Bus-Independent Device Accesses

Matthew Wilcox <matt hew@u | . cx>

Alan Cox <al an@ xor guk. ukuu. or g. uk>

Bus-Independent Device Accesses

by Matthew Wilcox
by Alan Cox
Copyright © 2001 Matthew Wilcox

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY ; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

Y ou should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the file COPY ING in the source distribution of Linux.

Table of Contents

O | gL oo (8 1o o R PO PRSPPI 1
2. KNown Bugs ANd ASSUMPLIONSceuuueiiitiee ittt e et e et e et e et et e e et e e e eett e eeenanaeeeen 2
3. MEMOrY MaPPEA 1O ...ttt 3
Getting ACCESS 10 thE DEVICE .. .ciiii et 3
ACCESSING the TEVICE ... e 3
4. POIT SPACE ACCESSESevtitetieeet et et ettt et ettt et e et e et et e et et e e e e et e e e eanas 6
POrt SPace EXPIAINEUcooiiiieiiii e 6
ACCESSING POIT SPBCE ... ceeeii ettt ettt ettt e e e eaaas 6
5. PUblic FUNCLIONS ProVIAEAcoouiiiiiiieiee et 7
A (o T o)V PP PP TP PPPPTIN 8
0101 T (o /1 ST SOPPTT 9
[olg= agT= o (o o= ol o PSP PPPPPTTRPPPPIN 10
PCI_TOMIBID_TAINTE ... ettt ettt ettt ettt e et e ettt e e ettt e e e e e te e e e e et e e e e et e e e et e aee 11
PCI_TOMIBID ettt ettt ettt ettt e e e s 12

Chapter 1. Introduction

Linux provides an APl which abstracts performing 10 across al busses and devices, allowing device
driversto be written independently of bustype.

Chapter 2. Known Bugs And
Assumptions

None.

Chapter 3. Memory Mapped IO

Getting Access to the Device

The most widely supported form of 10 is memory mapped |O. That is, a part of the CPU's address space
is interpreted not as accesses to memory, but as accesses to a device. Some architectures define devices
to be at afixed address, but most have some method of discovering devices. The PCI bus walk is agood
example of such a scheme. This document does not cover how to receive such an address, but assumes
you are starting with one. Physical addresses are of type unsigned long.

This address should not be used directly. Instead, to get an address suitable for passing to the accessor
functions described below, you should call i or enap. An address suitable for accessing the device will
be returned to you.

After you've finished using the device (say, in your modul€e's exit routine), call i ounnap in order to
return the address space to the kernel. Most architectures allocate new address space each time you call
i or emap, and they can run out unlessyou call i ounnap.

Accessing the device

The part of the interface most used by drivers is reading and writing memory-mapped registers on the
device. Linux provides interfaces to read and write 8-bit, 16-bit, 32-bit and 64-bit quantities. Due to a
historical accident, these are named byte, word, long and quad accesses. Both read and write accesses are
supported; there is no prefetch support at thistime.

The functions are named r eadb, r eadw, r eadl , r eadq, readb_r el axed, readw _r el axed,
readl rel axed,readq_rel axed,witeb,witewwitel andwiteq.

Some devices (such as framebuffers) would like to use larger transfers than 8 bytes at a time. For these
devices, the mencpy_t oi o, nencpy_from o and nenset _i o functions are provided. Do not use
memset or memcpy on 1O addresses; they are not guaranteed to copy datain order.

The read and write functions are defined to be ordered. That is the compiler is not permitted to reorder
the 1/O sequence. When the ordering can be compiler optimised, you canuse __r eadb and friends to
indicate the relaxed ordering. Use thiswith care.

Whilethe basic functions are defined to be synchronous with respect to each other and ordered with respect
to each other the busses the devices sit on may themselves have asynchronicity. In particular many authors
are burned by the fact that PCI bus writes are posted asynchronoudly. A driver author must issue a read
from the same device to ensure that writes have occurred in the specific casesthe author cares. Thiskind of
property cannot be hidden from driver writersin the API. In some cases, the read used to flush the device
may be expected to fail (if the card is resetting, for example). In that case, the read should be done from
config space, which is guaranteed to soft-fail if the card doesn't respond.

Thefollowing isan example of flushing awriteto adevice when the driver would like to ensure the write's
effects are visible prior to continuing execution.

static inline void
gl a1280_di sabl e_intrs(struct scsi_gl a_host *ha)

{

struct device_reg *reg;

Memory Mapped 1O

reg = ha->i obase;

/* disable risc and host interrupts */

VWRT_REG WORD(& eg->ictrl, 0);

/*

* The following read will ensure that the above wite

* has been received by the device before we return fromthis
* function.

*/

RD _REG WORD(& eg->ictrl);

ha->fl ags.ints_enabled = 0;

}

In addition to write posting, on some large multiprocessing systems (e.g. SGI Challenge, Origin and Altix
machines) posted writes won't be strongly ordered coming from different CPUs. Thus it's important to
properly protect parts of your driver that do memory-mapped writes with locks and use the nri owb to
make surethey arrivein the order intended. Issuing aregular r eadX will also ensure write ordering, but
should only be used when the driver hasto be sure that the write has actually arrived at the device (not that
it's ssimply ordered with respect to other writes), since afull r eadX isarelatively expensive operation.

Generally, one should use mmi owb prior to releasing a spinlock that protectsregionsusingwr i t eb or
similar functions that aren't surrounded by r eadb calls, which will ensure ordering and flushing. The
following pseudocode illustrates what might occur if write ordering isn't guaranteed via ntri owb or one
of ther eadX functions.

CPU A: spin_lock_ irgsave(&dev_I| ock, flags)

CPU A ...

CPU A: witel(newal, ring_ptr);

CPU A: spin_unlock irqrestore(&dev_I| ock, flags)
CPU B: spin_lock_ irgsave(&dev_I| ock, flags)

CPU B: witel (newal 2, ring_ptr);

CPU B: ...

CPU B: spin_unlock irqrestore(&dev_I| ock, flags)

In the case above, newval 2 could be written to ring_ptr before newval. Fixing it is easy though:

CPU A: spin_lock_irqgsave(&dev_Il ock, flags)

CPU A ...

CPU A witel (newal, ring_ptr);

CPU A mmiowb(); /* ensure no other wites beat us to the device */
CPU A: spin_unlock_irqrestore(&dev_Il ock, flags)

CPU B: spin_lock_irqgsave(&dev_Il ock, flags)

CPU B: witel (newal 2, ring_ptr);

CPU B: ...

CPU B: nmmi owb();

CPU B: spin_unlock_irqrestore(&dev_Il ock, flags)

See tg3.c for areal world example of how to use mri owb

PCI ordering rules also guarantee that PIO read responses arrive after any outstanding DMA writes from
that bus, since for some devicesthe result of ar eadb call may signal to the driver that aDMA transaction

Memory Mapped 1O

is complete. In many cases, however, the driver may want to indicate that the next r eadb call has no
relation to any previous DMA writes performed by the device. The driver can use r eadb_r el axed
for these cases, athough only some platforms will honor the relaxed semantics. Using the relaxed read
functions will provide significant performance benefits on platforms that support it. The gla2xxx driver
provides examples of how to use r eadX r el axed. In many cases, a majority of the driver'sr eadX
callscan safely beconvertedtor eadX r el axed calls, sinceonly afew will indicate or depend on DMA
completion.

Chapter 4. Port Space Accesses
Port Space Explained

Another form of 10O commonly supported is Port Space. Thisisarange of addresses separate to the normal
memory address space. Accessto these addressesisgenerally not asfast as accessesto the memory mapped
addresses, and it also has a potentially smaller address space.

Unlike memory mapped 10, no preparation is required to access port space.

Accessing Port Space

Accessesto this space are provided through aset of functionswhich allow 8-bit, 16-bit and 32-bit accesses;
also known as byte, word and long. These functionsarei nb, i nw, i nl , out b, out wandout | .

Some variantsare provided for these functions. Some devicesrequirethat accessesto their portsare slowed

down. Thisfunctionality is provided by appending a_ p to the end of the function. There are also equiva
lentsto memcpy. Thei ns and out s functions copy bytes, words or longs to the given port.

Chapter 5. Public Functions Provided

Public Functions Provided

Name
virt_to_phys— map virtual addressesto physical

Synopsis
phys_addr _t virt_to_phys (volatile void * address);
Arguments

address addressto remap

Description

The returned physical address is the physical (CPU) mapping for the memory address given. It is only
valid to use this function on addresses directly mapped or allocated via kmalloc.

This function does not give bus mappings for DMA transfers. In amost all conceivable cases a device
driver should not be using this function

Public Functions Provided

Name
phys _to_virt — map physical addressto virtual

Synopsis
void * phys to_virt (phys_addr_t address);
Arguments

address addressto remap

Description

The returned virtual address is a current CPU mapping for the memory address given. It is only valid to
use this function on addresses that have a kernel mapping

This function does not handle bus mappings for DMA transfers. In almost all conceivable cases a device
driver should not be using this function

Public Functions Provided

Name

ioremap_nocache — map bus memory into CPU space

Synopsis

void __iomem * ioremap_nocache (resource_size t offset, unsigned |ong
si ze);
Arguments
of f set busaddress of the memory
si ze size of the resource to map
Description

ioremap performs a platform specific sequence of operationsto make bus memory CPU accessible viathe
readb/readw/readl/writeb/ writew/writel functions and the other mmio helpers. The returned addressis not
guaranteed to be usable directly as a virtual address.

If the areayou are trying to map is a PCl BAR you should have alook at pci _i omap.

10

Public Functions Provided

Name
pci_iomap_range — create a virtual mapping cookie for a PCl BAR

Synopsis

void __iomem?* pci_iomap_range (struct pci_dev * dev, int bar, unsigned
| ong of fset, unsigned |ong maxlen);

Arguments
dev PCI device that ownsthe BAR
bar BAR number

of f set map memory at the given offset in BAR

max| en max length of the memory to map

Description

Using thisfunction you will geta__iomem addressto your device BAR. Y ou can accessit using ioread* ()
and iowrite* (). These functions hide the details if thisisaMMIO or PIO address space and will just do
what you expect from them in the correct way.

max| en specifiesthe maximum length to map. If you want to get accessto the complete BAR from offset
to the end, pass O here.

11

Public Functions Provided

Name
pci_iomap — create a virtual mapping cookie for aPCl BAR

Synopsis

void __iomem* pci_iomap (struct pci_dev * dev, int bar, unsigned |ong
max!| en) ;
Arguments
dev PCI device that owns the BAR
bar BAR number

max| en length of the memory to map

Description

Using thisfunction you will geta__iomem addressto your device BAR. Y ou can accessit using ioread* ()
and iowrite* (). These functions hide the details if thisis a MMIO or PIO address space and will just do
what you expect from them in the correct way.

max| en specifies the maximum length to map. If you want to get access to the complete BAR without
checking for its length first, pass O here.

12

	Bus-Independent Device Accesses
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Known Bugs And Assumptions
	Chapter 3. Memory Mapped IO
	Getting Access to the Device
	Accessing the device

	Chapter 4. Port Space Accesses
	Port Space Explained
	Accessing Port Space

	Chapter 5. Public Functions Provided
	virt_to_phys
	phys_to_virt
	ioremap_nocache
	pci_iomap_range
	pci_iomap

