device structure
from offset toread from

ops  o0ob operation description structure

Description

NAND read data and/or out-of-band data.

93



Internal Functions Provided

Name
nand_write_page raw — [INTERN] raw page write function

Synopsis

int nand_wite_page raw (struct ntd_info * ntd, struct nand_chip * chip,
const uint8_t * buf, int oob_required);

Arguments
ntd mtd info structure
chip nand chip info structure
buf data buffer

oob_required mustwritechip->00b poi to OOB

Description

Not for syndrome cal culating ECC controllers, which use a specia oob layout.

94



Internal Functions Provided

Name

nand_write_page raw_syndrome — [INTERN] raw page write function

Synopsis

int nand_wite_page raw syndrone (struct ntd_info * ntd,
nand_chip * chip, const uint8 t * buf, int oob_required);

Arguments
ntd mtd info structure
chip nand chip info structure
buf data buffer

oob_required mustwritechip->00b poi to OOB

Description

We need a special oob layout and handling even when ECC isn't checked.

struct

95



Internal Functions Provided

Name

nand_write_page swecc — [REPLACEABLE] software ECC based page write function

Synopsis

int nand_wite_page_swecc (struct ntd_info * ntd,
uint8 t * buf, int oob_required);

chi p, const

Arguments
ntd
chip
buf

oob_required

mtd info structure
nand chip info structure
data buffer

must write chip->oob_poi to OOB

struct

nand_chip *

96



Internal Functions Provided

Name
nand_write_page hwecc — [REPLACEABLE] hardware ECC based page write function

Synopsis

int nand_wite_page_hwecc (struct ntd_info * nmtd, struct nand_chip *
chip, const uint8_t * buf, int oob_required);

Arguments
ntd mtd info structure
chip nand chip info structure
buf data buffer

oob_required mustwritechip->00b poi to OOB

97



Internal Functions Provided

Name
nand_write_subpage _hwecc — [REPLACEABLE] hardware ECC based subpage write

Synopsis

int nand_wite_subpage_hwecc (struct ntd_info * ntd, struct nand_chip
* chip, uint32_t offset, uint32_t data len, const uint8_t * buf, int
oob_required);

Arguments
ntd mtd info structure
chip nand chip info structure
of f set column address of subpage within the page
data_l en datalength
buf data buffer

oob_requi red mustwritechip->oob_poi to OOB

98



Internal Functions Provided

Name
nand_write page syndrome — [REPLACEABLE] hardware ECC syndrome based page write

Synopsis

int nand_wite_page_syndrone (struct ntd_info * ntd, struct nand_chip
* chip, const uint8_t * buf, int oob_required);

Arguments
ntd mtd info structure
chip nand chip info structure
buf data buffer

oob_required mustwritechip->00b poi to OOB

Description

The hw generator calculates the error syndrome automatically. Therefore we need a special oob layout
and handling.

99



Internal Functions Provided

Name
nand_write_page — [REPLACEABLE] write one page
Synopsis

int nand_wite_page (struct ntd_info * ntd, struct nand_chip * chip,
uint32_t offset, int data_len, const uint8_t * buf, int oob_required,
i nt page, int cached, int raw;

Arguments
ntd MTD device structure
chip NAND chip descriptor
of f set address offset within the page
data_l en length of actual datato be written
buf the data to write

oob_requi red mustwritechip->oob_poi to OOB

page page number to write
cached cached programming
raw use _raw version of write_page

100



Internal Functions Provided

Name
nand_fill_oob — [INTERN] Transfer client buffer to oob
Synopsis
uint8 t * nand_fill_oob (struct ntd_info * nmtd, uint8t * oob, size_t

l en, struct md_oob_ops * ops);

Arguments

ntd MTD device structure
oob oob data buffer
| en oob datawrite length

ops oob ops structure

101



Internal Functions Provided

Name
nand_do_write_ops— [INTERN] NAND write with ECC

Synopsis

int nand_do wite_ops (struct mtd_info * ntd,
nt d_oob_ops * ops);

Arguments
ntd MTD device structure
to  offsettowriteto

ops oob operations description structure

Description

NAND write with ECC.

| of f _t

to,

struct

102



Internal Functions Provided

Name
panic_nand_write— [MTD Interface] NAND write with ECC

Synopsis

int panic_nand_wite (struct md_info * ntd,
size_t * retlen, const uint8_t * buf);

Arguments
ntd MTD device structure
to offset to write to
l en number of bytesto write

retl en pointertovariableto store the number of written bytes

buf the datato write

Description

loff t to, size t len,

NAND write with ECC. Used when performing writesin interrupt context, this may for example be called

by mtdoops when writing an oops while in panic.

103



Internal Functions Provided

Name
nand_write— [MTD Interface] NAND write with ECC

Synopsis

int nand wite (struct nmd_info * md, loff_t to, size_t len, size_t
* retlen, const uint8_t * buf);

Arguments
ntd MTD device structure
to offset to write to
l en number of bytesto write

retl en pointertovariableto store the number of written bytes

buf the datato write

Description

NAND write with ECC.

104



Internal Functions Provided

Name

nand_do_write_oob — [MTD Interface] NAND write out-of-band

Synopsis

int nand_do_wite_oob (struct mntd_info * ntd,
m d_oob_ops * ops);

Arguments
ntd MTD device structure
to  offsettowriteto

ops oob operation description structure

Description

NAND write out-of-band.

| of f _t

to,

struct

105



Internal Functions Provided

Name
nand_write_oob — [MTD Interface] NAND write data and/or out-of-band

Synopsis
int nand_wite_oob (struct md_info* md, loff_t to, struct ntd_oob_ops
* 0ops);

Arguments

ntd MTD device structure
to  offsettowriteto

ops oob operation description structure

106



Internal Functions Provided

Name
single_erase — [GENERIC] NAND standard block erase command function

Synopsis
int single_erase (struct md_info * ntd, int page);

Arguments

nt d MTD device structure

page the page address of the block which will be erased

Description

Standard erase command for NAND chips. Returns NAND status.

107



Internal Functions Provided

Name

nand_erase — [MTD Interface] erase block(s)

Synopsis

int nand_erase (struct ntd_info * ntd, struct erase_info * instr);

Arguments
ntd MTD device structure

i nstr eraseinstruction

Description

Erase one ore more blocks.

108



Internal Functions Provided

Name

nand_erase _nand — [INTERN] erase block(s)

Synopsis

i nt nand_erase_nand (struct ntd_info * ntd, struct erase_info * instr,

int allowbbt);
Arguments

nt d MTD device structure

instr erase instruction

al | owbbt alow erasing the bbt area

Description

Erase one ore more blocks.

109



Internal Functions Provided

Name
nand_sync — [MTD Interface] sync
Synopsis
voi d nand_sync (struct ntd_info * ntd);:
Arguments
ntd MTD device structure
Description

Syncisactualy await for chip ready function.

110



Internal Functions Provided

Name
nand_block_ishad — [MTD Interface] Check if block at offset is bad

Synopsis
i nt nand_bl ock_isbad (struct ntd_info * nmd, loff_t offs);

Arguments

nt d MTD device structure

of fs offset relative to mtd start

111



Internal Functions Provided

Name
nand_block_markbad — [MTD Interface] Mark block at the given offset as bad

Synopsis
i nt nand_bl ock_markbad (struct ntd_info * ntd, loff_t ofs);

Arguments

ntd MTD device structure

of s offset relative to mtd start

112



Internal Functions Provided

Name
nand_onfi_set features— [REPLACEABLE] set features for ONFI nand
Synopsis

int nand_onfi_set features (struct ntd_info * ntd, struct nand_chip *
chip, int addr, uint8_t * subfeature_paranj;

Arguments
ntd MTD device structure
chip nand chip info structure
addr feature address.

subf eat ure_par am the subfeature parameters, afour bytes array.

113



Internal Functions Provided

Name
nand_onfi_get_features — [REPLACEABLE] get features for ONFI nand

Synopsis

int nand_onfi_get features (struct ntd_info * md, struct
chip, int addr, uint8_t * subfeature_paranj;

nand_chip *

Arguments
ntd MTD device structure
chip nand chip info structure
addr feature address.

subf eat ure_par am the subfeature parameters, afour bytes array.

114



Internal Functions Provided

Name
nand_suspend — [MTD Interface] Suspend the NAND flash

Synopsis
i nt nand_suspend (struct md_info * ntd);

Arguments

ntd MTD device structure

115



Internal Functions Provided

Name
nand_resume — [MTD Interface] Resume the NAND flash

Synopsis
voi d nand_resunme (struct md_info * md);

Arguments

ntd MTD device structure

116



Internal Functions Provided

Name

nand_shutdown — [MTD Interface] Finish the current NAND operation and prevent further operations
Synopsis
voi d nand_shutdown (struct md_info * nmtd);

Arguments

ntd MTD device structure

117



Internal Functions Provided

Name

check_pattern — [GENERIC] check if a pattern isin the buffer
Synopsis

int check_pattern (uint8t * buf, int Ilen,

nand_bbt descr * td);

Arguments
buf the buffer to search
l en the length of buffer to search

pagl en the pagelength

td search pattern descriptor

Description

i nt

pagl en,

struct

Check for a pattern at the given place. Used to search bad block tables and good / bad block identifiers.

118



Internal Functions Provided

Name
check_short_pattern — [GENERIC] check if a pattern isin the buffer

Synopsis

int check_short_pattern (uint8_t * buf, struct nand_bbt_descr * td);

Arguments

buf the buffer to search

td  search pattern descriptor

Description

Check for a pattern at the given place. Used to search bad block tables and good / bad block identifiers.
Same as check_pattern, but no optional empty check.

119



Internal Functions Provided

Name

add_marker_len — compute the length of the marker in data area
Synopsis

u32 add_marker |l en (struct nand_bbt descr * td);
Arguments

td BBT descriptor used for computation
Description

The length will be 0 if the marker islocated in OOB area.

120



Internal Functions Provided

Name
read bbt — [GENERIC] Read the bad block table starting from page

Synopsis

int read_bbt (struct ntd_info * nmd, uint8 t * buf,
struct nand_bbt _descr * td, int offs);

Arguments

nd MTD devicestructure

buf temporary buffer

page the starting page

num  the number of bbt descriptorsto read
td the bbt describtion table

of fs block number offset in the table

Description

Read the bad block table starting from page.

i nt

page,

i nt

num

121



Internal Functions Provided

Name
read _abs bbt — [GENERIC] Read the bad block table starting at a given page

Synopsis

int read_abs _bbt (struct md_info * nmd, uint8.t * buf, struct
nand_bbt descr * td, int chip);

Arguments
nd MTD devicestructure
buf temporary buffer
td descriptor for the bad block table
chip read the table for aspecific chip, -1 read al chips; appliesonly if NAND_BBT_PERCHIP option
isset
Description

Read the bad block tablefor all chips starting at agiven page. We assumethat the bbt bitsarein consecutive
order.

122



Internal Functions Provided

Name
scan_read oob — [GENERIC] Scan data+OOB region to buffer

Synopsis

int scan_read_oob (struct ntd_info * ntd, uint8_t * buf, loff_t offs,
size_t len);

Arguments
nd MTD devicestructure
buf temporary buffer
of f s offset at which to scan

| en length of dataregion to read

Description

Scan read datafrom data+OOB. May traverse multiple pages, interleaving page,OOB,page,OOB,... in buf.
Completestransfer and returnsthe “ strongest” ECC condition (error or bitflip). May quit on thefirst (hon-
ECC) error.

123



Internal Functions Provided

Name
read_abs bbts — [GENERIC] Read the bad block table(s) for al chips starting at a given page

Synopsis

void read_abs bbts (struct ntd_info * md, uint8.t * buf, struct
nand_bbt descr * td, struct nand_bbt_descr * nd);

Arguments
ntd MTD devicestructure
buf temporary buffer
td  descriptor for the bad block table

nd  descriptor for the bad block table mirror

Description

Read the bad block table(s) for all chips starting at a given page. We assume that the bbt bits are in
consecutive order.

124



Internal Functions Provided

Name
create_bbt — [GENERIC] Create abad block table by scanning the device

Synopsis

int create_bbt (struct md.info * md, wuint8t * buf, struct
nand_bbt descr * bd, int chip);

Arguments
nd MTD devicestructure
buf temporary buffer
bd descriptor for the good/bad block search pattern

chi p createthetablefor aspecific chip, -1 read all chips; appliesonly if NAND_BBT_PERCHIPoption
isset

Description

Create a bad block table by scanning the device for the given good/bad block identify pattern.

125



Internal Functions Provided

Name
search_bbt — [GENERIC] scan the device for a specific bad block table

Synopsis

int search_bbt (struct md.info * md, wuint8t * buf, struct
nand_bbt descr * td);

Arguments
nmd MTD device structure

buf temporary buffer

td  descriptor for the bad block table

Description

Read the bad block table by searching for a given ident pattern. Search is preformed either from the be-
ginning up or from the end of the device downwards. The search starts always at the start of a block. If
the option NAND_BBT_PERCHIPisgiven, each chip is searched for a bbt, which contains the bad block
information of this chip. Thisis necessary to provide support for certain DOC devices.

The bbt ident pattern residesin the oob area of the first page in a block.

126



Internal Functions Provided

Name
search_read bbts— [GENERIC] scan the device for bad block table(s)

Synopsis

void search_read _bbts (struct md_info * md, uint8.t * buf, struct
nand_bbt descr * td, struct nand_bbt_descr * nd);

Arguments
ntd MTD devicestructure
buf temporary buffer
td  descriptor for the bad block table

nd  descriptor for the bad block table mirror

Description

Search and read the bad block table(s).

127



Internal Functions Provided

Name
write_bbt — [GENERIC] (Re)write the bad block table

Synopsis

int wite_bbt (struct ntd_info * ntd, wuint8.t * buf, struct
nand_bbt descr * td, struct nand_bbt_descr * nd, int chipsel);

Arguments
ntd MTD device structure
buf temporary buffer
td descriptor for the bad block table
nd descriptor for the bad block table mirror

chi psel selector for a specific chip, -1 for all

Description

(Re)write the bad block table.

128



Internal Functions Provided

Name
nand_memory_bbt — [GENERIC] create a memory based bad block table

Synopsis

i nt nand_nmenory_bbt (struct md_info * ntd, struct nand_bbt_descr * bd);

Arguments

ntd MTD device structure

bd  descriptor for the good/bad block search pattern

Description

Thefunction createsamemory based bbt by scanning the device for manufacturer / software marked good /
bad blocks.

129



Internal Functions Provided

Name
check_create — [GENERIC] create and write bbt(s) if necessary

Synopsis

int check _create (struct md_info * ntd,
nand_bbt descr * bd);

Arguments
nmd MTD device structure

buf temporary buffer

bd  descriptor for the good/bad block search pattern

Description

uint8 t * buf, struct

Thefunction checkstheresults of the previouscall toread bbt and creates/ updatesthe bbt(s) if necessary.
Creation is necessary if no bbt was found for the chip/device. Update is necessary if one of the tablesis

missing or the version nr. of onetable isless than the other.

130



Internal Functions Provided

Name
mark_bbt_region — [GENERIC] mark the bad block table regions

Synopsis

void mark_bbt _region (struct nmd_info * ntd, struct nand_bbt_descr *
td);

Arguments
nmd MTD device structure

td  bad block table descriptor

Description

The bad block table regions are marked as “bad” to prevent accidental erasures/ writes. The regions are
identified by the mark 0x02.

131



Internal Functions Provided

Name
verify _bbt_descr — verify the bad block description

Synopsis
void verify bbt _descr (struct md_info * md, struct nand_bbt_descr *
bd) ;

Arguments

ntd MTD device structure

bd thetableto verify

Description

This functions performs a few sanity checks on the bad block description table.

132



Internal Functions Provided

Name
nand_update_bbt — update bad block table(s)
Synopsis
i nt nand_update_bbt (struct md_info * ntd, loff_t offs);
Arguments
ntd MTD device structure
of fs theoffset of the newly marked block
Description

The function updates the bad block table(s).

133



Internal Functions Provided

Name
nand_create badblock_pattern — [INTERN] Createsa BBT descriptor structure

Synopsis

i nt nand_creat e_badbl ock_pattern (struct nand_chip * this);

Arguments

t hi s NAND chip to create descriptor for

Description

This function allocates and initializes a nand_bbt_descr for BBM detection based on the properties of
t hi s. The new descriptor is stored in this->badblock_pattern. Thus, this->badblock pattern should be

NULL when passed to this function.

134



Internal Functions Provided

Name
nand_default_bbt — [NAND Interface] Select adefault bad block table for the device
Synopsis
i nt nand_default_bbt (struct md_info * md);
Arguments
ntd MTD devicestructure
Description
This function selects the default bad block table support for the device and calls the nand_scan_bbt func-
tion.

135



Internal Functions Provided

Name
nand_isreserved bbt — [NAND Interface] Check if ablock is reserved

Synopsis
int nand_isreserved_bbt (struct md_info * md, loff_t offs);

Arguments

nt d MTD device structure

of fs offsetinthedevice

136



Internal Functions Provided

Name
nand_isbad bbt — [NAND Interface] Check if ablock is bad
Synopsis
i nt nand_isbad _bbt (struct nmd_info * md, loff_t offs, int allowbbt);
Arguments
ntd MTD device structure
of fs offset in the device

al | owbbt alow accessto bad block table region

137



Internal Functions Provided

Name
nand_markbad bbt — [NAND Interface] Mark ablock bad in the BBT

Synopsis
i nt nand_mar kbad_bbt (struct ntd_info * nmd, loff_t offs);

Arguments

nt d MTD device structure

of fs offset of the bad block

138



Chapter 12. Credits

The following people have contributed to the NAND driver:

1. StevenJ. Hill<sj hil | @eal i tydil uted. conr

2. David Woodhouse<dwm2 @ nf r adead. or g>

3. Thomas Gleixner<t gl x@ i nut r oni x. de>

A lot of users have provided bugfixes, improvements and helping hands for testing. Thanks alot.
The following people have contributed to this document:

1. Thomas Gleixner<t gl x@ i nut roni x. de>

139



	MTD NAND Driver Programming Interface
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Known Bugs And Assumptions
	Chapter 3. Documentation hints
	Function identifiers [XXX]
	Struct member identifiers [XXX]

	Chapter 4. Basic board driver
	Basic defines
	Partition defines
	Hardware control function
	Device ready function
	Init function
	Exit function

	Chapter 5. Advanced board driver functions
	Multiple chip control
	Hardware ECC support
	Functions and constants
	Hardware ECC with syndrome calculation

	Bad block table support
	Flash based tables
	User defined tables

	Spare area (auto)placement
	Placement defined by fs driver
	Automatic placement

	Spare area autoplacement default schemes
	256 byte pagesize
	512 byte pagesize
	2048 byte pagesize


	Chapter 6. Filesystem support
	Chapter 7. Tools
	Chapter 8. Constants
	Chip option constants
	Constants for chip id table
	Constants for runtime options

	ECC selection constants
	Hardware control related constants
	Bad block table related constants

	Chapter 9. Structures
	struct nand_hw_control
	struct nand_ecc_ctrl
	struct nand_buffers
	struct nand_chip
	struct nand_flash_dev
	struct nand_manufacturers
	struct platform_nand_chip
	struct platform_nand_ctrl
	struct platform_nand_data
	nand_opcode_8bits

	Chapter 10. Public Functions Provided
	nand_unlock
	nand_lock
	nand_scan_ident
	nand_scan_tail
	nand_scan
	nand_release
	nand_scan_bbt
	__nand_calculate_ecc
	nand_calculate_ecc
	__nand_correct_data
	nand_correct_data

	Chapter 11. Internal Functions Provided
	nand_release_device
	nand_read_byte
	nand_read_byte16
	nand_read_word
	nand_select_chip
	nand_write_byte
	nand_write_byte16
	nand_write_buf
	nand_read_buf
	nand_write_buf16
	nand_read_buf16
	nand_block_bad
	nand_default_block_markbad
	nand_block_markbad_lowlevel
	nand_check_wp
	nand_block_isreserved
	nand_block_checkbad
	panic_nand_wait_ready
	nand_wait_status_ready
	nand_command
	nand_command_lp
	panic_nand_get_device
	nand_get_device
	panic_nand_wait
	nand_wait
	__nand_unlock
	nand_read_page_raw
	nand_read_page_raw_syndrome
	nand_read_page_swecc
	nand_read_subpage
	nand_read_page_hwecc
	nand_read_page_hwecc_oob_first
	nand_read_page_syndrome
	nand_transfer_oob
	nand_setup_read_retry
	nand_do_read_ops
	nand_read
	nand_read_oob_std
	nand_read_oob_syndrome
	nand_write_oob_std
	nand_write_oob_syndrome
	nand_do_read_oob
	nand_read_oob
	nand_write_page_raw
	nand_write_page_raw_syndrome
	nand_write_page_swecc
	nand_write_page_hwecc
	nand_write_subpage_hwecc
	nand_write_page_syndrome
	nand_write_page
	nand_fill_oob
	nand_do_write_ops
	panic_nand_write
	nand_write
	nand_do_write_oob
	nand_write_oob
	single_erase
	nand_erase
	nand_erase_nand
	nand_sync
	nand_block_isbad
	nand_block_markbad
	nand_onfi_set_features
	nand_onfi_get_features
	nand_suspend
	nand_resume
	nand_shutdown
	check_pattern
	check_short_pattern
	add_marker_len
	read_bbt
	read_abs_bbt
	scan_read_oob
	read_abs_bbts
	create_bbt
	search_bbt
	search_read_bbts
	write_bbt
	nand_memory_bbt
	check_create
	mark_bbt_region
	verify_bbt_descr
	nand_update_bbt
	nand_create_badblock_pattern
	nand_default_bbt
	nand_isreserved_bbt
	nand_isbad_bbt
	nand_markbad_bbt

	Chapter 12. Credits

