Linux Filesystems API

Linux Filesystems API

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY ; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

Y ou should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the file COPY ING in the source distribution of Linux.

Table of Contents

T I 0T I T 0 Y s T PPN 1
The FIESYSIEM TYPES ...ttt ettt e e e e enans 1

The DIreCtory CaChEcooueiiiiiii ettt e 8
INOAE HANAING ...ttt e e e e e 38
Registration and SUPErDIOCKSciiiiiieiiii e 67

FIE LOCKS ..ot 76
Oher FUNCLIONSeieeee e e e et e et e e et e e et a e et e eenaeeeen 93

2. The ProC fIllESYSIEM ... e 179
SYSCH INEEITACE ..ot e e 179

Proc filesyStem INTEITACEcoeii e e e 187

3. Events based 0N file AESCIIPIONS .. .ceeveieiiii et 189
EVENTIA SIGNAL oot 190

LS o1x o ok o Qo = PP 191

=N 110 o G o U | PSP PRTR 192
eventfd_CtX_remove Walt QUEUIEcouuiiii e et e e e e e e e e et eeanaeees 193

Lo a1n o ol o G (='o UPPPPR 194
EVENTIA FOBEL ...t e 195
EVENLFA CEX FAGEE et e 196
VENLFA CEX FITEOEL ...eeee e e 197

4. The Filesystem for Exporting Kernel OBJECESccuuuiiiiiiiiiiiiiii e 198
SYSES Creale Il NS ... e 199
SysfS 8dd fil@ 10 GrOUP ..eeeee e 200
SYSES ChMOA _FIl@ .oeeeiee e e 201

SYSES FEMOVE FIlE NS .. e 202
sysfs_remove file fFrom groUPoeee i e 203

SYSFS Create DIN File ... 204

SYSFS remove Din_file ... 205

Y I e = (S] PP 206

SYSES FEMOVE TINK .ottt e e e e e et e e e e e ean s 207

SYSES FENAME TINK NS ... e e e e ean s 208

5. The debugfs fIlESYSIEIM e 209
deDUGFS INTEITACE ... e 209

6. The Linux JoUrnalling APlo ettt e e et e eeeai e e 235
L@ VT PP 235
DELAIS ..ot e 235

SUMIMBIY ettt ettt et et e e e e et e e e e e e e eanas 237

(D ez Y o= TP PP 237
SEUCLUIES ..ottt ettt et e e ettt e et e et e e e e e e e e anaees 237

0 Tox 0] PP 243
JOUMNEL LBVEL ..ot e 243
TranSasClON LEVEDo.ueiiiiii et e e 260

S8 Al S0 ettt 275

7. SPIICE APl e e 276
S I (o T o1 L ST PP PP PPPPT 277
generic_file SPlICE FEAAccee e e 278
Splice_from_Pipe FEEAuieiii e 279
SPliCE_FrOM_PIPE NEXE ..ottt e e e 280
Splice_from_PiPe DEOIN ...ove e 281
SPlice_frOM_PIPE BN ..o e 282

I o o= (ol a o I 11 o TP PP PPPPTT 283
SPlICE FTOM I ettt et 284

Linux Filesystems API

1 R LIRS o] oY (= PP 285
gENENC_SPHICE SENAPAGE «.vvueiii ettt et et e e e e e e e e e e e e et e e e e e e e aaaea 286
1S ol ITw = To = vt L (o TE= ox (o) (AN 287
(o O T o 1o o (1 (=" AP 288
8. PIPES AP e e 289
LS Lo o oL 0 1 = 290
SErUCt PIPE TNOAE TINFO ..oevniiie e e e e e e e e eaes 291
geNEriC_PIPE BUF SEEAliiii i 293
(o1 1= (1ol o] 01T [0 | o (= A 294
generic_pipe buf CONFITMiii e e e 295
(o1 1= (Tol o] Lo I o0 | (= == = = 296

Chapter 1. The Linux VFS
The Filesystem types

TheLinux VFS

Name

enum positive_aop_returns — aop return codes with specific semantics

Synopsis

enum positive_aop_returns {
AOP_V\RI TEPAGE_ACTI VATE,
AOP_TRUNCATED_PAGE

¥
Constants

AOP_WRITEPAGE_ACTIVATE Informsthe caller that page writeback has completed, that the pageis
still locked, and should be considered active. The VM uses this hint to
return the pageto the activelist -- it won't be a candidate for writeback
again in the near future. Other callers must be careful to unlock the
page if they get thisreturn. Returned by wr i t epage;

AOP_TRUNCATED_PAGE The AOP method that was handed a locked page has unlocked it and
the page might have been truncated. The caller should back up to ac-
quiring anew page and trying again. The aop will betaking reasonable
precautions not to livelock. If the caller held apage reference, it should
drop it before retrying. Returned by r eadpage.

Description

address_space_operation functions return these large constants to indicate special semanticsto the caler.
These are much larger than the bytes in a page to alow for functions that return the number of bytes
operated on in a given page.

TheLinux VFS

Name

sb_end_write — drop write access to a superblock
Synopsis

void sb end wite (struct super_block * sh);
Arguments

sb the super we wrote to
Description

Decrement number of writersto the filesystem. Wake up possible waiters wanting to freeze the filesystem.

TheLinux VFS

Name

sb_end_pagefault — drop write access to a superblock from a page fault
Synopsis

void sb_end pagefault (struct super_block * sbh);
Arguments

sb the super we wrote to
Description

Decrement number of processes handling write page fault to the filesystem. Wake up possible waiters
wanting to freeze the filesystem.

TheLinux VFS

Name
sb_end_intwrite — drop write access to a superblock for internal fs purposes
Synopsis
void sb end intwite (struct super_block * sb);
Arguments
sb the super we wrote to
Description
Decrement fs-internal number of writers to the filesystem. Wake up possible waiters wanting to freeze
the filesystem.

TheLinux VFS

Name

sbh_start write — get write access to a superblock
Synopsis
void sb _start_wite (struct super_block * sh);

Arguments

sb the super we writeto

Description

When a process wants to write data or metadata to a file system (i.e. dirty a page or an inode), it should
embed theoperationinasb_start_write-sb_end_wit e partoget exclusionagainst file system
freezing. This function increments number of writers preventing freezing. If the file system is already
frozen, the function waits until the file system is thawed.

Since freeze protection behaves as a lock, users have to preserve ordering of freeze protection and other
filesystem locks. Generally, freeze protection should be the outermost lock. In particular, we have:

sh_start write->i_mutex (write path, truncate, directory ops, ...) ->s_umount (freeze_super, thaw_super)

TheLinux VFS

Name
sb_start_pagefault — get write access to a superblock from a page fault

Synopsis
void sb_start _pagefault (struct super_block * sbh);

Arguments

sb the super we writeto

Description

When a process dstarts handling write page fault, it should embed the operation into
sb_start_pagefault - sb_end_pagef aul t pair to get exclusion against file system freezing.
This is needed since the page fault is going to dirty a page. This function increments number of running
page faults preventing freezing. If the file system is already frozen, the function waits until the file system
is thawed.

Since page fault freeze protection behaves as alock, users have to preserve ordering of freeze protection
and other filesystem locks. It is advised to put sb_start _pagef aul t close to mmap_sem in lock
ordering. Page fault

handling code implies lock dependency

mmap_sem -> sb_start_pagefault

TheLinux VFS

Name

inode_inc_iversion — incrementsi_version
Synopsis
void inode_inc_iversion (struct inode * inode);

Arguments

i node inode that need to be updated

Description

Every timetheinodeismodified, thei_versionfield will beincremented. Thefilesystem hasto be mounted
withi_version flag

The Directory Cache

TheLinux VFS

Name
__d_drop — drop adentry

Synopsis
void _d drop (struct dentry * dentry);

Arguments

dentry dentry todrop

Description

d_dr op unhashesthe entry from the parent dentry hashes, so that it won't be found through aVFSlookup
any more. Notethat thisisdifferent from deleting the dentry - d_delete will try to mark the dentry negative
if possible, giving a successful _negative lookup, while d_drop will just make the cache lookup fail.

d_dr op isused mainly for stuff that wantsto invalidate a dentry for some reason (NFS timeouts or autofs
deletes).

__d _drop requires dentry->d_lock.

TheLinux VFS

Name
shrink_dcache sb — shrink dcache for a superblock

Synopsis

voi d shrink_dcache_sb (struct super_block * sbh);
Arguments

sb superblock

Description

Shrink the dcache for the specified super block. This is used to free the dcache before unmounting a file
system.

10

TheLinux VFS

Name

have _submounts — check for mounts over a dentry
Synopsis
i nt have_submounts (struct dentry * parent);

Arguments

par ent dentry to check.

Description

Return trueif the parent or its subdirectories contain a mount point

11

TheLinux VFS

Name
shrink_dcache parent — prune dcache
Synopsis
voi d shrink_dcache parent (struct dentry * parent);
Arguments
par ent parent of entriesto prune
Description

Prune the dcache to remove unused children of the parent dentry.

12

TheLinux VFS

Name

d_invalidate — detach submounts, prune dcache, and drop

Synopsis

void d_invalidate (struct dentry * dentry);

Arguments

dentry dentry to invalidate (aka detach, prune and drop)

Description

no dcache lock.

Thefina d_drop is done as an atomic operation relative to rename_lock ensuring there are no races with
d_set_mounted. This ensures there are no unhashed dentries on the path to a mountpoint.

13

TheLinux VFS

Name
d_alloc — allocate a dcache entry

Synopsis
struct dentry * d_alloc (struct dentry * parent, const struct qgstr *
nane) ;

Arguments

parent parent of entry to alocate

nane gstr of the name

Description

Allocates a dentry. It returns NULL if there is insufficient memory available. On a success the dentry is
returned. The name passed in is copied and the copy passed in may be reused after this call.

14

TheLinux VFS

Name
d_aloc_pseudo — allocate a dentry (for lookup-less filesystems)

Synopsis

struct dentry * d_alloc_pseudo (struct super_block * sb, const struct
gstr * nane);

Arguments
sb the superblock
nane qgstr of the name

Description

For afilesystem that just pinsits dentriesin memory and never performs|ookupsat al, return an unhashed
IS_ROQOT dentry.

15

TheLinux VFS

Name

d_instantiate — fill in inode information for a dentry

Synopsis

void d_instantiate (struct dentry * entry, struct inode * inode);

Arguments
entry dentry to complete

i node inodeto attach to this dentry

Description
Fill ininode information in the entry.
This turns negative dentries into productive full members of society.

NOTE! Thisassumesthat theinode count has been incremented (or otherwise set) by the caller to indicate
that it is now in use by the dcache.

16

TheLinux VFS

Name
d_instantiate no_diralias— instantiate a non-aliased dentry

Synopsis
int dinstantiate no diralias (struct dentry * entry, struct inode *
i node) ;

Arguments

entry dentry to complete

i node inodeto attach to this dentry

Description

Fill in inode information in the entry. If a directory aiasis found, then return an error (and drop inode).
Together withd_nmat eri al i se_uni que this guarantees that a directory inode may never have more

than one dlias.

17

TheLinux VFS

Name
d find_any alias— find any alias for agiven inode
Synopsis
struct dentry * d find any alias (struct inode * inode);
Arguments
i node inodeto find an aliasfor
Description
If any aliases exist for the given inode, take and return a reference for one of them. If no aliases exigt,
return NULL.

18

TheLinux VFS

Name
d_obtain_alias— find or allocate a DISCONNECTED dentry for a given inode

Synopsis
struct dentry * d _obtain_alias (struct inode * inode);

Arguments

i node inode to alocate the dentry for

Description

Obtain a dentry for an inode resulting from NFS filehandle conversion or similar open by handle opera-
tions. The returned dentry may be anonymous, or may have a full name (if the inode was already in the
cache).

When called on a directory inode, we must ensure that the inode only ever has one dentry. If adentry is
found, that is returned instead of allocating a new one.

On successful return, the reference to the inode has been transferred to the dentry. In case of an error the
reference on the inode isreleased. To make it easier to usein export operationsaNULL or IS ERR inode
may be passed in and the error will be propagated to the return value, with a NULL i node replaced by
ERR_PTR(-ESTALE).

19

TheLinux VFS

Name

d_obtain_root — find or allocate a dentry for a given inode
Synopsis
struct dentry * d_obtain_root (struct inode * inode);

Arguments

i node inode to alocate the dentry for

Description
Obtain an IS_ROQT dentry for the root of afilesystem.

We must ensure that directory inodes only ever have one dentry. If a dentry is found, that is returned
instead of alocating a new one.

On successful return, the reference to the inode has been transferred to the dentry. In case of an error the
reference on theinode isreleased. A NULL or IS ERR inode may be passed in and will be the error will
be propagate to the return value, with aNULL i node replaced by ERR_PTR(-ESTALE).

20

TheLinux VFS

Name

d_add ci — lookup or alocate new dentry with case-exact name
Synopsis

struct dentry * d _add_ci (struct dentry * dentry, struct inode * inode,
struct gstr * nane);

Arguments
dent ry the negative dentry that was passed to the parent's lookup func
i node theinode case-insensitive lookup has found

name the case-exact name to be associated with the returned dentry

Description

Thisisto avoid filling the dcache with case-insensitive names to the same inode, only the actual correct
case is stored in the dcache for case-insensitive filesystems.

For a case-insensitive lookup match and if the the case-exact dentry already exists in in the dcache, use
it and return it.

If no entry exists with the exact case name, allocate new dentry with the exact case, and return the spliced
entry.

21

TheLinux VFS

Name

d_lookup — search for a dentry

Synopsis

struct dentry * d_|lookup (const struct dentry * parent, const struct
gstr * nane);

Arguments
parent parent dentry

nane gstr of name we wish to find

Returns

dentry, or NULL

d_lookup searches the children of the parent dentry for the name in question. If the dentry is found its
reference count isincremented and the dentry is returned. The caller must use dput to free the entry when
it hasfinished using it. NULL isreturned if the dentry does not exist.

22

TheLinux VFS

Name
d_hash _and_lookup — hash the gstr then search for a dentry
Synopsis
struct dentry * d_hash _and | ookup (struct dentry * dir, struct gstr
* nane);
Arguments
dir Directory to searchin
nane qstr of namewe wish to find
Description

On lookup failure NULL isreturned; on bad name - ERR_PTR(-error)

23

TheLinux VFS

Name
d_delete — delete adentry
Synopsis
void d _delete (struct dentry * dentry);
Arguments
dentry Thedentry to delete
Description
Turn the dentry into a negative dentry if possible, otherwise remove it from the hash queues so it can be
deleted |ater

24

TheLinux VFS

Name

d_rehash — add an entry back to the hash
Synopsis

void d_rehash (struct dentry * entry);
Arguments

entry dentry to add to the hash
Description

Adds a dentry to the hash according to its name.

25

TheLinux VFS

Name
dentry_update_name_case — update case insensitive dentry with a new name

Synopsis
void dentry update nanme_case (struct dentry * dentry, struct gstr *
nane) ;

Arguments

dentry dentry to be updated

nanme new name

Description
Update a case insensitive dentry with new case of hame.

dentry must have been returned by d_|ookup with name nane. Old and new name lengths must match (ie.
no d_compare which alows mismatched name lengths).

Parent inode i_mutex must be held over d_lookup and into this call (to keep renames and concurrent
inserts, and readdir(2) away).

26

TheLinux VFS

Name
d_splice_alias— splice adisconnected dentry into the tree if one exists

Synopsis
struct dentry * d splice_alias (struct inode * inode, struct dentry
* dentry);

Arguments

i node theinode which may have a disconnected dentry

dentry anegative dentry which we want to point to the inode.

Description

If inodeisadirectory and hasan IS _ROOT alias, then d_move that in place of the given dentry and return
it, else simply d_add the inode to the dentry and return NULL.

If anon-1S_ROOT directory isfound, the filesystem is corrupt, and

we should error out
directories can't have multiple aliases.

This is needed in the lookup routine of any filesystem that is exportable (via knfsd) so that we can build
dcache paths to directories effectively.

If a dentry was found and moved, then it is returned. Otherwise NULL is returned. This matches the
expected return value of ->lookup.

Cluster filesystems may call this function with a negative, hashed dentry. In that case, we know that the
inode will be aregular file, and also thiswill only occur during atomic_open. So we need to check for the
dentry being already hashed only in the final case.

27

TheLinux VFS

Name
d_path — return the path of a dentry

Synopsis

char * d_path (const struct path * path, char * buf, int buflen);

Arguments
pat h path to report
buf buffer to return valuein

bufl en buffer length

Description

Convert adentry into an ASCII path name. If the entry has been deleted the string “ (deleted)” is appended.
Note that thisis ambiguous.

Returns a pointer into the buffer or an error code if the path was too long. Note: Callers should use the
returned pointer, not the passed in buffer, to use the name! The implementation often starts at an offset
into the buffer, and may leave O bytes at the start.

“buflen” should be positive.

28

TheLinux VFS

Name
d_add — add dentry to hash queues

Synopsis
void d_add (struct dentry * entry, struct inode * inode);
Arguments

entry dentry to add

i node Theinodeto attach to this dentry

Description

Thisaddsthe entry to the hash queuesand initializesi node. Theentry wasactually filled in earlier during
d_alloc.

29

TheLinux VFS

Name
d_add_unique — add dentry to hash queues without aliasing

Synopsis
struct dentry * d_add unique (struct dentry * entry, struct inode *
i node) ;

Arguments

entry dentry to add

i node Theinodeto attach to this dentry

Description

Thisaddsthe entry to the hash queuesand initializesi node. Theentry wasactually filled in earlier during
d_alloc.

30

TheLinux VFS

Name
dget_dlock — get areference to adentry
Synopsis
struct dentry * dget _dlock (struct dentry * dentry);
Arguments
dentry dentry to get areferenceto
Description

Given a dentry or NULL pointer increment the reference count if appropriate and return the dentry. A
dentry will not be destroyed when it has references.

31

TheLinux VFS

Name
d_unhashed — is dentry hashed

Synopsis
int d_unhashed (const struct dentry * dentry);

Arguments

dentry entry to check

Description

Returnstrueif the dentry passed is not currently hashed.

32

TheLinux VFS

Name
d_really_is negative — Determine if adentry is really negative (ignoring fallthroughs)

Synopsis
bool d really is negative (const struct dentry * dentry);

Arguments

dentry Thedentry in question

Description

Returns true if the dentry represents either an absent name or a name that doesn't map to an inode (ie.
->d_inode is NULL). The dentry could represent a true miss, a whiteout that isn't represented by a 0,0
chardev or afallthrough marker in an opague directory.

Note! (1) Thisshould be used * only* by afilesystem to examine its own dentries. It should not be used to
look at some other filesystem's dentries. (2) It should also be used in combination with d_i node to get
the inode. (3) The dentry may have something attached to ->d_lower and the type field of the flags may
be set to something other than miss or whiteout.

33

TheLinux VFS

Name
d_really_is positive— Determineif adentry isreally positive (ignoring fallthroughs)

Synopsis

bool d really is positive (const struct dentry * dentry);

Arguments

dentry Thedentry in question

Description

Returnstrueif the dentry represents aname that mapsto aninode (ie. ->d_inodeisnot NULL). The dentry
might still represent awhiteout if that is represented on medium as a 0,0 chardev.

Note! (1) This should be used *only* by afilesystem to examine its own dentries. It should not be used
to look at some other filesystem's dentries. (2) It should aso be used in combination with d_i node to

get the inode.

TheLinux VFS

Name
d_inode — Get the actual inode of this dentry
Synopsis
struct inode * d_inode (const struct dentry * dentry);
Arguments
dentry Thedentry to query
Description

Thisisthe helper normal filesystems should use to get at their own inodesin their own dentriesand ignore
the layering superimposed upon them.

35

TheLinux VFS

Name
d_inode_rcu — Get the actua inode of this dentry with ACCESS _ONCE

Synopsis

struct inode * d_inode rcu (const struct dentry * dentry);
Arguments

dentry Thedentry to query

Description

Thisisthe helper normal filesystems should use to get at their own inodesin their own dentriesand ignore
the layering superimposed upon them.

36

TheLinux VFS

Name
d_backing_inode — Get upper or lower inode we should be using
Synopsis
struct inode * d_backing_ inode (const struct dentry * upper);
Arguments
upper The upper layer
Description

Thisisthe helper that should be used to get at the inode that will be used if this dentry were to be opened
as afile. Theinode may be on the upper dentry or it may be on alower dentry pinned by the upper.

Normal filesystems should not use this to access their own inodes.

37

TheLinux VFS

Name
d_backing_dentry — Get upper or lower dentry we should be using

Synopsis

struct dentry * d_backing dentry (struct dentry * upper);
Arguments

upper The upper layer

Description

This is the helper that should be used to get the dentry of the inode that will be used if this dentry were
opened as afile. It may be the upper dentry or it may be alower dentry pinned by the upper.

Normal filesystems should not use this to access their own dentries.

Inode Handling

38

TheLinux VFS

Name

inode_init_always — perform inode structure intialisation
Synopsis

int inode_init_always (struct super_block * sh, struct inode * inode);
Arguments

sb superblock inode belongs to

i node inodetoinitiaise

Description

These are initializations that need to be done on every inode allocation as the fields are not initialised by
slab allocation.

39

TheLinux VFS

Name

drop_nlink — directly drop an inode's link count
Synopsis

void drop_nlink (struct inode * inode);
Arguments

i node inode
Description

This is alow-level filesystem helper to replace any direct filesystem manipulation of i_nlink. In cases
where we are attempting to track writes to the filesystem, a decrement to zero means an imminent write
when the fileis truncated and actually unlinked on the filesystem.

40

TheLinux VFS

Name

clear_nlink — directly zero an inode's link count

Synopsis

void clear_nlink (struct inode * inode);

Arguments

i node inode

Description

This is a low-level filesystem helper to replace any direct filesystem manipulation of i_nlink. See
dr op_nl i nk for why we care about i_nlink hitting zero.

41

TheLinux VFS

Name
set_nlink — directly set an inode's link count
Synopsis
void set_nlink (struct inode * inode, unsigned int nlink);
Arguments
i node inode
nl i nk new nlink (should be hon-zero)
Description

Thisisalow-leve filesystem helper to replace any direct filesystem manipulation of i_nlink.

42

TheLinux VFS

Name

inc_nlink — directly increment an inode's link count
Synopsis

void inc_nlink (struct inode * inode);
Arguments

i node inode
Description

Thisis alow-level filesystem helper to replace any direct filesystem manipulation of i_nlink. Currently,
itisonly herefor parity withdec_nl i nk.

43

TheLinux VFS

Name
inode_sb list_add — add inode to the superblock list of inodes

Synopsis
void inode_sb |ist _add (struct inode * inode);

Arguments

i node inodeto add

TheLinux VFS

Name
__insert_inode_hash — hash an inode
Synopsis
void __insert_inode_hash (struct inode * inode, unsigned | ong hashval);
Arguments
i node unhashed inode
hashval unsigned long value used to locate this object in the inode_hashtable.
Description

Add an inode to the inode hash for this superblock.

45

TheLinux VFS

Name

__remove_inode_hash — remove an inode from the hash
Synopsis

void _ _renpve_i node_hash (struct inode * inode);
Arguments

i node inodeto unhash
Description

Remove an inode from the superbl ock.

46

TheLinux VFS

Name

new_inode — obtain an inode
Synopsis
struct inode * new_inode (struct super_block * sbh);
Arguments
sb superblock
Description
Allocates a new inode for given superblock. The default gfp_mask for allocations related to in-
ode->i_mapping is GFP_HIGHUSER_MOVABLE. If HIGHMEM pages are unsuitable or it is known

that pages allocated for the page cache are not reclaimable or migratable, mappi ng_set _gf p_nask
must be called with suitable flags on the newly created inode's mapping

47

TheLinux VFS

Name

unlock_new_inode — clear the |_NEW state and wake up any waiters
Synopsis

voi d unl ock_new_ i node (struct inode * inode);
Arguments

i node new inode to unlock
Description

Called when theinodeis fully initialised to clear the new state of the inode and wake up anyone waiting
for the inode to finish initialisation.

48

TheLinux VFS

Name
lock_two_nondirectories — take two i_mutexes on non-directory objects

Synopsis
void lock two _nondirectories (struct inode * inodel, struct inode *
i node2);

Arguments

i nodel firstinodeto lock

i node2 second inodeto lock

Description

Lock any non-NULL argument that is not a directory. Zero, one or two objects may be locked by this
function.

49

TheLinux VFS

Name
unlock_two_nondirectories— release locksfrom | ock_t wo_nondi rect ori es

Synopsis
void unl ock_two _nondirectories (struct inode * inodel, struct inode *
i node2);

Arguments

i nodel firstinodeto unlock

i node2 second inode to unlock

50

TheLinux VFS

Name

iget5 locked — obtain an inode from a mounted file system

Synopsis
struct inode * iget5 |ocked (struct super_block * sb, unsigned |ong
hashval , int (*test) (struct inode *, void *), int (*set) (struct inode

* wvoid *), void * data);

Arguments
sb super block of file system

hashval hashvaue (usualy inode number) to get

t est callback used for comparisons between inodes

set callback used to initialize a new struct inode

dat a opaque data pointer to passtot est and set
Description

Search for the inode specified by hashval and dat a intheinode cache, and if present it isreturn it with
an increased reference count. Thisisageneralized version of i get _| ocked for file systems where the
inode number is not sufficient for unique identification of an inode.

If the inode is not in cache, allocate a new inode and return it locked, hashed, and with the |_NEW flag
set. The file system getstofill it in before unlocking it viaunl ock_new i node.

Note botht est and set are called with theinode_hash lock held, so can't sleep.

51

TheLinux VFS

Name

iget_locked — obtain an inode from a mounted file system

Synopsis

struct inode * iget | ocked (struct super_bl ock * sb, unsigned | ong i no);
Arguments

sb super block of file system

i no inode number to get

Description

Search for theinode specified by i no intheinode cacheand if present return it with an increased reference
count. Thisisfor file systems where the inode number is sufficient for unique identification of an inode.

If the inode is not in cache, allocate a new inode and return it locked, hashed, and with the |_NEW flag
set. The file system getstofill it in before unlocking it viaunl ock_new i node.

52

TheLinux VFS

Name

iunique — get a unigque inode humber
Synopsis

ino_t iunique (struct super_block * sh, ino_t max_reserved);
Arguments

sb superblock

max_reserved highest reserved inode number

Description
Obtain an inode number that is unique on the system for a given superblock. Thisis used by file systems

that have no natural permanent inode numbering system. An inode number is returned that is higher than
the reserved limit but unique.

BUGS

With alarge number of inodes live on the file system this function currently becomes quite slow.

53

TheLinux VFS

Name
ilookup5_nowait — search for an inode in the inode cache
Synopsis
struct inode * ilookup5 nowait (struct super_bl ock * sbh, unsigned |ong
hashval, int (*test) (struct inode *, void *), void * data);
Arguments
sb super block of file system to search

hashval hashvalue (usualy inode number) to search for

t est callback used for comparisons between inodes
data opague data pointer to passtot est
Description

Search for the inode specified by hashval and dat a in theinode cache. If theinodeisin the cache, the
inode is returned with an incremented reference count.

Note

I_NEW is not waited upon so you have to be very careful what you do with the returned inode. You
probably should beusing i | cokup5 instead.

Note2

t est iscalled with theinode_hash_lock held, so can't sleep.

TheLinux VFS

Name

ilookup5 — search for an inode in the inode cache
Synopsis

struct inode * ilookup5 (struct super_bl ock * sb, unsigned | ong hashval ,
int (*test) (struct inode *, void *), void * data);

Arguments
sb super block of file system to search

hashval hashvalue (usualy inode number) to search for

t est callback used for comparisons between inodes
data opague data pointer to passtot est
Description

Search for theinode specified by hashval and dat a intheinode cache, and if theinodeisin the cache,
return theinode with anincremented reference count. Waitson | _NEW before returning theinode. returned
with an incremented reference count.

Thisis ageneralized version of i | ookup for file systems where the inode number is not sufficient for
unique identification of an inode.

Note

t est iscalled with theinode_hash lock held, so can't sleep.

55

TheLinux VFS

Name

ilookup — search for an inode in the inode cache

Synopsis

struct inode * ilookup (struct super_block * sb, unsigned |ong ino);
Arguments

sb super block of file system to search

i no inode number to search for

Description

Search for the inode i no in the inode cache, and if the inode is in the cache, the inode is returned with
an incremented reference count.

56

TheLinux VFS

Name

find_inode_nowait — find an inode in the inode cache
Synopsis
struct inode * find_ inode nowait (struct super_block * sb, unsigned

I ong hashval, int (*match) (struct inode *, unsigned long, void *),
void * data);

Arguments

sb super block of file system to search

hashval hashvalue (usualy inode number) to search for

mat ch callback used for comparisons between inodes
data opague data pointer to passto mat ch
Description

Search for the inode specified by hashval and dat a in the inode cache, where the helper function
mat ch will return O if the inode does not match, 1 if the inode does match, and -1 if the search should
be stopped. The mat ch function must be responsible for taking thei_lock spin_lock and checkingi_state
for an inode being freed or being initialized, and incrementing the reference count before returning 1. It
also must not sleep, since it is called with theinode_hash lock spinlock held.

This is a even more generalized version of i | ookup5 when the function must never block ---
find_i node canblock in __wait_on_freei ng_i node --- or when the caller can not increment
the reference count because the resulting i put might cause an inode eviction. The tradeoff is that the
mat ch funtion must be very carefully implemented.

57

TheLinux VFS

Name

iput — put an inode
Synopsis
void iput (struct inode * inode);

Arguments

i node inode to put

Description

Puts an inode, dropping its usage count. If the inode use count hits zero, the inode is then freed and may
also be destroyed.

Consequently, i put can sleep.

58

TheLinux VFS

Name

bmap — find a block number in afile

Synopsis

sector_t bmap (struct inode * inode, sector_t block);

Arguments
i node inode of file

bl ock block tofind

Description

Returns the block number on the device holding the inode that is the disk block number for the block of
the file requested. That is, asked for block 4 of inode 1 the function will return the disk block relative to

the disk start that holds that block of the file.

59

TheLinux VFS

Name

touch_atime — update the access time

Synopsis

void touch_atinme (const struct path * path);

Arguments

pat h the struct path to update

Description

Update the accessed time on an inode and mark it for writeback. This function automatically handles read
only file systems and media, aswell asthe “noatime” flag and inode specific “ noatime” markers.

60

TheLinux VFS

Name

file_update_time — update mtime and ctime time
Synopsis

int file update tine (struct file * file);
Arguments

file fileaccessed

Description

Update the mtime and ctime members of aninode and mark theinode for writeback. Note that thisfunction
ismeant exclusively for usagein thefilewrite path of filesystems, and filesystems may chooseto explicitly
ignore update via this function with the S NOCMTIME inode flag, e.g. for network filesystem where
these timestamps are handled by the server. This can return an error for file systems who need to allocate
space in order to update an inode.

61

TheLinux VFS

Name

inode_init_owner — Init uid,gid,mode for new inode according to posix standards
Synopsis

void inode_init_owner (struct inode * inode, const struct inode * dir,
unode_t node);

Arguments
i node New inode
dir Directory inode

node mode of the new inode

62

TheLinux VFS

Name

inode_owner_or_capable — check current task permissions to inode

Synopsis

bool inode_owner _or capable (const struct inode * inode);

Arguments

i node inode being checked

Description

Return true if current either has CAP_FOWNER in a namespace with the inode owner uid mapped, or
ownsthefile.

63

TheLinux VFS

Name
inode_dio_wait — wait for outstanding DIO requests to finish

Synopsis

void inode dio wait (struct inode * inode);
Arguments

i node inodeto wait for

Description

Waits for al pending direct I/O requests to finish so that we can proceed with a truncate or equivalent
operation.

Must be called under a lock that serializes taking new references to i_dio_count, usualy by in-
ode->i_mutex.

TheLinux VFS

Name

make bad inode — mark an inode bad due to an |/O error
Synopsis

voi d make _bad_i node (struct inode * inode);
Arguments

i node Inode to mark bad
Description

When an inode cannot be read due to a media or remote network failure this function makes the inode
“bad” and causes I/O operations on it to fail from this point on.

65

TheLinux VFS

Name

is bad_inode — is an inode errored
Synopsis
int is _bad_inode (struct inode * inode);

Arguments

i node inodeto test

Description

Returnstrueif the inode in question has been marked as bad.

66

TheLinux VFS

Name

iget_failed — Mark an under-construction inode as dead and release it
Synopsis
void iget failed (struct inode * inode);

Arguments

i node Theinodeto discard

Description

Mark an under-construction inode as dead and release it.

Registration and Superblocks

67

TheLinux VFS

Name

deactivate locked super — drop an active reference to superblock

Synopsis

voi d deactivate | ocked super (struct super_block * s);

Arguments

s superblock to deactivate

Description

Drops an active reference to superblock, converting it into atemprory one if there is no other active ref-
erences left. In that case we tell fs driver to shut it down and drop the temporary reference we had just

acquired.

Caller holds exclusive lock on superblock; that lock is released.

68

TheLinux VFS

Name

deactivate super — drop an active reference to superblock
Synopsis

voi d deactivate_super (struct super_block * s);
Arguments

s superblock to deactivate
Description

Variant of deact i vat e_| ocked_super , except that superblock is*not* locked by caller. If we are
going to drop the final active reference, lock will be acquired prior to that.

69

TheLinux VFS

Name

generic_shutdown_super — common helper for ->ki I | _sb

Synopsis

voi d generic_shutdown_super (struct super_bl ock * sh);

Arguments

sb superblock to kill

Description

generi c_shut down_super does al fsiindependent work on superblock shutdown. Typica -
>ki |l _sb should pick all fs-specific objects that need destruction out of superblock, call
generi c_shut down_super and release aforementioned objects. Note: dentriesand inodes_are _ tak-
en care of and do not need specific handling.

Upon calling this function, the filesystem may no longer alter or rearrange the set of dentries belonging to
this super_block, nor may it change the attachments of dentriesto inodes.

70

TheLinux VFS

Name
sget — find or create a superblock

Synopsis
struct super_block * sget (struct file systemtype * type, int (*test)

(struct super_block *,void *), int (*set) (struct super_block *,void
*), int flags, void * data);

Arguments
type filesystem type superblock should belong to
t est comparison callback
set setup callback
flags mountflags

data argument to each of them

71

TheLinux VFS

Name
iterate_supers_type — call function for superblocks of given type
Synopsis
void iterate supers_type (struct file_systemtype * type, void (*f)
(struct super_block *, void *), void * arg);
Arguments
type fstype
f function to call
arg argument to passto it
Description

Scans the superblock list and calls given function, passing it locked superblock and given argument.

72

TheLinux VFS

Name

get_super — get the superblock of adevice
Synopsis

struct super_block * get super (struct block device * bdev);
Arguments

bdev deviceto get the superblock for

Scans the superblock list and finds the superblock of thefile system mounted on the device given.
NULL isreturned if no match isfound.

73

TheLinux VFS

Name
get_super_thawed — get thawed superblock of a device

Synopsis

struct super_block * get super_thawed (struct block _device * bdev);

Arguments
bdev deviceto get the superblock for

Description

Scansthe superblock list and findsthe superblock of thefile system mounted on the device. The superblock
isreturned once it isthawed (or immediately if it was not frozen). NULL isreturned if no match isfound.

74

TheLinux VFS

Name

freeze_super — lock the filesystem and force it into a consistent state
Synopsis
int freeze super (struct super_block * sh);

Arguments

sb the super to lock

Description

Syncs the super to make sure the filesystem is consistent and calls the fss freeze fs. Subsequent calls to
this without first thawing the fswill return -EBUSY .

During this function, sb->s writers.frozen goes through these values:

SB_UNFROZEN

File system isnormal, all writes progress as usual .

SB_FREEZE_WRITE

The file system is in the process of being frozen. New writes should be blocked, though page faults are
till allowed. We wait for all writes to complete and then proceed to the next stage.

SB_FREEZE_PAGEFAULT

Freezing continues. Now also page faults are blocked but internal fsthreads can still modify the filesystem
(although they should not dirty new pages or inodes), writeback can run etc. After waiting for all running
page faultswe sync thefilesystem which will clean al dirty pages and inodes (no new dirty pagesor inodes
can be created when sync is running).

SB_FREEZE_FS

Thefile system isfrozen. Now all internal sources of fs modification are blocked (e.g. XFS preallocation
truncation on inode reclaim). This is usually implemented by blocking new transactions for filesystems
that have them and need thisadditional guard. After al internal writersarefinishedwecall ->f r eeze_f s
to finish filesystem freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is mostly
auxiliary for filesystemsto verify they do not modify frozen fs.

sb->s writers.frozen is protected by sb->s umount.

75

TheLinux VFS

Name

thaw_super — - unlock filesystem
Synopsis
i nt thaw super (struct super_block * sb);

Arguments

sb the super to thaw

Description

Unlocks the filesystem and marks it writeable again after f r eeze_super .

File Locks

76

TheLinux VFS

Name
posix_lock_file— Apply a POSIX-stylelock to afile

Synopsis

int posix lock file (struct file * filp, struct file lock * fl, struct
file lock * confl ock);

Arguments
filp Thefile to apply the lock to
fl Thelock to be applied

confl ock Placeto return acopy of the conflicting lock, if found.

Description

Add a POSIX style lock to afile. We merge adjacent & overlapping locks whenever possible. POSIX
locks are sorted by owner task, then by starting address

Note that if called with an FL_EXISTS argument, the caller may determine whether or not a lock was
successfully freed by testing the return value for -ENOENT.

77

TheLinux VFS

Name
posix_lock_inode wait — Apply a POSIX-style lock to afile

Synopsis

i nt posix_|lock inode wait (struct inode * inode, struct file lock * fl);
Arguments

i node inode of fileto which lock request should be applied

fl Thelock to be applied

Description

Variant of posix_lock_file wait that does not take afilp, and so can be used after the filp has aready been
torn down.

78

TheLinux VFS

Name

locks mandatory area— Check for a conflicting lock

Synopsis

int locks nandatory area (int read wite, struct inode * inode, struct
file * filp, loff _t offset, size_ t count);

Arguments

read wite FLOCK VERI FY_WRI TE for exclusive access, FLOCK_VERI FY_READ for shared

i node thefile to check

filp how the file was opened (if it was)

of f set start of areato check

count length of areato check
Description

Searches the inode's list of locks to find any POSIX locks which conflict. This function is called from
rw verify areaandl ocks_verify_ truncate.

79

TheLinux VFS

Name
__ break_lease — revoke all outstanding leases on file
Synopsis
int _ break |ease (struct inode * inode, unsigned int nobde, unsigned
int type);
Arguments
i node theinode of thefileto return
node O _RDONLY: break only write leases; O WRONLY or O_RDWR: break all leases
type FL_LEASE: break leases and delegations; FL_DELEG: break only delegations
Description

break lease (inlined for speed) has checked there already is at least some kind of lock (maybe alease) on
thisfile. Leasesare broken onacall toopen ort r uncat e. Thisfunction can sleep unless you specified

O_NONBLOCK to your open.

80

TheLinux VFS

Name

lease_get_mtime — get the last modified time of an inode
Synopsis
void | ease get _mine (struct inode * inode, struct tinespec * tine);

Arguments

i node theinode

time pointer to atimespec which will contain the last modified time

Description

Thisisto force NFS clients to flush their caches for files with exclusive leases. The justification is that if
someone has an exclusive lease, then they could be modifying it.

81

TheLinux VFS

Name

generic_setlease — sets alease on an open file
Synopsis

int generic_setlease (struct file * filp, long arg, struct file_lock
** flp, void ** priv);

Arguments

filp filepointer

arg typeof leaseto obtain

flp input-file lock to use, output - file_lock inserted

priv privatedatafor Im_setup (may be NULL if Im_setup doesn't require it)
Description

The (input) flp->fl_Imops->Im_break functionis required by br eak_| ease.

82

TheLinux VFS

Name

vfs_setlease — sets alease on an open file
Synopsis

int vfs setlease (struct file * filp, long arg, struct file_lock **
| ease, void ** priv);

Arguments
filp filepointer
arg type of lease to obtain
| ease file lock to use when adding alease

priv privateinfo for Im_setup when adding alease (may be NULL if Im_setup doesn't require it)

Description

Call thisto establish alease on thefile. The“lease” argument isnot used for F_UNLCK requests and may
be NULL. For commands that set or alter an existing lease, the (*lease)->fl_Imops->Im_break operation
must be set; if not, this function will return -ENOLCK (and generate a scary-looking stack trace).

The “priv’ pointer is passed directly to the Im_setup function as-is. It may be NULL if the Im_setup
operation doesn't requireit.

83

TheLinux VFS

Name
flock_lock_inode wait — Apply a FLOCK-style lock to afile

Synopsis

int flock |ock inode wait (struct inode * inode, struct file lock * fl);

Arguments
i node inode of thefile to apply to

fl Thelock to be applied

Description

Apply aFLOCK style lock request to an inode.

TheLinux VFS

Name
vfs test lock — test file byte range lock
Synopsis
int vfs test lock (struct file * filp, struct file_ lock * fl);
Arguments
filp Thefiletotestlock for
fl The lock to test; also used to hold result
Description

Returns -ERRNO on failure. Indicates presence of conflicting lock by setting conf->fl_type to something
other than F_UNLCK.

85

TheLinux VFS

Name

vfs lock_file— file byte range lock
Synopsis

int vfs lock file (struct file™* filp, unsignedint cnd, struct file_lock
* fl, struct file_ lock * conf);

Arguments

filp Thefiletoapply thelock to
cnmd typeof locking operation (F_SETLK, F_GETLK, etc.)
fl Thelock to be applied

conf Placeto return a copy of the conflicting lock, if found.

Description
A caller that doesn't care about the conflicting lock may pass NULL as the final argument.

If thefilesystem definesaprivate->l ock method, then conf will beleft unchanged; so acaller that cares
should initialize it to some acceptable default.

To avoid blocking kernel daemons, such aslockd, that need to acquire POSI X locks, the->I ock interface
may return asynchronously, before the lock has been granted or denied by the underlying filesystem, if
(and only if) Im_grant is set. Callers expecting ->| ock to return asynchronously will only use F SETLK,
not F_ SETLKW; they will set FL_SLEEP if (and only if) the request is for a blocking lock. When -
>| ock does return asynchronously, it must return FILE LOCK_DEFERRED, and call ->I m gr ant

when the lock request completes. If the request is for non-blocking lock the file system should return
FILE LOCK_DEFERRED then try to get the lock and call the callback routine with the result. If the
request timed out the callback routine will return a nonzero return code and the file system should release
the lock. The file system is a so responsible to keep a corresponding posix lock when it grants alock so
the VFS can find out which locks are locally held and do the correct lock cleanup when required. The
underlying filesystem must not drop the kernel lock or call ->I m gr ant before returning to the caller
withaFILE LOCK_DEFERRED return code.

86

TheLinux VFS

Name
posix_unblock_lock — stop waiting for afile lock
Synopsis
i nt posix_unblock lock (struct file lock * waiter);
Arguments
wai t er thelock which was waiting
Description

lockd needs to block waiting for locks.

87

TheLinux VFS

Name

vfs_cancel_lock — file byte range unblock lock

Synopsis

int vfs cancel lock (struct file * filp, struct file lock * fl);
Arguments

filp Thefileto apply the unblock to

fl The lock to be unblocked

Description

Used by lock managers to cancel blocked requests

88

TheLinux VFS

Name

locks mandatory locked — Check for an active lock

Synopsis

int locks_nmandatory | ocked (struct file * file);

Arguments

file thefiletocheck

Description

Searches the inode's list of locks to find any POSIX locks which conflict. This function is called from
| ocks_verify_| ocked only.

89

TheLinux VFS

Name

fentl_getlease — Enquire what lease is currently active
Synopsis

int fcntl _getlease (struct file * filp);
Arguments

filp thefile
Description

The value returned by this function will be one of (if no lease break is pending):
F_RDLCKto indicate a shared leaseis held.

F_WRLCK to indicate an exclusive lease is held.

F_UNLCK toindicate no leaseis held.

(if alease break is pending):

F_RDLCK to indicate an exclusive |ease needs to be changed to a shared lease (or removed).

F_UNLCK to indicate the |ease needs to be removed.

XXX

sfr & willy disagree over whether F_INPROGRESS should be returned to userspace.

90

TheLinux VFS

Name
check_conflicting_open — see if the given dentry points to a file that has an existing open that would
conflict with the desired lease.
Synopsis
int check conflicting open (const struct dentry * dentry, const |ong
arg, int flags);
Arguments
dentry dentry to check
arg type of lease that we're trying to acquire
flags --undescribed --
Description

Check to seeif there's an existing open fd on thisfile that would conflict with the lease we're trying to set.

91

TheLinux VFS

Name

fentl_setlease — sets alease on an open file

Synopsis

int fcntl_setlease (unsigned int fd, struct file * filp, long arg);
Arguments

fd open file descriptor

filp filepointer

arg typeof leaseto obtain

Description

Call thisfentl to establish alease on thefile. Note that you also need to call F_SETSI Gto receive asignal
when the lease is broken.

92

TheLinux VFS

Name
sys flock — f | ock system call.

Synopsis

I ong sys _flock (unsigned int fd, unsigned int cnd);
Arguments

fd thefiledescriptor to lock.

cnd thetype of lock to apply.
Description

Apply aFL_FLQOCK style lock to an open file descriptor. The cnd can be one of
LOCK_SH -- ashared lock.

LOCK _EX -- an exclusive lock.

LOCK _UN -- remove an existing lock.

LOCK_MAND -- a “‘mandatory' flock. This exists to emulate Windows Share Modes.

LOCK _MAND can be combined with LOCK_READ or LOCK_WRI TE to alow other processes read and
write access respectively.

Other Functions

93

TheLinux VFS

Name
mpage_readpages — popul ate an address space with some pages & start reads against them

Synopsis

i nt npage_readpages (struct address_space * mapping, struct |ist_head
* pages, unsigned nr_pages, get bl ock t get bl ock);

Arguments
mappi ng the address_space

pages The address of alist_head which containsthe target pages. These pages have their ->index
populated and are otherwise uninitialised. The page at pages->prev has the lowest file
offset, and reads should beissued in pages->prev to pages->next order.

nr_pages Thenumber of pages at *pages

get bl ock Thefilesystem's block mapper function.

Description
This function walks the pages and the blocks within each page, building and emitting large BIOs.
If anything unusual happens, such as:

- encountering a page which has buffers - encountering a page which has a non-hole after a hole - encoun-
tering a page with non-contiguous blocks

then this code just gives up and calls the buffer _head-based read function. It does handle a page which has
holes at the end - that is a common case: the end-of-file on blocksize < PAGE_CACHE_SIZE setups.

BH_Boundary explanation

Thereis aproblem. The mpage read code assembles severa pages, gets all their disk mappings, and then
submits them all. That's fine, but obtaining the disk mappings may require I/0. Reads of indirect blocks,
for example.

So an mpage read of thefirst 16 blocks of an ext2 file will cause 1/0 to be

submitted in the following order
120123456789101113141516

becausetheindirect block hasto be read to get the mappings of blocks 13,14,15,16. Obvioudly, thisimpacts
performance.

So what we do it to allow thefilesystem'sget _bl ock function to set BH_Boundary when it maps block
11. BH_Boundary says. mapping of the block after this one will require 1/0 against a block which is
probably close to this one. So you should push what 1/0 you have currently accumul ated.

This al causes the disk requests to be issued in the correct order.

94

TheLinux VFS

Name

mpage_writepages — walk the list of dirty pages of the given address space & wr i t epage al of them
Synopsis

i nt npage_writepages (struct address_space * mappi ng, st ruct

writeback control * wbc, get bl ock t get bl ock);

Arguments
mappi ng address space structure to write
whc subtract the number of written pages from *wbc->nr_to_write

get _bl ock thefilesystem's block mapper function. If thisis NULL then use a_ops->writepage. Oth-
erwise, go direct-to-BIO.

Description

Thisisalibrary function, which implementsthewr i t epages address space operation.

If apageisaready under I/O, generi c_writ epages skipsit, evenif it'sdirty. Thisis desirable be-
haviour for memory-cleaning writeback, but it is INCORRECT for data-integrity system calls such as
fsync. f sync and nsync need to guarantee that all the data which was dirty at the time the call was
made get new |/O started against them. If wbe->sync_modeisWB_SYNC_ALL then we were caled for
dataintegrity and we must wait for existing 10 to compl ete.

95

TheLinux VFS

Name

generic_permission — check for access rights on a Posix-like filesystem

Synopsis

int generic_permssion (struct inode * inode, int mask);

Arguments
i node inode to check accessrights for

mask right to check for (MAY_READ, MAY_WRI TE, MAY_EXEC, ...)

Description

Used to check for read/write/execute permissions on afile. We use “fsuid” for this, letting us set arbitrary
permissions for filesystem access without changing the “normal” uids which are used for other things.

generic_permissionisrcu-walk aware. It returns-ECHILD in case an rcu-walk request cannot be satisfied
(eg. requires blocking or too much complexity). It would then be called again in ref-walk mode.

96

TheLinux VFS

Name

__inode_permission — Check for access rights to a given inode
Synopsis

int __inode_permssion (struct inode * inode, int mask);
Arguments

i node Inodeto check permission on

mask Right to check for (MAY_READ, MAY_WRI TE, MAY_ EXEC)

Description
Check for read/write/execute permissions on an inode.
When checking for MAY_APPEND, MAY_WRITE must also be set in mask.

This does not check for aread-only file system. Y ou probably want i node_per m ssi on.

97

TheLinux VFS

Name

inode_permission — Check for access rights to a given inode

Synopsis
i nt inode_pernission (struct inode * inode, int mask);
Arguments

i node Inodeto check permission on

mask Right to check for (MAY_READ, MAY_WRI TE, MAY_ EXEC)

Description

Check for read/write/execute permissions on an inode. We use fqug]id for this, letting us set arbitrary
permissions for filesystem access without changing the “normal” UIDs which are used for other things.

When checking for MAY_APPEND, MAY_WRITE must also be set in mask.

98

TheLinux VFS

Name
path_get — get areference to a path
Synopsis
void path_get (const struct path * path);
Arguments
pat h path to get the reference to
Description

Given a path increment the reference count to the dentry and the vfsmount.

99

TheLinux VFS

Name
path_put — put areference to a path
Synopsis
void path_put (const struct path * path);
Arguments
pat h path to put the reference to
Description

Given a path decrement the reference count to the dentry and the vfsmount.

100

TheLinux VFS

Name
vfs_path lookup — lookup afile path relative to a dentry-vfsmount pair

Synopsis

int vfs path_|ookup (struct dentry * dentry, struct vfsnount * mmnt,
const char * nane, unsigned int flags, struct path * path);

Arguments
dent ry pointer to dentry of the base directory
mmt pointer to vfs mount of the base directory
name pointer to file name
flags lookup flags

pat h pointer to struct path to fill

101

TheLinux VFS

Name
lookup_one_len — filesystem helper to lookup single pathname component
Synopsis
struct dentry * | ookup_one_len (const char * name, struct dentry * base,
int len);
Arguments
name pathname component to lookup
base basedirectory to lookup from
[en maximum length | en should be interpreted to
Description

Note that thisroutineis purely a helper for filesystem usage and should not be called by generic code.

102

TheLinux VFS

Name
vfs_unlink — unlink afilesystem object

Synopsis

int vfs unlink (struct inode * dir, struct dentry * dentry, struct inode
** del egat ed_i node) ;

Arguments
dir parent directory
dentry victim

del egat ed_i node returnsvictim inode, if theinode is delegated.

Description

The caller must hold dir->i_mutex.

If vfs_unlink discovers adelegation, it will return -EWOULDBLOCK and return areference to the inode
in delegated _inode. The caller should then break the delegation on that inode and retry. Because breaking
a delegation may take along time, the caller should drop dir->i_mutex before doing so.

Alternatively, acaller may passNULL for delegated _inode. Thismay be appropriatefor callersthat expect
the underlying filesystem not to be NFS exported.

103

TheLinux VFS

Name

vfs link — create anew link
Synopsis

int vfs link (struct dentry * old dentry, struct inode * dir, struct
dentry * new dentry, struct inode ** del egated i node);

Arguments
old_dentry object to be linked
dir new parent
new _dentry where to create the new link

del egat ed_i node returnsinode needing a delegation break

Description
The caller must hold dir->i_mutex

If vfs link discovers a delegation on the to-be-linked file in need of breaking, it will return -EWOULD-
BLOCK and return areference to the inode in delegated_inode. The caller should then break the delega-
tion and retry. Because breaking a delegation may take a long time, the caller should drop the i_mutex
before doing so.

Alternatively, acaller may passNULL for delegated inode. Thismay be appropriate for callersthat expect
the underlying filesystem not to be NFS exported.

104

TheLinux VFS

Name
vfs_rename — rename afilesystem object
Synopsis

int vfs renane (struct inode * old dir, struct dentry * old dentry,
struct inode * newdir, struct dentry * new dentry, struct inode **
del egat ed_i node, unsigned int flags);

Arguments
old dir parent of source
ol d _dentry source
new dir parent of destination
new dentry destination

del egat ed_i node returnsan inode needing a delegation break

fl ags rename flags

Description
The caller must hold multiple mutexes--see| ock_r enane).

If vfs_rename discovers a delegation in need of breaking at either the source or destination, it will return
-EWOULDBLOCK and return a reference to the inode in delegated_inode. The caller should then break
the delegation and retry. Because breaking a delegation may take a long time, the caller should drop all
locks before doing so.

Alternatively, acaller may passNULL for delegated _inode. Thismay be appropriatefor callersthat expect
the underlying filesystem not to be NFS exported.

The worst of all namespace operations - renaming directory. “Perverted” doesn't even start to describe it.
Somebody in UCB had a heck of atrip...

Problems

a) we can get into loop creation. b) race potential - two innocent renames can create aloop together. That's
where 4.4 screws up. Current fix: serialization on sb->s _vfs rename_mutex. We might be more accurate,
but that's another story. c) we have to lock _four_ objects - parents and victim (if it exists), and source
(if it isnot a directory). And that - after we got ->i_mutex on parents (until then we don't know whether
the target exists). Solution: try to be smart with locking order for inodes. We rely on the fact that tree
topology may change only under ->s_vfs rename_mutex _and_ that parent of the object we move will be
locked. Thus we can rank directories by the tree (ancestors first) and rank al non-directories after them.
That works since everybody except rename does “lock parent, lookup, lock child” and rename is under -
>s vfs rename_mutex. HOWEVER, it relies on the assumption that any object with ->| ookup has no
more than 1 dentry. If “hybrid” objects will ever appear, we'd better make sure that there's no link(2) for
them. d) conversion from fhandle to dentry may come in the wrong moment - when we are removing the
target. Solution: we will have to grab ->i_mutex in the fhandle_to_dentry code. [FIXME - current nfsfh.c
relieson ->i_mutex on parents, which works but leads to some truly excessive locking].

105

TheLinux VFS

Name

sync_mapping_buffers — write out & wait upon a mapping's “associated” buffers

Synopsis

i nt sync_mappi ng_buffers (struct address_space * mappi ng);

Arguments

mappi ng the mapping which wants those buffers written

Description
Starts 1/0O against the buffers at mapping->private_list, and waits upon that 1/0O.

Basically, this is a convenience function for f sync. mappi ng is afile or directory which needs those
buffers to be written for a successful f sync.

106

TheLinux VFS

Name
mark_buffer_dirty — mark a buffer_head as needing writeout

Synopsis

void mark_buffer _dirty (struct buffer_head * bh);

Arguments

bh the buffer_head to mark dirty

Description

mar k_buf f er _di r t y will setthedirty bit against the buffer, then set its backing page dirty, then tag the
page asdirty inits address _space'sradix tree and then attach the address_space'sinode to its superblock's
dirty inode list.

mar kK_buffer_dirty isaomic. It takes bh->b_page->mapping->private_lock, mapping->tree lock
and mapping->host->i_lock.

107

TheLinux VFS

Name
__bread gfp — reads a specified block and returns the bh

Synopsis

struct buffer_head * _ bread gfp (struct block device * bdev, sector _t
bl ock, unsigned size, gfp_t gfp);

Arguments
bdev theblock deviceto read from
bl ock number of block
size size(inbytes) to read

of p page alocation flag

Description

Reads a specified block, and returns buffer head that contains it. The page cache can be allocated from
non-movable area not to prevent page migration if you set gfp to zero. It returns NULL if the block was
unreadable.

108

TheLinux VFS

Name
block_invalidatepage — invalidate part or all of a buffer-backed page

Synopsis

void block invalidatepage (struct page * page, unsigned int offset,
unsi gned int |ength);

Arguments
page the page which is affected
of fset start of the range to invalidate

[engt h length of therangeto invalidate

Description

bl ock_i nval i dat epage iscalled when all or part of the page has become invalidated by a truncate
operation.

bl ock_i nval i dat epage doesnot haveto release all buffers, but it must ensure that no dirty buffer is
left outside of f set andthat no I/O isunderway against any of the blockswhich are outside the truncation
point. Because the caller is about to free (and possibly reuse) those blocks on-disk.

109

TheLinux VFS

Name

[I_rw_block — level accessto block devices (DEPRECATED)
Synopsis

void Il _rwblock (int rw, int nr, struct buffer_head * bhs[]);
Arguments

rw whether to READ or VWRI TE or maybe READA (readahead)
nr number of struct buffer_heads in the array

bhs[] array of pointersto struct buffer_head

Description

Il _rw bl ock takes an array of pointers to struct buffer_heads, and requests an |/O operation on
them, either a READ or a WRI TE. The third READA option is described in the documentation for
generi c_make_request whichl | _rw bl ock cals.

This function drops any buffer that it cannot get alock on (with the BH_L ock state bit), any buffer that
appears to be clean when doing a write request, and any buffer that appears to be up-to-date when doing
read request. Further it marks as clean buffersthat are processed for writing (the buffer cache won't assume
that they are actually clean until the buffer gets unlocked).

Il_rw_block setsb_end_io to simple completion handler that marks the buffer up-to-date (if appropriate),
unlocks the buffer and wakes any waiters.

All of the buffers must be for the same device, and must also be a multiple of the current approved size
for the device.

110

TheLinux VFS

Name
bh_uptodate or_lock — Test whether the buffer is uptodate

Synopsis
i nt bh_uptodate or | ock (struct buffer_head * bh);

Arguments

bh struct buffer_head

Description

Return true if the buffer is up-to-date and fal se, with the buffer locked, if not.

111

TheLinux VFS

Name

bh_submit_read — Submit alocked buffer for reading
Synopsis

int bh_subnmit _read (struct buffer_head * bh);
Arguments

bh struct buffer_head
Description

Returns zero on success and -EIO on error.

112

TheLinux VFS

Name
bio_reset — reinitialize abio
Synopsis
void bio_reset (struct bio * bio);
Arguments
bi o bioto reset
Description

After calling bi o_reset, bi o will be in the same state as a freshly alocated bio returned bio
bi o_al | oc_bi oset - the only fields that are preserved are the ones that are initiaized by

bi o_al | oc_bi oset . See comment in struct bio.

113

TheLinux VFS

Name

bio_chain — chain bio completions
Synopsis

void bio_chain (struct bio * bio, struct bio * parent);
Arguments

bi o the target bio

par ent thebi o'sparent bio

Description

The caller won't have a bi_end_io called when bi o completes - instead, par ent 'sbi_end _io won't be
called until both par ent and bi o have completed; the chained bio will also be freed when it completes.

The caller must not set bi_privateor bi_end ioin bi o.

114

TheLinux VFS

Name
bio_alloc_bioset — allocate abio for 1/0

Synopsis

struct bio * bio_alloc_bioset (gfp_t gfp_mask, int nr_iovecs, struct
bio_set * bs);

Arguments
of p_mask the GFP_mask given to the slab allocator
nr_i ovecs number of iovecsto pre-alocate

bs the bio_set to allocate from.

Description
If bs isNULL, usesknal | oc to allocate the bio; else the alocation is backed by the bs's mempool.

Whenbs isnot NULL, if __ GFP_WAI T isset then bio_aloc will aways be ableto alocateabio. Thisis
due to the mempool guarantees. To make this work, callers must never allocate more than 1 bio at atime
from this pool. Callers that need to allocate more than 1 bio must always submit the previously allocated
bio for 10 before attempting to alocate a new one. Failure to do so can cause deadlocks under memory
pressure.

Notethat when running under gener i c_nake_r equest (i.e. any block driver), biosare not submitted
until after you return - seethecodeingeneri ¢c_make_r equest that convertsrecursion into iteration,
to prevent stack overflows.

Thiswould normally mean allocating multiple biosunder gener i ¢_make_r equest would be suscep-
tible to deadl ocks, but we have deadlock avoidance code that resubmits any blocked bios from a rescuer
thread.

However, we do not guarantee forward progress for allocations from other mempools. Doing multiple
allocations from the same mempool under gener i c_make_r equest should be avoided - instead, use
bio_set'sfront_pad for per bio allocations.

RETURNS

Pointer to new bio on success, NULL on failure.

115

TheLinux VFS

Name

bio_put — release areference to abio
Synopsis

void bio_put (struct bio * bio);
Arguments

bi o bioto release reference to
Description

Put a reference to a struct bio, either one you have gotten with bio_alloc, bio_get or bio_clone. The last
put of abio will freeit.

116

TheLinux VFS

Name

__bio_clone _fast — clone abio that shares the original bio's biovec
Synopsis

void _ bio _clone fast (struct bio * bio, struct bio * bio_src);
Arguments

bi o destination bio

bi o_src biotoclone

Description

Clone a bio. Caller will own the returned bio, but not the actual data it points to. Reference count of
returned bio will be one.

Caller must ensurethat bi o_sr ¢ isnot freed before bi o.

117

TheLinux VFS

Name
bio_clone fast — clone abio that shares the original bio's biovec
Synopsis
struct bio * bio _clone fast (struct bio * bio, gfp_t gfp_mask, struct
bio_set * bs);
Arguments
bi o bio to clone
of p_nmask alocation priority
bs bio_set to allocate from
Description

Like bio clone fast, only also allocates the returned bio

118

TheLinux VFS

Name
bio_clone bioset — clone abio
Synopsis
struct bio * bio_clone_bioset (struct bio * bio_src, gfp_t gofp_mask,
struct bio_set * bs);
Arguments
bio_src biotoclone
of p_nmask alocation priority
bs bio_set to allocate from
Description

Clone bio. Caller will own the returned bio, but not the actual datait pointsto. Reference count of returned
bio will be one.

119

TheLinux VFS

Name

bio_get_nr_vecs— return approx number of vecs
Synopsis

int bio_get nr_vecs (struct bl ock device * bdev);
Arguments

bdev 1/Otarget

Description

Return the approximate number of pages we can send to this target. There's no guarantee that you will be
ableto fit this number of pagesinto abio, it does not account for dynamic restrictions that vary on offset.

120

TheLinux VFS

Name
bio_add pc_page — attempt to add page to bio

Synopsis

int bio _add pc_page (struct request _queue * (q, struct bio * bio, struct
page * page, unsigned int len, unsigned int offset);

Arguments
q the target queue
bi o destination bio

page pageto add
I en vec entry length

of fset vecentry offset

Description

Attempt to add a page to the bio_vec maplist. This can fail for a number of reasons, such asthe bio being
full or target block device limitations. The target block device must allow bio's up to PAGE_SIZE, so it
is always possible to add a single page to an empty bio.

This should only be used by REQ_PC bios.

121

TheLinux VFS

Name
bio_add page — attempt to add page to bio

Synopsis

int bio_add page (struct bio * bio, struct page * page, unsigned int
| en, unsigned int offset);

Arguments
bi o destination bio
page pageto add
[en vec entry length

of f set vecentry offset

Description

Attempt to add a page to the bio_vec maplist. This can fail for a number of reasons, such as the bio being
full or target block device limitations. The target block device must allow bio's up to PAGE_SIZE, so it
isalways possible to add a single page to an empty bio.

122

TheLinux VFS

Name

submit_bio_wait — submit a bio, and wait until it completes
Synopsis

int submt_bio wait (int rw, struct bio * bio);
Arguments

rw whether to READ or WRI TE, or maybe to READA (read ahead)

bi o The struct bio which describesthe 1/O

Description

Simple wrapper around subm t _bi 0. Returns 0 on success, or the error from bi 0_endi o on failure.

123

TheLinux VFS

Name

bio_advance — increment/complete a bio by some number of bytes

Synopsis
voi d bi o_advance (struct bio * bio, unsigned bytes);
Arguments

bi o bio to advance

byt es number of bytesto complete

Description

This updates bi_sector, bi_size and bi_idx; if the number of bytes to complete doesn't align with a bvec
boundary, then bv_len and bv_offset will be updated on the last bvec as well.

bi o will then represent the remaining, uncompleted portion of theio.

124

TheLinux VFS

Name
bio_alloc_pages— allocates a single page for each bvec in abio
Synopsis
int bio_alloc_pages (struct bio * bio, gfp_t gf p_nask);
Arguments
bi o bio to allocate pages for
of p_mask flagsfor allocation
Description

Allocates pages up to bi o->bi_vcent.

Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are freed.

125

TheLinux VFS

Name

bio_copy_data— copy contents of data buffers from one chain of bios to another

Synopsis
void bio_copy data (struct bio * dst, struct bio * src);
Arguments

dst destination bio list

src sourcebiolist

Description

If src and dst aresingle bios, bi_next must be NULL - otherwise, treats sr ¢ and dst as linked lists
of bios.

Stops when it reaches the end of either sr ¢ or dst - that is, copiesmin(src->bi_size, dst->hi_size) bytes
(or the equivalent for lists of bios).

126

TheLinux VFS

Name
bio_uncopy_user — finish previously mapped bio

Synopsis
i nt bio_uncopy_user (struct bio * bio);

Arguments

bi o bio being terminated

Description

Free pages alocated from bi 0_copy_user _i ov and write back data to user space in case of aread.

127

TheLinux VFS

Name
bio_unmap_user — unmap abio
Synopsis
void bi o_unmap_user (struct bio * bio);
Arguments
bi o the bio being unmapped
Description

Unmap a bio previously mapped by bi o_rmap_user . Must be called with a process context.

bi o_unmap_user may sleep.

128

TheLinux VFS

Name
bio_map_kern — map kernel addressinto bio

Synopsis

struct bio * bio _map_kern (struct request _queue * g, void * data,
unsigned int len, gfp_t gf p_nask);

Arguments
q the struct request_queue for the bio
dat a pointer to buffer to map
l en length in bytes

gf p_mask dlocation flags for bio alocation

Description

Map the kernel addressinto abio suitablefor io to ablock device. Returnsan error pointer in case of error.

129

TheLinux VFS

Name

bio_copy_kern — copy kernel addressinto bio
Synopsis

struct bio * bio_copy kern (struct request_queue * q, void * data,
unsigned int len, gfp_t gfp_nask, int reading);

Arguments
q the struct request_queue for the bio
dat a pointer to buffer to copy
l en length in bytes

gf p_mask dlocation flags for bio and page alocation

readi ng datadirectionis READ

Description

copy the kernel addressinto abio suitable for io to ablock device. Returns an error pointer in case of error.

130

TheLinux VFS

Name

bio_endio— end I/O on abio

Synopsis

void bio_endio (struct bio * bio, int error);
Arguments

bi o bio

error eror, if any

Description

bi o_endi o will end /0O onthewholebio. bi o_endi o isthe preferred way to end I/O on abio, it takes
careof clearing BIO_UPTODATE onerror. er r or is0 on success, and and one of the established -Exxxx
(-EIO, for instance) error valuesin case something went wrong. No one should call bi _end_i o directly
on abio unless they own it and thus know that it has an end_io function.

131

TheLinux VFS

Name

bio_endio_nodec — end 1/0 on abio, without decrementing bi_remaining
Synopsis

voi d bi o_endi o_nodec (struct bio * bio, int error);
Arguments

bi o bio

error eror, if any

Description

For code that has saved and restored bi_end_io; thing hard before using this function, probably you
should've cloned the entire bio.

132

TheLinux VFS

Name
bio_split — split abio

Synopsis

struct bio * bio_split (struct bio* bio, int sectors, gfp_t gfp, struct
bio_set * bs);

Arguments
bi o bio to split

sectors number of sectorsto split from the front of bi o

gf p gfp mask
bs bio set to alocate from
Description

Allocates and returns a new bio which represents sect or s from the start of bi o, and updates bi o to
represent the remaining sectors.

Unless this is a discard request the newly alocated bio will point to bi o's bi_io_vec; it is the caller's
responsibility to ensure that bi o is not freed before the split.

133

TheLinux VFS

Name

bio_trim —trim abio
Synopsis

void bio trim(struct bio * bio, int offset,
Arguments

bi o biototrim

of f set number of sectorsto trim from the front of bi o

si ze size we want to trim bi o to, in sectors

int size);

134

TheLinux VFS

Name
bioset_create — Create abio_set

Synopsis

struct bio_set * bioset create (unsigned int pool _size, unsigned int
front pad);

Arguments
pool _si ze Number of bio and bio_vecsto cache in the mempool

front _pad Number of bytesto allocate in front of the returned bio

Description

Set up abio_set to be used with bi o_al | oc_bi oset . Allows the caller to ask for a number of bytes
to be alocated in front of the bio. Front pad alocation is useful for embedding the bio inside another
structure, to avoid allocating extra datato go with the bio. Note that the bio must be embedded at the END
of that structure always, or things will break badly.

135

TheLinux VFS

Name

bioset_create nobvec — Create abio_set without bio_vec mempool

Synopsis

struct bio_set * bioset_create_nobvec (unsigned i nt pool size, unsigned
int front_pad);

Arguments
pool _si ze Number of bio to cache in the mempool

front _pad Number of bytesto allocate in front of the returned bio

Description

Same functionality asbi oset _cr eat e except that mempool is not created for bio_vecs. Saving some
memory for bi o_cl one_f ast users.

136

TheLinux VFS

Name
seq_open — initiaize sequential file

Synopsis
int seq_open (struct file * file, const struct seq _operations * op);
Arguments
file fileweinitiaize
op method table describing the sequence
Description
seq_open setsfi | e, associating it with a sequence described by op. op->st ar t sets the iterator up
and returns the first element of sequence. op->st op shutsit down. op->next returns the next element
of sequence. op->show prints element into the buffer. In case of error ->st art and ->next return

ERR_PTR(error). In the end of sequence they return NULL. ->show returns O in case of success and
negative number in case of error. Returning SEQ_SKIP means “discard this element and move on”.

137

TheLinux VFS

Name
seq read — ->r ead method for sequential files.

Synopsis

ssize t seq read (struct file * file, char
loff t * ppos);

Arguments
file thefiletoreadfrom
buf thebuffer to read to
si ze the maximum number of bytesto read
ppos thecurrent position in thefile
Description

Ready-made ->f_op->r ead

__user

*

buf ,

size t size,

138

TheLinux VFS

Name
seq Iseek — ->I | seek method for sequential files.

Synopsis

loff t seq_|seek (struct file * file, loff_t offset,

Arguments
file the filein question
of fset new position

whence Ofor absolute, 1 for relative position

Description

Ready-made ->f_op->I | seek

i nt whence);

139

TheLinux VFS

Name

seq_release — free the structures associated with sequential file.
Synopsis

int seq_release (struct inode * inode, struct file * file);
Arguments

i node itsinode

file fileinquestion

Description

Frees the structures associated with sequential file; can be used as ->f_op->r el ease if you don't have
private data to destroy.

140

TheLinux VFS

Name
seq_escape — print string into buffer, escaping some characters

Synopsis

int seq_escape (struct seq file * m const char * s, const char * esc);
Arguments

m target buffer

S string

esc set of characters that need escaping

Description

Puts string into buffer, replacing each occurrence of character from esc with usual octal escape. Returns
0in case of success, -1 - in case of overflow.

141

TheLinux VFS

Name
mangle_path — mangle and copy path to buffer beginning

Synopsis

char * nangle path (char * s, const char * p, const char * esc);
Arguments

S buffer start

p beginning of path in above buffer

esc set of characters that need escaping

Description

Copy the path from p to s, replacing each occurrence of character from esc with usual octal escape.
Returns pointer past last written character in's, or NULL in case of failure.

142

TheLinux VFS

Name
seq path — seq fileinterface to print a pathname

Synopsis

int seq path (struct seq file * m const struct path * path,
char * esc);

Arguments
m the seq_file handle
pat h the struct path to print

esc setof charactersto escape in the output

Description

return the absolute path of 'path’, as represented by the dentry / mnt pair in the path parameter.

const

143

TheLinux VFS

Name
seq write — write arbitrary datato buffer

Synopsis

int seq wite (struct seq file * seq, const void * data, size t len);

Arguments

seq seq fileidentifying the buffer to which data should be written
data dataaddress

[en number of bytes

Description

Return 0 on success, non-zero otherwise.

144

TheLinux VFS

Name
seq_pad — write padding spaces to buffer

Synopsis
void seq_pad (struct seq file * m char c);
Arguments

m seq_fileidentifying the buffer to which data should be written

c thebyteto append after padding if non-zero

145

TheLinux VFS

Name
seq hlist_start — start an iteration of ahlist
Synopsis
struct hlist _node * seq_hlist _start (struct hlist _head * head, loff _t
pos) ;
Arguments
head thehead of the hlist
pos thedtart position of the sequence
Description

Cadled at seq_file->op->st art .

146

TheLinux VFS

Name
seq hlist_start_head — start an iteration of ahlist

Synopsis
struct hlist _node * seq _hlist _start _head (struct hlist _head * head,
|off _t pos);

Arguments

head thehead of the hlist

pos thedtart position of the sequence

Description

Cadled at seq_file->op->st ar t . Call thisfunction if you want to print a header at the top of the outpui.

147

TheLinux VFS

Name
seg_hlist_next — move to the next position of the hlist

Synopsis

struct hlist_node * seq _hlist_next (void * v, struct hlist_head * head,
lof f t * ppos);

Arguments
v the current iterator
head thehead of the hlist
ppos thecurrent position
Description

Called at seq file->op->next .

148

TheLinux VFS

Name
seq hlist_start_rcu — start an iteration of a hlist protected by RCU
Synopsis
struct hlist _node * seq hlist start _rcu (struct hlist_head * head,
|off _t pos);
Arguments
head thehead of the hlist
pos thedtart position of the sequence
Description

Cadled at seq_file->op->st art .

This list-traversal primitive may safely run concurrently with the _rcu list-mutation primitives such as
hl i st _add_head rcu aslongasthetraversa isguarded by r cu_read_| ock.

149

TheLinux VFS

Name
seq hlist_start_head rcu — start an iteration of a hlist protected by RCU

Synopsis
struct hlist_node * seq _hlist _start _head rcu (struct hlist_head * head,
|off _t pos);

Arguments

head thehead of the hlist

pos thedtart position of the sequence

Description

Cadled at seq_file->op->st ar t . Call thisfunction if you want to print a header at the top of the outpui.

This list-traversal primitive may safely run concurrently with the _rcu list-mutation primitives such as
hl i st _add_head rcu aslongasthetraversa isguarded by r cu_read_| ock.

150

TheLinux VFS

Name
seq_hlist_next_rcu — move to the next position of the hlist protected by RCU

Synopsis

struct hlist _node * seq hlist _next rcu (void * v, struct hlist_head *
head, |off_t * ppos);

Arguments
v the current iterator

head thehead of the hlist

ppos thecurrent position

Description

Called at seq file->op->next .

This list-traversal primitive may safely run concurrently with the _rcu list-mutation primitives such as
hl i st _add_head_r cu aslong asthetraversa isguarded by r cu_r ead_| ock.

151

TheLinux VFS

Name
seq hlist_start_percpu — start an iteration of apercpu hlist array

Synopsis

struct hlist _node * seq hlist _start_percpu (struct hlist _head _ percpu
* head, int * cpu, loff_t pos);

Arguments
head pointer to percpu array of struct hlist_heads
Cpu pointer to cpu “cursor”

pos start position of sequence

Description

Called at seq file->op->st art .

152

TheLinux VFS

Name
seq_hlist_next_percpu — move to the next position of the percpu hlist array

Synopsis

struct hlist _node * seq hlist _next percpu (void * v, struct hlist_head
__percpu * head, int * cpu, loff_t * pos);

Arguments
\ pointer to current hlist_node
head pointer to percpu array of struct hlist_heads
Cpu pointer to cpu “cursor’

pos start position of sequence

Description

Called at seq_file->op->next .

153

TheLinux VFS

Name
register_filesystem — register a new filesystem

Synopsis

int register filesystem (struct file_systemtype * fs);
Arguments

fs thefile system structure

Description

Adds the file system passed to the list of file systems the kernel is aware of for mount and other syscalls.
Returns 0 on success, or a negative errno code on an error.

The struct file_system_type that is passed is linked into the kernel structures and must not be freed until
the file system has been unregistered.

154

TheLinux VFS

Name
unregister_filesystem — unregister afile system

Synopsis
int unregister filesystem (struct file _systemtype * fs);

Arguments

fs filesystem to unregister

Description

Remove afile system that was previously successfully registered with the kernel. An error is returned if
thefile systemis not found. Zero is returned on a success.

Once this function has returned the struct file_system_type structure may be freed or reused.

155

TheLinux VFS

Name

writeback_in_progress — determine whether there is writeback in progress
Synopsis
int witeback in_progress (struct backing dev_info * bdi);

Arguments

bdi thedevice's backing_dev_info structure.

Description

Determine whether there is writeback waiting to be handled against a backing device.

156

TheLinux VFS

Name

writeback_inodes_sb_nr — writeback dirty inodes from given super_block

Synopsis

voi d writeback inodes sb nr (struct super_block * sb, unsigned | ong nr,
enum wb_r eason reason);

Arguments
sb the superblock
nr the number of pagesto write

reason reason why some writeback work initiated

Description

Start writeback on some inodes on this super_block. No guarantees are made on how many (if any) will
be written, and this function does not wait for |O completion of submitted 0.

157

TheLinux VFS

Name
writeback _inodes_sb — writeback dirty inodes from given super_block
Synopsis
void witeback inodes_sb (struct super_block * sh, enum wb_reason rea-
son);
Arguments
sb the superblock

reason reason why some writeback work was initiated

Description

Start writeback on some inodes on this super_block. No guarantees are made on how many (if any) will
be written, and this function does not wait for 10 completion of submitted 10.

158

TheLinux VFS

Name

try_to_writeback inodes sb_nr — try to start writeback if none underway

Synopsis

int try to witeback inodes _sb nr (struct super_block * sh, unsigned
long nr, enum wb_reason reason);

Arguments
sb the superblock
nr the number of pagesto write

reason thereason of writeback

Description

Invokewriteback inodes sb nrif nowriteback is currently underway. Returns 1 if writeback was started,
0if not.

159

TheLinux VFS

Name
try_to_writeback inodes sb — try to start writeback if none underway
Synopsis
int try to witeback inodes_sb (struct super_block * sb, enumwb_reason
reason);
Arguments
sb the superblock

reason reason why some writeback work was initiated

Description

Implementbytry to_writeback i nodes_sb_nr Returnslif writeback was started, O if not.

160

TheLinux VFS

Name
sync_inodes_sb — sync sb inode pages
Synopsis
voi d sync_inodes_sb (struct super_bl ock * sh);
Arguments
sb the superblock
Description

This function writes and waits on any dirty inode belonging to this super_block.

161

TheLinux VFS

Name

write_inode_now — write an inode to disk
Synopsis

int wite_inode_now (struct inode * inode, int sync);
Arguments

i node inodeto writeto disk

sync whether the write should be synchronous or not

Description

This function commits an inode to disk immediately if itisdirty. Thisis primarily needed by knfsd.

The caller must either have aref on the inode or must have set | WILL_FREE.

162

TheLinux VFS

Name

sync_inode — write an inode and its pages to disk.
Synopsis

int sync_inode (struct inode * inode, struct witeback control * whc);
Arguments

i node theinodeto sync

wbc controls the writeback mode

Description

sync_i node will write an inode and its pages to disk. It will aso correctly update the inode on its
superblock's dirty inode lists and will update inode->i_state.

The caller must have aref on the inode.

163

TheLinux VFS

Name

sync_inode_metadata— write an inode to disk
Synopsis

int sync_inode netadata (struct inode * inode, int wait);
Arguments

i node theinodeto sync

wai t wait for I/O to complete.
Description

Write an inode to disk and adjust its dirty state after completion.

Note

only writes the actual inode, no associated data or other metadata.

164

TheLinux VFS

Name

freeze bdev — - lock afilesystem and force it into a consistent state
Synopsis
struct super_block * freeze bdev (struct block device * bdev);

Arguments

bdev blockdeviceto lock

Description

If a superblock is found on this device, we take the s umount semaphore on it to make sure nobody
unmounts until the snapshot creation is done. The reference counter (bd_fsfreeze count) guarantees that
only the last unfreeze process can unfreeze the frozen filesystem actually when multiple freeze requests
arrive simultaneously. It countsup inf r eeze_bdev and count downint haw_bdev. When it becomes
0, t haw_bdev will unfreeze actually.

165

TheLinux VFS

Name
thaw_bdev — - unlock filesystem
Synopsis
i nt thaw bdev (struct block device * bdev, struct super_block * sbh);
Arguments
bdev blockdevice to unlock
sb associated superblock
Description

Unlocks the filesystem and marks it writeable again after f r eeze_bdev.

166

TheLinux VFS

Name
bdev_read page — Start reading a page from a block device

Synopsis

i nt bdev_read page (struct block device * bdev, sector_t sector, struct
page * page);

Arguments
bdev The device to read the page from
sect or The offset on the device to read the page to (need not be aligned)

page The page to read

Description

On entry, the page should be locked. It will be unlocked when the page has been read. If the block driver
implements rw_page synchronously, that will be true on exit from this function, but it need not be.

Errors returned by this function are usually “soft”, eg out of memory, or queue full; callers should try a
different route to read this page rather than propagate an error back up the stack.

Return

negative errno if an error occurs, O if submission was successful.

167

TheLinux VFS

Name
bdev_write_page — Start writing a page to a block device

Synopsis

int bdev_write _page (struct bl ock _device * bdev, sector_t sector, struct
page * page, struct witeback control * wbc);

Arguments
bdev The device to write the page to
sect or The offset on the device to write the page to (need not be aligned)
page The page to write

wbc The writeback_control for the write

Description

On entry, the page should be locked and not currently under writeback. On exit, if the write started suc-
cessfully, the page will be unlocked and under writeback. If thewrite failed already (eg the driver failed to
gueue the page to the device), the page will till be locked. If the caller is a->writepage implementation,
it will need to unlock the page.

Errors returned by this function are usually “soft”, eg out of memory, or queue full; callers should try a
different route to write this page rather than propagate an error back up the stack.

Return

negative errno if an error occurs, 0 if submission was successful.

168

TheLinux VFS

Name

bdev_direct_access — Get the address for directly-accessibly memory
Synopsis

| ong bdev_direct _access (struct block device * bdev, sector_t sector,
void ** addr, unsigned long * pfn, |ong size);

Arguments
bdev The device containing the memory
sector Theoffset within the device
addr Where to put the address of the memory
pfn The Page Frame Number for the memory

si ze The number of bytes requested
Description
If ablock deviceis made up of directly addressable memory, this function will tell the caller the PFN and

the address of the memory. The address may be directly dereferenced within the kernel without the need
tocal i or emap, knmap or similar. The PFN is suitable for inserting into page tables.

Return

negative errno if an error occurs, otherwise the number of bytes accessible at this address.

169

TheLinux VFS

Name
bdgrab — - Grab areference to an aready referenced block device

Synopsis
struct bl ock _device * bdgrab (struct bl ock device * bdev);

Arguments

bdev Block deviceto grab areference to.

170

TheLinux VFS

Name
bd_link_disk_holder — create symlinks between holding disk and slave bdev

Synopsis
int bd_link disk _holder (struct block device * bdev, struct gendisk *
di sk);

Arguments

bdev theclamed slave bdev

di sk theholding disk

Description
DON'T USE THISUNLESS YOU'RE ALREADY USING IT.
This functions creates the following sysfs symlinks.

- from “slaves’ directory of the holder di sk to the claimed bdev - from “holders’ directory of thebdev
to the holder di sk

For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is passed to bd_| i nk_di sk_hol der,
then:

/sys/block/dm-0/slaves/sda --> /sys/bl ock/sda /sys/bl ock/sda/hol ders/dm-0 --> /sys/block/dm-0

The caller must have claimed bdev before calling this function and ensure that both bdev and di sk are
valid during the creation and lifetime of these symlinks.

CONTEXT
Might sleep.
RETURNS

0 on success, -errno on failure.

171

TheLinux VFS

Name
bd_unlink_disk_holder — destroy symlinks created by bd_| i nk_di sk_hol der

Synopsis
void bd_unlink_disk _hol der (struct block device * bdev, struct gendi sk
* di sk);

Arguments

bdev the caimed slave bdev

di sk theholding disk

Description

DON'T USE THISUNLESS YOU'RE ALREADY USINGIT.

CONTEXT

Might sleep.

172

TheLinux VFS

Name
check_disk_size change — checks for disk size change and adjusts bdev size.

Synopsis
voi d check_di sk_size change (struct gendi sk * di sk, struct bl ock_device
* hdev);

Arguments

di sk struct gendisk to check

bdev struct bdev to adjust.

Description

Thisroutine checks to seeif the bdev size does not match the disk size and adjustsit if it differs.

173

TheLinux VFS

Name
revalidate disk — wrapper for lower-level driver'srevalidate disk call-back

Synopsis

int revalidate disk (struct gendisk * disk);

Arguments

di sk struct gendisk to be revalidated

Description

Thisroutine is awrapper for lower-level driver's revalidate_disk call-backs. It is used to do common pre
and post operations needed for al revalidate_disk operations.

174

TheLinux VFS

Name

blkdev_get — open a block device
Synopsis

i nt bl kdev_get (struct bl ock _device * bdev, fnode_t node, void * hol der);
Arguments

bdev block _device to open

node FMODE_* mask

hol der exclusive holder identifier
Description

Openbdev withnode. If nrode includes FMODE _EXCL, bdev isopen with exclusive access. Specifying
FMODE_EXCL with NULL hol der isinvalid. Exclusive opens may nest for the same hol der .

On success, the reference count of bdev isunchanged. On failure, bdev isput.

CONTEXT
Might sleep.
RETURNS

0 on success, -errno on failure.

175

TheLinux VFS

Name
blkdev_get by path — open ablock device by name

Synopsis

struct bl ock _device * bl kdev_get by path (const char * path, fnode t
node, void * hol der);

Arguments
pat h path to the block device to open
node FMODE_* mask

hol der exclusive holder identifier

Description

Open the blockdevice described by the device file at pat h. node and hol der are identica to
bl kdev_get.

On success, the returned block device has reference count of one.

CONTEXT
Might sleep.
RETURNS

Pointer to block _device on success, ERR_PTR(-errno) on failure.

176

TheLinux VFS

Name
blkdev_get by dev — open ablock device by device number
Synopsis
struct bl ock _device * bl kdev_get by dev (dev_t dev,
* hol der);
Arguments
dev device number of block device to open

node FMODE_* mask

hol der exclusive holder identifier

Description

fnode_t node, void

Open the blockdevice described by device number dev. nbde and hol der are identical to

bl kdev_get.

Useit ONLY if you really do not have anything better - i.e. when you are behind a truly sucky interface
and all you are given is a device number. _Never_ to be used for internal purposes. If you ever need it

- reconsider your API.

On success, the returned block _device has reference count of one.

CONTEXT
Might sleep.
RETURNS

Pointer to block_device on success, ERR_PTR(-errno) on failure.

177

TheLinux VFS

Name
lookup_bdev — lookup a struct block_device by name
Synopsis
struct bl ock _device * | ookup_bdev (const char * pathnane);
Arguments
pat hname specia file representing the block device
Description

Get areferenceto the blockdevice at pat hname in the current namespace if possible and return it. Return
ERR_PTR(error) otherwise.

178

Chapter 2. The proc filesystem

sysctl interface

179

The proc filesystem

Name
proc_dostring — read a string sysctl

Synopsis

int proc_dostring (struct ctl _table * table, int wite, void _ user *
buffer, size t * lenp, loff _t * ppos);

Arguments
tabl e thesysctl table
wite TRUEIf thisisawriteto the sysctl file
buf fer theuser buffer
I enp the size of the user buffer

ppos file position

Description
Reads/writes a string from/to the user buffer. If the kernel buffer provided is not large enough to hold the
string, the string is truncated. The copied string isNULL- t er mi nat ed. If the string is being read by the

user process, it is copied and anewline \n' is added. It is truncated if the buffer is not large enough.

Returns 0 on success.

180

The proc filesystem

Name

proc_dointvec — read a vector of integers
Synopsis

int proc_dointvec (struct ctl _table * table, int wite, void _ user *
buffer, size t * lenp, loff _t * ppos);

Arguments
tabl e thesysctl table
wite TRUEIf thisisawriteto the sysctl file
buf fer theuser buffer
I enp the size of the user buffer

ppos file position

Description

Reads/writes up to table->maxlen/sizeof(unsigned int) integer values from/to the user buffer, treated as
an ASCII string.

Returns 0 on success.

181

The proc filesystem

Name

proc_dointvec_minmax — read a vector of integers with min/max values
Synopsis

int proc_dointvec_mnmax (struct ctl _table * table, int wite,
__user * buffer, size t * lenp, loff_t * ppos);

Arguments
tabl e thesysctl table
wite TRUEIf thisisawriteto the sysctl file
buf fer theuser buffer
I enp the size of the user buffer

ppos file position

Description

voi d

Reads/writes up to table->maxlen/sizeof(unsigned int) integer values from/to the user buffer, treated as

an ASCII string.

Thisroutine will ensure the values are within the range specified by table->extral (min) and table->extra2

(max).

Returns 0 on success.

182

The proc filesystem

Name

proc_doulongvec_minmax — read a vector of long integers with min/max values
Synopsis

i nt proc_doul ongvec_minmax (struct ctl _table * table, int wite, void
__user * buffer, size t * lenp, loff_t * ppos);

Arguments
tabl e thesysctl table
wite TRUEIf thisisawriteto the sysctl file
buf fer theuser buffer
I enp the size of the user buffer

ppos file position

Description

Reads/writes up to table->maxlen/sizeof (unsigned long) unsigned long values from/to the user buffer,
treated as an ASCII string.

Thisroutine will ensure the values are within the range specified by table->extral (min) and table->extra2
(max).

Returns 0 on success.

183

The proc filesystem

Name

proc_doulongvec_ms jiffies minmax — read a vector of millisecond values with min/max values
Synopsis

int proc_doulongvec ns_jiffies mnmax (struct ctl _table * table, int
wite, void user * buffer, size t * lenp, loff _t * ppos);

Arguments
tabl e thesysctl table
wite TRUEIf thisisawriteto the sysctl file
buf fer theuser buffer
I enp the size of the user buffer

ppos file position

Description

Reads/writes up to table->maxlen/sizeof (unsigned long) unsigned long values from/to the user buffer,
treated as an ASCII string. The values are treated as milliseconds, and converted to jiffies when they are
stored.

Thisroutine will ensure the values are within the range specified by table->extral (min) and table->extra2
(max).

Returns 0 on success.

184

The proc filesystem

Name

proc_dointvec_jiffies— read avector of integers as seconds
Synopsis

int proc_dointvec jiffies (struct ctl _table * table, int wite,
__user * buffer, size t * lenp, loff_t * ppos);

Arguments
tabl e thesysctl table
wite TRUEIf thisisawriteto the sysctl file
buf fer theuser buffer
I enp the size of the user buffer

ppos file position

Description

voi d

Reads/writes up to table->max|en/sizeof (unsigned int) integer values from/to the user buffer, treated as an

ASCII string. The values read are assumed to be in seconds, and are converted into jiffies.

Returns 0 on success.

185

The proc filesystem

Name
proc_dointvec_userhz_jiffies— read a vector of integers as /USER_HZ seconds

Synopsis

int proc_dointvec_userhz jiffies (struct ctl _table * table, int wite,
void __user * buffer, size t * lenp, loff_t * ppos);

Arguments
tabl e thesysctl table
wite TRUEIf thisisawriteto the sysctl file
buf fer theuser buffer
I enp the size of the user buffer

ppos pointer to the file position

Description

Reads/writes up to table->max|en/sizeof (unsigned int) integer values from/to the user buffer, treated as an
ASCII string. The values read are assumed to be in YUSER_HZ seconds, and are converted into jiffies.

Returns 0 on success.

186

The proc filesystem

Name

proc_dointvec_ms jiffies— read a vector of integers as 1 milliseconds
Synopsis

int proc_dointvec_ns_jiffies (struct ctl _table * table, int wite, void
__user * buffer, size t * lenp, loff_t * ppos);

Arguments

tabl e thesysctl table

wite TRUEIf thisisawriteto the sysctl file
buf fer theuser buffer

I enp the size of the user buffer

ppos the current position in the file

Description

Reads/writes up to table->max|en/sizeof (unsigned int) integer values from/to the user buffer, treated as an
ASCII string. The values read are assumed to be in 1/1000 seconds, and are converted into jiffies.

Returns 0 on success.

proc filesystem interface

187

The proc filesystem

Name

proc_flush task — Remove dcache entries for t ask from the /proc dcache.
Synopsis
void proc_flush task (struct task struct * task);

Arguments

task task that should be flushed.

Description

When flushing dentries from proc, one needs to flush them from global proc (proc_mnt) and from all the
namespaces procs this task was seen in. This call is supposed to do all of thisjob.

Looks in the dcache for /proc/pi d /proc/t gi d/task/pi d if either directory is present flushesit and all of
it'ts children from the dcache.

It is safe and reasonable to cache /proc entries for atask until that task exits. After that they just clog up
the dcache with useless entries, possibly causing useful dcache entries to be flushed instead. This routine
is proved to flush those useless dcache entries at process exit time.

NOTE

Thisroutineisjust an optimization so it does not guarantee that no dcache entries will exist at process exit
timeit just makesit very unlikely that any will persist.

188

Chapter 3. Events based on file
descriptors

189

Events based on file descriptors

Name

eventfd_signal — Adds n to the eventfd counter.
Synopsis
__u6b4 eventfd_signal (struct eventfd_ ctx * ctx, __u64 n);

Arguments

ct x [in] Pointer to the eventfd context.

n [in] Value of the counter to be added to the eventfd internal counter. The value cannot be negative.

Description

This function is supposed to be called by the kernel in paths that do not allow sleeping. In this function
we allow the counter to reach the ULLONG_MAX value, and we signal this as overflow condition by
returining a POLLERR to poll(2).

Returns the amount by which the counter was incrememnted. This will be less than n if the counter has
overflowed.

190

Events based on file descriptors

Name

eventfd_ctx_get — Acquires areference to the internal eventfd context.

Synopsis

struct eventfd ctx * eventfd ctx_get (struct eventfd ctx * ctx);

Arguments

ct x [in] Pointer to the eventfd context.

Returns

In case of success, returns a pointer to the eventfd context.

191

Events based on file descriptors

Name

eventfd_ctx_put — Releases areference to the internal eventfd context.

Synopsis

void eventfd_ctx_put (struct eventfd ctx * ctx);

Arguments

ct x [in] Pointer to eventfd context.

Description

The eventfd context reference must have been previoudly acquired either with event f d_ct x_get or
eventfd_ctx_fdget.

192

Events based on file descriptors

Name

eventfd_ctx_remove wait_queue — Read the current counter and removes wait queue.

Synopsis

i nt eventfd_ctx_renove_wait_queue (struct eventfd _ctx

wait_queue_t * wait, _ u64 * cnt);
Arguments
ctx [in] Pointer to eventfd context.

wai t [in] Wait queue to be removed.

cnt [out] Pointer to the 64-bit counter value.

Description

Returns 0 if successful, or the following error codes:

-EAGAIN : The operation would have blocked.

This is used to atomically remove a wait queue entry from the eventfd wait queue head, and read/reset

the counter value.

193

Events based on file descriptors

Name

eventfd_ctx_read — Reads the eventfd counter or wait if it is zero.

Synopsis

ssize_t eventfd ctx_read (struct eventfd_ ctx * ctx, int no_wait, _ u64
* cnt);

Arguments
ctx [in] Pointer to eventfd context.

no_wait [in] Different from zero if the operation should not block.

cnt [out] Pointer to the 64-bit counter value.

Description

Returns 0 if successful, or the following error codes:

-EAGAIN : The operation would have blocked but no_wai t was non-zero. -ERESTARTSYS: A signd
interrupted the wait operation.

If no_wai t iszero, the function might sleep until the eventfd internal counter becomes greater than zero.

194

Events based on file descriptors

Name

eventfd fget — Acquire areference of an eventfd file descriptor.
Synopsis
struct file * eventfd_fget (int fd);

Arguments

fd [in] Eventfd file descriptor.

Description

Returns a pointer to the eventfd file structure in case of success, or the

following error pointer

-EBADF : Invalid f d file descriptor. -EINVAL : Thef d file descriptor is not an eventfd file.

195

Events based on file descriptors

Name

eventfd_ctx_fdget — Acquires areference to the internal eventfd context.

Synopsis

struct eventfd_ctx * eventfd ctx_fdget (int fd);

Arguments

fd [in] Eventfd file descriptor.

Description

Returns a pointer to the internal eventfd context, otherwise the error

pointers returned by the following functions

eventfd fget

196

Events based on file descriptors

Name

eventfd_ctx_fileget — Acquires areference to the internal eventfd context.

Synopsis

struct eventfd ctx * eventfd ctx fileget (struct file * file);

Arguments

file [in] Eventfd file pointer.

Description

Returns a pointer to the internal eventfd context, otherwise the error

pointer

-EINVAL : Thef d file descriptor is not an eventfd file.

197

Chapter 4. The Filesystem for
Exporting Kernel Objects

198

The Filesystem for Ex-
porting Kernel Objects

Name

sysfs _create file ns— create an attribute file for an object with custom ns
Synopsis

int sysfs create_file_ns (struct kobject * kobj, const struct attribute
* attr, const void * ns);

Arguments
kobj object were creating for
attr attribute descriptor

ns namespace the new file should belong to

199

The Filesystem for Ex-
porting Kernel Objects

Name
sysfs add file to_group — add an attribute file to a pre-existing group.

Synopsis

int sysfs add file to_group (struct kobject * kobj, const struct at-
tribute * attr, const char * group);

Arguments
kobj object we're acting for.
attr attribute descriptor.

group group name.

200

The Filesystem for Ex-
porting Kernel Objects

Name
sysfs_chmod_file — update the modified mode value on an object attribute.

Synopsis

int sysfs chnod_file (struct kobject * kobj, const struct attribute *
attr, unode_t node);

Arguments
kobj object were acting for.
attr attribute descriptor.

node file permissions.

201

The Filesystem for Ex-
porting Kernel Objects

Name

sysfs_remove file_ns— remove an object attribute with a custom ns tag

Synopsis

voi d sysfs_remove _file_ns (struct kobject * kobj, const struct attribute
* attr, const void * ns);

Arguments
kobj object were acting for
attr attribute descriptor

ns namespace tag of the file to remove

Description

Hash the attribute name and namespace tag and kill the victim.

202

The Filesystem for Ex-
porting Kernel Objects

Name

sysfs_remove file from_group — remove an attribute file from a group.
Synopsis

void sysfs_renove file fromgroup (struct kobject * kobj, const struct
attribute * attr, const char * group);

Arguments
kobj object we're acting for.
attr attribute descriptor.

group group name.

203

The Filesystem for Ex-
porting Kernel Objects

Name

sysfs create bin file— create binary file for object.

Synopsis

int sysfs create bin file (struct
bin_attribute * attr);

Arguments
kobj object.

attr attribute descriptor.

kobj ect

*

kobj

const

struct

204

The Filesystem for Ex-
porting Kernel Objects

Name

sysfs_remove _bin_file— remove binary file for object.
Synopsis

void sysfs remove bin file (struct kobject
bin_attribute * attr);

Arguments
kobj object.

attr attribute descriptor.

*

kobj

const

struct

205

The Filesystem for Ex-
porting Kernel Objects

Name
sysfs_create link — create symlink between two objects.

Synopsis

int sysfs create_link (struct kobject * kobj, struct kobject * target,
const char * nane);

Arguments
kobj object whose directory we're creating the link in.
target object we're pointing to.

nane name of the symlink.

206

The Filesystem for Ex-
porting Kernel Objects

Name

sysfs remove_link — remove symlink in object's directory.
Synopsis
voi d sysfs_renove_link (struct kobject * kobj, const char * nane);

Arguments

kobj object were acting for.

nanme name of the symlink to remove.

207

The Filesystem for Ex-
porting Kernel Objects

Name

sysfs rename_link_ns — rename symlink in object's directory.

Synopsis

int sysfs_renane_link_ns (struct kobject * kobj, struct kobject * targ,
const char * old, const char * new, const void * new_ns);

Arguments
kobj object we're acting for.
targ object we're pointing to.
old previous name of the symlink.
new new name of the symlink.

new_ns new namespace of the symlink.

Description

A helper function for the common rename symlink idiom.

208

Chapter 5. The debugfs filesystem

debugfs interface

209

The debugfs filesystem

Name
debugfs create file— create afile in the debugfs filesystem

Synopsis
struct dentry * debugfs create file (const char * nane, unode_t node,

struct dentry * parent, void * data, const struct file_ operations *
fops);

Arguments

namne apointer to a string containing the name of the file to create.
node the permission that the file should have.

parent apointer to the parent dentry for thisfile. This should be a directory dentry if set. If this para-
meter isNULL, then the file will be created in the root of the debugfs filesystem.

data a pointer to something that the caller will want to get to later on. The inode.i_private pointer
will point to thisvalue onthe open cal.

fops apointer to astruct file_operations that should be used for thisfile.
Description

Thisisthebasic“createafile’ functionfor debugfs. It allowsfor awiderange of flexibility in creating afile,
or adirectory (if you want to create a directory, thedebugf s_creat e_di r function isrecommended
to be used instead.)

This function will return a pointer to a dentry if it succeeds. This pointer must be passed to the
debugf s_r enpve function when thefileisto be removed (no automatic cleanup happensif your mod-
uleis unloaded, you are responsible here.) If an error occurs, NULL will be returned.

If debugfsis not enabled in the kernel, the value -ENODEV will be returned.

210

The debugfs filesystem

Name
debugfs create file size— create afile in the debugfs filesystem

Synopsis
struct dentry * debugfs create file size (const char * nanme, unode t

node, struct dentry * parent, void * data, const struct file_operations
* fops, loff t file_size);

Arguments

namne apointer to a string containing the name of the file to create.

node the permission that the file should have.

par ent apointer to the parent dentry for this file. This should be a directory dentry if set. If this
parameter isNULL, then the file will be created in the root of the debugfs filesystem.

data a pointer to something that the caller will want to get to later on. The inode.i_private
pointer will point to thisvalue on the open call.

fops apointer to astruct file_operations that should be used for thisfile.

file_size initia filesize
Description

Thisisthebasic*“createafile” functionfor debugfs. It allowsfor awiderange of flexibility in creating afile,

or adirectory (if you want to create a directory, thedebugf s_creat e_di r function is recommended
to be used instead.)

This function will return a pointer to a dentry if it succeeds. This pointer must be passed to the
debugf s_r enpve function when thefileisto be removed (no automatic cleanup happensif your mod-
uleis unloaded, you are responsible here.) If an error occurs, NULL will be returned.

If debugfsis not enabled in the kernel, the value -ENODEV will be returned.

211

The debugfs filesystem

Name
debugfs create dir — create adirectory in the debugfs filesystem
Synopsis
struct dentry * debugfs create dir (const char * nane, struct dentry
* parent);
Arguments
namne apointer to a string containing the name of the directory to create.

par ent apointer to the parent dentry for thisfile. This should be a directory dentry if set. If this para-
meter is NULL, then the directory will be created in the root of the debugfs filesystem.

Description

This function creates a directory in debugfs with the given name.

This function will return a pointer to a dentry if it succeeds. This pointer must be passed to the
debugf s_r enpve function when thefileisto be removed (no automatic cleanup happensif your mod-
uleis unloaded, you are responsible here.) If an error occurs, NULL will be returned.

If debugfsis not enabled in the kernel, the value -ENODEV will be returned.

212

The debugfs filesystem

debugfs _create_automount — create automount point in the debugfs filesystem

Synopsis

struct dentry * debugfs create_autonmount (const char * name, struct
dentry * parent, struct vfsmount *(*f) (void *), void * data);

Arguments

namne apointer to a string containing the name of the file to create.

par ent apointer to the parent dentry for thisfile. This should be a directory dentry if set. If this para-
meter is NULL, then the file will be created in the root of the debugfs filesystem.

f function to be called when pathname resolution steps on that one.

data opague argument to passto f .

Description

f should return what ->d_aut onobunt would.

213

The debugfs filesystem

Name
debugfs create symlink — create a symbolic link in the debugfs filesystem

Synopsis

struct dentry * debugfs _create_synlink (const char * nane, struct dentry
* parent, const char * target);

Arguments

namne apointer to a string containing the name of the symbolic link to create.

par ent apointer to the parent dentry for this symbolic link. This should be a directory dentry if set.
If this parameter is NULL, then the symbolic link will be created in the root of the debugfs
filesystem.

target apointer to astring containing the path to the target of the symbolic link.

Description
This function creates a symbolic link with the given name in debugfs that links to the given target path.

This function will return a pointer to a dentry if it succeeds. This pointer must be passed to the
debugf s_r enpve function when the symbolic link is to be removed (no automatic cleanup happens if
your module is unloaded, you are responsible here.) If an error occurs, NULL will be returned.

If debugfsis not enabled in the kernel, the value -ENODEV will be returned.

214

The debugfs filesystem

Name

debugfs_remove — removes afile or directory from the debugfs filesystem
Synopsis
voi d debugfs remove (struct dentry * dentry);

Arguments

dentry apointer to athe dentry of thefile or directory to be removed.

Description

This function removes a file or directory in debugfs that was previously created with a call to another
debugfs function (likedebugf s_create_fi |l e or variants thereof.)

Thisfunction isrequired to be called in order for the file to be removed, no automatic cleanup of files will
happen when a module is removed, you are responsible here.

215

The debugfs filesystem

Name

debugfs remove_recursive — recursively removes a directory
Synopsis
voi d debugfs remove recursive (struct dentry * dentry);

Arguments

dent ry apointer to athe dentry of the directory to be removed.

Description

This function recursively removes a directory tree in debugfs that was previously created with a call to
another debugfs function (like debugf s_creat e_fi | e or variants thereof.)

Thisfunction isrequired to be called in order for the file to be removed, no automatic cleanup of files will
happen when a module is removed, you are responsible here.

216

The debugfs filesystem

Name
debugfs_rename — rename afile/directory in the debugfs filesystem

Synopsis

struct dentry * debugfs renane (struct dentry * old dir, struct dentry
* old _dentry, struct dentry * new dir, const char * new _nane);

Arguments
old dir apointer to the parent dentry for the renamed object. This should be a directory dentry.

ol d_dentry dentry of an object to be renamed.

new dir apointer to the parent dentry where the object should be moved. This should be adirec-
tory dentry.
new_nane apointer to a string containing the target name.
Description

This function renames a file/directory in debugfs. The target must not exist for rename to succeed.

This function will return a pointer to old_dentry (which is updated to reflect renaming) if it succeeds. If
an error occurs, NULL will be returned.

If debugfsis not enabled in the kernel, the value -ENODEV will be returned.

217

The debugfs filesystem

Name
debugfs initialized — Tells whether debugfs has been registered

Synopsis
bool debugfs initialized (void);
Arguments

voi d noarguments

218

The debugfs filesystem

Name
debugfs create u8 — create a debugfsfile that is used to read and write an unsigned 8-bit value

Synopsis

struct dentry * debugfs create u8 (const char * nane, unopde_t node,
struct dentry * parent, u8 * val ue);

Arguments
namne apointer to a string containing the name of the file to create.
node the permission that the file should have

parent apointer to the parent dentry for thisfile. This should be a directory dentry if set. If this para-
meter isNULL, then the file will be created in the root of the debugfs filesystem.

val ue apointer to the variable that the file should read to and write from.

Description

This function creates afile in debugfs with the given name that contains the value of the variableval ue.
If the mode variable is so set, it can be read from, and written to.

This function will return a pointer to a dentry if it succeeds. This pointer must be passed to the
debugf s_r enpve function when thefileisto be removed (no automatic cleanup happensif your mod-
uleisunloaded, you are responsible here.) If an error occurs, NULL will be returned.

If debugfsis not enabled in the kernel, the value -ENODEV will be returned. It is not wise to check for this
value, but rather, check for NULL or 'NULL instead asto eliminate the need for #ifdef in the calling code.

219

The debugfs filesystem

Name
debugfs create ul6 — create adebugfsfile that is used to read and write an unsigned 16-bit value

Synopsis

struct dentry * debugfs create ul6é (const char * nanme, unode_t node,
struct dentry * parent, ul6é * val ue);

Arguments
namne apointer to a string containing the name of the file to create.
node the permission that the file should have

parent apointer to the parent dentry for thisfile. This should be a directory dentry if set. If this para-
meter isNULL, then the file will be created in the root of the debugfs filesystem.

val ue apointer to the variable that the file should read to and write from.

Description

This function creates afile in debugfs with the given name that contains the value of the variableval ue.
If the mode variable is so set, it can be read from, and written to.

This function will return a pointer to a dentry if it succeeds. This pointer must be passed to the
debugf s_r enpve function when thefileisto be removed (no automatic cleanup happensif your mod-
uleisunloaded, you are responsible here.) If an error occurs, NULL will be returned.

If debugfsis not enabled in the kernel, the value -ENODEV will be returned. It is not wise to check for this
value, but rather, check for NULL or 'NULL instead asto eliminate the need for #ifdef in the calling code.

220

The debugfs filesystem

Name
debugfs create u32 — create adebugfsfile that is used to read and write an unsigned 32-bit value

Synopsis

struct dentry * debugfs create u32 (const char * nanme, unode_t node,
struct dentry * parent, u32 * val ue);

Arguments
namne apointer to a string containing the name of the file to create.
node the permission that the file should have

parent apointer to the parent dentry for thisfile. This should be a directory dentry if set. If this para-
meter isNULL, then the file will be created in the root of the debugfs filesystem.

val ue apointer to the variable that the file should read to and write from.

Description

This function creates afile in debugfs with the given name that contains the value of the variableval ue.
If the mode variable is so set, it can be read from, and written to.

This function will return a pointer to a dentry if it succeeds. This pointer must be passed to the
debugf s_r enpve function when thefileisto be removed (no automatic cleanup happensif your mod-
uleisunloaded, you are responsible here.) If an error occurs, NULL will be returned.

If debugfsis not enabled in the kernel, the value -ENODEV will be returned. It is not wise to check for this
value, but rather, check for NULL or 'NULL instead asto eliminate the need for #ifdef in the calling code.

221

The debugfs filesystem

Name
debugfs create u64 — create a debugfsfile that is used to read and write an unsigned 64-bit value

Synopsis

struct dentry * debugfs create u64 (const char * nanme, unode_t node,
struct dentry * parent, u64 * val ue);

Arguments
namne apointer to a string containing the name of the file to create.
node the permission that the file should have

parent apointer to the parent dentry for thisfile. This should be a directory dentry if set. If this para-
meter isNULL, then the file will be created in the root of the debugfs filesystem.

val ue apointer to the variable that the file should read to and write from.

Description

This function creates afile in debugfs with the given name that contains the value of the variableval ue.
If the mode variable is so set, it can be read from, and written to.

This function will return a pointer to a dentry if it succeeds. This pointer must be passed to the
debugf s_r enpve function when thefileisto be removed (no automatic cleanup happensif your mod-
uleisunloaded, you are responsible here.) If an error occurs, NULL will be returned.

If debugfsis not enabled in the kernel, the value -ENODEV will be returned. It is not wise to check for this
value, but rather, check for NULL or 'NULL instead asto eliminate the need for #ifdef in the calling code.

222

The debugfs filesystem

Name
debugfs create x8 — create a debugfsfile that is used to read and write an unsigned 8-bit value

Synopsis

struct dentry * debugfs create x8 (const char * nane, unopde_t node,
struct dentry * parent, u8 * val ue);

Arguments
namne apointer to a string containing the name of the file to create.
node the permission that the file should have

parent apointer to the parent dentry for thisfile. This should be a directory dentry if set. If this para-
meter isNULL, then the file will be created in the root of the debugfs filesystem.

val ue apointer to the variable that the file should read to and write from.

223

The debugfs filesystem

Name
debugfs create x16 — create a debugfsfile that is used to read and write an unsigned 16-bit value

Synopsis

struct dentry * debugfs create x16 (const char * nanme, unode_t node,
struct dentry * parent, ul6é * val ue);

Arguments
namne apointer to a string containing the name of the file to create.
node the permission that the file should have

parent apointer to the parent dentry for thisfile. This should be a directory dentry if set. If this para-
meter isNULL, then the file will be created in the root of the debugfs filesystem.

val ue apointer to the variable that the file should read to and write from.

224

The debugfs filesystem

Name
debugfs create x32 — create adebugfsfile that is used to read and write an unsigned 32-bit value

Synopsis

struct dentry * debugfs create x32 (const char * nanme, unode_t node,
struct dentry * parent, u32 * val ue);

Arguments
namne apointer to a string containing the name of the file to create.
node the permission that the file should have

parent apointer to the parent dentry for thisfile. This should be a directory dentry if set. If this para-
meter isNULL, then the file will be created in the root of the debugfs filesystem.

val ue apointer to the variable that the file should read to and write from.

225

The debugfs filesystem

Name
debugfs create x64 — create a debugfsfile that is used to read and write an unsigned 64-bit value

Synopsis

struct dentry * debugfs create x64 (const char * nanme, unode_t node,
struct dentry * parent, u64 * val ue);

Arguments
namne apointer to a string containing the name of the file to create.
node the permission that the file should have

parent apointer to the parent dentry for thisfile. This should be a directory dentry if set. If this para-
meter isNULL, then the file will be created in the root of the debugfs filesystem.

val ue apointer to the variable that the file should read to and write from.

226

The debugfs filesystem

Name
debugfs create size t — create adebugfsfile that is used to read and write an size t value

Synopsis

struct dentry * debugfs create_size t (const char * nane, unpde_t node,
struct dentry * parent, size_t * value);

Arguments
namne apointer to a string containing the name of the file to create.
node the permission that the file should have

parent apointer to the parent dentry for thisfile. This should be a directory dentry if set. If this para-
meter isNULL, then the file will be created in the root of the debugfs filesystem.

val ue apointer to the variable that the file should read to and write from.

227

The debugfs filesystem

Name
debugfs create_atomic_t — create a debugfsfile that is used to read and write an atomic _t value

Synopsis

struct dentry * debugfs create atonmic_t (const char * nane, unode t
node, struct dentry * parent, atomic_t * value);

Arguments
namne apointer to a string containing the name of the file to create.
node the permission that the file should have

parent apointer to the parent dentry for thisfile. This should be a directory dentry if set. If this para-
meter isNULL, then the file will be created in the root of the debugfs filesystem.

val ue apointer to the variable that the file should read to and write from.

228

The debugfs filesystem

Name
debugfs create_bool — create a debugfsfile that is used to read and write a boolean value

Synopsis

struct dentry * debugfs create bool (const char * nane, unode_t node,
struct dentry * parent, u32 * val ue);

Arguments
namne apointer to a string containing the name of the file to create.
node the permission that the file should have

parent apointer to the parent dentry for thisfile. This should be a directory dentry if set. If this para-
meter isNULL, then the file will be created in the root of the debugfs filesystem.

val ue apointer to the variable that the file should read to and write from.

Description

This function creates afile in debugfs with the given name that contains the value of the variableval ue.
If the mode variable is so set, it can be read from, and written to.

This function will return a pointer to a dentry if it succeeds. This pointer must be passed to the
debugf s_r enpve function when thefileisto be removed (no automatic cleanup happensif your mod-
uleisunloaded, you are responsible here.) If an error occurs, NULL will be returned.

If debugfsis not enabled in the kernel, the value -ENODEV will be returned. It is not wise to check for this
value, but rather, check for NULL or 'NULL instead asto eliminate the need for #ifdef in the calling code.

229

The debugfs filesystem

Name
debugfs create blob — create adebugfsfile that is used to read a binary blob

Synopsis

struct dentry * debugfs create blob (const char * nane, unode_t node,
struct dentry * parent, struct debugfs_ bl ob_wapper * blob);

Arguments

namne apointer to a string containing the name of the file to create.
node the permission that the file should have

parent apointer to the parent dentry for thisfile. This should be a directory dentry if set. If this para-
meter isNULL, then the file will be created in the root of the debugfs filesystem.

bl ob apointer to a struct debugfs blob_wrapper which contains a pointer to the blob data and the
size of the data.

Description

This function creates a file in debugfs with the given name that exports bl ob->data as a binary blob. If
thenode variableis so set it can be read from. Writing is not supported.

This function will return a pointer to a dentry if it succeeds. This pointer must be passed to the
debugf s_r enpve function when thefileisto be removed (no automatic cleanup happensif your mod-
uleisunloaded, you are responsible here.) If an error occurs, NULL will be returned.

If debugfsis not enabled in the kernel, the value -ENODEV will be returned. It is not wise to check for this
value, but rather, check for NULL or 'NULL instead asto eliminate the need for #ifdef in the calling code.

230

The debugfs filesystem

Name
debugfs create u32_array — create a debugfsfile that is used to read u32 array.

Synopsis

struct dentry * debugfs create u32 array (const char * nanme, unode_t
node, struct dentry * parent, u32 * array, u32 elenents);

Arguments
namne apointer to a string containing the name of the file to create.
node the permission that the file should have.

par ent a pointer to the parent dentry for this file. This should be a directory dentry if set. If this
parameter is NULL, then the file will be created in the root of the debugfs filesystem.

array u32 array that provides data.

el ement's total number of elementsin the array.
Description

This function creates a file in debugfs with the given name that exports ar r ay as data. If the node
variableis so set it can be read from. Writing is not supported. Seek within the file is also not supported.
Once array is created its size can not be changed.

The function returns a pointer to dentry on success. If debugfs is not enabled in the kernel, the value
-ENODEV will be returned.

231

The debugfs filesystem

Name
debugfs print_regs32 — use seq_print to describe a set of registers
Synopsis
void debugfs print_regs32 (struct seq file * s, const struct
debugfs reg32 * regs, int nregs, void __ionmem* base, char * prefix);
Arguments
S the seq_file structure being used to generate output

regs an array if struct debugfs reg32 structures
nregs thelength of the above array
base the base address to be used in reading the registers

prefix astring to be prefixed to every output line

Description

This function outputs a text block describing the current values of some 32-bit hardware registers. It is
meant to be used within debugfs files based on seq_file that need to show registers, intermixed with other
information. The prefix argument may be used to specify aleading string, because some peripherals have
several blocks of identical registers, for example configuration of dma channels

232

The debugfs filesystem

Name
debugfs create regset32 — create a debugfsfile that returns register values

Synopsis

struct dentry * debugfs create regset32 (const char * nane, unode t
node, struct dentry * parent, struct debugfs regset32 * regset);

Arguments

namne apointer to a string containing the name of the file to create.
node the permission that the file should have

parent apointer to the parent dentry for thisfile. This should be a directory dentry if set. If this para-
meter isNULL, then the file will be created in the root of the debugfs filesystem.

regset apointer to astruct debugfs regset32, which contains a pointer to an array of register defini-
tions, the array size and the base address where the register bank is to be found.

Description

This function creates a file in debugfs with the given name that reports the names and values of a set of
32-hit registers. If the node variable is so set it can be read from. Writing is not supported.

This function will return a pointer to a dentry if it succeeds. This pointer must be passed to the
debugf s_r enpve function when thefileisto be removed (no automatic cleanup happensif your mod-
uleisunloaded, you are responsible here.) If an error occurs, NULL will be returned.

If debugfsis not enabled in the kernel, the value -ENODEV will be returned. It is not wise to check for this
value, but rather, check for NULL or 'NULL instead asto eliminate the need for #ifdef in the calling code.

233

The debugfs filesystem

Name
debugfs create devm_seqfile — create a debugfs file that is bound to device.

Synopsis

struct dentry * debugfs create devmseqfile (struct device * dev, const
char * nanme, struct dentry * parent, int (*read_fn) (struct seq file
*s, void *data));

Arguments
dev device related to this debugfsfile.
nane name of the debugfsfile.

par ent a pointer to the parent dentry for this file. This should be a directory dentry if set. If this
parameter is NULL, then the file will be created in the root of the debugfs filesystem.

read_fn function pointer caled to print the seq_file content.

234

Chapter 6. The Linux Journalling API

Roger Gammans <r gamrans @onput er - sur gery. co. uk>

Stephen Tweedie <sct @ edhat . conp

Copyright © 2002 Roger Gammans

Overview

Details

Thejournalling layer iseasy to use. Y ou need to first of all create ajournal_t data structure. There are two
calls to do this dependent on how you decide to allocate the physical media on which the journal resides.
Thejournal_init_inode() cal isfor journals stored in filesystem inodes, or the journal _init_dev() call can
be use for journal stored on araw device (in a continuous range of blocks). A journal_t is atypedef for a
struct pointer, so when you are finally finished make sure you call journal_destroy() on it to free up any
used kernel memory.

Once you have got your journal_t object you need to 'mount’ or load the journa file, unless of course you
haven't initialised it yet - in which case you need to call journal_create().

Most of the time however your journa file will already have been created, but before you load it you
must call journal_wipe() to empty the journal file. Hang on, you say , what if the filesystem wasn't cleanly
umount()'d . Well, it isthe job of the client file system to detect this and skip the call to journal_wipe().

In either case the next call should be to journa_load() which prepares the journal file for use. Note that
journal_wipe(..,0) calls journal_skip_recovery() for you if it detects any outstanding transactions in the
journal and similarly journal_load() will call journal_recover() if necessary. | would advisereading fs/ext3/
super.c for exampleson thisstage. [RGG: Why isthejournal_wipe() call necessary - doesn't thisneedlessly
complicate the API. Or isn't agood ideafor the journal layer to hide dirty mounts from the client fs]

Now you can go ahead and start modifying the underlying filesystem. Almost.

Y ou still need to actually journal your filesystem changes, thisis done by wrapping them into transactions.
Additionally you al so need to wrap the modification of each of the bufferswith callsto thejournal layer, so
it knows what the modifications you are actually making are. To do this use journal_start() which returns
atransaction handle.

journal_start() and itscounterpart journal _stop(), which indicatesthe end of atransaction are nestablecalls,
SO you can reenter atransaction if necessary, but remember you must call journal _stop() the same number
of timesasjournal_start() beforethetransaction iscompleted (or more accurately leavesthe update phase).
Ext3/VFS makes use of this feature to simplify quota support.

Inside each transaction you need to wrap the modifications to the individual buffers (blocks). Before you
start to modify a buffer you need to call journal_get {createwrite,undo} access() as appropriate, this
allows the journalling layer to copy the unmodified dataif it needs to. After all the buffer may be part of
apreviously uncommitted transaction. At this point you are at last ready to modify a buffer, and once you
are have done so you need to call journa_dirty { meta,}data(). Or if you've asked for access to a buffer

235

The Linux Journalling API

you now know is now longer required to be pushed back on the device you can call journa_forget() in
much the same way as you might have used bforget() in the past.

A journa_flush() may be called at any time to commit and checkpoint all your transactions.

Then at umount time , in your put_super() you can then call journal_destroy() to clean up your in-core
journal object.

Unfortunately there a couple of ways the journal layer can cause a deadlock. The first thing to note is
that each task can only have a single outstanding transaction at any one time, remember nothing commits
until the outermost journal _stop(). This means you must complete the transaction at the end of each file/
inode/address etc. operation you perform, so that the journalling systemisn't re-entered on another journal .
Sincetransactions can't be nested/batched acrossdiffering journals, and another filesystem other than yours
(say ext3) may be modified in alater syscall.

The second caseto bear in mindisthat journal _start() can block if thereisn't enough spacein thejournal for
your transaction (based on the passed nblocks param) - when it blocks it merely(!) needsto wait for trans-
actions to complete and be committed from other tasks, so essentially we are waiting for journal_stop().
So to avoid deadlocks you must treat journal_start/stop() as if they were semaphores and include them
in your semaphore ordering rules to prevent deadlocks. Note that journal_extend() has similar blocking
behaviour to journal_start() so you can deadlock herejust as easily as on journa _start().

Try to reserve the right number of blocks the first time. ;-). Thiswill be the maximum number of blocks
you are going to touch in this transaction. | advise having alook at at least ext3_jbd.h to see the basison
which ext3 uses to make these decisions.

Another wriggle to watch out for is your on-disk block allocation strategy. why? Because, if you undo a
delete, you need to ensure you haven't reused any of the freed blocks in a later transaction. One simple
way of doing thisis make sure any blocks you alocate only have checkpointed transactions listed against
them. Ext3 does thisin ext3_test allocatable().

Lock isalso providing through journal_{un,}lock _updates(), ext3 uses this when it wants a window with
aclean and stable fsfor amoment. eg.

journal _I ock_updates() //stop new stuff happening..
journal _flush() /1 checkpoi nt everything.

..do stuff on stable fs

journal _unlock updates() // carry on with filesystem use.

The opportunities for abuse and DOS attacks with this should be obvious, if you allow unprivileged user-
space to trigger codepaths containing these calls.

A new feature of jbd since 2.5.25 is commit callbacks with the new journal _callback_set() function you
can now ask thejournalling layer to call you back when the transaction isfinally committed to disk, so that
you can do some of your own management. The key to thisis the journal _callback struct, this maintains
theinternal callback information but you can extend it like this:-

struct nyfs_call back_s {
//Data structure elenment required by jbd..
struct journal _callback for_jbd,;
/1 Stuff for nyfs allocated together.
nyfs_i node* i _comm ted;

236

The Linux Journalling API

}

thiswould be useful if you needed to know when data was committed to a particular inode.
Summary

Using the journal is a matter of wrapping the different context changes, being each mount, each modifi-
cation (transaction) and each changed buffer to tell the journalling layer about them.

Here is a some pseudo code to give you an idea of how it works, as an example.

journal _t* my_jnrl = journal _create();
journal _init_{dev,inode}(jnrl,...)

if (clean) journal w pe();

journal | oad();

foreach(transaction) { /*transactions nust be
conpl et ed before
a syscall returns to
user space*/

handle t * xct=journal _start(ny_jnrl);
foreach(bh) {
journal _get {create,wite,undo} access(xact, bh);
if (nyfs_nodify(bh)) { /* returns true
i f makes changes */

journal _dirty {neta, }data(xact, bh);
} else {

}

journal forget(bh);

}

journal stop(xct);
}
journal _destroy(my_jrnl);

Data Types

The journalling layer uses typedefs to 'hide' the concrete definitions of the structures used. As aclient of

the JBD layer you can just rely on the using the pointer as a magic cookie of some sort. Obviously the
hiding is not enforced as thisis'C'.

Structures

237

The Linux Journalling API

Name
typedef handle_t — Thehandle _t type represents asingle atomic update being performed by some process.

Synopsis
typedef handle_t;

Description

All filesystem modifications made by the process go through this handle. Recursive operations (such as
guota operations) are gathered into a single update.

The buffer credits field is used to account for journaled buffers being modified by the running process.
To ensure that there is enough log space for all outstanding operations, we need to limit the number of
outstanding buffers possible at any time. When the operation completes, any buffer credits not used are
credited back to the transaction, so that at all times we know how many buffers the outstanding updates
on a transaction might possibly touch.

Thisis an opague datatype.

238

The Linux Journalling API

Name
typedef journal_t — Thejournal_t maintainsall of the journaling state information for asingle filesystem.

Synopsis
typedef journal t;

Description

journa_tislinked to from the fs superblock structure.

We usethejournal_t to keep track of all outstanding transaction activity on the filesystem, and to manage
the state of the log writing process.

Thisis an opague datatype.

239

The Linux Journalling API

Name

struct handle_s— thisis the concrete type associated with handle t.

Synopsis

struct handle_s {
transaction_t * h_transaction;
int h_buffer _credits;
int h_ref;
int h_err;
unsi gned int h_sync:1;
unsi gned int h_jdata:1;
unsi gned int h_aborted: 1;
#i f def CONFI G_DEBUG LOCK_ALLOC
struct | ockdep_map h_| ockdep_map;

#endi f
b
Members
h_transaction Which compound transaction is this update a part of ?
h_buffer_credits Number of remaining buffers we are allowed to dirty.
h_ref Reference count on this handle
h_err Field for caller's use to track errors through large fs operations
h_sync flag for sync-on-close
h_jdata flag to force datajournaling
h_aborted flag indicating fatal error on handle
h_lockdep_map lockdep info for debugging lock problems

240

The Linux Journalling API

Name

struct journal_s — this is the concrete type associated with journal _t.

Synopsis

struct journal _s {
unsi gned long j_fl ags;
int j_errno;
struct buffer_head * j_sb_buffer;
journal _superblock_t * j_superbl ock;
int j_format_version;
spinlock_t j_state_l ock;
int j_barrier_count;
transaction_t * j _running_transaction;
transaction_t * j_committing_transaction;
transaction_t * j_checkpoint _transacti ons;
wait _queue_head_t j _wait_transaction_I| ocked;
wai t _queue_head_t j_wait_| ogspace;
wait _queue_head_ t j_wait_done_commt;
wai t _queue_head_t j _wait_checkpoint;
wait _queue_head_t j_wait_commt;
wai t _queue_head_t j wait_updates;
struct mutex j_checkpoint _mut ex;

J
J
J
j

unsi gned int j_head;
unsigned int j_tail;
unsigned int j_free;
unsigned int j _first;

unsigned int j_|ast;

struct bl ock_device * j_dev;
int j_bl ocksize;

unsigned int j_blk_offset;
struct bl ock_device * j_fs_dev;
unsi gned int j_maxlen;

spinlock_t j_list_lock;
struct inode * j_inode;

tid_t j_tail_sequence;

tid_t j_transacti on_sequence;
tid_t j_comm t_sequence;
tid_t j_commt_request;

tid_t j_commt_waited;

_u8 j _uuid[16];

struct task_struct * j _task;

int j_max_transaction_buffers;

unsi gned long j_conmit_interval;
struct timer_list j_conmt _tinmer;
spinlock_t j_revoke_l ock;

struct jbd_revoke table_s * j_revoke;
struct jbd_revoke table_ s * j_revoke_table[2];
struct buffer_head ** j_wbuf;

int j_wbufsize;

pidt j_last_sync_witer;

u64 j _average_commit_tine;

241

The Linux Journalling API

void * j _private;

b

Members

j_flags

j_errno

j_sb_buffer

j_superblock
j_format_version

j_state lock
j_barrier_count
j_running_transaction
j_committing_transaction
j_checkpoint_transactions

j_wait_transaction locked

j_wait_logspace
j_wait_done_commit
j_wait_checkpoint
j_wait_commit
j_wait_updates
j_checkpoint_mutex
j_head

j_tail

j_free

j_first

j_last

j_dev

j_blocksize
j_blk_offset

j_fs dev

General journaling state flags

Is there an outstanding uncleared error on the journal (from a prior
abort)?

First part of superblock buffer

Second part of superblock buffer

Version of the superblock format

Protect the various scalars in the journal

Number of processes waiting to create a barrier lock

The current running transaction..

the transaction we are pushing to disk

alinked circular list of all transactions waiting for checkpointing

Wait queue for waiting for alocked transaction to start committing,
or for abarrier lock to be released

Wait queue for waiting for checkpointing to complete

Wait queue for waiting for commit to complete

Wait queue to trigger checkpointing

Wait queue to trigger commit

Wait queue to wait for updates to complete

Mutex for locking against concurrent checkpoints

Journal head - identifies the first unused block in the journal
Journal tail - identifies the oldest still-used block in the journal.
Journal free - how many free blocks are there in the journal ?
The block number of the first usable block

The block number one beyond the last usable block

Device where we store the journal

blocksize for the location where we store the journal.

starting block offset for into the device where we store the journal

Device which holds the client fs. For internal journal this will be
equal toj_dev

242

The Linux Journalling API

j_maxlen
j_list_lock

j_inode

j_tail_sequence
j_transaction_sequence
j_commit_sequence
j_commit_request

j_commit_waited

j_uuid[16]
j_task

j_max_transaction_buffers
j_commit_interval

j_commit_timer
j_revoke lock

j_revoke

j_revoke table[2]
j_wbuf

j_wbufsize

j_last_sync_writer

j_average commit_time

j_private

Functions

Total maximum capacity of the journal region on disk.
Protects the buffer lists and internal buffer state.

Optional inode where we store the journal. If present, all journal
block numbers are mapped into thisinode viabrrap.

Sequence number of the oldest transaction in the log

Sequence number of the next transaction to grant

Sequence number of the most recently committed transaction
Sequence number of the most recent transaction wanting commit

Sequence number of the most recent transaction someoneiswaiting
for to commit.

Uuid of client object.
Pointer to the current commit thread for thisjournal

Maximum number of metadata buffers to allow in a single com-
pound commit transaction

What is the maximum transaction lifetime before we begin a com-
mit?

The timer used to wakeup the commit thread
Protect the revoke table

Therevoketable- maintainsthelist of revoked blocksin the current
transaction.

aternate revoke tables for j_revoke
array of buffer_heads for journal_commit_transaction

maximum number of buffer_heads allowed in j_whbuf, the number
that will fitinj_blocksize

most recent pid which did a synchronous write

the average amount of time in nanoseconds it takes to commit a
transaction to the disk.

An opaque pointer to fs-private information.

The functions here are split into two groups those that affect a journal as a whole, and those which are

used to manage transactions

Journal Level

243

The Linux Journalling API

Name

journa_init_dev — creates and initialises ajournal structure
Synopsis

journal t * journal _init_dev (struct block device * bdev,
bl ock_device * fs _dev, int start, int len, int blocksize);

Arguments
bdev Block device on which to create the journal
fs_dev Device which hold journalled filesystem for this journal.
start Block nr Start of journal.
I en Length of the journal in blocks.

bl ocksi ze blocksize of journalling device

Returns

anewly created journal_t *

struct

journa_init_dev creates a journal which maps a fixed contiguous range of blocks on an arbitrary block

device.

244

The Linux Journalling API

Name

journa_init_inode — creates a journal which mapsto ainode.
Synopsis

journal t * journal _init_inode (struct inode * inode);
Arguments

i node Aninodeto create the journal in

Description

journa_init_inode creates a journal which maps an on-disk inode as the journal. The inode must exist
already, must support bmap and must have all data blocks preallocated.

245

The Linux Journalling API

Name

journal_create — Initialise the new journal file

Synopsis

int journal _create (journal t * journal);

Arguments

journal Journa to create. This structure must have been initialised

Description

Given ajournal_t structure which tells us which disk blocks we can use, create a new journal superblock
and initialise all of the journal fields from scratch.

246

The Linux Journalling API

Name
journal_load — Read journal from disk.

Synopsis

int journal load (journal t * journal);
Arguments

journal Journa to act on.

Description

Given ajournal_t structure which tells us which disk blocks contain ajournal, read the journal from disk
to initialise the in-memory structures.

247

The Linux Journalling API

Name

journal_destroy — Release ajournal _t structure.
Synopsis

int journal destroy (journal t * journal);
Arguments

journal Journa to act on.

Description

Release ajournal_t structure once it is no longer in use by the journaled object. Return <0 if we couldn't
clean up the journal.

248

The Linux Journalling API

Name
journal_check used features— Check if features specified are used.

Synopsis

int journal check used features (journal t * journal, unsigned |ong
conpat, unsigned long ro, unsigned |ong inconpat);

Arguments
j our nal Journal to check.
conpat bitmask of compatible features
ro bitmask of features that force read-only mount

i nconmpat bitmask of incompatible features

Description

Check whether the journal uses all of agiven set of features. Return true (non-zero) if it does.

249

The Linux Journalling API

Name
journal_check_available features— Check feature set in journalling layer

Synopsis

i nt journal check avail able features (journal t * journal, unsigned | ong
conpat, unsigned long ro, unsigned |ong inconpat);

Arguments
j our nal Journal to check.
conpat bitmask of compatible features
ro bitmask of features that force read-only mount

i nconmpat bitmask of incompatible features

Description

Check whether the journaling code supports the use of all of a given set of features on thisjournal. Return
true

250

The Linux Journalling API

Name

journal_set features— Mark agiven journal feature in the superblock
Synopsis

int journal set features (journal t * journal, unsigned |ong conpat,
unsi gned long ro, unsigned |long inconpat);

Arguments
j our nal Journal to act on.
conpat bitmask of compatible features
ro bitmask of features that force read-only mount

i nconmpat bitmask of incompatible features

Description

Mark a given journal feature as present on the superblock. Returns true if the requested features could
be set.

251

The Linux Journalling API

Name
journa_update format — Update on-disk journal structure.

Synopsis

int journal update format (journal t * journal);
Arguments

journal Journa to act on.

Description

Given aninitialised but unloaded journal struct, poke about in the on-disk structure to update it to the most
recent supported version.

252

The Linux Journalling API

Name
journa_flush — Flush journal

Synopsis
int journal _flush (journal t * journal);

Arguments

journal Journa to act on.

Description

Flush all datafor agiven journal to disk and empty the journal. Filesystems can use this when remounting
readonly to ensure that recovery does not need to happen on remount.

253

The Linux Journalling API

Name

journa_wipe — Wipe journal contents
Synopsis

int journal _wipe (journal t * journal, int wite);
Arguments

journal Journa to act on.
wite flag (see below)

Description

Wipe out al of the contents of ajournal, safely. Thiswill produce awarning if the journa contains any
valid recovery information. Must be called between journa_init_*() and j our nal _| oad.

If ‘write' is non-zero, then we wipe out the journal on disk; otherwise we merely suppress recovery.

254

The Linux Journalling API

Name

journal_abort — Shutdown the journal immediately.
Synopsis

void journal abort (journal t * journal, int errno);
Arguments

journal thejourna to shutdown.

errno an error number to record in the journal indicating the reason for the shutdown.

Description

Perform a complete, immediate shutdown of the ENTIRE journal (not of asingle transaction). This oper-
ation cannot be undone without closing and reopening the journal.

Thejournal_abort function isintended to support higher level error recovery mechanisms such asthe ext2/
ext3 remount-readonly error mode.

Journal abort has very specific semantics. Any existing dirty, unjournaled buffers in the main filesystem
will still be written to disk by bdflush, but the journaling mechanism will be suspended immediately and
no further transaction commits will be honoured.

Any dirty, journaled buffers will be written back to disk without hitting the journal. Atomicity cannot be
guaranteed on an aborted filesystem, but we _do_ attempt to leave as much data as possible behind for
fsck to use for cleanup.

Any attempt to get a new transaction handle on ajournal which isin ABORT state will just result in an -
EROFS error return. A journa_stop on an existing handle will return -EIO if we have entered abort state
during the update.

Recursive transactions are not disturbed by journal abort until the final journal_stop, which will receive
the -EIO error.

Finaly, the journal_abort call alows the caller to supply an errno which will be recorded (if possible)
in the journal superblock. This allows a client to record failure conditions in the middle of a transaction
without having to compl ete the transaction to record the failure to disk. ext3_error, for example, now uses
this functionality.

Errors which originate from within the journaling layer will NOT supply an errno; a null errno implies
that absolutely no further writes are done to the journal (unless there are any aready in progress).

255

The Linux Journalling API

Name

journal_errno — returns the journal's error state.
Synopsis

int journal _errno (journal t * journal);
Arguments

journal journa to examine.

Description

Thisisthe errno numbet set withj our nal _abor t , thelast timethejournal was mounted - if the journal
was stopped without calling abort this will be 0.

If the journal has been aborted on this mount time -EROFS will be returned.

256

The Linux Journalling API

Name

journa_clear_err — clearsthe journa's error state
Synopsis
int journal _clear_err (journal t * journal);

Arguments

journal journa to act on.

Description

An error must be cleared or Acked to take a FS out of readonly mode.

257

The Linux Journalling API

Name

journa_ack err — Ack journal err.
Synopsis
void journal _ack_err (journal t * journal);

Arguments

journal journa to act on.

Description

An error must be cleared or Acked to take a FS out of readonly mode.

258

The Linux Journalling API

Name

journal_recover — recovers aon-disk journal
Synopsis
int journal recover (journal t * journal);

Arguments

journal thejournal to recover

Description
The primary function for recovering the log contents when mounting ajournaled device.

Recovery isdonein three passes. In thefirst pass, welook for the end of thelog. In the second, we assemble
the list of revoke blocks. In the third and final pass, we replay any un-revoked blocksin the log.

259

The Linux Journalling API

Name

journal_skip_recovery — Start journal and wipe exiting records
Synopsis

int journal skip_recovery (journal t * journal);
Arguments

journal journa to startup

Description

Locate any valid recovery information from the journal and set up the journal structures in memory to
ignore it (presumably because the caller has evidence that it is out of date). This function doesnt appear
to be exorted..

We perform one pass over the journal to alow usto tell the user how much recovery information is being
erased, and to let usinitialise the journal transaction sequence numbers to the next unused ID.

Transasction Level

260

The Linux Journalling API

Name

journal_start — Obtain a new handle.
Synopsis

handle t * journal _start (journal t * journal, int nblocks);
Arguments

journal Journa to start transaction on.

nbl ocks number of block buffer we might modify

Description

We make sure that the transaction can guarantee at least nblocks of modified buffersin the log. We block
until the log can guarantee that much space.

Thisfunction isvisible to journal users (like ext3fs), so is not called with the journal already locked.

Return a pointer to anewly alocated handle, or an ERR_PTR value on failure.

261

The Linux Journalling API

Name

journal_extend — extend buffer credits.
Synopsis

int journal _extend (handle_t * handle, int nblocks);
Arguments

handl e handleto 'extend

nbl ocks nr blocksto try to extend by.
Description

Some transactions, such as large extends and truncates, can be done atomically al at once or in severa
stages. The operation requests a credit for a number of buffer modications in advance, but can extend its
credit if it needs more.

journal_extend tries to give the running handle more buffer credits. It does not guarantee that allocation -
thisis a best-effort only. The calling process MUST be able to deal cleanly with afailure to extend here.

Return 0 on success, non-zero on failure.

return code < 0 implies an error return code > 0 implies normal transaction-full status.

262

The Linux Journalling API

Name

journal_restart — restart ahandle.

Synopsis

int journal _restart (handle_t * handle, int nblocks);
Arguments

handl e handle to restart

nbl ocks nr credits requested

Description
Restart a handle for a multi-transaction filesystem operation.

If the j our nal _ext end call above fails to grant new buffer credits to a running handle, a call to
journal_restart will commit the handl€e's transaction so far and reattach the handle to a new transaction

capabable of guaranteeing the requested number of credits.

263

The Linux Journalling API

Name
journal_lock_updates — establish atransaction barrier.

Synopsis
void journal | ock updates (journal t * journal);
Arguments

journal Journa to establish abarrier on.

Description

Thislocksout any further updates from being started, and blocks until all existing updates have compl eted,
returning only once the journal isin a quiescent state with no updates running.

We do not use simple mutex for synchronization asthere are syscalls which want to return with filesystem
locked and that trips up lockdep. Also hibernate needs to lock filesystem but locked mutex then blocks
hibernation. Since locking filesystem is rare operation, we use simple counter and waitqueue for locking.

264

The Linux Journalling API

Name

journa_unlock _updates — release barrier
Synopsis
void journal _unlock updates (journal _t * journal);

Arguments

journal Journa to release the barrier on.

Description

Release a transaction barrier obtained with j our nal _| ock_updat es.

265

The Linux Journalling API

Name
journa_get write_access — notify intent to modify a buffer for metadata (not data) update.
Synopsis
int journal _get wite access (handle_t * handle, struct buffer_head *
bh) ;
Arguments

handl e transaction to add buffer modifications to

bh bh to be used for metadata writes

Description
Returns an error code or 0 on success.

In full datajournalling mode the buffer may be of type BJ_AsyncData, because we'rewr i t eing a buffer
which is also part of a shared mapping.

266

The Linux Journalling API

Name
journal_get create access— notify intent to use newly created bh
Synopsis
int journal _get create _access (handle_t * handle,
* bh);
Arguments

handl e transaction to new buffer to
bh new buffer.

Description

Cdll thisif you create a new bh.

struct

buf f er _head

267

The Linux Journalling API

Name
journa_get_undo_access — Notify intent to modify metadata with non-rewindable conseguences
Synopsis
int journal get undo_access (handle_t * handle, struct buffer_head *
bh) ;
Arguments

handl e transaction

bh buffer to undo

Description

Sometimes there is a need to distinguish between metadata which has been committed to disk and that
which has not. The ext3fs code uses this for freeing and allocating space, we have to make sure that we
do not reuse freed space until the deallocation has been committed, since if we overwrote that space we
would make the delete un-rewindable in case of acrash.

To deal with that, journal_get undo_access requests write access to a buffer for parts of non-rewindable
operations such as del ete operations on the bitmaps. The journaling code must keep a copy of the buffer's
contents prior to the undo_access call until such time as we know that the buffer has definitely been
committed to disk.

We never need to know which transaction the committed dataispart of, bufferstouched here are guaranteed
to be dirtied later and so will be committed to a new transaction in due course, at which point we can
discard the old committed data pointer.

Returns error number or 0 on success.

268

The Linux Journalling API

Name
journa_dirty data— mark a buffer as containing dirty datato be flushed

Synopsis

int journal _dirty data (handle_t * handle, struct buffer_head * bh);
Arguments

handl e transaction

bh bufferhead to mark

Description

Mark a buffer as containing dirty data which needsto be flushed before we can commit the current trans-
action.

The buffer is placed on the transaction's data list and is marked as belonging to the transaction.
Returns error number or 0 on success.

journal _dirty_dat a canbecaledviapage launder->ext3_writepage by kswapd.

269

The Linux Journalling API

Name
journa_dirty metadata— mark a buffer as containing dirty metadata

Synopsis
int journal _dirty netadata (handle_t * handle, struct buffer_head * bh);
Arguments
handl e transaction to add buffer to.
bh buffer to mark
Description
Mark dirty metadata which needs to be journaled as part of the current transaction.
The buffer is placed on the transaction's metadata list and is marked as belonging to the transaction.
Returns error number or 0 on success.

Specia care needsto betaken if the buffer already bel ongs to the current committing transaction (in which
case we should have frozen data present for that commit). In that case, we don't relink the

buffer

that only gets done when the old transaction finally completes its commit.

270

The Linux Journalling API

Name
journa_forget — bf or get for potentialy-journaed buffers.

Synopsis

int journal forget (handle_t * handle, struct buffer_head * bh);
Arguments

handl e transaction handle

bh bh to 'forget'
Description

We can only do the bforget if there are no commits pending against the buffer. If the buffer is dirty in the
current running transaction we can safely unlink it.

bh may not be ajournalled buffer at all - it may be anon-JBD buffer which came off the hashtable. Check
for this.

Decrements bh->b_count by one.

Allow thiscall even if the handle has aborted --- it may be part of the caller's cleanup after an abort.

271

The Linux Journalling API

Name

journal_stop — complete a transaction
Synopsis
int journal _stop (handle_t * handle);
Arguments
handl e tranaction to complete.
Description
All done for a particular handle.
There is not much action needed here. We just return any remaining buffer credits to the transaction and
remove the handle. The only complication is that we need to start a commit operation if the filesystem is

marked for synchronous update.

journal_stop itself will not usually return an error, but it may do so in unusual circumstances. In particular,
expect it to return -EIO if ajournal_abort has been executed since the transaction began.

272

The Linux Journalling API

Name

journa_force_commit — force any uncommitted transactions
Synopsis

int journal _force commt (journal t * journal);
Arguments

journal journa toforce

For synchronous operations

force any uncommitted transactions to disk. May seem kludgy, but it reuses all the handle batching code
in avery ssimple manner.

273

The Linux Journalling API

Name

journa_try to free buffers— try to free page buffers.

Synopsis

int journal _try to free buffers (journal t * journal, struct page *
page, gfp_t gfp_mask);

Arguments
j our nal journal for operation
page totry and free

of p_mask we usethe mask to detect how hard should we try to release buffers. If _ GFP_WAIT and
__ GFP_FSisset, wewait for commit code to release the buffers.

Description

For all the buffers on this page, if they are fully written out ordered data, move them onto BUF_CLEAN
sotry_to_free_buffers canreapthem.

Thisfunction returnsnon-zero if wewishtry t o_free_buff er s tobecaled. We do thisif the page
isreleasablebytry to_free_buffers. Weadsodoitif the page haslocked or dirty buffers and the
caller wants us to perform sync or async writeout.

This complicates JBD locking somewhat. We aren't protected by the BKL here. We wish to remove the
buffer from its committing or running transaction's->t_datalist via__journa_unfile_buffer.

This may *change* the value of transaction_t->t_datalist, so anyone who looks at t_datalist needs to lock
against this function.

Even worse, someone may be doing a journal_dirty_data on this buffer. So we need to lock against that.
journal _dirty_data will come out of the lock with the buffer dirty, which makesit ineligible for
release here.

Who dlse is affected by this? hmm... Really the only contender isdo_get _write_access - it could
belooking at the buffer whilej ournal _try to_free_buffer ischangingitsstate. But that cannot
happen because we never reallocate freed data as metadata while the datais part of atransaction. Y es?

Return 0 on failure, 1 on success

274

The Linux Journalling API

Name
journa_invalidatepage — invalidate ajournal page

Synopsis

void journal invalidatepage (journal t * journal, struct page * page,
unsi gned int offset, unsigned int |ength);

Arguments
journal journa to usefor flush
page pageto flush
of f set offset of therange to invalidate
| engt h length of the range to invalidate
Description

Reap page buffers containing data in specified range in page.

See also

[Journaling the Linux ext2fs Filesystem, LinuxExpo 98, Stephen Tweedie [http://kernel.org/pub/lin-
ux/kernel/peopl e/sct/ext3/journal-design.ps.gz]]

[Ext3 Journaling FileSystem, OLS 2000, Dr. Stephen Tweedie [http://olstrans.sourceforge.net/re-
lease/OL S2000-ext3/OL S2000-ext3.html]]

275

http://kernel.org/pub/linux/kernel/people/sct/ext3/journal-design.ps.gz
http://kernel.org/pub/linux/kernel/people/sct/ext3/journal-design.ps.gz
http://kernel.org/pub/linux/kernel/people/sct/ext3/journal-design.ps.gz
http://olstrans.sourceforge.net/release/OLS2000-ext3/OLS2000-ext3.html
http://olstrans.sourceforge.net/release/OLS2000-ext3/OLS2000-ext3.html
http://olstrans.sourceforge.net/release/OLS2000-ext3/OLS2000-ext3.html

Chapter 7. splice API

splice is a method for moving blocks of data around inside the kernel, without continually transferring
them between the kernel and user space.

276

splice AP

Name
splice_to_pipe — fill passed data into a pipe

Synopsis

ssize_t splice_to_pipe (struct pi pe_inode_info * pipe, st ruct
splice_pi pe_desc * spd);

Arguments
pi pe pipetofill
spd datatofill

Description

spd contains a map of pages and len/offset tuples, along with the struct pipe_buf_operations associated
with these pages. This function will link that data to the pipe.

277

splice AP

Name

generic_file splice read — splice datafrom file to a pipe

Synopsis

ssize_t generic_file_splice_read (struct file * in, loff_t * ppos,
struct pipe_inode_info * pipe, size_t len, unsigned int flags);

Arguments

in fileto splice from

ppos positionini n

pi pe pipetospliceto

I en number of bytesto splice

flags splice modifier flags

Description

Will read pages from given file and fill them into a pipe. Can be used as long as the address_space oper-
ations for the source implements ar eadpage hook.

278

splice AP

Name
splice_from_pipe feed — feed available datafrom a pipeto afile

Synopsis

int splice_frompipe feed (struct pipe_inode_info * pipe,
splice_desc * sd, splice_actor * actor);

Arguments

struct

pi pe pipeto splicefrom
sd information to act or

act or handler that splices the data

Description

Thisfunction loops over the pipeand callsact or to do the actual moving of asingle struct pipe_buffer to
the desired destination. It returns when there's no more buffers Ieft in the pipe or if the requested number
of bytes (sd->total_len) have been copied. It returns a positive number (one) if the pipe needs to befilled
with more data, zero if the required number of bytes have been copied and -errno on error.

This, together with splice_from_pipe {begin,end,next}, may be used to implement the functionality of
__splice_from pi pe whenlocking isrequired around copying the pipe buffers to the destination.

279

splice AP

Name

splice_from_pipe_next — wait for some data to splice from

Synopsis

int splice_frompipe_next (struct pipe_inode_info * pipe, struct
splice_desc * sd);

Arguments
pi pe pipeto splicefrom

sd information about the splice operation

Description

This function will wait for some data and return a positive value (one) if pipe buffers are available. It will
return zero or -errno if no more data needs to be spliced.

280

splice AP

Name
splice_from_pipe_begin — start splicing from pipe

Synopsis
void splice_from pi pe_begin (struct splice_desc * sd);

Arguments

sd information about the splice operation

Description

This function should be caled before a loop containing splice from pi pe_next and
splice_from pi pe_f eed toinitiaize the necessary fields of sd.

281

splice AP

Name
splice_from_pipe_end — finish splicing from pipe

Synopsis

void splice_frompipe_end (struct pipe_inode_info * pipe, struct
splice_desc * sd);

Arguments
pi pe pipeto splicefrom

sd information about the splice operation

Description

This function will wake up pipe writers if necessary. It should be called after a loop containing
splice_from pi pe_next andsplice_from pi pe_feed.

282

splice AP

Name
__splice_from_pipe — splice data from a pipe to given actor
Synopsis

ssize_t _ splice_frompipe (struct pipe_inode_info * pipe, struct
splice_desc * sd, splice_actor * actor);

Arguments
pi pe pipeto splicefrom
sd information to act or

act or handler that splices the data

Description

This function does little more than loop over the pipe and call act or to do the actual moving of asingle
struct pipe_buffer to the desired destination. See pipe to file, pipe to_sendpage, or pipe_to_user.

283

splice AP

Name
splice_from_pipe — splice datafrom apipeto afile
Synopsis
ssize_t splice_frompipe (struct pipe_inode_info * pipe, struct file

* out, loff_t * ppos, size_t len, unsigned int flags, splice_actor *
actor);

Arguments
pi pe pipeto splicefrom
out fileto spliceto
ppos positioninout
I en how many bytes to splice
flags splice modifier flags

act or handler that splices the data

Description

See _ splice from pipe. This function locks the pipe inode, otherwise it's identica to
__splice_from pipe.

284

splice AP

Name

iter_file_splice write — splice datafrom a pipeto afile
Synopsis

ssize t iter file_splice_wite (struct pipe_inode_info * pipe, struct
file * out, loff_t * ppos, size_t len, unsigned int flags);

Arguments
pi pe pipeinfo
out fileto writeto
ppos positioninout
I en number of bytesto splice

flags splice modifier flags

Description

Will either move or copy pages (determined by f | ags options) from the given pipe inode to the given
file. Thisoneis->write_iter-based.

285

splice AP

Name

generic_splice_sendpage — splice data from a pipe to a socket

Synopsis

ssize_t generic_splice_sendpage (struct pipe_inode_info * pipe, struct
file * out, loff_t * ppos, size_t len, unsigned int flags);

Arguments
pi pe pipeto splicefrom
out socket to write to
ppos positioninout
I en number of bytesto splice

flags splice modifier flags

Description

Will send | en bytes from the pipe to a network socket. No data copying is involved.

286

splice AP

Name

splice_direct_to_actor — splices data directly between two non-pipes

Synopsis

ssize_t splice_direct_to_actor (struct file * in, struct splice_desc *
sd, splice_direct_actor * actor);

Arguments
in fileto splice from
sd actor information on where to splice to

act or handlesthe data splicing

Description

This is a special case helper to splice directly between two points, without requiring an explicit pipe.
Internally an allocated pipe is cached in the process, and reused during the lifetime of that process.

287

splice AP

Name
do_splice _direct — splices data directly between two files

Synopsis

long do_splice_direct (struct file * in, loff_t * ppos, struct file *
out, loff_t * opos, size_t len, unsigned int flags);

Arguments

in fileto splice from

ppos input file offset

out fileto spliceto

opos output file offset

l en number of bytesto splice

flags splice modifier flags

Description

Foruseby do_sendfi | e. splice can easily emulate sendfile, but doing it in the application would incur
an extra system call (splice in + splice out, as compared to just sendf i |). So this helper can splice
directly through a process-private pipe.

288

Chapter 8. pipes API

Pipe interfaces are all for in-kernel (builtin image) use. They are not exported for use by modules.

289

pipes API

Name

struct pipe_buffer — alinux kernel pipe buffer

Synopsis

struct pipe_buffer {
struct page * page;
unsi gned int offset;
unsi gned int |en;
const struct pipe_buf_operations * ops;
unsi gned int flags;
unsi gned | ong private;

I
Members
page the page containing the data for the pipe buffer
offset offset of datainside the page
len length of datainside the page
ops operations associated with this buffer. See pi pe_buf _operati ons.
flags pipe buffer flags. See above.

private private data owned by the ops.

290

pipes API

Name

struct pipe_inode_info — alinux kernel pipe

Synopsis

struct pipe_inode_info {
struct mutex nutex;
wait _queue_head t wait;

unsi gned int nrbufs;

unsi gned int curbuf;

unsi gned int buffers;

unsi gned int readers;
unsigned int witers;
unsigned int files;

unsigned int waiting witers;
unsi gned int r_counter

unsi gned int w _counter

struct page * tnp_page;
struct fasync_struct * fasync_readers;
struct fasync_struct * fasync_writers;
struct pipe_buffer * bufs;

#i fndef _ GENKSYMS
struct user_struct * user;

#endi f
b

Members
mutex mutex protecting the whole thing
wait reader/writer wait point in case of empty/full pipe
nrbufs the number of non-empty pipe buffersin this pipe
curbuf the current pipe buffer entry
buffers total number of buffers (should be a power of 2)
readers number of current readers of this pipe
writers number of current writers of this pipe
files number of struct file referring this pipe (protected by ->i_lock)
waiting_writers number of writers blocked waiting for room
r_counter reader counter
W_counter writer counter
tmp_page cached released page
fasync_readers reader side fasync

291

pipes API

fasync_writers writer side fasync
bufs the circular array of pipe buffers
user the user who created this pipe

292

pipes API

Name
generic_pipe buf_steal — attempt to take ownership of a pipe_buffer

Synopsis

int generic_pipe_buf_steal (struct pipe_inode_info * pipe, struct
pi pe_buffer * buf);

Arguments

pi pe the pipethat the buffer belongsto

buf the buffer to attempt to steal

Description

This function attempts to steal the struct page attached to buf . If successful, this function returns 0 and
returns with the page locked. The caller may then reuse the page for whatever he wishes; the typical use
isinsertion into a different file page cache.

293

pipes API

Name
generic_pipe buf_get — get areference to a struct pipe_buffer

Synopsis

void generic_pipe_buf _get (struct pipe_inode_info * pipe, struct
pi pe_buffer * buf);

Arguments

pi pe the pipethat the buffer belongsto

buf the buffer to get areference to

Description

This function grabs an extrareference to buf . It'sused inin thet ee system call, when we duplicate the
buffersin one pipe into another.

294

pipes API

Name

generic_pipe_buf_confirm — verify contents of the pipe buffer

Synopsis

int generic_pipe_buf_confirm (struct pipe_inode_info * info, struct
pi pe_buffer * buf);

Arguments
i nf o the pipethat the buffer belongsto

buf the buffer to confirm

Description

This function does nothing, because the generic pipe code uses pages that are aways good when inserted
into the pipe.

295

pipes API

Name
generic_pipe buf_release — put areference to a struct pipe_buffer
Synopsis
voi d generic_pipe_buf_release (struct pipe_inode_info * pipe, struct
pi pe_buffer * buf);
Arguments
pi pe the pipethat the buffer belongsto
buf the buffer to put areference to
Description

This function releases areference to buf .

296

	Linux Filesystems API
	Table of Contents
	Chapter 1. The Linux VFS
	The Filesystem types
	enum positive_aop_returns
	sb_end_write
	sb_end_pagefault
	sb_end_intwrite
	sb_start_write
	sb_start_pagefault
	inode_inc_iversion

	The Directory Cache
	__d_drop
	shrink_dcache_sb
	have_submounts
	shrink_dcache_parent
	d_invalidate
	d_alloc
	d_alloc_pseudo
	d_instantiate
	d_instantiate_no_diralias
	d_find_any_alias
	d_obtain_alias
	d_obtain_root
	d_add_ci
	d_lookup
	d_hash_and_lookup
	d_delete
	d_rehash
	dentry_update_name_case
	d_splice_alias
	d_path
	d_add
	d_add_unique
	dget_dlock
	d_unhashed
	d_really_is_negative
	d_really_is_positive
	d_inode
	d_inode_rcu
	d_backing_inode
	d_backing_dentry

	Inode Handling
	inode_init_always
	drop_nlink
	clear_nlink
	set_nlink
	inc_nlink
	inode_sb_list_add
	__insert_inode_hash
	__remove_inode_hash
	new_inode
	unlock_new_inode
	lock_two_nondirectories
	unlock_two_nondirectories
	iget5_locked
	iget_locked
	iunique
	ilookup5_nowait
	ilookup5
	ilookup
	find_inode_nowait
	iput
	bmap
	touch_atime
	file_update_time
	inode_init_owner
	inode_owner_or_capable
	inode_dio_wait
	make_bad_inode
	is_bad_inode
	iget_failed

	Registration and Superblocks
	deactivate_locked_super
	deactivate_super
	generic_shutdown_super
	sget
	iterate_supers_type
	get_super
	get_super_thawed
	freeze_super
	thaw_super

	File Locks
	posix_lock_file
	posix_lock_inode_wait
	locks_mandatory_area
	__break_lease
	lease_get_mtime
	generic_setlease
	vfs_setlease
	flock_lock_inode_wait
	vfs_test_lock
	vfs_lock_file
	posix_unblock_lock
	vfs_cancel_lock
	locks_mandatory_locked
	fcntl_getlease
	check_conflicting_open
	fcntl_setlease
	sys_flock

	Other Functions
	mpage_readpages
	mpage_writepages
	generic_permission
	__inode_permission
	inode_permission
	path_get
	path_put
	vfs_path_lookup
	lookup_one_len
	vfs_unlink
	vfs_link
	vfs_rename
	sync_mapping_buffers
	mark_buffer_dirty
	__bread_gfp
	block_invalidatepage
	ll_rw_block
	bh_uptodate_or_lock
	bh_submit_read
	bio_reset
	bio_chain
	bio_alloc_bioset
	bio_put
	__bio_clone_fast
	bio_clone_fast
	bio_clone_bioset
	bio_get_nr_vecs
	bio_add_pc_page
	bio_add_page
	submit_bio_wait
	bio_advance
	bio_alloc_pages
	bio_copy_data
	bio_uncopy_user
	bio_unmap_user
	bio_map_kern
	bio_copy_kern
	bio_endio
	bio_endio_nodec
	bio_split
	bio_trim
	bioset_create
	bioset_create_nobvec
	seq_open
	seq_read
	seq_lseek
	seq_release
	seq_escape
	mangle_path
	seq_path
	seq_write
	seq_pad
	seq_hlist_start
	seq_hlist_start_head
	seq_hlist_next
	seq_hlist_start_rcu
	seq_hlist_start_head_rcu
	seq_hlist_next_rcu
	seq_hlist_start_percpu
	seq_hlist_next_percpu
	register_filesystem
	unregister_filesystem
	writeback_in_progress
	writeback_inodes_sb_nr
	writeback_inodes_sb
	try_to_writeback_inodes_sb_nr
	try_to_writeback_inodes_sb
	sync_inodes_sb
	write_inode_now
	sync_inode
	sync_inode_metadata
	freeze_bdev
	thaw_bdev
	bdev_read_page
	bdev_write_page
	bdev_direct_access
	bdgrab
	bd_link_disk_holder
	bd_unlink_disk_holder
	check_disk_size_change
	revalidate_disk
	blkdev_get
	blkdev_get_by_path
	blkdev_get_by_dev
	lookup_bdev

	Chapter 2. The proc filesystem
	sysctl interface
	proc_dostring
	proc_dointvec
	proc_dointvec_minmax
	proc_doulongvec_minmax
	proc_doulongvec_ms_jiffies_minmax
	proc_dointvec_jiffies
	proc_dointvec_userhz_jiffies
	proc_dointvec_ms_jiffies

	proc filesystem interface
	proc_flush_task

	Chapter 3. Events based on file descriptors
	eventfd_signal
	eventfd_ctx_get
	eventfd_ctx_put
	eventfd_ctx_remove_wait_queue
	eventfd_ctx_read
	eventfd_fget
	eventfd_ctx_fdget
	eventfd_ctx_fileget

	Chapter 4. The Filesystem for Exporting Kernel Objects
	sysfs_create_file_ns
	sysfs_add_file_to_group
	sysfs_chmod_file
	sysfs_remove_file_ns
	sysfs_remove_file_from_group
	sysfs_create_bin_file
	sysfs_remove_bin_file
	sysfs_create_link
	sysfs_remove_link
	sysfs_rename_link_ns

	Chapter 5. The debugfs filesystem
	debugfs interface
	debugfs_create_file
	debugfs_create_file_size
	debugfs_create_dir
	debugfs_create_automount
	debugfs_create_symlink
	debugfs_remove
	debugfs_remove_recursive
	debugfs_rename
	debugfs_initialized
	debugfs_create_u8
	debugfs_create_u16
	debugfs_create_u32
	debugfs_create_u64
	debugfs_create_x8
	debugfs_create_x16
	debugfs_create_x32
	debugfs_create_x64
	debugfs_create_size_t
	debugfs_create_atomic_t
	debugfs_create_bool
	debugfs_create_blob
	debugfs_create_u32_array
	debugfs_print_regs32
	debugfs_create_regset32
	debugfs_create_devm_seqfile

	Chapter 6. The Linux Journalling API
	Overview
	Details
	Summary

	Data Types
	Structures
	typedef handle_t
	typedef journal_t
	struct handle_s
	struct journal_s

	Functions
	Journal Level
	journal_init_dev
	journal_init_inode
	journal_create
	journal_load
	journal_destroy
	journal_check_used_features
	journal_check_available_features
	journal_set_features
	journal_update_format
	journal_flush
	journal_wipe
	journal_abort
	journal_errno
	journal_clear_err
	journal_ack_err
	journal_recover
	journal_skip_recovery

	Transasction Level
	journal_start
	journal_extend
	journal_restart
	journal_lock_updates
	journal_unlock_updates
	journal_get_write_access
	journal_get_create_access
	journal_get_undo_access
	journal_dirty_data
	journal_dirty_metadata
	journal_forget
	journal_stop
	journal_force_commit
	journal_try_to_free_buffers
	journal_invalidatepage

	See also

	Chapter 7. splice API
	splice_to_pipe
	generic_file_splice_read
	splice_from_pipe_feed
	splice_from_pipe_next
	splice_from_pipe_begin
	splice_from_pipe_end
	__splice_from_pipe
	splice_from_pipe
	iter_file_splice_write
	generic_splice_sendpage
	splice_direct_to_actor
	do_splice_direct

	Chapter 8. pipes API
	struct pipe_buffer
	struct pipe_inode_info
	generic_pipe_buf_steal
	generic_pipe_buf_get
	generic_pipe_buf_confirm
	generic_pipe_buf_release

