The Linux-USB Host Side API

The Linux-USB Host Side API

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY ; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

Y ou should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the file COPY ING in the source distribution of Linux.

Table of Contents

1. INtroduction t0 USB 0N LINUX ..ceuuiitieiieeeii et e e e e e e e et e e e e e e eeenns 1
2. USB HOost-Side APl MOCELuniiii e e 2
3. USB-SEanard TYPES ..ccevueieiii ettt ettt ettt et aaaas 3
UL oI o 1= <o IS (oo [PPN 4
0 oI = LS 1 o PP 5
4. Host-Side Data TYPES @O MBEIOScvvuueeieiiieeietee ettt e et e et e et e e e 6
Struct USD _hOSt eNAPOINT ...t e e e 7
SIFUCE USD INEEITACE «.ove i e e eaas 8
struct ush interface Cathe ... 10
SEUCE USD NOSE CONFIQ -t e e e eens 11
SIFUCE USD ABVICE ..ottt e e e e e e aaa e 13
usb _hub for_@ach Childoiiiii e 17
ush interface Claimedcouiiiii e 18
USD_MAKE PEEN ..ot 19
USB DEVICE ...ttt ettt e e et et e e et e et e et e e et eeen e eeaes 20
USB DEVICE _VER ..ottt et e e et e e e e eeeen 21
USB DEVICE INTERFACE _CLASS ...ttt et e e 22
USB DEVICE_INTERFACE_PROTOCOL ...ccuuiiiiiieiieeee et e e 23
USB _DEVICE_INTERFACE_NUMBERcooiiiiiiiii e 24
USB DEVICE _INFO ..ttt ettt ettt e et e e a et e e e e ean s 25
USB INTERFACE INFO ...ttt e et e e ean s 26
USB DEVICE_AND _INTERFACE INFO ... 27
USB_VENDOR_AND_INTERFACE INFO ...ttt 28
SEFUCE USDOANV_ W@ ettt ettt e ettt e e ettt e ettt s e e e entaeeeenbaeeeee 29
S VT A0S o T o | = PPN 30
SEPUCE USD _dEVICE AIIVEY ..ot e e e e e ea e 32
SIPUCE USD_ClaSS AIVEY ..ot e e e eanas 33
(gaee (01U o o (A= PP 34
LS U Tox 1 o PP 35
Ush fill_CONLIOl UMD ... e 39
USD FIll BUIK UFD o e et e e aans 40
01 oI 1 T | T o PP 41
01 o I V15 o o (1 T PP 42
USD UMD dir OUL .. 43
SEFUCE USD_SO_FEOUESE ..ttt ettt ettt ettt e et e e ettt e et e et e e e e rb e e e enanns 44
B, USB COIE APIS e 45
01 o T 1 S g PP 46
USD_AllOC UMD e e 47
USD FrBB UMD e e 48
01 o T o= QLT (o PP 49
01 oI ot oo S U o PP 50
USD_UNANCNOT UMD L. e 51
01 o TS U o o U o PP 52
01 o TV 1T oSG U g PP 55
01 o T 11 U g PP 57
01 oI oo L= oo U 4 o T PPN 58
USD BIOCK UMD <. e 59
usb Kill_anchored UrbS ..o 60
usb_poison_anchored_UrDSo..iii e e 61
Usb_UNPOISON_aNCNOFEA UIDSceeiiii e e e e e eeens 62
usb _unlink_anchored UrDScooniiii 63

The Linux-USB Host Side API

ush_anchor_SUSPENA WaKEUPSceuuiiiieiie e e e e e e e e e e e e e e e e e anaeeees 64
USD_anChor_rESUME WAKEUDSevveeiiieeiieeeiaeeete e e e e e et s e et e e st e e st e e et e e san e eateeeanaeennees 65
usbh_wait_anchor_empty TiMEOULc.uuiiiiiieii e e e e e e e e e e eaa s 66
USD_gEt frOML_@NCNOT . ..eeiii e e 67
usb_scuttle anchored UrbScoouiiii i 68
01 oI 01w 010 G = 101 oS 69
01 o T w01 n o] 0 115 o N 70
01 o T 01 C= (010 A 10 o PN 71
0= o T o101 G 111 o P 72
01 o TS o 1 P 73
01 T o = P 74
01 o T o o= (o= 75
01 o T (= A0 === o 11 o) (o) S S 76
01 T 1T 0o 77
01 0T o [= A = 01PN 78
01 o T == 2= 79
01 oI (=== A= 10 001 | A 80
01 OIS = 01 = £ = o= N 81
(01 ol === A o0 1 o (U= (o) o [82
ush_driver_Set CONFIGUIALiONivu i e e e e e e e e e eaans 83
01 o (=0 1S 1 g o (=Y AP 84
01 o0 (= =0 = (= o (=Y AP 85
USh_driver Claim INEEITACE .. .ovveiiii e e e e e e e e e aaaees 86
USh_driver rel€ase INTEITaCE ... ocvvu i 87
01 o T 101 ! o TN o 88
USD FegiSter dVICE ONVEr ...t e e e e e e 20
USh_deregister deviCe ANVErouv i e e e 91
0 o (= o K= (o | €AY/~ P 92
01 o0 (= =0 = [S 93
USh_enable AULOSUSPENGcouniiiiiiii e e e e e e e e e e e e e e aaas 94
Ush_disable AULOSUSPENGiiii i e e e e e e 95
OIS ol 01 o) o 0 T LU L 101 = £ = 96
USh_autopm_PUt_iNtEIfACE @SYNCcvveeii e e e e e e aens 97
usb_autopm_put_interface N0 _SUSPENAuiiiiiii e e 98
(SOl 0100 o g 10 (= A1 010 - o N 99
USh_autopm_get iNtErfaCe BSYINCuiiiiieiii e e e e e e 100
usb_autopm_get interfaCe MO FESUMEcvuve i e e e e e e e e e e e e e eees 101
01 oI 10 = L= = oo P 102
01 o T 010 o T (T P 103
USH_altnum 10 @ltSEING ..vuieiiiii e e e 104
USD FINA INEEITACE ..u i e e 105
01 o I o g == o: o o =Y 106
USD AllOC 0BV ..oveiiiii e 107
01 o T o (= Ao =Y 108
01 o T o LU o L= 109
01 o T 1= A1 011 P 110
01 o T o LU A T o« P 111
(01 o T FoTo o L= Y Tor =Yl o] G (== = A 112
usb_get_current_frame NUMDBET ..o 113
USD_allOC CONBIENE ... e e e e e aeas 114
USD_FrE8 CONEIENTiiiie i e e e e e e 115
01 o T o101 1= G 117 o PN 116
USD BUFFEr AMASYINIC ..o e e aa s 117
01 o T o101 1= G 0o TP 118

The Linux-USB Host Side API

OIS o J o101 (= G 117 T o 119
0TS o T o101 (= g e 047 TR o 120
0TS o T o101 1= Y a0 =" o R o PN 121
USh_hub_clear tt DUFFEr ... 122
U oIS = 0 (=Y oI - - 123
01 oI (o o1l [0 o [A .11 PN 124
01 oI (=== Ao =Y/ o T 125
O oo (SN R (= = 0 (=, o P 126
Ush_hub find Childoeeeiie e 127
B. HOSE CONLIOIEr APLS ...t e et e e et e e e eeanas 128
01 oI o= Lol o 0 ST (1 1Y 129
01 oI aToro I 1T 0 U g o T (o T = o Pt 130
usb_hed check UNNK UMD ...oeeine e e e 131
usb_hed unlink_urb fFrom B0 ... 132
usb_hed GIVEDBCK UMD ... 133
01 oI Lo o == 1P 134
USD FIBE SITEAIMS ...uuiiiieii et e e e e e e e e e e et e e e e e et e e et e e et e e et e e et eeanees 135
usb_hed resume root_ hub ... 136
01 o T o LU = A = 0 P 137
01 o T Voo 1N T (o PP 138
0 o T 2T o o SRR 139
usb_create shared NCdoiiiiiii e 140
01 oo (= (=T ot N 141
0 o T o [2o SRR 142
01 o T = 0110V 2 1o o [N 143
01 oI Voo I oot o) (o] o= TNt 144
01 oI g Toro I o Tot I 1= 1110 = P 145
01 o I g Voo I o Tot RS o 11 (o [0 .Y o P 146
aToro I o101 = @ (= (T 147
oo B o101 1= 0 (= o Yt 148
7. The USB Flesystem (USDFS) ...cuuiiiiiiii i e e e e e e e e et e eeaneeee 149
What fileS are IN "USDFS" 2 ... e 149
Mounting and ACCESS CONEIOluiiiiiieii e e e e e e e e e e e eaes 149
JPrOC/DUS/USDIAEVICES ... oot e e e e e e e aaa e 150
/ProC/DUS/USD/BBBIDIDDuuuiiieeiiiiiiiiie s e e e e e ettt s e e e e e e e et e e s e e e e e aeaabn e s e eeaaaeranaes 150
Life Cycle of USer MOdE DIIVENSccvuniiiiiei e e e e e e eaens 151
ThE IOCH () REQUESES ... ivieiii et e e e e e e et e et e e et e eaaeaees 151
Management/StatuS REGUESESccuuiiiii e ee e e e e e e aa s 152
SyNchronOUS /O SUPPOITeeeeiiii e e e e e e e e e e e e e e eeen 154
ASyNChronous 17O SUPPOITiiiiieeie e e e e e e e e e e eee 155

Chapter 1. Introduction to USB on
Linux

A Universal Serial Bus (USB) is used to connect a host, such as a PC or workstation, to a number of
peripheral devices. USB usesatree structure, with the host asthe root (the system'smaster), hubsasinterior
nodes, and peripherals as leaves (and daves). Modern PCs support several such trees of USB devices,
usually one USB 2.0 tree (480 Mbit/sec each) with afew USB 1.1 trees (12 Mbit/sec each) that are used
when you connect aUSB 1.1 device directly to the machine's "root hub".

That master/dlave asymmetry was designed-in for a number of reasons, one being ease of use. It is not
physically possible to assemble (legal) USB cables incorrectly: all upstream "to the host" connectors are
the rectangular type (matching the sockets on root hubs), and all downstream connectors are the squarish
type (or they are built into the peripheral). Also, the host software doesn't need to deal with distributed
auto-configuration since the pre-designated master node manages all that. And finally, at the electrical
level, bus protocol overhead is reduced by eliminating arbitration and moving scheduling into the host
software.

USB 1.0 was announced in January 1996 and was revised as USB 1.1 (with improvements in hub speci-
fication and support for interrupt-out transfers) in September 1998. USB 2.0 was released in April 2000,
adding high-speed transfers and transaction-translating hubs (used for USB 1.1 and 1.0 backward com-
patibility).

Kernel developers added USB support to Linux early in the 2.2 kernel series, shortly before 2.3 devel op-
ment forked. Updates from 2.3 were regularly folded back into 2.2 releases, which improved reliability
and brought / sbi n/ hot pl ug support as well more drivers. Such improvements were continued in the
2.5 kernel series, where they added USB 2.0 support, improved performance, and made the host controller
drivers (HCDs) more consistent. They aso simplified the API (to make bugslesslikely) and added internal
"kerneldoc" documentation.

Linux can run inside USB devices aswell as on the hosts that control the devices. But USB devicedrivers
running inside those peripherals don't do the same things as the ones running inside hosts, so they've been
given adifferent name: gadget drivers. This document does not cover gadget drivers.

Chapter 2. USB Host-Side APl Model

Host-side drivers for USB devices talk to the "usbcore” APIs. There are two. Oneis intended for gener-
al-purpose drivers (exposed through driver frameworks), and the other is for drivers that are part of the
core. Such core driversinclude the hub driver (which manages trees of USB devices) and several different
kinds of host controller drivers, which control individual busses.

The device model seen by USB driversisrelatively complex.

» USB supports four kinds of data transfers (control, bulk, interrupt, and isochronous). Two of them
(control and bulk) use bandwidth as it's available, while the other two (interrupt and isochronous) are
scheduled to provide guaranteed bandwidth.

» The device description model includes one or more "configurations' per device, only one of which is
active at atime. Devices that are capable of high-speed operation must also support full-speed config-
urations, along with away to ask about the "other speed” configurations which might be used.

 Configurations have one or more "interfaces', each of which may have "aternate settings'. Interfaces
may be standardized by USB "Class' specifications, or may be specific to avendor or device.

USB devicedriversactually bind to interfaces, not devices. Think of them as"interface drivers", though
you may not see many devices where the distinction is important. Most USB devices are simple, with
only one configuration, one interface, and one alternate setting.

« Interfaces have one or more "endpoints’, each of which supports one type and direction of datatransfer
such as "bulk out” or "interrupt in". The entire configuration may have up to sixteen endpointsin each
direction, allocated as needed among all the interfaces.

» Datatransfer on USB is packetized; each endpoint has a maximum packet size. Drivers must often be
aware of conventions such as flagging the end of bulk transfers using "short" (including zero length)
packets.

» TheLinux USB API supports synchronous calls for control and bulk messages. It also supports asyn-
chronous calls for all kinds of data transfer, using request structures called "URBS' (USB Request
Blocks).

Accordingly, the USB Core API exposed to device drivers covers quite alot of territory. You'll probably
need to consult the USB 2.0 specification, available online from www.usb.org at ho cost, as well as class
or device specifications.

The only host-side drivers that actually touch hardware (reading/writing registers, handling IRQs, and so
on) arethe HCDs. In theory, al HCDs provide the same functionality through the same API. In practice,
that'sbecoming moretrue onthe 2.5 kernels, but there are still differencesthat crop up especially with fault
handling. Different controllers don't necessarily report the same aspects of failures, and recovery from
faults (including software-induced ones like unlinking an URB) isn't yet fully consistent. Device driver
authors should make a point of doing disconnect testing (while the device is active) with each different
host controller driver, to make sure drivers don't have bugs of their own as well as to make sure they
aren't relying on some HCD-specific behavior. (You will need external USB 1.1 and/or USB 2.0 hubsto
perform al those tests.)

Chapter 3. USB-Standard Types

In<l i nux/ usb/ ch9. h>youwill findthe USB datatypesdefined in chapter 9 of the USB specification.
These data types are used throughout USB, and in APIs including this host side API, gadget APIs, and
usbfs.

USB-Standard Types

Name
usb_speed_string — Returns human readable-name of the speed.

Synopsis
const char * usb_speed_string (enum usb_devi ce_speed speed);

Arguments

speed The speed to return human-readable name for. If it's not any of the speeds defined in
usb_device speed enum, string for USB_SPEED _UNKNOWN will be returned.

USB-Standard Types

Name
usb_state string— Returns human readable name for the state.

Synopsis
const char * usb_state_string (enum usb_device_state state);

Arguments

state The state to return a human-readable name for. If it's not any of the states devices in
usb_device state string enum, the string UNKNOWN will be returned.

Chapter 4. Host-Side Data Types and
Macros

The host side API exposes several layersto drivers, some of which are more necessary than others. These
support lifecycle models for host side drivers and devices, and support passing buffers through usbcore to
some HCD that performsthe 1/O for the device driver.

Host-Side Data Types and Macros

Name

struct usb_host_endpoint — host-side endpoint descriptor and queue

Synopsis

struct usb_host _endpoi nt {

st ruct
st ruct
st ruct
void *
st ruct

usb_endpoi nt _descri pt or desc;
usb_ss_ep_conp_descriptor ss_ep_conp;
list _head urb_list;

hcpri v;

ep_device * ep_dev;

unsi gned char * extra,;
int extral en;

i nt enabl ed;

int streans;

b
Members

desc
ss_ep_comp
urb_list

hepriv

ep_dev
extra
extralen
enabled

streams

Description

descriptor for this endpoint, wMaxPacketSize in native byteorder
SuperSpeed companion descriptor for this endpoint
urbs queued to this endpoint; maintained by usbcore

for use by HCD; typically holds hardware dma queue head (QH) with one or moretrans-
fer descriptors (TDs) per urb

ep_devicefor sysfsinfo

descriptors following this endpoint in the configuration
how many bytes of “extra” arevalid

URBs may be submitted to this endpoint

number of USB-3 streams allocated on the endpoint

USB requests are always queued to a given endpoint, identified by a descriptor within an active interface
in agiven USB configuration.

Host-Side Data Types and Macros

Name

struct usb_interface — what usb device driverstalk to

Synopsis

struct usb_interface {
struct usb _host _interface * altsetting;
struct usb _host _interface * cur_altsetting;
unsi gned num al tsetting;
struct usb_interface_assoc_descriptor * intf_assoc;

int mnor;

enum usb_interface_condition condition;
unsi gned sysfs files created: 1;

unsi gned ep_devs_created: 1;

unsi gned unregi stering: 1;

unsi gned needs_renote_wakeup: 1;

unsi gned needs_al tsettingO: 1;

unsi gned needs_bi ndi ng: 1;

unsi gned resetting_device: 1;

struct device dev;

struct device * ushb_dev;
atom c_t pm.usage_cnt;

struct work_struct

b
Members

altsetting

cur_altsetting
num_altsetting
intf_assoc

minor

condition

sysfs files created
ep_devs created
unregistering

needs remote wakeup

reset _ws;

array of interface structures, one for each alternate setting that may be se-
lected. Each one includes a set of endpoint configurations. They will bein
no particular order.

the current altsetting.
number of altsettings defined.
interface association descriptor

the minor number assigned to this interface, if thisinterface is bound to a
driver that uses the USB major number. If this interface does not use the
USB major, thisfield should be unused. The driver should set thisvaluein
thepr obe function of thedriver, after it has been assigned aminor number
from the USB core by callingusb_r egi st er _dev.

binding state of the interface: not bound, binding (in pr obe), bound to a
driver, or unbinding (indi sconnect)

sysfs attributes exist
endpoint child pseudo-devices exist
flag set when the interface is being unregistered

flag set when the driver requires remote-wakeup capability during autosus-
pend.

Host-Side Data Types and Macros

needs altsetting0 flag set when a set-interface request for altsetting O has been deferred.

needs binding flag set when the driver should be re-probed or unbound following a reset
or suspend operation it doesn't support.

resetting_device USB core reset the device, so use alt setting 0 as current; needs bandwidth
aloc after reset.

dev driver model's view of this device

usb_dev if an interface is bound to the USB magjor, this will point to the sysfs rep-
resentation for that device.

pm_usage cnt PM usage counter for thisinterface

reset ws Used for scheduling resets from atomic context.

Description

USB device drivers attach to interfaces on a physical device. Each interface encapsulates a single high
level function, such as feeding an audio stream to a speaker or reporting a change in a volume control.
Many USB devices only have one interface. The protocol used to talk to an interface's endpoints can be
defined in ausb “class’ specification, or by a product's vendor. The (default) control endpoaint is part of
every interface, but is never listed among the interface's descriptors.

Thedriver that isbound to the interface can use standard driver model callssuchasdev_get _drvdat a
on the dev member of this structure.

Each interface may have aternate settings. The initial configuration of a device sets altsetting 0, but the
device driver can change that setting using usb_set _i nt er f ace. Alternate settings are often used
to control the use of periodic endpoints, such as by having different endpoints use different amounts of
reserved USB bandwidth. All standards-conformant USB devices that use isochronous endpoints will use
them in non-default settings.

The USB specification saysthat alternate setting numbers must run from O to onelessthan thetotal number
of aternate settings. But some devices manage to mess this up, and the structures aren't necessarily stored
in numerical order anyhow. Useusb_al tnum t o_al t set ti ng tolook up an alternate setting in the
altsetting array based on its number.

Host-Side Data Types and Macros

Name

struct usb_interface _cache — long-term representation of a device interface

Synopsis

struct usb_interface_cache {
unsi gned num al tsetting;
struct kref ref;
struct usb_host _interface altsetting[O];

I
Members
num_altsetting number of altsettings defined.
ref reference counter.
altsetting[Q] variable-length array of interface structures, onefor each alternate setting that may
be selected. Each one includes a set of endpoint configurations. They will be in
no particular order.
Description

These structures persist for the lifetime of a usb_device, unlike struct usb_interface (which persists only
as long as its configuration is installed). The altsetting arrays can be accessed through these structures
at any time, permitting comparison of configurations and providing support for the /proc/bus/usb/devices

pseudo-file.

10

Host-Side Data Types and Macros

Name

struct usb_host_config — representation of a device's configuration

Synopsis

struct usb _host config {
struct usb_config _descriptor desc;
char * string;
struct usb_interface _assoc_descriptor * intf_assoc[USB_MAXI ADS] ;
struct usb_interface * interface[USB_MAXI NTERFACES] ;
struct usb_interface_cache * intf_cache[USB_MAXI NTERFACES] ;
unsi gned char * extra,;
int extral en;

1
Members
desc the device's configuration descriptor.
string pointer to the cached version of theiConfiguration string, if present
for this configuration.
intf_assoc[USB_MAXIADS] list of any interface association descriptorsin this config

interfacelUSB_MAXINTERFACES] array of pointers to usb_interface structures, one for each inter-
face in the configuration. The number of interfaces is stored in
desc.bNuminterfaces. These pointers are valid only while the the
configuration is active.

intf_cachefUSB_ MAXINTERFACEShrray of pointers to ush_interface cache structures, one for each
interface in the configuration. These structures exist for the entire
life of the device.

extra pointer to buffer containing all extradescriptorsassociated with this
configuration (those preceding the first interface descriptor).

extralen length of the extra descriptors buffer.

Description

USB devices may have multiple configurations, but only one can be active at any time. Each encapsul ates
adifferent operational environment; for example, a dual-speed device would have separate configurations
for full-speed and high-speed operation. The number of configurations available is stored in the device
descriptor as bNumConfigurations.

A configuration can contain multiple interfaces. Each corresponds to a different function of the USB de-
vice, and al are available whenever the configuration is active. The USB standard says that interfaces are
supposed to be numbered from 0 to desc.bNuminterfaces-1, but alot of devices get thiswrong. In addition,
the interface array is not guaranteed to be sorted in numerical order. Useusb_i fnum to_i f tolook
up an interface entry based on its number.

Device drivers should not attempt to activate configurations. The choice of which configuration to install
isapolicy decision based on such considerations as available power, functionality provided, and the user's

11

Host-Side Data Types and Macros

desires (expressed through userspace tools). However, driverscan call usb_reset _confi gurati on
to reinitialize the current configuration and all its interfaces.

12

Host-Side Data Types and Macros

Name

struct usb_device — kernel's representation of a USB device

Synopsis

struct usb_device {

#i

int devnum

char devpat h[16];

u32 route,

enum usb_device_state state;

enum usb_devi ce_speed speed;

struct ushb_tt * tt;

int ttport;

unsi gned int toggle[2];

struct usb_device * parent;

struct usb_bus * bus;

struct usb_host _endpoi nt epO;
struct device dev;

struct usb_devi ce_descriptor descriptor
struct usb_host _bos * bos;

struct usb_host_config * config;
struct usb_host_config * actconfig;
struct usb_host _endpoint * ep_in[16];
struct usb_host _endpoint * ep_out[16];
char ** rawdescriptors;

unsi gned short bus_mA;

u8 portnum

u8 | evel;

unsi gned can_submt:1

unsi gned persi st_enabl ed: 1;

unsi gned have_l angi d: 1;

unsi gned aut hori zed: 1;

unsi gned aut henti cated: 1;

unsi gned wusb: 1;

unsi gned | pm capabl e: 1;

unsi gned usb2_hw_| pm capabl e: 1;
unsi gned usb2_hw | pm besl _capabl e: 1;
unsi gned usb2_hw_| pm enabl ed: 1;
unsi gned usb2_hw | pm al | owed: 1;
unsi gned usb3_| pm enabl ed: 1;

int string_|l angi d;

char * product;

char * manufacturer;

char * serial

struct list _head filelist;

int maxchild;

u32 quirks;

atomi c_t urbnum

unsi gned | ong active_duration

fdef CONFI G_PM

unsi gned | ong connect _ti ne;

unsi gned do_renot e_wakeup: 1;

13

Host-Side Data Types and Macros

unsi gned reset _resune: 1;

unsi gned port_is_suspended: 1;

#endi f

struct wusb_dev * wusb_dev;

int slot_id;

enum usb_devi ce_renovabl e renpvabl e;
struct usb2_| pm parameters |1_parans;
struct usb3_| pm paramneters ul_par ans;
struct usb3_| pm paramneters u2_par ans;
unsi gned | pm di sabl e_count;

b

Members

devnum
devpath[16]
route

state

speed

tt

ttport
toggle[2]
parent

bus

ep0

dev

descriptor

bos

config
actconfig
ep_in[16]
ep_out[16]
rawdescriptors
bus mA
portnum

level

device number; address on a USB bus

device ID string for use in messages (e.g., /port/...)
tree topology hex string for use with xHCI

device state: configured, not attached, etc.

device speed: high/full/low (or error)

Transaction Tranglator info; used with low/full speed dev, high-
speed hub

device port on that tt hub

one bit for each endpoint, with ([O] = IN, [1] = OUT) endpoints
our hub, unless we're the root

bus we're part of

endpoint O data (default control pipe)
generic device interface

USB device descriptor

USB device BOS descriptor set

al of the device's configs

the active configuration

array of IN endpoints

array of OUT endpoints

raw descriptors for each config
Current available from the bus
parent port number (origin 1)

number of USB hub ancestors

14

Host-Side Data Types and Macros

can_submit URBs may be submitted

persist_enabled USB_PERSIST enabled for this device

have langid whether string_langid isvalid

authorized policy has said we can use it; (user space) policy determines if we

authorize this device to be used or not. By default, wired USB de-
vices are authorized. WUSB devices are not, until we authorize
them from user space. FIXME -- complete doc

authenticated Crypto authentication passed
wusb deviceis Wireless USB
[pm_capable device supports LPM

usb2_hw_lpm_capable device can perform USB2 hardware LPM

usb2_hw_Ipm_bed capable device can perform USB2 hardware BESL LPM
usb2_hw_Ipm_enabled USB2 hardware LPM is enabled

usb2_hw_lpm_allowed Userspace allows USB 2.0 LPM to be enabled

usb3_Ipm_enabled

USB3 hardware LPM enabled

string_langid language ID for strings

product iProduct string, if present (static)

manufacturer iManufacturer string, if present (static)

serial iSerialNumber string, if present (static)

filelist usbfsfiles that are open to this device

maxchild number of portsif hub

quirks quirks of the whole device

urbnum number of URBs submitted for the whole device

active_duration
connect_time
do_remote wakeup
reset_resume

port_is suspended

total time device is not suspended
time device was first connected
remote wakeup should be enabled
needs reset instead of resume

the upstream port is suspended (L2 or U3)

wusb_dev if thisis a Wireless USB device, link to the WUSB specific data
for the device.

dot_id Slot ID assigned by xHCI

removable Device can be physically removed from this port

15

Host-Side Data Types and Macros

|1 params best effor service latency for USB2 L1 LPM state, and L1 timeout.
ul params exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
u2_params exit latenciesfor USB3 U2 LPM state, and hub-initiated timeout.
Ipm_disable count Ref count used by usb_di sabl e_| pmandusb_enabl e_| pm

to keep track of the number of functions that require USB 3.0
Link Power Management to be disabled for this usb_device. This
count should only be manipulated by those functions, with the
bandwidth_mutex is held.

Notes

Usbcore drivers should not set usbdev->state directly. Instead useusb_set devi ce_state.

16

Host-Side Data Types and Macros

Name

usb_hub _for_each child — iterate over al child devices on the hub
Synopsis
usb_hub_for_each_child (hdev, portl, child);

Arguments

hdev USB device belonging to the usb hub
port1l portnum associated with child device

chil d child device pointer

17

Host-Side Data Types and Macros

Name

usb_interface claimed — returnstrue iff an interfaceis claimed
Synopsis
int usb_interface_clainmed (struct usb_interface * iface);

Arguments

i face theinterface being checked

Return

t r ue (nonzero) iff theinterfaceis claimed, elsef al se (zero).

Note

Callers must own the driver model's usb bus readlock. So driver pr obe entries don't need extralocking,
but other call contexts may need to explicitly claim that lock.

18

Host-Side Data Types and Macros

Name

usb_make_path — returns stable device path in the usb tree

Synopsis

int usb_make path (struct usb_device * dev, char * buf, size_t size);

Arguments

dev thedevice whose path is being constructed
buf whereto put the string

size how bigis*“buf’?

Return

Note

Length of the string (> 0) or negative if size was too small.

This identifier is intended to be “stable”, reflecting physical paths in hardware such as physical bus ad-
dresses for host controllers or ports on USB hubs. That makes it stay the same until systems are physi-
cally reconfigured, by re-cabling atree of USB devices or by moving USB host controllers. Adding and
removing devices, including virtua root hubsin host controller driver modules, does not change these path
identifiers; neither does rebooting or re-enumerating. These are more useful identifiers than changeable
(“unstable”) ones like bus numbers or device addresses.

With apartia exception for devices connected to USB 2.0 root hubs, these identifiers are also predictable.
So long as the device tree isn't changed, plugging any USB device into a given hub port always gives it
the same path. Because of the use of “companion” controllers, devices connected to ports on USB 2.0
root hubs (EHCI host controllers) will get one path ID if they are high speed, and a different one if they
arefull or low speed.

19

Host-Side Data Types and Macros

Name
USB_DEVICE — macro used to describe a specific ush device
Synopsis
USB DEVI CE (vend, prod);
Arguments
vend the 16 bit USB Vendor ID
prod the 16 bit USB Product ID
Description

Thismacro is used to create a struct usb_device_id that matches a specific device.

20

Host-Side Data Types and Macros

Name
USB_DEVICE_VER — describe a specific usb device with aversion range

Synopsis
USB DEVI CE_VER (vend, prod, lo, hi);

Arguments

vend the 16 bit USB Vendor ID
prod the 16 bit USB Product ID
lo the bcdDevice |o value

hi the bcdDevice _hi value

Description

Thismacro is used to create a struct usb_device id that matches a specific device, with aversion range.

21

Host-Side Data Types and Macros

Name
USB_DEVICE_INTERFACE_CLASS — describe a usb device with a specific interface class

Synopsis

USB_DEVI CE_I NTERFACE_CLASS (vend, prod, cl);

Arguments

vend the 16 bit USB Vendor ID
prod the 16 bit USB Product ID

cl blnterfaceClass value

Description

Thismacro is used to create a struct usb_device id that matches a specific interface class of devices.

22

Host-Side Data Types and Macros

Name
USB_DEVICE_INTERFACE_PROTOCOL — describe a usb device with a specific interface protocol

Synopsis

USB_DEVI CE_| NTERFACE_PROTOCOL (vend, prod, pr);

Arguments

vend the 16 bit USB Vendor ID
prod the 16 bit USB Product ID

pr bl nterfaceProtocol value

Description

Thismacro is used to create a struct usb_device_id that matches a specific interface protocol of devices.

23

Host-Side Data Types and Macros

Name
USB_DEVICE_INTERFACE_NUMBER — describe a usb device with a specific interface number

Synopsis

USB_DEVI CE_| NTERFACE_NUMBER (vend, prod, nunj;

Arguments

vend the 16 bit USB Vendor ID
prod the 16 bit USB Product ID

num blnterfaceNumber value

Description

Thismacro is used to create a struct usb_device id that matches a specific interface number of devices.

24

Host-Side Data Types and Macros

Name
USB_DEVICE_INFO — macro used to describe a class of usb devices

Synopsis
USB DEVI CE_I NFO (cl, sc, pr);

Arguments

cl bDeviceClassvalue
sc bDeviceSubClass value

pr bDeviceProtocol value

Description

This macro is used to create a struct usb_device_id that matches a specific class of devices.

25

Host-Side Data Types and Macros

Name
USB_INTERFACE_INFO — macro used to describe a class of usb interfaces

Synopsis
USB | NTERFACE_I NFO (cl, sc, pr);

Arguments

cl binterfaceClass value
sc binterfaceSubClass value

pr binterfaceProtocol value

Description

Thismacro is used to create a struct usb_device_id that matches a specific class of interfaces.

26

Host-Side Data Types and Macros

Name
USB_DEVICE_AND_INTERFACE_INFO— describe aspecific usb devicewith aclass of ush interfaces

Synopsis
USB_DEVI CE_AND | NTERFACE I NFO (vend, prod, cl, sc, pr);
Arguments

vend the 16 bit USB Vendor ID

prod the 16 bit USB Product ID

cl blnterfaceClass value

scC bl nterfaceSubClass value

pr bl nterfaceProtocol value
Description

This macro is used to create a struct usb_device id that matches a specific device with a specific class
of interfaces.

Thisisespecially useful when explicitly matching devices that have vendor specific bDeviceClass values,
but standards-compliant interfaces.

27

Host-Side Data Types and Macros

Name

USB_VENDOR_AND_INTERFACE_INFO — describe a specific usb vendor with a class of ush inter-
faces

Synopsis
USB_VENDOR_AND | NTERFACE I NFO (vend, cl, sc, pr);

Arguments

vend the 16 bit USB Vendor ID
cl blnterfaceClass value
sc blnterfaceSubClass value

pr bl nterfaceProtocol value

Description

This macro is used to create a struct usb_device id that matches a specific vendor with a specific class
of interfaces.

Thisisespecially useful when explicitly matching devices that have vendor specific bDeviceClass values,
but standards-compliant interfaces.

28

Host-Side Data Types and Macros

Name

struct usbdrv_wrap — wrapper for driver-model structure

Synopsis

struct usbdrv_wap {
struct device_driver driver;
int for_devices;

I

Members
driver The driver-model core driver structure.
for_devices Non-zero for device drivers, O for interface drivers.

29

Host-Side Data Types and Macros

Name

struct usb_driver — identifies USB interface driver to usbcore

Synopsis

struct usb _driver {
const char * nane;
int (* probe) (struct usb_ interface *intf,const struct usb device id *id);
void (* disconnect) (struct usb interface *intf);
int (* unlocked ioctl) (struct usb_interface *intf, unsigned int code, void *buf)
nt (* suspend) (struct usb_interface *intf, pmnessage_ t nessage);
nt (* resune) (struct usb_ interface *intf);
nt (* reset_resume) (struct usb_interface *intf);
nt (* pre_reset) (struct usb_interface *intf);
nt (* post_reset) (struct usb_ interface *intf);
const struct usb device id * id_table;
struct usb_dynids dynids;
struct usbdrv_wap drvw ap;
unsi gned int no_dynam c_id:1;
unsi gned int supports_aut osuspend: 1;
unsigned int disable hub initiated Ipm1
unsi gned int soft_unbind: 1;

b
Members

name The driver name should be unique among USB drivers, and should
normally be the same as the module name.

probe Called to see if the driver is willing to manage a particu-
lar interface on a device. If it is, probe returns zero and uses
usb_set i ntfdata to associate driver-specific data with the
interface. It may also use usb_set _i nt er f ace to specify the
appropriate atsetting. If unwilling to manage the interface, return
-ENODEV, if genuine 10 errors occurred, an appropriate negative
errno value.

disconnect Called when the interface is no longer accessible, usually because
its device has been (or is being) disconnected or the driver module
is being unloaded.

unlocked_ioctl Used for drivers that want to talk to userspace through the “ usbfs”
filesystem. Thislets devices provide waysto expose information to
user space regardless of wherethey do (or don't) show up otherwise
in the filesystem.

suspend Called when the device is going to be suspended by the system ei-
ther from system sleep or runtime suspend context. Thereturn value
will beignored in system sleep context, so do NOT try to continue
using the deviceif suspend failsin this case. Instead, let the resume
or reset-resume routine recover from the failure.

resume Called when the device is being resumed by the system.

30

Host-Side Data Types and Macros

reset_resume

pre_reset

post_reset
id_table
dynids

drvwrap

no_dynamic id
supports_autosuspend

disable_hub_initiated_Ipm

soft_unbind

Description

Called when the suspended device has been reset instead of being
resumed.

Called by usb_reset devi ce when the device is about to be
reset. This routine must not return until the driver has no active
URBs for the device, and no more URBs may be submitted until
the post_reset method is called.

Called by usb_r eset _devi ce after the device has been reset

USB drivers use ID table to support hotplugging. Export this with
MODULE_DEVICE_TABLE(usb,...). This must be set or your
driver's probe function will never get called.

used internally to hold the list of dynamically added deviceids for
thisdriver.

Driver-model core structure wrapper.

if setto 1, the USB core will not allow dynamic ids to be added to
this driver by preventing the sysfs file from being created.

if set to 0, the USB core will not allow autosuspend for interfaces
bound to this driver.

if setto 1, the USB corewill not allow hubsto initiate lower power
link state transitions when an idle timeout occurs. Device-initiated
USB 3.0 link PM will still be allowed.

if set to 1, the USB core will not kill URBs and disable endpoints
before calling the driver's disconnect method.

USB interface drivers must provide aname, pr obe and di sconnect methods, and an id_table. Other

driver fields are optional.

Theid_tableis used in hotplugging. It holds a set of descriptors, and specialized data may be associated
with each entry. That tableis used by both user and kernel mode hotplugging support.

The pr obe and di sconnect methods are called in a context where they can sleep, but they should
avoid abusing the privilege. Most work to connect to a device should be done when the device is opened,
and undone at the last close. The disconnect code needs to address concurrency issues with respect to
open and cl ose methods, aswell asforcing al pending I/O requests to complete (by unlinking them as
necessary, and blocking until the unlinks complete).

31

Host-Side Data Types and Macros

Name

struct usb_device driver — identifies USB device driver to usbcore

Synopsis

struct usb_device_driver {

const char * nane;

int (* probe) (struct usb_device *udev);

void (* disconnect) (struct usb_device *udev);

int (* suspend) (struct usb_device *udev, pm nmessage_t nessage);
int (* resunme) (struct usb_device *udev, pmnessage_t nessage);
struct usbdrv_wap drvw ap;

unsi gned int supports_aut osuspend: 1;

b
Members

name

probe

disconnect

suspend
resume
drvwrap

supports_autosuspend

Description

The driver name should be unique among USB drivers, and should nor-
mally be the same as the module name.

Called to see if the driver is willing to manage a particular device. If it
is, probe returns zero and uses dev_set _dr vdat a to associate dri-
ver-specific data with the device. If unwilling to manage the device, re-
turn a negative errno value.

Called when the device is no longer accessible, usually because it has
been (or is being) disconnected or the driver's module is being unloaded.

Called when the device is going to be suspended by the system.
Called when the device is being resumed by the system.
Driver-model core structure wrapper.

if set to 0, the USB core will not alow autosuspend for devices bound
to thisdriver.

USB drivers must provide al the fields listed above except drvwrap.

32

Host-Side Data Types and Macros

Name

struct usb_class _driver — identifies a USB driver that wants to use the USB major number

Synopsis

struct usb_class_driver {
char * nane;
char *(* devnode) (struct device *dev, unpde_t *node);
const struct file_operations * fops;
i nt mnor_base;

I

Members
name the usb class device name for this driver. Will show up in sysfs.
devnode Callback to provide a naming hint for a possible device node to create.
fops pointer to the struct file_operations of this driver.

minor_base the start of the minor range for this driver.

Description

Thisstructureisused fortheusb_regi st er _dev andusb_unr egi st er _dev functions, to consol-
idate a number of the parameters used for them.

33

Host-Side Data Types and Macros

Name

module_usb_driver — Helper macro for registering a USB driver
Synopsis
nmodul e_usb_driver (__usb_driver);

Arguments

__usb_driver usb driver struct

Description

Helper macro for USB drivers which do not do anything special in module init/exit. This eliminates a lot
of boilerplate. Each module may only use this macro once, and calling it replaces nodul e_i nit and

nodul e_exi t

Host-Side Data Types and Macros

Name

struct urb — USB Request Block

Synopsis

st

ruct urb {

struct list _head urb_list;
struct |list_head anchor _|list;
struct usb_anchor * anchor;
struct usb_device * dev;
struct usb_host _endpoint * ep
unsi gned int pipe;

unsi gned int stream.i d;

i nt status;

unsi gned int transfer_ fl ags;
void * transfer_buffer;
dna_addr _t transfer_dmmg;
struct scatterlist * sg;

i nt num mapped_sgs;

i nt num sgs;

u32 transfer_buffer_| ength;
u32 actual _I engt h;

unsi gned char * setup_packet;
dma_addr _t setup_dmg;

int start_frane;

i nt number _of packets;

int interval;

int error_count;

void * context;

usb_compl ete_t conpl ete;

struct usb_iso_packet _descriptor iso_frane_desc[O0];

i
Members
urb_list For use by current owner of the URB.
anchor_list membership in the list of an anchor
anchor to anchor URBs to a common mooring
dev Identifies the USB device to perform the request.
ep Points to the endpoint's data structure. Will eventually replace pi pe.
pipe Holds endpoint number, direction, type, and more. Cre-

ate these values with the eight macros available
usb_{ snd,rcv} TY PEpipe(dev,endpoint), where the TYPE is “ctrl”
(contral), “bulk”, “int” (interrupt), or “iso” (isochronous). For exam-
pleusb_sndbul kpi pe orusb_r cvi nt pi pe. Endpoint numbers
range from zero to fifteen. Note that “in” endpoint two is a different
endpoint (and pipe) from “out” endpoint two. The current configura-

35

Host-Side Data Types and Macros

stream id

status

transfer_flags

transfer_buffer

transfer_dma

num_mapped_sgs
num_sgs

transfer_buffer_length

actual_length

setup_packet

setup_dma

start_frame

number_of packets

tion controls the existence, type, and maximum packet size of any giv-
en endpoint.

the endpoint's stream ID for bulk streams

This is read in non-iso completion functions to get the status of the
particular request. 1SO requests only use it to tell whether the URB
was unlinked; detailed status for each frame is in the fields of the
iso_frame-desc.

A variety of flags may be used to affect how URB submission, unlink-
ing, or operation are handled. Different kinds of URB can use differ-
ent flags.

Thisidentifiesthe buffer to (or from) which the I/O request will be per-
formed unless URB_NO_TRANSFER_DMA_MAP is set (however,
donot leave garbagein transfer_buffer even then). Thisbuffer must be
suitable for DMA; allocateit with knal | oc or equivaent. For trans-
fersto “in” endpoints, contents of this buffer will be modified. This
buffer is used for the data stage of control transfers.

When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
the device driver is saying that it provided this DMA address,
which the host controller driver should use in preference to the
transfer_buffer.

scatter gather buffer list, the buffer size of each element in thelist (ex-
cept the last) must be divisible by the endpoint's max packet size if
no_sg_constraint isn't set in 'struct usb_bus

(internal) number of mapped sg entries
number of entriesin the sg list

How bigistransfer_buffer. Thetransfer may be broken up into chunks
according to the current maximum packet size for the endpoint, which
isafunction of the configuration and is encoded in the pipe. When the
length is zero, neither transfer_buffer nor transfer_dmais used.

This is read in non-iso completion functions, and it tells how many
bytes (out of transfer_buffer_length) weretransferred. It will normally
be the same as requested, unless either an error was reported or a short
read was performed. The URB_SHORT_NOT_OK transfer flag may
be used to make such short reads be reported as errors.

Only used for control transfers, this pointsto eight bytes of setup data.
Control transfers always start by sending this data to the device. Then
transfer_buffer isread or written, if needed.

DMA pointer for the setup packet. The caller must not use this field;
setup_packet must point to avalid buffer.

Returnstheinitial frame for isochronous transfers.

Lists the number of 1SO transfer buffers.

36

Host-Side Data Types and Macros

interval Specifies the polling interval for interrupt or isochronous transfers.
Theunitsare frames (milliseconds) for full and low speed devices, and
microframes (1/8 millisecond) for highspeed and SuperSpeed devices.

error_count Returns the number of 1SO transfers that reported errors.

context For use in completion functions. This normally points to request-spe-
cific driver context.

complete Completion handler. This URB is passed as the parameter to the com-
pletion function. The completion function may then do what it likes
with the URB, including resubmitting or freeing it.

iso_frame desc[0] Used to provide arrays of |SO transfer buffers and to collect the trans-
fer status for each buffer.

Description

This structure identifies USB transfer requests. URBs must be allocated by calling usb_al | oc_urb
and freed with a call to usb_free_urb. Initialization may be done using various usb_fill_*_urb
functions. URBs are submitted using usb_subni t _ur b, and pending requests may be canceled using
usb_unlink_urborusb_kill _urb.

Data Transfer Buffers

Normally drivers provide 1/O buffers allocated with kimal | oc or otherwise taken from the general page
pool. That is provided by transfer_buffer (control requests also use setup_packet), and host controller dri-
vers perform adma mapping (and unmapping) for each buffer transferred. Those mapping operations can
be expensive on some platforms (perhaps using a dma bounce buffer or talking to an IOMMU), although
they're cheap on commodity x86 and ppc hardware.

Alternatively, driversmay passthe URB_NO_TRANSFER DMA_MAPtransfer flag, which tellsthe host
controller driver that no such mapping is needed for the transfer_buffer since the device driver is DMA-
aware. For example, adevice driver might allocate aDMA buffer withusb_al | oc_coher ent or call
usb_buf f er _map. When this transfer flag is provided, host controller drivers will attempt to use the
dma address found in the transfer_dma field rather than determining a dma address themselves.

Note that transfer_buffer must still be set if the controller does not support DMA (as indicated by
bus.uses dma) and when talking to root hub. If you have to trasfer between highmem zone and the device
on such controller, create a bounce buffer or bail out with an error. If transfer_buffer cannot be set (isin
highmem) and the controller is DMA capable, assign NULL to it, so that usbmon knows not to use the
value. The setup_packet must always be set, so it cannot be located in highmem.

Initialization

All URBs submitted must initialize the dev, pipe, transfer_flags (may be zero), and complete fields.
All URBs must aso initidlize transfer_buffer and transfer_buffer length. They may provide the
URB_SHORT_NOT _OK transfer flag, indicating that short reads are to be treated as errors; that flag is
invalid for write requests.

Bulk URBs may use the URB_ZERO_ PACKET transfer flag, indicating that bulk OUT transfers should
always terminate with a short packet, even if it means adding an extra zero length packet.

37

Host-Side Data Types and Macros

Control URBs must provide a valid pointer in the setup packet field. Unlike the transfer_buffer, the
setup_packet may not be mapped for DMA beforehand.

Interrupt URBs must provide an interval, saying how often (in milliseconds or, for highspeed devices,
125 microsecond units) to poll for transfers. After the URB has been submitted, the interval field reflects
how the transfer was actually scheduled. The polling interval may be more frequent than requested. For
example, some controllers have a maximum interval of 32 milliseconds, while others support intervals
of up to 1024 milliseconds. Isochronous URBs also have transfer intervals. (Note that for isochronous
endpoints, as well as high speed interrupt endpoints, the encoding of the transfer interval in the endpoint
descriptor islogarithmic. Device drivers must convert that value to linear units themselves.)

If an isochronous endpoint queue isn't already running, the host controller will schedule a new URB to
start as soon as bandwidth utilization allows. If the queue isrunning then anew URB will be scheduled to
start in the first transfer slot following the end of the preceding URB, if that slot has not already expired.
If the slot has expired (which can happen when IRQ delivery is delayed for along time), the scheduling
behavior dependson the URB_ISO_ASAPflag. If theflag is clear then the URB will be scheduled to start
in the expired dlot, implying that some of its packets will not be transferred; if the flag is set then the URB
will be scheduled in the first unexpired slot, breaking the queue's synchronization. Upon URB completion,
the start_frame field will be set to the (micro)frame number in which the transfer was scheduled. Ranges
for frame counter values are HC-specific and can go from as low as 256 to as high as 65536 frames.

Isochronous URBs have a different data transfer model, in part because the quality of service is only
“best effort”. Callers provide specially allocated URBs, with number_of packetsworth of iso_frame_desc
structures at the end. Each such packet is an individua 1SO transfer. Isochronous URBs are normally
gueued, submitted by drivers to arrange that transfers are at least double buffered, and then explicitly
resubmitted in completion handlers, so that data (such as audio or video) streams at as constant a rate as
the host controller scheduler can support.

Completion Callbacks

The completion callback ismade i n_i nt er r upt , and one of the first things that a completion handler
should do is check the status field. The status field is provided for all URBS. It is used to report unlinked
URBSs, and status for all non-1SO transfers. It should not be examined before the URB is returned to the
completion handler.

The context field is normally used to link URBs back to the relevant driver or request state.

When the completion callback is invoked for non-isochronous URBS, the actual_length field tells how
many bytes were transferred. This field is updated even when the URB terminated with an error or was
unlinked.

ISO transfer status is reported in the status and actual_length fields of the iso_frame desc array, and
the number of errors is reported in error_count. Completion callbacks for 1SO transfers will normally
(re)submit URBs to ensure a constant transfer rate.

Note that even fields marked “public” should not be touched by the driver when the urb is owned by the
hcd, that is, sincethe call tousb_submi t _ur b till the entry into the completion routine.

38

Host-Side Data Types and Macros

Name
usb_fill_control_urb — initializes a control urb
Synopsis

void usb fill _control _urb (struct urb * urb, struct usb_device * dev,
unsi gned i nt pi pe, unsigned char * setup_packet, void * transfer_buffer,
int buffer_length, usb _conplete_t conplete fn, void * context);

Arguments
urb pointer to the urb to initialize.
dev pointer to the struct usb_device for this urb.
pi pe the endpoint pipe
set up_packet pointer to the setup_packet buffer

transfer_buffer pointertothetransfer buffer

buffer_l ength length of the transfer buffer

conplete fn pointer to the usb_complete t function

cont ext what to set the urb context to.
Description

Initializes a control urb with the proper information needed to submit it to adevice.

39

Host-Side Data Types and Macros

Name
usb_fill_bulk_urb — macro to help initialize abulk urb
Synopsis

void wusb_fill_bulk urb (struct wurb * urb, struct
dev, unsigned int pipe, void * transfer_buffer, int
usb_complete_t conplete fn, void * context);

Arguments
urb pointer to the urb to initialize.
dev pointer to the struct usb_device for this urb.
pi pe the endpoint pipe

transfer_buffer pointertothetransfer buffer

buffer_length length of the transfer buffer

conplete_fn pointer to the usb_complete_t function
cont ext what to set the urb context to.
Description

Initializes a bulk urb with the proper information needed to submit it to a device.

usb_device *
buf f er _| engt h,

40

Host-Side Data Types and Macros

Name
usb_fill_int_urb — macro to help initialize ainterrupt urb
Synopsis

void wusb_fill_int_urb (struct wurb * urb, struct wusb_device *
dev, unsigned int pipe, void * transfer_buffer, int buffer_length,
usb_conmplete_t conmplete fn, void * context, int interval);

Arguments
urb pointer to the urb to initialize.
dev pointer to the struct usb_device for this urb.
pi pe the endpoint pipe

transfer_buffer pointertothetransfer buffer

buffer_length length of the transfer buffer

conplete_fn pointer to the usb_complete_t function
cont ext what to set the urb context to.
i nterval what to set the urb interval to, encoded like the endpoint descriptor's binterval
value.
Description

Initializes ainterrupt urb with the proper information needed to submit it to a device.

Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic encoding of the endpoint
interval, and express polling intervals in microframes (eight per millisecond) rather than in frames (one
per millisecond).

Wireless USB also uses the logarithmic encoding, but specifiesit in units of 128us instead of 125us. For
Wireless USB devices, the interval is passed through to the host controller, rather than being trandated
into microframe units.

41

Host-Side Data Types and Macros

Name

usb_urb_dir_in — check if an URB describes an IN transfer
Synopsis
int usb _urb dir_in (struct urb * urb);

Arguments

urb URB to be checked

Return

1if ur b describesan IN transfer (device-to-host), otherwise 0.

42

Host-Side Data Types and Macros

Name
usb_urb_dir_out — check if an URB describes an OUT transfer

Synopsis
int usb_urb_dir_out (struct urb * urb);

Arguments

urb URB to be checked

Return

1if ur b describes an OUT transfer (host-to-device), otherwise 0.

43

Host-Side Data Types and Macros

Name
struct usb_sg_request — support for scatter/gather 1/0

Synopsis

struct usb_sg_request {
i nt status;
size_t bytes;

b
Members

status zero indicates success, €lse negative errno

bytes counts bytes transferred.

Description

These requests are initialized using usb_sg_i ni t, and then are used as request handles passed to
usb_sg wait orusb_sg_cancel . Most members of the request object aren't for driver access.

The status and bytecount values are valid only after usb_sg_wai t returns. If the statusis zero, then the
bytecount matches the total from the request.

After an error completion, drivers may need to clear a halt condition on the endpoint.

Chapter 5. USB Core APIs

There are two basic 1/0 modelsin the USB API. The most elemental one is asynchronous: drivers submit
requestsin theform of an URB, and the URB's compl etion callback handle the next step. All USB transfer
types support that model, although there are specia casesfor control URBs (which always have setup and
status stages, but may not have adata stage) and isochronous URBs (which allow large packets and include
per-packet fault reports). Built on top of that is synchronous API support, where a driver calls aroutine
that alocates one or more URBs, submits them, and waits until they complete. There are synchronous
wrappers for single-buffer control and bulk transfers (which are awkward to usein some driver disconnect
scenarios), and for scatterlist based streaming i/o (bulk or interrupt).

USB drivers need to provide buffers that can be used for DMA, athough they don't necessarily need to
provide the DMA mapping themselves. There are APIs to use used when allocating DMA buffers, which
can prevent use of bounce buffers on some systems. In some cases, drivers may be able to rely on 64bit
DMA to eliminate another kind of bounce buffer.

45

USB Core APIs

Name
usb_init_urb — initializes aurb so that it can be used by a USB driver

Synopsis

void usb_init_urb (struct urb * urb);

Arguments

urb pointer totheurbtoinitialize

Description

Initializes a urb so that the USB subsystem can useit properly.

If aurbiscreated with acal tousb_al | oc_ur b it isnot necessary to call this function. Only use this
if you allocate the space for a struct urb on your own. If you call this function, be careful when freeing the
memory for your urb that it is no longer in use by the USB core.

Only use thisfunction if you _really understand what you are doing.

46

USB Core APIs

Name

usb_alloc_urb — creates anew urb for aUSB driver to use
Synopsis

struct urb * usb_alloc_urb (int iso_packets, gfp_t memflags);

Arguments

i so_packets number of iso packetsfor this urb

mem fl ags the type of memory to alocate, seeknal | oc for alist of valid options for this.
Description

Createsan urb for the USB driver to use, initializesafew internal structures, increments the usage counter,
and returns a pointer to it.

If the driver want to use this urb for interrupt, control, or bulk endpoints, pass '0' as the number of iso
packets.

The driver must call usb_f r ee_ur b when it is finished with the urb.

Return

A pointer to the new urb, or NULL if no memory is available.

47

USB Core APIs

Name

usb_free urb — frees the memory used by a urb when all users of it are finished
Synopsis

void usb_free_ urb (struct urb * urb);
Arguments

urb pointer to the urb to free, may be NULL

Description

Must be called when a user of a urb is finished with it. When the last user of the urb calls this function,
the memory of the urb is freed.

Note

Thetransfer buffer associated with theurbisnot freed unlessthe URB_FREE BUFFER transfer flagis set.

48

USB Core APIs

Name

usb_get_urb — increments the reference count of the urb
Synopsis
struct urb * usb_get _urb (struct urb * urb);

Arguments

urb pointer to the urb to modify, may be NULL

Description

This must be called whenever a urb is transferred from a device driver to a host controller driver. This
allows proper reference counting to happen for urbs.

Return

A pointer to the urb with the incremented reference counter.

49

USB Core APIs

Name

usb_anchor_urb — anchors an URB whileit is processed

Synopsis

voi d usb_anchor_urb (struct urb * urb, struct usb_anchor * anchor);

Arguments

urb pointer to the urb to anchor

anchor pointer to the anchor

Description

This can be called to have access to URBs which are to be executed without bothering to track them

50

USB Core APIs

Name

usb_unanchor_urb — unanchors an URB
Synopsis

voi d usb_unanchor_urb (struct urb * urb);
Arguments

urb pointer to the urb to anchor
Description

Call thisto stop the system keeping track of this URB

51

USB Core APIs

Name

usb_submit_urb — issue an asynchronous transfer request for an endpoint
Synopsis
int usb_submit_urb (struct urb * urb, gfp_t nemflags);

Arguments

urb pointer to the urb describing the request

mem fl ags thetypeof memory to alocate, seekral | oc for alist of valid options for this.

Description

This submits atransfer request, and transfers control of the URB describing that request to the USB sub-
system. Request completion will be indicated later, asynchronously, by calling the completion handler.
The three types of completion are success, error, and unlink (a software-induced fault, also called “request
cancellation”).

URBs may be submitted in interrupt context.

The caller must have correctly initialized the URB before submitting it. Functions such as
usb fill bulk urbandusb fill control urb areavailable to ensure that most fields are
correctly initialized, for the particular kind of transfer, although they will not initialize any transfer flags.

If the submission is successful, the conpl et e callback from the URB will be called exactly once, when
the USB core and Host Controller Driver (HCD) arefinished with the URB. When the compl etion function
is called, control of the URB is returned to the device driver which issued the request. The completion
handler may then immediately free or reuse that URB.

With few exceptions, USB device drivers should never access URB fields provided by usbcore or the HCD
until its conpl et e is caled. The exceptions relate to periodic transfer scheduling. For both interrupt
and isochronous urbs, as part of successful URB submission urb->interval is modified to reflect the actual
transfer period used (normally some power of two units). And for isochronous urbs, urb->start_frameis
modified to reflect when the URB's transfers were scheduled to start.

Not all isochronous transfer scheduling policies will work, but most host controller drivers should easily
handle 1SO gqueues going from now until 10-200 msec into the future. Drivers should try to keep at least
one or two msec of datain the queue; many controllers require that new transfers start at least 1 msec in
the future when they are added. If the driver is unable to keep up and the queue empties out, the behavior
for new submissions is governed by the URB_1SO_ASAP flag. If the flag is set, or if the queueisidle,
then the URB is always assigned to the first available (and not yet expired) slot in the endpoint's schedule.
If the flag is not set and the queue is active then the URB is always assigned to the next slot in the sched-
ule following the end of the endpoint's previous URB, even if that dlot isin the past. When a packet is
assigned in thisway to adot that has already expired, the packet is not transmitted and the corresponding
usb_iso_packet_descriptor's statusfield will return -EXDEV. If thiswould happen to all the packetsin the
URB, submission failswith a-EXDEV error code.

For control endpoints, the synchronoususb_cont r ol _nsg cal isoften used (in non-interrupt context)
instead of thiscall. That is often used through convenience wrappers, for the requeststhat are standardized
in the USB 2.0 specification. For bulk endpoints, a synchronoususb_bul k_nsg cal isavailable.

52

USB Core APIs

Return

0 on successful submissions. A negative error number otherwise.

Request Queuing

URBs may be submitted to endpoints before previous ones complete, to minimize the impact of interrupt
latencies and system overhead on data throughput. With that queuing policy, an endpoint's queue would
never be empty. Thisis required for continuous isochronous data streams, and may also be required for
some kinds of interrupt transfers. Such queuing also maximizes bandwidth utilization by letting USB
controllers start work on later requests before driver software has finished the completion processing for
earlier (successful) requests.

Asof Linux 2.6, all USB endpoint transfer queues support depths greater than one. This was previously
aHCD-specific behavior, except for 1SO transfers. Non-isochronous endpoint queues are inactive during
cleanup after faults (transfer errors or cancellation).

Reserved Bandwidth Transfers

Periodic transfers (interrupt or isochronous) are performed repeatedly, using the interval specified in the
urb. Submitting the first urb to the endpoint reserves the bandwidth necessary to make those transfers. If
the USB subsystem can't allocate sufficient bandwidth to perform the periodic request, submitting such
aperiodic request should fail.

For devicesunder xHCI, the bandwidth isreserved at configuration time, or when the alt setting is selected.
If thereis not enough bus bandwidth, the configuration/alt setting request will fail. Therefore, submissions
to periodic endpoints on devices under xHCI should never fail due to bandwidth constraints.

Device drivers must explicitly request that repetition, by ensuring that some URB is always on the
endpoint's queue (except possibly for short periods during completion callbacks). When there is no longer
an urb queued, the endpoint's bandwidth reservation is canceled. This means drivers can use their com-
pletion handlers to ensure they keep bandwidth they need, by reinitializing and resubmitting the just-com-
pleted urb until the driver longer needs that periodic bandwidth.

Memory Flags

The genera rules for how to decide which mem_flags to use are the same as for kmalloc. There are four
different possible values; GFP_KERNEL, GFP_NOFS, GFP_NOIO and GFP_ATOMIC.

GFP_NOFS s not ever used, asit has not been implemented yet.

GFP_ATOMIC is used when (&) you are inside a completion handler, an interrupt, bottom half, tasklet or
timer, or (b) you are holding a spinlock or rwlock (does not apply to semaphores), or (c) current->state !
=TASK_RUNNING, thisisthe case only after you've changed it.

GFP_NOIO isused in the block io path and error handling of storage devices.
All other situations use GFP_KERNEL.

Some more specific rulesfor mem_flagscan beinferred, such as (1) start_xmit, timeout, and receive meth-
ods of network drivers must use GFP_ATOMIC (they are called with aspinlock held); (2) queuecommand

53

USB Core APIs

methods of scsi drivers must use GFP_ATOMIC (also called with aspinlock held); (3) If you use akernel
thread with a network driver you must use GFP_NOIO, unless (b) or (c) apply; (4) after you have done a
down you can use GFP_KERNEL, unless (b) or (c) apply or your arein a storage driver's block io path;
(5) USB probe and disconnect can use GFP_KERNEL unless (b) or (c) apply; and (6) changing firmware
on arunning storage or net device uses GFP_NOIO, unless b) or ¢) apply

USB Core APIs

Name

usb_unlink_urb — abort/cancel atransfer request for an endpoint
Synopsis
int usb_unlink urb (struct urb * urb);

Arguments

urb pointer to urb describing a previously submitted request, may be NULL

Description

This routine cancels an in-progress request. URBs complete only once per submission, and may be can-
celed only once per submission. Successful cancellation means termination of ur b will be expedited and
the completion handler will be called with a status code indicating that the request has been canceled
(rather than any other code).

Drivers should not cal this routine or related routines, such as usb_kill _urb or
usb_unl i nk_anchor ed_ur bs, after their disconnect method has returned. The disconnect function
should synchronize with a driver's 1/O routines to insure that all URB-related activity has completed be-
foreit returns.

This request is asynchronous, however the HCD might call the ->conpl et e callback during unlink.
Therefore when drivers call usb_unl i nk_ur b, they must not hold any locks that may be taken by the
completion function. Success is indicated by returning -EINPROGRESS, at which time the URB will
probably not yet have been given back to the device driver. When it is eventually called, the completion
function will seeur b->status ==-ECONNRESET. Failureisindicated by usb_unl i nk_ur b returning
any other value. Unlinking will fail when ur b is not currently “linked” (i.e., it was never submitted, or
it was unlinked before, or the hardware is already finished with it), even if the completion handler has
not yet run.

The URB must not be deallocated while this routine is running. In particular, when a driver calls this
routine, it must insure that the completion handler cannot deall ocate the URB.

Return

-EINPROGRESS on success. See description for other values on failure.

Unlinking and Endpoint Queues

[The behaviors and guarantees described below do not apply to virtual root hubs but only to endpoint
gueues for physical USB devices.]

Host Controller Drivers (HCDs) place all the URBs for a particular endpoint in a queue. Normally the
gueue advances as the controller hardware processes each request. But when an URB terminates with
an error its queue generally stops (see below), at least until that URB's completion routine returns. It
is guaranteed that a stopped queue will not restart until all its unlinked URBs have been fully retired,
with their completion routines run, even if that's not until some time after the original completion handler
returns. The same behavior and guarantee apply when an URB terminates because it was unlinked.

55

USB Core APIs

Bulk and interrupt endpoint queues are guaranteed to stop whenever an URB terminates with any sort of
error, including -ECONNRESET, -ENOENT, and -EREMOTEIO. Control endpoint queues behave the
same way except that they are not guaranteed to stop for -EREMOTEIO errors. Queues for isochronous
endpoints are treated differently, because they must advance at fixed rates. Such queues do not stop when
an URB encounters an error or is unlinked. An unlinked isochronous URB may leave a gap in the stream
of packets; it is undefined whether such gaps can befilled in.

Note that early termination of an URB because a short packet was received will generate a-EREMOTEIO
error if and only if the URB_SHORT_NOT_OK flag is set. By setting this flag, USB device drivers can
build deep queues for large or complex bulk transfers and clean them up reliably after any sort of aborted
transfer by unlinking all pending URBs at the first fault.

When a control URB terminates with an error other than -EREMOTEIQ, it is quite likely that the status
stage of the transfer will not take place.

56

USB Core APIs

Name
usb_kill_urb — cancel atransfer request and wait for it to finish
Synopsis

void usb_kill _urb (struct urb * urb);

Arguments

urb pointer to URB describing a previously submitted request, may be NULL

Description

This routine cancels an in-progress request. It is guaranteed that upon return all completion handlers will
have finished and the URB will be totally idle and available for reuse. These features make this an ided
way to stop /O inadi sconnect callback or cl ose function. If the request has not aready finished or
been unlinked the completion handler will see urb->status == -ENOENT.

While the routine is running, attempts to resubmit the URB will fail with error -EPERM. Thus even if the
URB's completion handler always tries to resubmit, it will not succeed and the URB will becomeidle.

The URB must not be deallocated while this routine is running. In particular, when a driver calls this
routine, it must insure that the completion handler cannot deall ocate the URB.

This routine may not be used in an interrupt context (such as a bottom half or a completion handler), or
when holding a spinlock, or in other situations where the caller can't schedul e.

This routine should not be called by a driver after its disconnect method has returned.

57

USB Core APIs

Name
usb_poison_urb — reliably kill atransfer and prevent further use of an URB

Synopsis
voi d usb_poison_urb (struct urb * urb);

Arguments

urb pointer to URB describing a previously submitted request, may be NULL

Description

This routine cancels an in-progress request. It is guaranteed that upon return all completion handlers will
have finished and the URB will be totally idle and cannot be reused. These features make this an ideal
way to stop I/Oinadi sconnect calback. If the request has not aready finished or been unlinked the
completion handler will see urb->status == -ENOENT.

After and while the routine runs, attempts to resubmit the URB will fail with error -EPERM. Thus even if
the URB's completion handler always tries to resubmit, it will not succeed and the URB will becomeidle.

The URB must not be deallocated while this routine is running. In particular, when a driver calls this
routine, it must insure that the completion handler cannot deall ocate the URB.

This routine may not be used in an interrupt context (such as a bottom half or a completion handler), or
when holding a spinlock, or in other situations where the caller can't schedul e.

This routine should not be called by a driver after its disconnect method has returned.

58

USB Core APIs

Name
usb_block_urb — reliably prevent further use of an URB

Synopsis
void usb_block urb (struct urb * urb);

Arguments

urb pointer to URB to be blocked, may be NULL

Description

After the routine has run, attempts to resubmit the URB will fail with error -EPERM. Thus even if the
URB's completion handler always tries to resubmit, it will not succeed and the URB will becomeidle.

The URB must not be deallocated while this routine is running. In particular, when a driver calls this
routine, it must insure that the completion handler cannot deall ocate the URB.

59

USB Core APIs

Name

usb_kill_anchored_urbs — cancel transfer requests en masse

Synopsis

void usb_kill _anchored_urbs (struct usb_anchor * anchor);

Arguments

anchor anchor the requests are bound to

Description
thisalows all outstanding URBs to be killed starting from the back of the queue

This routine should not be called by a driver after its disconnect method has returned.

60

USB Core APIs

Name

usb_poison_anchored_urbs — cease all traffic from an anchor

Synopsis

voi d usb_poi son_anchored_urbs (struct usb_anchor * anchor);

Arguments

anchor anchor the requests are bound to

Description

thisalows all outstanding URBs to be poisoned starting from the back of the queue. Newly added URBs
will also be poisoned

This routine should not be called by a driver after its disconnect method has returned.

61

USB Core APIs

Name

usb_unpoison_anchored urbs— let an anchor be used successfully again
Synopsis
voi d usb_unpoi son_anchored_urbs (struct usb_anchor * anchor);

Arguments

anchor anchor the requests are bound to

Description

Reverses the effect of usb_poison_anchored_urbs the anchor can be used normally after it returns

62

USB Core APIs

Name

usb_unlink_anchored _urbs — asynchronously cancel transfer requests en masse

Synopsis

voi d usb_unlink_anchored_urbs (struct usb_anchor * anchor);

Arguments

anchor anchor the requests are bound to

Description

this allows all outstanding URBSs to be unlinked starting from the back of the queue. This function is
asynchronous. The unlinking is just triggered. It may happen after this function has returned.

This routine should not be called by a driver after its disconnect method has returned.

63

USB Core APIs

Name

usb_anchor_suspend wakeups —

Synopsis

voi d usb_anchor _suspend_wakeups (struct usb_anchor * anchor);

Arguments

anchor theanchor you want to suspend wakeups on

Description

Call thisto stop thelast urb being unanchored from waking up any usb_wait_anchor_empty_timeout wait-
ers. Thisisused inthe hcd urb give- back path to delay waking up until after the completion handler hasrun.

USB Core APIs

Name

usb_anchor_resume_wakeups —
Synopsis
voi d usb_anchor _resume_wakeups (struct usb_anchor * anchor);

Arguments

anchor theanchor you want to resume wakeups on

Description

Allow usb_wait_anchor_empty_timeout waiters to be woken up again, and wake up any current waiters
if the anchor is empty.

65

USB Core APIs

Name

usb_wait_anchor_empty_timeout — wait for an anchor to be unused
Synopsis

i nt usb_wait_anchor_enpty_tinmeout (struct usb_anchor * anchor,
int timeout);

Arguments

anchor the anchor you want to become unused

ti meout how long you are willing to wait in milliseconds

Description

Call thisis you want to be sure al an anchor's URBs have finished

Return

Non-zero if the anchor became unused. Zero on timeout.

unsi gned

66

USB Core APIs

Name
usb_get from_anchor — get an anchor's oldest urb

Synopsis
struct urb * usb_get_from.anchor (struct usb_anchor * anchor);

Arguments

anchor theanchor whose urb you want

Description

Thiswill take the oldest urb from an anchor, unanchor and return it

Return

The oldest urb from anchor , or NULL if anchor has no urbs associated with it.

67

USB Core APIs

Name

usb_scuttle anchored urbs — unanchor al an anchor's urbs

Synopsis

voi d usb_scuttl e_anchored_urbs (struct usb_anchor * anchor);

Arguments

anchor theanchor whose urbs you want to unanchor

Description

usethisto get rid of al an anchor's urbs

68

USB Core APIs

Name

usb_anchor_empty — is an anchor empty
Synopsis
i nt usb_anchor_enpty (struct usb_anchor * anchor);

Arguments

anchor theanchor you want to query

Return

1if the anchor has no urbs associated with it.

69

USB Core APIs

Name
usb_control_msg — Builds a control urb, sendsit off and waits for completion
Synopsis

int usb_control _nsg (struct usb_device * dev, unsigned int pipe, _ u8
request, _ u8 requesttype, _ ul6 value, _ ul6 index, void * data, _ ul6
size, int tinmeout);

Arguments
dev pointer to the usb device to send the message to
pi pe endpoint “pipe’ to send the message to
request USB message request value

requesttype USB message request type value

val ue USB message value
i ndex USB message index value
dat a pointer to the datato send
si ze length in bytes of the datato send
ti meout time in msecs to wait for the message to complete before timing out (if O the wait is
forever)
Context

lin_interrupt ()

Description

Thisfunction sendsasimple control message to aspecified endpoint and waitsfor the message to compl ete,
or timeout.

Don't use this function from within an interrupt context, like a bottom half handler. If you need an asyn-
chronous message, or need to send a message from within interrupt context, useusb_submi t _ur b. If
athread in your driver uses this call, make sure your di sconnect method can wait for it to complete.
Since you don't have a handle on the URB used, you can't cancel the request.

Return

If successful, the number of bytes transferred. Otherwise, a negative error number.

70

USB Core APIs

Name

usb_interrupt_msg — Builds an interrupt urb, sends it off and waits for completion
Synopsis

int usb_interrupt_nsg (struct usb_device * usb_dev, unsigned int pipe,
void * data, int len, int * actual _length, int tinmeout);

Arguments
usb_dev pointer to the usb device to send the message to
pi pe endpoint “pipe’ to send the message to
dat a pointer to the datato send
I en length in bytes of the datato send

act ual _I engt h pointer to alocation to put the actual length transferred in bytes

ti meout time in msecs to wait for the message to complete before timing out (if O the wait
isforever)

Context

lin_interrupt ()

Description

This function sends a simple interrupt message to a specified endpoint and waits for the message to com-
plete, or timeout.

Don't use this function from within an interrupt context, like a bottom half handler. If you need an asyn-
chronous message, or need to send a message from within interrupt context, use usb_submi t _ur b If
athread in your driver uses this call, make sure your di sconnect method can wait for it to complete.
Since you don't have a handle on the URB used, you can't cancel the request.

Return

If successful, 0. Otherwise a negative error number. The number of actual bytes transferred will be stored
intheact ual _| engt h parameter.

71

USB Core APIs

Name

usb_bulk_msg — Builds a bulk urb, sendsit off and waits for completion
Synopsis

int usb_bul k_nmsg (struct usb_device * usb_dev, unsigned int pipe, void
* data, int len, int * actual _length, int timeout);

Arguments
usb_dev pointer to the usb device to send the message to
pi pe endpoint “pipe’ to send the message to
dat a pointer to the datato send
I en length in bytes of the datato send

act ual _I engt h pointer to alocation to put the actual length transferred in bytes

ti meout time in msecs to wait for the message to complete before timing out (if O the wait
isforever)

Context

lin_interrupt ()

Description

This function sends a simple bulk message to a specified endpoint and waits for the message to complete,
or timeout.

Don't use this function from within an interrupt context, like a bottom half handler. If you need an asyn-
chronous message, or need to send a message from within interrupt context, use usb_submi t _ur b If
athread in your driver uses this call, make sure your di sconnect method can wait for it to complete.
Since you don't have a handle on the URB used, you can't cancel the request.

Becausethereisnousb_i nt errupt _nsg and no USBDEVFS INTERRUPT ioctl, usersare forced to
abuse this routine by using it to submit URBs for interrupt endpoints. We will take the liberty of creating
an interrupt URB (with the default interval) if the target is an interrupt endpoint.

Return

If successful, 0. Otherwise a negative error number. The number of actual bytes transferred will be stored
intheact ual _| engt h parameter.

72

USB Core APIs

Name
usb_sg_init — initializes scatterlist-based bulk/interrupt 1/O request
Synopsis

int usb_sg init (struct usb_sg request * io, struct usb_device * dev,
unsi gned pipe, unsigned period, struct scatterlist * sg, int nents,
size_t length, gfp_t memflags);

Arguments

io reguest block being initialized. until usb_sg_wai t returns, treat this as a pointer to an
opaque block of memory,

dev the usb device that will send or receive the data

pi pe endpoint “pipe” used to transfer the data

peri od polling rate for interrupt endpoints, in frames or (for high speed endpoints) microframes,
ignored for bulk

sg scatterlist entries

nent s how many entries in the scatterlist

| ength how many bytesto send from the scatterlist, or zero to send every byteidentified inthelist.

mem fl ags SLAB_* flags affecting memory allocationsin this call

Description

Thisinitializes ascatter/gather request, allocating resources such as1/0 mappings and urb memory (except
maybe memory used by USB controller drivers).

Therequest must beissued usingusb_sg_wai t , whichwaitsfor the 1/O to complete (or to be canceled)
and then cleans up all resources alocated by usb_sg init.

The request may be canceled withusb_sg cancel , either before or after usb_sg _wai t iscalled.

Return

Zero for success, else anegative errno value.

73

USB Core APIs

Name
usb_sg wait — synchronously execute scatter/gather request

Synopsis
void usb_sg wait (struct usb_sg _request * io);

Arguments

i 0 request block handle, asinitialized with usb_sg_i ni t . some fields become accessible when this
call returns.

Context

lin_interrupt ()

Description

This function blocks until the specified 1/0O operation completes. It leverages the grouping of the related
I/0O requests to get good transfer rates, by queueing the requests. At higher speeds, such queuing can
significantly improve USB throughput.

There are three kinds of completion for thisfunction. (1) success, where io->statusis zero. The number of
io->bytes transferred is as requested. (2) error, where io->status is a negative errno value. The number of
io->bytes transferred before the error is usually less than requested, and can be nonzero. (3) cancellation,
atype of error with status-ECONNRESET that isinitiated by usb_sg_cancel .

When thisfunction returns, all memory allocated throughusb_sg_i ni t orthiscall will have been freed.
The request block parameter may till be passed to usb_sg_cancel , or it may be freed. It could also
be reinitialized and then reused.

Data Transfer Rates

Bulk transfers are valid for full or high speed endpoints. The best full speed datarate is 19 packets of 64
bytes each per frame, or 1216 bytes per millisecond. The best high speed data rate is 13 packets of 512
bytes each per microframe, or 52 KBytes per millisecond.

The reason to use interrupt transfers through this APl would most likely be to reserve high speed band-
width, where up to 24 KBytes per millisecond could be transferred. That capability is less useful for low
or full speed interrupt endpoints, which allow at most one packet per millisecond, of at most 8 or 64 bytes

(respectively).

It isnot necessary to call this function to reserve bandwidth for devices under an xHCI host controller, as
the bandwidth is reserved when the configuration or interface alt setting is selected.

74

USB Core APIs

Name

ush_sg_cancel — stop scatter/gather i/o issued by usb_sg_wai t
Synopsis

voi d usb_sg_cancel (struct usb_sg request * io0);
Arguments

i 0 request block, initialized withusb_sg_i ni t
Description

This stops a request after it has been started by usb_sg_wai t . It can aso prevents one initialized by
usb_sg init from starting, so that call just frees resources alocated to the request.

75

USB Core APIs

Name
usb_get descriptor — issues ageneric GET_DESCRIPTOR request

Synopsis

int usb_get_descriptor (struct usb_device * dev,
unsi gned char index, void * buf, int size);

Arguments

dev the device whose descriptor is being retrieved
type thedescriptor type (USB_DT _*)

i ndex the number of the descriptor

buf where to put the descriptor

size how bigis“buf’?

Context

lin_interrupt ()

Description

unsi gned char

type,

Gets a USB descriptor. Convenience functions exist to simplify getting some types of descriptors. Use
usb_get stringorusb_stringforUSB DT _STRING. Device(USB_DT_DEVICE) and config-
uration descriptors (USB_DT_CONFIG) are part of the device structure. In addition to a number of USB-
standard descriptors, some devices also use class-specific or vendor-specific descriptors.

This call is synchronous, and may not be used in an interrupt context.

Return

The number of bytes received on success, or else the status code returned by the underlying

usb_control _nmsg cal.

76

USB Core APIs

Name

usb_string — returns UTF-8 version of a string descriptor
Synopsis

int usb_string (struct usb_device * dev, int index, char * buf, size_t

si ze);
Arguments
dev the device whose string descriptor is being retrieved

i ndex the number of the descriptor
buf where to put the string
size how bigis“buf’?
Context
lin_interrupt ()
Description
This converts the UTF-16LE encoded strings returned by devices, from

usb_get _string_descri ptor,tonull-terminated UTF-8 encoded onesthat are more usablein most
kernel contexts. Note that this function chooses strings in the first language supported by the device.

Thiscall is synchronous, and may not be used in an interrupt context.

Return

length of the string (>= 0) or usb_control_msg status (< 0).

77

USB Core APIs

Name
usb_get status— issuesa GET_STATUS call
Synopsis
int usb_get status (struct usb _device * dev, int type, int target, void
* data);
Arguments
dev the device whose status is being checked

type USB_RECIP_*; for device, interface, or endpoint
target zero (for device), else interface or endpoint number

dat a pointer to two bytes of bitmap data

Context

lin_interrupt ()

Description

Returns device, interface, or endpoint status. Normally only of interest to seeif the deviceis self powered,
or has enabled the remote wakeup facility; or whether a bulk or interrupt endpoint is halted (“ stalled”).

Bits in these status bitmaps are set using the SET_FEATURE request, and cleared using the
CLEAR FEATURE request. Theusb_cl ear _hal t function should be used to clear halt (“stall”) sta-
tus.

This call is synchronous, and may not be used in an interrupt context.

Returns 0 and the status value in *dat a (in host byte order) on success, or el se the status code from the
underlyingusb_cont rol _nsg cal.

78

USB Core APIs

Name
usb_clear_halt — tells device to clear endpoint halt/stall condition

Synopsis
int usb_clear_halt (struct usb_device * dev, int pipe);

Arguments

dev device whose endpoint is halted

pi pe endpoint “pipe” being cleared

Context

lin_interrupt ()
Description

This is used to clear halt conditions for bulk and interrupt endpoints, as reported by URB completion
status. Endpoints that are halted are sometimes referred to as being “stalled”. Such endpoints are unable
to transmit or receive data until the halt status is cleared. Any URBs queued for such an endpoint should
normally be unlinked by the driver before clearing the halt condition, as described in sections 5.7.5 and
5.8.5 of the USB 2.0 spec.

Note that control and isochronous endpoints don't halt, although control endpoints report “protocol stall”
(for unsupported requests) using the same status code used to report atrue stall.

This call is synchronous, and may not be used in an interrupt context.

Return

Zero on success, or el se the status code returned by the underlyingusb_contr ol _nsg call.

79

USB Core APIs

Name
usb_reset_endpoint — Reset an endpoint's state.

Synopsis

voi d usb_reset _endpoint (struct usb_device * dev, unsigned int epaddr);

Arguments

dev the device whose endpoint is to be reset

epaddr theendpoint'saddress. Endpoint number for output, endpoint number + USB_DIR_IN for input

Description

Resets any host-side endpoint state such as the toggle bit, sequence number or current window.

80

USB Core APIs

Name
usb_set_interface — Makes a particular alternate setting be current
Synopsis

int usb_set _interface (struct usb_device * dev, int interface, int
alternate);

Arguments

dev the device whose interface is being updated
i nterface theinterfacebeing updated

al t ernat e the setting being chosen.

Context

lin_interrupt ()

Description

This is used to enable data transfers on interfaces that may not be enabled by default. Not all devices
support such configurability. Only the driver bound to an interface may change its setting.

Within any given configuration, each interface may have several aternative settings. These are often used
to control levels of bandwidth consumption. For example, the default setting for a high speed interrupt
endpoint may not send more than 64 bytes per microframe, while interrupt transfers of up to 3KBytes per
microframe are legal. Also, isochronous endpoints may never be part of an interface's default setting. To
access such bandwidth, alternate interface settings must be made current.

Note that in the Linux USB subsystem, bandwidth associated with an endpoint in a given alternate setting
isnot reserved until an URB is submitted that needs that bandwidth. Some other operating systemsallocate
bandwidth early, when a configuration is chosen.

This call is synchronous, and may not be used in an interrupt context. Also, drivers must not change

altsettings while urbs are scheduled for endpoints in that interface; all such urbs must first be completed
(perhaps forced by unlinking).

Return

Zero on success, or else the status code returned by the underlyingusb_cont rol _nsg call.

81

USB Core APIs

Name
usb_reset_configuration — lightweight device reset

Synopsis

int usb_reset_configuration (struct usb_device * dev);

Arguments

dev the device whose configuration is being reset

Description

This issues a standard SET_CONFIGURATION request to the device using the current configuration.
The effect is to reset most USB-related state in the device, including interface altsettings (reset to zero),
endpoint halts (cleared), and endpoint state (only for bulk and interrupt endpoints). Other usbcore stateis
unchanged, including bindings of usb device drivers to interfaces.

Because this affects multiple interfaces, avoid using thiswith composite (multi-interface) devices. Instead,
the driver for each interface may use usb_set _i nt erf ace on the interfaces it claims. Be careful
though; some devices don't support the SET_INTERFACE request, and otherswon't reset all the interface
state (notably endpoint state). Resetting the whole configuration would affect other drivers interfaces.

The caller must own the device lock.

Return

Zero on success, else a negative error code.

82

USB Core APIs

Name

usb_driver_set _configuration — Provide away for driversto change device configurations
Synopsis
int usb_driver_set_configuration (struct usb_device * udev, int config);

Arguments

udev the device whose configuration is being updated

confi g theconfiguration being chosen.

Context

In process context, must be able to sleep

Description

Deviceinterface driversare not allowed to change device configurations. Thisisbecause changing config-
urationswill destroy theinterface the driver isbound to and create new ones; it would be like afloppy-disk
driver telling the computer to replace the floppy-disk drive with atape drive!

Still, in certain specialized circumstances the need may arise. This routine gets around the normal restric-
tions by using awork thread to submit the change-config request.

Return

0 if the request was successfully queued, error code otherwise. The caller has no way to know whether
the queued request will eventually succeed.

83

USB Core APIs

Name

usb_register_dev — register aUSB device, and ask for a minor number
Synopsis

i nt usb_regi ster_dev (struct usb_interface * intf, struct
usb_class_driver * class_driver);

Arguments

intf pointer to the ush_interface that is being registered

cl ass_driver pointertotheusb class driver for thisdevice

Description

This should be called by al USB drivers that use the USB magor number. If
CONFIG_USB_DYNAMIC_MINORS is enabled, the minor number will be dynamically allocated out
of the list of available ones. If it is not enabled, the minor number will be based on the next available free
minor, starting at the class_driver->minor_base.

Thisfunction also creates a ush class devicein the sysfs tree.

usb_der egi st er _dev must be called when the driver is done with the minor numbers given out by
this function.

Return

-EINVAL if something bad happens with trying to register adevice, and 0 on success.

USB Core APIs

Name

usb_deregister_dev — deregister a USB device's dynamic minor.

Synopsis

void usb_deregister_dev (struct usb interface * intf,
usb_class_driver * class_driver);

Arguments
intf pointer to the ush_interface that is being deregistered

cl ass_driver pointertotheusb class driver for thisdevice

Description

struct

Used in conjunctionwithusb_r egi st er _dev. Thisfunctioniscalled when the USB driver isfinished
with the minor numbers gotten from acall tousb_r egi st er _dev (usually when the deviceis discon-

nected from the system.)
This function also removes the usb class device from the sysfs tree.

This should be called by all driversthat use the USB major number.

85

USB Core APIs

Name

usb_driver_claim_interface — bind a driver to an interface
Synopsis

int usb_driver_claiminterface (struct wusb_driver * driver, struct
usb_interface * iface, void * priv);

Arguments

dri ver thedriver to be bound
i face theinterfacetowhich it will be bound; must bein the usb device's active configuration

priv driver data associated with that interface

Description

Thisis used by usb device drivers that need to claim more than one interface on a device when probing
(audio and acm are current examples). No device driver should directly modify internal usb_interface or
usb_device structure members.

Few drivers should need to use this routine, since the most natural way to bind to an interfaceisto return
the private data from the driver's pr obe method.

Callersmust own the devicelock, so driver pr obe entries don't need extralocking, but other call contexts
may need to explicitly claim that lock.

Return

0 on success.

86

USB Core APIs

Name

usb_driver_release interface — unbind adriver from an interface

Synopsis

void usb_driver_release_interface (struct usb_driver * driver, struct
usb_interface * iface);

Arguments

driver thedriver to be unbound

i face theinterfacefrom which it will be unbound

Description

This can be used by driversto release an interface without waiting for their di sconnect methodsto be
called. In typical casesthis also causesthe driver di sconnect method to be called.

This call is synchronous, and may not be used in an interrupt context. Callers must own the device lock,
so driver di sconnect entries don't need extra locking, but other call contexts may need to explicitly
claim that lock.

87

USB Core APIs

Name

usb_match_id — find first ush_device _id matching device or interface
Synopsis

const struct usb _device id * usb _match_id (struct usb interface * in-
terface, const struct usb device id * id);

Arguments

i nterface theinterface of interest

id array of usb_device id structures, terminated by zero entry
Description

usb_match_id searches an array of usb_device id's and returns the first one matching the device or inter-
face, or null. Thisis used when binding (or rebinding) adriver to an interface. Most USB device drivers
will use this indirectly, through the usb core, but some layered driver frameworks use it directly. These
device tables are exported with MODULE_DEVICE_TABLE, through modutils, to support the driver
loading functionality of USB hotplugging.

Return

Thefirst matching usb_device id, or NULL.

What Matches

The“match_flags’ element in ausb_device id controls which members are used. If the corresponding bit
isset, thevalueinthedevice _id must match its corresponding member in the device or interface descriptor,
or else the device id does not match.

“driver_info” is normally used only by device drivers, but you can create a wildcard “ matches anything”
usb_device_id asadriver's“modules.usbmap” entry if you provide anid with only anonzero “driver_info”
field. If you do this, the USB device driver's pr obe routine should use additional intelligence to decide
whether to bind to the specified interface.

What Makes Good usb_device id Tables

The match algorithm is very simple, so that intelligence in driver selection must come from smart driver
id records. Unless you have good reasons to use another selection policy, provide match elements only
in related groups, and order match specifiers from specific to general. Use the macros provided for that
purpose if you can.

The most specific match specifiers use device descriptor data. These are commonly used with product-spe-
cific matches; the USB_DEVICE macro lets you provide vendor and product IDs, and you can also match
against ranges of product revisions. These are widely used for devices with application or vendor specific
bDeviceClass values.

88

USB Core APIs

Matches based on device class/subclass/protocol specifications are slightly more general; use the
USB_DEVICE_INFO macro, or its siblings. These are used with single-function devices where bDevice-
Class doesn't specify that each interface has its own class.

Matches based on interface class/subclass/protocol are the most general; they let drivers bind to any in-
terface on a multiple-function device. Use the USB_INTERFACE_INFO macro, or its siblings, to match
class-per-interface style devices (as recorded in blnterfaceClass).

Note that an entry created by USB_INTERFACE_INFO won't match any interface if the device classis
set to Vendor-Specific. Thisis deliberate; according to the USB spec the meanings of the interface class/
subclass/protocol for these devicesare al so vendor-specific, and hence matching against astandard product
class wouldn't work anyway. If you really want to use an interface-based match for such a device, create
amatch record that also specifies the vendor ID. (Unforunately there isn't a standard macro for creating
records like this.)

Within those groups, remember that not all combinations are meaningful. For example, don't give a prod-
uct version range without vendor and product I1Ds; or specify a protocol without its associated class and
subclass.

89

USB Core APIs

Name

usb_register_device driver — register a USB device (not interface) driver
Synopsis

i nt usb_register_device_driver (struct usb_device_driver * new_ udriver,
struct nodul e * owner);

Arguments
new udri ver USB operationsfor the device driver
owner module owner of thisdriver.
Description

Registers a USB device driver with the USB core. Thelist of unattached devices will be rescanned when-
ever anew driver is added, allowing the new driver to attach to any recognized devices.

Return

A negative error code on failure and O on success.

90

USB Core APIs

Name
usb_deregister_device driver — unregister a USB device (not interface) driver
Synopsis
voi d usb_deregi ster_device_driver (struct usb_device_driver * udriver);
Arguments
udriver USB operations of the device driver to unregister
Context
must be able to sleep
Description

Unlinks the specified driver from the internal USB driver list.

91

USB Core APIs

Name
usb_register_driver — register a USB interface driver

Synopsis

int usb_register_driver (struct usb_driver * new driver, struct nodul e
* owner, const char * nod_nane);

Arguments
new driver USB operationsfor the interface driver
owner module owner of this driver.
nod_narme module name string
Description

Registers a USB interface driver with the USB core. The list of unattached interfaces will be rescanned
whenever anew driver is added, allowing the new driver to attach to any recognized interfaces.

Return

A negative error code on failure and 0 on success.

NOTE

if you want your driver to use the USB major number, you must call usb_r egi st er _dev to enable
that functionality. This function no longer takes care of that.

92

USB Core APIs

Name
usb_deregister — unregister a USB interface driver

Synopsis
voi d usb_deregi ster (struct usb_driver * driver);

Arguments

driver USB operations of theinterface driver to unregister

Context

must be able to sleep

Description

Unlinks the specified driver from the internal USB driver list.

NOTE

If you caled usb_regi st er _dev, you still need to call usb_der egi st er _dev to clean up your
driver's allocated minor numbers, this* call will no longer do it for you.

93

USB Core APIs

Name

usb_enable_autosuspend — allow a USB device to be autosuspended

Synopsis

voi d usb_enabl e_aut osuspend (struct usb_device * udev);

Arguments

udev the USB device which may be autosuspended

Description

This routine alows udev to be autosuspended. An autosuspend won't take place until the
autosuspend_delay has elapsed and all the other necessary conditions are satisfied.

The caller must hold udev's device lock.

94

USB Core APIs

Name

usb_disable autosuspend — prevent a USB device from being autosuspended
Synopsis

voi d usb_di sabl e_aut osuspend (struct usb_device * udev);
Arguments

udev the USB device which may not be autosuspended
Description

This routine prevents udev from being autosuspended and wakes it up if it is already autosuspended.

The caller must hold udev's device lock.

95

USB Core APIs

Name

usb_autopm_put_interface — decrement a USB interface's PM-usage counter

Synopsis

voi d usb_autopm put _interface (struct usb_interface * intf);

Arguments

i ntf theusb interface whose counter should be decremented

Description

This routine should be called by an interface driver when it isfinished using i nt f and wants to allow it
to autosuspend. A typical example would be a character-device driver when its device fileis closed.

Theroutine decrementsi nt f 'susage counter. When the counter reaches 0, adelayed autosuspend request
fori nt f 'sdeviceis attempted. The attempt may fail (see aut osuspend_check).

This routine can run only in process context.

96

USB Core APIs

Name

usb_autopm_put_interface_async — decrement a USB interface's PM-usage counter

Synopsis

voi d usb_aut opm put _interface_async (struct usb_interface * intf);

Arguments

i ntf theusb interface whose counter should be decremented

Description

Thisroutinedoesmuchthesamethingasusb_aut opm put _i nt er f ace: Itdecrementsi nt f 'susage
counter and schedules a delayed autosuspend request if the counter is <= 0. The difference isthat it does
not perform any synchronization; callers should hold a private lock and handle al synchronization issues
themselves.

Typically a driver would call this routine during an URB's completion handler, if no more URBs were
pending.

This routine can run in atomic context.

97

USB Core APIs

Name

usb_autopm_put_interface no_suspend — decrement a USB interface's PM-usage counter

Synopsis
voi d usb_aut opm put _i nterface_no_suspend (struct usb_interface * intf);

Arguments

i ntf theusb interface whose counter should be decremented

Description
This routine decrementsi nt f 's usage counter but does not carry out an autosuspend.

This routine can run in atomic context.

98

USB Core APIs

Name

usb_autopm_get_interface — increment a USB interface's PM-usage counter
Synopsis
int usb_autopmget interface (struct usb_interface * intf);

Arguments

i ntf theusb interface whose counter should be incremented

Description

This routine should be called by an interface driver when it wants to use i nt f and needs to guarantee
that it is not suspended. In addition, the routine preventsi nt f from being autosuspended subsequently.
(Note that this will not prevent suspend events originating in the PM core.) This prevention will persist
until usb_aut opm put _i nterface iscaled ori ntf isunbound. A typical example would be a
character-device driver when its devicefile is opened.

i nt f 'susage counter isincremented to prevent subsequent autosuspends. However if the autoresumefails
then the counter is re-decremented.

This routine can run only in process context.

Return

0 on success.

99

USB Core APIs

Name

usb_autopm_get_interface_async — increment a USB interface's PM-usage counter
Synopsis
int usb_autopm.get _interface_async (struct usb_interface * intf);

Arguments

i ntf theusb interface whose counter should be incremented

Description

Thisroutine doesmuchthesamethingasusb_aut opm get _i nt er f ace: Itincrementsi nt f 'susage
counter and queues an autoresume request if the device is suspended. The differences are that it does
not perform any synchronization (callers should hold a private lock and handle all synchronization issues
themselves), and it does not autoresume the device directly (it only queues a request). After a successful
call, the device may not yet be resumed.

This routine can run in atomic context.

Return

0 on success. A negative error code otherwise.

100

USB Core APIs

Name

usb_autopm_get_interface no_resume — increment a USB interface's PM-usage counter

Synopsis
voi d usb_autopm get interface_no_resune (struct usb_interface * intf);

Arguments

i ntf theusb interface whose counter should be incremented

Description
Thisroutine incrementsi nt f 's usage counter but does not carry out an autoresume.

This routine can run in atomic context.

101

USB Core APIs

Name
usb_find_alt_setting — Given a configuration, find the alternate setting for the given interface.

Synopsis

struct usb_host interface * usb_find alt_setting (struct
usb_host _config * config, unsigned int iface_num unsigned int alt_num;

Arguments

config the configuration to search (not necessarily the current config).
i face_num interface number to searchin

alt_num aternate interface setting number to search for.

Description

Search the configuration's interface cache for the given alt setting.

Return

The alternate setting, if found. NULL otherwise.

102

USB Core APIs

Name

usb_ifnum_to_if — get the interface object with a given interface number
Synopsis

struct usb_interface * usb_ifnumto_if (const struct usb_device * dev,
unsi gned ifnunj;

Arguments

dev the device whose current configuration is considered

i f num thedesired interface

Description

Thiswalks the device descriptor for the currently active configuration to find the interface object with the
particular interface number.

Note that configuration descriptors are not required to assign interface numbers sequentially, so that it
would be incorrect to assume that the first interface in that descriptor corresponds to interface zero. This
routine helps device drivers avoid such mistakes. However, you should make sure that you do the right
thing with any alternate settings available for this interfaces.

Don't call this function unless you are bound to one of the interfaces on this device or you have locked
the device!

Return

A pointer to the interface that hasi f numasinterface number, if found. NULL otherwise.

103

USB Core APIs

Name
usb_altnum_to_altsetting — get the altsetting structure with a given alternate setting number.

Synopsis

struct usb_host _interface * wusb_altnumto_altsetting (const struct
usb_interface * intf, unsigned int altnum;

Arguments

intf the interface containing the atsetting in question

al t num the desired alternate setting number

Description

This searches the altsetting array of the specified interface for an entry with the correct bAlternateSetting
value.

Note that altsettings need not be stored sequentially by number, so it would be incorrect to assume that
the first altsetting entry in the array corresponds to altsetting zero. This routine helps device drivers avoid
such mistakes.

Don't cal this function unless you are bound to the intf interface or you have locked the devicel

Return

A pointer to the entry of the altsetting array of i nt f that has al t numas the aternate setting number.
NULL if not found.

104

USB Core APIs

Name

usb_find_interface — find usb_interface pointer for driver and device
Synopsis

struct usb_interface * usb _find_interface (struct usb_driver * drv, int
nm nor) ;

Arguments

drv the driver whose current configuration is considered

m nor the minor number of the desired device

Description

This walks the bus device list and returns a pointer to the interface with the matching minor and driver.
Note, this only works for devices that share the USB major number.

Return

A pointer to the interface with the matching major and m nor .

105

USB Core APIs

Name

usb_for_each dev — iterate over all USB devicesin the system

Synopsis

int usb_for_each_dev (void * data, int (*fn) (struct usb_device *, void

*));
Arguments

dat a datapointer that will be handed to the callback function

fn callback function to be called for each USB device

Description

Iterate over all USB devicesand call f n for each, passing it dat a. If it returns anything other than O, we
break the iteration prematurely and return that value.

106

USB Core APIs

Name

usb_alloc_dev — usb device constructor (usbcore-internal)
Synopsis

struct usb_device * usb_alloc_dev (struct usb_device * parent,
usb_bus * bus, unsigned portl);

Arguments

par ent hubtowhich deviceis connected; null to allocate aroot hub
bus bus used to access the device
portl one-basedindex of port; ignored for root hubs

Context

lin_interrupt

Description

Only hub drivers (including virtual root hub drivers for host controllers) should ever call this.

This call may not be used in a non-sleeping context.

Return

On success, a pointer to the allocated usb device. NULL on failure.

struct

107

USB Core APIs

Name

usb_get dev — increments the reference count of the usb device structure
Synopsis
struct usb_device * usb_get_dev (struct usb_device * dev);

Arguments

dev thedevice being referenced

Description

Each live reference to a device should be refcounted.

Drivers for USB interfaces should normally record such references in their pr obe methods, when they
bind to an interface, and release them by callingusb_put _dev, intheir di sconnect methods.

Return

A pointer to the device with the incremented reference counter.

108

USB Core APIs

Name

usb_put_dev — release a use of the usb device structure
Synopsis
voi d usb_put _dev (struct usb_device * dev);

Arguments

dev device that's been disconnected

Description

Must be called when a user of a device is finished with it. When the last user of the device calls this
function, the memory of the deviceisfreed.

109

USB Core APIs

Name

usb_get_intf — increments the reference count of the usb interface structure
Synopsis
struct usb_interface * usb_get_intf (struct usb_interface * intf);

Arguments

i ntf theinterface being referenced

Description

Each live reference to ainterface must be refcounted.

Drivers for USB interfaces should normally record such references in their pr obe methods, when they
bind to an interface, and release them by callingusb_put _i nt f, intheir di sconnect methods.

Return

A pointer to the interface with the incremented reference counter.

110

USB Core APIs

Name

usb_put_intf — release a use of the usb interface structure
Synopsis
void usb_put _intf (struct usb_interface * intf);

Arguments

i ntf interface that's been decremented

Description

Must be called when auser of an interface is finished with it. When the last user of the interface calls this
function, the memory of the interface is freed.

111

USB Core APIs

Name

usb_lock_device for_reset — cautioudy acquire the lock for aush device structure

Synopsis

int usb_|ock device for_reset (struct usb_device * udev, const struct
usb_interface * iface);

Arguments

udev devicethat'sbeing locked

i face interface bound to the driver making the request (optional)

Description
Attempts to acquire the device lock, but fails if the device is NOTATTACHED or SUSPENDED, or if
iface is specified and the interface is neither BINDING nor BOUND. Rather than sleeping to wait for the

lock, the routine polls repeatedly. Thisis to prevent deadlock with disconnect; in some drivers (such as
usb-storage) thedi sconnect or suspend method will block waiting for a device reset to complete.

Return

A negative error code for failure, otherwise 0.

112

USB Core APIs

Name

usb_get_current_frame_number — return current bus frame number
Synopsis
int usb_get _current_frane_nunber (struct usb_device * dev);

Arguments

dev thedevice whose busis being queried

Return

The current frame number for the USB host controller used with the given USB device. This can be used
when scheduling isochronous requests.

Note

Different kinds of host controller have different “scheduling horizons’. While one type might support
scheduling only 32 frames into the future, others could support scheduling up to 1024 frames into the
future.

113

USB Core APIs

Name
usb_alloc_coherent — allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP

Synopsis

void * usb_alloc_coherent (struct usb_device * dev, size_ t size, gfp_t
mem fl ags, dma_addr_t * dma);

Arguments
dev device the buffer will be used with
si ze requested buffer size

mem fl ags affect whether alocation may block

dma used to return DMA address of buffer

Return

Either null (indicating no buffer could be allocated), or the cpu-space pointer to a buffer that may be used
to perform DMA to the specified device. Such cpu-space buffers are returned along with the DM A address
(through the pointer provided).

Note

These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags to avoid behaviors
likeusing “DMA bounce buffers’, or thrashing IOMMU hardware during URB compl etion/resubmit. The
implementation varies between platforms, depending on details of how DMA will work to this device.
Using these buffers al so eliminates cacheline sharing problems on architectures where CPU caches are not
DMA-coherent. On systems without bus-snooping caches, these buffers are uncached.

When the buffer isno longer used, freeit withusb_free_coherent.

114

USB Core APIs

Name

usb_free coherent — free memory alocated with usb_al | oc_coher ent

Synopsis

void usb_free_coherent (struct usb_device * dev, size t size, void *
addr, dma_addr_t dmm);

Arguments

dev devicethe buffer was used with
si ze requested buffer size
addr CPU address of buffer

dma DMA address of buffer

Description

This reclaims an /O buffer, letting it be reused. The memory must have been alocated using
usb_al | oc_coher ent, and the parameters must match those provided in that allocation request.

115

USB Core APIs

Name
usb_buffer_map — create DMA mapping(s) for an urb

Synopsis
struct urb * usb_buffer_map (struct urb * urb);

Arguments

urb urbwhosetransfer_buffer/setup _packet will be mapped

Description

URB_NO_TRANSFER_DMA_MAP is added to urb->transfer_flagsif the operation succeeds. If the de-
vice is connected to this system through a non-DMA controller, this operation aways succeeds.

This call would normally be used for an urb which is reused, perhaps as the target of a large periodic
transfer, withusb_buf f er _dmasync callsto synchronize memory and dma state.

Reverse the effect of thiscall withusb_buf f er _unmap.

Return

Either NULL (indicating no buffer could be mapped), or ur b.

116

USB Core APIs

Name
usb_buffer_dmasync — synchronize DMA and CPU view of buffer(s)

Synopsis
voi d usb_buffer_dmasync (struct urb * urb);

Arguments

urb urbwhosetransfer_buffer/setup_packet will be synchronized

117

USB Core APIs

Name

usb_buffer_unmap — free DMA mapping(s) for an urb
Synopsis

voi d usb_buffer _unmap (struct urb * urb);
Arguments

urb urbwhosetransfer_buffer will be unmapped
Description

Reverses the effect of usb_buf f er _nmap.

118

USB Core APIs

Name
usb_buffer_map_sg — create scatterlist DMA mapping(s) for an endpoint
Synopsis

int usb_buffer_map_sg (const struct usb_device * dev, int is_in, struct
scatterlist * sg, int nents);

Arguments

dev device to which the scatterlist will be mapped
i s_i n mapping transfer direction
sg the scatterlist to map

nents the number of entriesin the scatterlist

Return

Either < O (indicating no buffers could be mapped), or the number of DMA mapping array entriesin the
scatterlist.

Note

The caller is responsible for placing the resulting DMA addresses from the scatterlist into URB transfer
buffer pointers, and for setting the URB_NO_TRANSFER_DMA_MAP transfer flag in each of those
URBs.

Top /O rates come from queuing URBS, instead of waiting for each one to complete before starting the
next I/O. Thisis particularly easy to do with scatterlists. Just allocate and submit one URB for each DMA
mapping entry returned, stopping on the first error or when all succeed. Better yet, use the ush _sg *()
calls, which do that (and more) for you.

This call would normally be used when translating scatterlist requests, rather than usb_buf f er _rmap,
since on some hardware (with IOMMUS) it may be able to coal esce mappings for improved 1/0O efficiency.

Reverse the effect of thiscall withusb_buf f er _unmap_sg.

119

USB Core APIs

Name
usb_buffer_dmasync_sg — synchronize DMA and CPU view of scatterlist buffer(s)

Synopsis

voi d usb_buffer_dmasync_sg (const struct usb_device * dev, int is_in,
struct scatterlist * sg, int n_hw ents);

Arguments
dev device to which the scatterlist will be mapped
is_in mapping transfer direction
sg the scatterlist to synchronize

n_hw ents thepositivereturn value from usb_buffer map_sg

Description

Use this when you are re-using a scatterlist's data buffers for another USB request.

120

USB Core APIs

Name
usb_buffer_unmap_sg — free DMA mapping(s) for a scatterlist

Synopsis

void usb_buffer_unmap_sg (const struct usb _device * dev, int is_in,
struct scatterlist * sg, int n_hw ents);

Arguments
dev device to which the scatterlist will be mapped
is_in mapping transfer direction
sg the scatterlist to unmap

n_hw ents thepositivereturn value from usb_buffer map_sg

Description

Reverses the effect of usb_buf f er _nmap_sg.

121

USB Core APIs

Name
usb_hub_clear_tt buffer — clear control/bulk TT state in high speed hub

Synopsis
int usb_hub_clear_tt_buffer (struct urb * urb);

Arguments

urb an URB associated with the failed or incomplete split transaction

Description

High speed HCDs use this to tell the hub driver that some split control or bulk transaction failed in away
that requires clearing internal state of a transaction trandator. This is normally detected (and reported)
from interrupt context.

It may not be possible for that hub to handle additional full (or low) speed transactions until that state is
fully cleared out.

Return

0 if successful. A negative error code otherwise.

122

USB Core APIs

Name

usb_set_device state — change a device's current state (ushcore, hcds)
Synopsis

voi d usb_set device_state (struct usb_devi ce

usb_devi ce_state new state);

Arguments
udev pointer to device whose state should be changed

new st ate new state value to be stored

Description

*

udev,

enum

udev->state is _not_ fully protected by the device lock. Although most transitions are made only while
holding the lock, the state can can change to USB_STATE _NOTATTACHED at ailmost any time. This
is so that devices can be marked as disconnected as soon as possible, without having to wait for any
semaphores to be released. As a result, all changes to any device's state must be protected by the

device_state lock spinlock.

Once adevice has been added to the device tree, all changesto its state should be made using this routine.

The state should _not_ be set directly.

If udev->stateisalready USB_STATE_NOTATTACHED then no changeis made. Otherwise udev->state
is set to new_state, and if new_state is USB_STATE_NOTATTACHED then al of udev's descendants

states are also set to USB_STATE_NOTATTACHED.

123

USB Core APIs

Name
usb_root_hub_lost_power — called by HCD if the root hub lost Vbus power

Synopsis
voi d usb_root _hub_| ost _power (struct usb_device * rhdev);

Arguments

rhdev struct ush_device for the root hub

Description

The USB host controller driver calls this function when its root hub is resumed and Vbus power has been
interrupted or the controller has been reset. Theroutine marksr hdev ashaving lost power. When the hub
driver is resumed it will take notice and carry out power-session recovery for all the “USB-PERSIST” -
enabled child devices; the others will be disconnected.

124

USB Core APIs

Name

usb_reset_device — warn interface drivers and perform a USB port reset
Synopsis
int usb_reset_device (struct usb_device * udev);

Arguments

udev devicetoreset (not in SUSPENDED or NOTATTACHED state)

Description

Warns al drivers bound to registered interfaces (using their pre_reset method), performs the port reset,
and then lets the drivers know that the reset is over (using their post_reset method).

Return

Thesameasforusb_reset _and_verify_devi ce.

Note

The caller must own the device lock. For example, it's safe to use this from adriver pr obe routine after
downloading new firmware. For calls that might not occur during pr obe, drivers should lock the device
usingusb_| ock_devi ce_for_reset.

If aninterfaceiscurrently being probed or disconnected, we assume itsdriver knows how to handle resets.
For all other interfaces, if the driver doesn't have pre reset and post_reset methods then we attempt to
unbind it and rebind afterward.

125

USB Core APIs

Name

usb_queue reset_device — Reset a USB device from an atomic context
Synopsis
voi d usb_queue_reset _device (struct usb_interface * iface);

Arguments

i face USB interface belonging to the device to reset

Description

This function can be used to reset a USB device from an atomic context, whereusb_reset devi ce
won't work (asit blocks).

Doing areset via this method is functionally equivalent to calling usb_r eset _devi ce, except for the
fact that it is delayed to a workqueue. This means that any drivers bound to other interfaces might be
unbound, as well as users from usbfs in user space.

Corner cases

- Scheduling two resets at the same time from two different drivers attached to two different inter-
faces of the same device is possible; depending on how the driver attached to each interface handles -
>pre_reset, the second reset might happen or not.

- If the reset is delayed so long that the interface is unbound from its driver, the reset will be skipped.

- Thisfunction can be called during .pr obe. It can also be called during .di sconnect , but doing sois
pointless because the reset will not occur. If you really want to reset the device during .di sconnect,
cal usb_reset devi ce directly -- but watch out for nested unbinding issues!

126

USB Core APIs

Name
usb_hub_find_child — Get the pointer of child device attached to the port which is specified by port 1.
Synopsis
struct usb_device * usb_hub find child (struct usb_device * hdev, int
port1);
Arguments

hdev USB device belonging to the usb hub

port1l port num to indicate which port the child device is attached to.

Description

USB drivers call thisfunction to get hub's child device pointer.

Return

NULL if input param isinvalid and child's usb_device pointer if non-NULL.

127

Chapter 6. Host Controller APIs

These APIsareonly for use by host controller drivers, most of which implement standard register interfaces
such as EHCI, OHCI, or UHCI. UHCI was one of the first interfaces, designed by Intel and also used by
VIA; it doesn't do much in hardware. OHCI was designed | ater, to have the hardware do morework (bigger
transfers, tracking protocol state, and so on). EHCI was designed with USB 2.0; its design has features
that resemble OHCI (hardware does much more work) as well as UHCI (some parts of SO support, TD
list processing).

There are host controllers other than the "big three", although most PCI based controllers (and afew non-
PCI based ones) use one of those interfaces. Not all host controllers use DMA; some use PIO, and there
isaso asmulator.

The samebasic APIsare availableto driversfor all those controllers. For historical reasonsthey arein two
layers: struct usb_busisarather thin layer that became available in the 2.2 kernels, while struct usb_hcd
isamore featureful layer (availablein later 2.4 kernels and in 2.5) that lets HCDs share common code, to
shrink driver size and significantly reduce hcd-specific behaviors.

128

Host Controller APIs

Name

usb_calc_bus time — approximate periodic transaction time in nanoseconds

Synopsis

long usb calc_bus_time (int speed, int is_input, int isoc, int byte-
count);

Arguments
speed from dev->speed; USB_SPEED {LOW,FULL,HIGH}

i s_i nput true iff the transaction sends data to the host
i soc true for isochronous transactions, false for interrupt ones

byt ecount how many bytesin the transaction.

Return

Approximate bus time in nanoseconds for a periodic transaction.

Note

See USB 2.0 spec section 5.11.3; only periodic transfers need to be scheduled in software, this function
isonly used for such scheduling.

129

Host Controller APIs

Name
usb_hed_link_urb_to ep — add an URB to its endpoint queue

Synopsis
int usb_hcd link urb_to_ep (struct usb_hcd * hcd, struct urb * urb);

Arguments

hcd host controller to which ur b was submitted

urb URB being submitted

Description

Host controller driversshould call thisroutinein their enqueue method. The HCD's private spinlock must
be held and interrupts must be disabled. The actions carried out here are required for URB submission, as
well as for endpoint shutdown and for usb_kill_urb.

Return

0 for no error, otherwise a negative error code (in which case the enqueue method must fail). If no error
occurs but enqueue fails anyway, it must call usb_hcd_unl i nk_urb_from ep before releasing
the private spinlock and returning.

130

Host Controller APIs

Name
usb_hcd_check_unlink_urb — check whether an URB may be unlinked

Synopsis

int usb_hcd_check _unlink_urb (struct usb_hcd * hcd, struct urb * urb,
int status);

Arguments
hcd host controller to which ur b was submitted
urb URB being checked for unlinkability

status error codeto storein ur b if the unlink succeeds

Description

Host controller drivers should call this routine in their dequeue method. The HCD's private spinlock
must be held and interrupts must be disabled. The actions carried out here are required for making sure
than an unlink isvalid.

Return

Ofor no error, otherwise anegative error code (in which casethedequeue method must fail). The possible
error codes are:

-EIDRM: ur b was not submitted or has already completed. The completion function may not have been
called yet.

-EBUSY: ur b has already been unlinked.

131

Host Controller APIs

Name

usb_hcd_unlink_urb_from_ep — remove an URB from its endpoint queue

Synopsis

void usb_hcd_unlink urb fromep (struct usb _hcd * hcd, struct urb *
urb);

Arguments
hcd host controller to which ur b was submitted

urb URB being unlinked

Description

Host controller drivers should call this routine before calling usb_hcd_gi veback_ur b. The HCD's
private spinlock must be held and interrupts must be disabled. The actions carried out here are required

for URB completion.

132

Host Controller APIs

Name
usb_hcd_giveback urb — return URB from HCD to device driver

Synopsis

voi d usb_hcd_gi veback_urb (struct usb_hcd * hcd, struct urb * urb, int
status);

Arguments

hcd host controller returning the URB
urb urb being returned to the USB device driver.

status completion status code for the URB.

Context

i n_interrupt

Description

This hands the URB from HCD to its USB device driver, using its completion function. The HCD has
freed al per-urb resources (and is done using urb->hcpriv). It also released all HCD locks; the device
driver won't cause problemsif it frees, modifies, or resubmits this URB.

If ur b wasunlinked, thevalueof st at us will beoverridden by ur b->unlinked. Erroneous short transfers
are detected in case the HCD hasn't checked for them.

133

Host Controller APIs

Name
usb_alloc_streams — allocate bulk endpoint stream IDs.
Synopsis

int wusb_alloc_streans (struct wusb_interface * interface, struct
usb_host _endpoint ** eps, unsigned int numeps, unsi gned int
num streans, gfp_t memflags);

Arguments
i nterface aternate setting that includes all endpoints.
eps array of endpoints that need streams.
num eps number of endpointsin the array.

num st reanms number of streamsto allocate.

mem fl ags flags hed should use to alocate memory.

Description

Sets up agroup of bulk endpointsto have num st r eans stream IDs available. Drivers may queue mul-
tiple transfers to different stream IDs, which may complete in a different order than they were queued.

Return

On success, the number of allocated streams. On failure, a negative error code.

134

Host Controller APIs

Name

usb_free streams— free bulk endpoint stream IDs.
Synopsis

int wusb free_streans (struct usb_interface * interface, struct
usb_host _endpoi nt ** eps, unsigned int numeps, gfp_t memflags);

Arguments
i nterface alternate setting that includes all endpoints.
eps array of endpoints to remove streams from.
num eps number of endpointsin the array.

mem fl ags flagshcd should use to allocate memory.

Description

Reverts a group of bulk endpoints back to not using stream |IDs. Can fail if we are given bad arguments,
or HCD is broken.

Return

0 on success. On failure, a negative error code.

135

Host Controller APIs

Name
usb_hcd_resume _root_hub — called by HCD to resume its root hub

Synopsis

voi d usb_hcd_resume_root _hub (struct usb_hcd * hcd);

Arguments

hcd host controller for this root hub

Description

The USB host controller callsthisfunction whenitsroot hub is suspended (with the remote wakeup feature
enabled) and aremote wakeup request is received. The routine submits aworkqueue request to resume the
root hub (that is, manage its downstream ports again).

136

Host Controller APIs

Name

usb_bus start_enum — start immediate enumeration (for OTG)
Synopsis

int usb_bus_start_enum (struct usb_bus * bus, unsigned port_num;
Arguments

bus the bus (must use hcd framework)

port_num 1-based number of port; usually bus->otg_port

Context

i n_i nterrupt

Description
Starts enumeration, with an immediate reset followed later by hub_wq identifying and possibly config-

uring the device. This is needed by OTG controller drivers, where it helps meet HNP protocol timing
requirements for starting a port reset.

Return

0if successful.

137

Host Controller APIs

Name
usb_hcd_irg — hook IRQsto HCD framework (bus glue)

Synopsis
irqreturn_t usb_hcd_irq (int irqg, void * _ hcd);
Arguments

irq the IRQ being raised

__hcd pointer to the HCD whose IRQ is being signaled

Description

If the controller isn't HALTed, callsthe driver'sirg handler. Checks whether the controller is now dead.

Return

| RQ_HANDLEDIf the IRQ was handled. | RQ_NONE otherwise.

138

Host Controller APIs

Name
usb_hc_died — report abnormal shutdown of a host controller (bus glue)

Synopsis

void usb_hc_died (struct usb_hcd * hcd);

Arguments

hcd pointer to the HCD representing the controller

Description

Thisis called by bus glue to report a USB host controller that died while operations may still have been
pending. It's called automatically by the PCI glue, so only glue for non-PCl busses should need to call it.

Only call this function with the primary HCD.

139

Host Controller APIs

Name
usb_create shared hcd — create and initialize an HCD structure

Synopsis

struct usb_hcd * usb_create_shared_hcd (const struct hc_driver * dri-
ver, struct device * dev, const char * bus _nanme, struct usb _hcd *

primary_hcd);
Arguments
driver HC driver that will use this hcd
dev devicefor this HC, stored in hcd->self.controller
bus_nane valueto store in hcd->self.bus _name

primary_hcd apointer to the usb_hcd structure that is sharing the PCI device. Only alocate certain
resources for the primary HCD

Context
lin_interrupt
Description

Allocate astruct usb_hcd, with extra space at the end for the HC driver's private data. I nitialize the generic
members of the hed structure.

Return

On success, a pointer to the created and initialized HCD structure. On failure (e.g. if memory is unavail-
able), NULL.

140

Host Controller APIs

Name
usb_create_hcd — create and initialize an HCD structure

Synopsis

struct usb_hcd * usb_create_hcd (const struct hc_driver * driver, struct
device * dev, const char * bus_nane);

Arguments

driver HC driver that will use this hed
dev devicefor this HC, stored in hcd->self.controller
bus_name vaueto storein hcd->self.bus name

Context

lin_interrupt

Description

Allocate astruct usb_hcd, with extra space at the end for the HC driver's private data. I nitialize the generic
members of the hed structure.

Return

On success, a pointer to the created and initialized HCD structure. On failure (e.g. if memory is unavail-
able), NULL.

141

Host Controller APIs

Name
usb_add_hcd — finish generic HCD structure initialization and register
Synopsis
int usb_add_hcd (struct usb_hcd * hcd, unsigned int irgnum unsigned
long irqflags);
Arguments
hcd the usb_hcd structure to initialize
i rgnum Interrupt line to alocate

i rqfl ags Interrupt typeflags
Finish the remaining parts of generic HCD initialization

allocate the buffers of consistent memory, register the bus, request the IRQ line, and call the driver's
reset andstart routines.

142

Host Controller APIs

Name

usb_remove_hcd — shutdown processing for generic HCDs

Synopsis

voi d usb_renove_hcd (struct usb_hcd * hcd);

Arguments

hcd theusb hcd structure to remove

Context

lin_interrupt

Description

Disconnectsthe root hub, then reversesthe effectsof usb_add_hcd, invoking the HCD'sst op method.

143

Host Controller APIs

Name
usb_hcd _pci_probe — initialize PCl-based HCDs

Synopsis
i nt usb_hcd_pci _probe (struct pci_dev * dev, const struct pci_device_id
*id);

Arguments

dev USB Host Controller being probed

id pcihotplug id connecting controller to HCD framework
Context

lin_interrupt
Description

Allocates basic PCI resources for this USB host controller, and then invokes the st ar t method for the
HCD associated with it through the hotplug entry's driver_data.

Store this function in the HCD's struct pci_driver aspr obe.

Return

0if successful.

144

Host Controller APIs

Name
usb_hcd_pci_remove — shutdown processing for PCl-based HCDs

Synopsis
voi d usb_hcd_pci _renpve (struct pci_dev * dev);

Arguments

dev USB Host Controller being removed

Context

lin_interrupt

Description

Reversestheeffect of usb_hcd_pci _pr obe, firstinvokingtheHCD'sst op method. Itisalwayscalled
from athread context, normally “rmmod”, “apmd”, or something similar.

Store this function in the HCD's struct pci_driver asr enpve.

145

Host Controller APIs

Name
usb_hed_pci_shutdown — shutdown host controller

Synopsis
voi d usb_hcd_pci _shutdown (struct pci_dev * dev);

Arguments

dev USB Host Controller being shutdown

146

Host Controller APIs

Name

hed_buffer_create — initialize buffer pools
Synopsis
int hcd_buffer_create (struct usb_hcd * hcd);

Arguments

hcd the buswhose buffer pools areto beinitialized

Context
lin_interrupt
Description

Call this as part of initializing a host controller that uses the dma memory allocators. It initializes some
pools of dma-coherent memory that will be shared by all drivers using that controller.

Call hcd_buf f er _dest r oy to clean up after using those pools.

Return

0 if successful. A negative errno value otherwise.

147

Host Controller APIs

Name
hed_buffer_destroy — deallocate buffer pools

Synopsis

voi d hcd_buffer_destroy (struct usb_hcd * hcd);

Arguments

hcd the buswhose buffer pools are to be destroyed

Context

lin_interrupt

Description

This frees the buffer pools created by hcd_buf f er _create.

148

Chapter 7. The USB Filesystem (usbfs)

This chapter presents the Linux usbfs. You may prefer to avoid writing new kernel code for your USB
driver; that's the problem that usbfs set out to solve. User mode device drivers are usually packaged as
applicationsor libraries, and may use usbfsthrough some programming library that wrapsit. Such libraries
include libusb [http://libusb.sourceforge.net] for C/C++, and jUSB [http://jUSB.sourceforge.net] for Java.

Unfinished

This particular documentation is incomplete, especially with respect to the asynchronous mode.
Asof kernel 2.5.66 the code and this (new) documentation need to be cross-reviewed.

Configure usbfsinto Linux kernels by enabling the USB filesystem option (CONFIG_USB_DEVICEFS),
and you get basic support for user mode USB device drivers. Until relatively recently it was often (confus-
ingly) called usbdevfs although it wasn't solving what devfs was. Every USB device will appear in usbfs,
regardless of whether or not it has akernel driver.

What files are in "usbfs"?

Conventionally mounted at / pr oc/ bus/ ush, usbfs features include;

» / proc/ bus/ usb/ devi ces ... atext file showing each of the USB devices on known to the kernel,
and their configuration descriptors. Y ou can also poll() thisto learn about new devices.

» / proc/ bus/ usb/ BBB/ DDD... magic files exposing the each device's configuration descriptors, and
supporting a series of ioctls for making device requests, including 1/0 to devices. (Purely for access
by programs.)

Each bus is given a number (BBB) based on when it was enumerated; within each bus, each device is
given asimilar number (DDD). Those BBB/DDD pathsare not "stable" identifiers; expect them to change
even if you always leave the devices plugged in to the same hub port. Don't even think of saving thesein
application configuration files. Stableidentifiers are available, for user mode applications that want to use
them. HID and networking devices expose these stable IDs, so that for example you can be sure that you
told the right UPS to power down its second server. "usbfs" doesn't (yet) expose those IDs.

Mounting and Access Control

Thereareanumber of mount optionsfor usbfs, which will be of most interest to you if you need to override
the default access control policy. That policy is that only root may read or write device files (/ pr oc/
bus/ BBB/ DDD) although anyone may read the devi ces or dri ver s files. I/O requests to the device
aso need the CAP_SYS RAWIO capability,

Thesignificance of that isthat by default, all user mode device drivers need super-user privileges. You can
change modes or ownership in adriver setup when the device hotplugs, or maye just start the driver right
then, as a privileged server (or some activity within one). That's the most secure approach for multi-user
systems, but for single user systems ("trusted” by that user) it's more convenient just to grant everyone all
access (using the devmode= 0666 option) so the driver can start whenever it's needed.

The mount options for usbfs, usable in /etc/fstab or in command line invocations of mount, are:

busgid=NNNNN Controls the GID used for the /proc/bus/usb/BBB directories. (Default: 0)

149

http://libusb.sourceforge.net
http://libusb.sourceforge.net
http://jUSB.sourceforge.net
http://jUSB.sourceforge.net

The USB Filesystem (usbfs)

busmode=MMM Controls the file mode used for the /proc/bus/ush/BBB directories. (Default: 0555)
busuid=NNNNN Controls the UID used for the /proc/bus/ush/BBB directories. (Default: 0)
devgid=NNNNN Controls the GID used for the /proc/bus/usb/BBB/DDD files. (Default: 0)
devmode=MMM Controls the file mode used for the /proc/bus/usb/BBB/DDD files. (Default: 0644)
devuid=NNNNN Controls the UID used for the /proc/bus/usbt/BBB/DDD files. (Default: 0)
listgid=NNNNN Controls the GID used for the /proc/bus/usb/devices and driversfiles. (Default: 0)

listmode=MMM Controlsthefile mode used for the /proc/bus/ush/devices and driversfiles. (Default:
0444)

listuid=NNNNN Controls the UID used for the /proc/bus/usb/devices and driversfiles. (Default: 0)

Note that many Linux distributions hard-wire the mount options for usbfs in their init scripts, such as/
etc/rc.d/rc. sysinit,rather than making it easy to set this per-system policy in/ et ¢/ f st ab.

/proc/bus/usb/devices

This file is handy for status viewing tools in user mode, which can scan the text format and ignore
most of it. More detailed device status (including class and vendor status) is available from device-spe-
cific files. For information about the current format of this file, see the Documnent at i on/ ush/
proc_usb_i nfo. txt fileinyour Linux kernel sources.

Thisfile, in combination with the poll() system call, can also be used to detect when devices are added
or removed:

int fd;
struct pollfd pfd;

fd = open("/proc/bus/usb/devices", O RDONLY);

pfd = { fd, POLLIN, 0 };

for (;:) {

[* The first time through, this call will return inmediately. */
pol I (&pfd, 1, -1);

/* To see what's changed, conpare the file's previous and current
contents or scan the filesystem (Scanning is nore precise.) */

}

Note that this behavior is intended to be used for informational and debug purposes. It would be more
appropriateto use programs such asudev or HAL toinitializeadevice or start auser-mode hel per program,
for instance.

/proc/bus/usb/BBB/DDD

Use these filesin one of these basic ways:

They can be read, producing first the device descriptor (18 bytes) and then the descriptors for the current
configuration. Seethe USB 2.0 spec for detail s about those binary dataformats. Y ou'll need to convert most
multibyte values from little endian format to your native host byte order, although afew of thefieldsin the

150

The USB Filesystem (usbfs)

device descriptor (both of the BCD-encoded fields, and the vendor and product |Ds) will be byteswapped
for you. Note that configuration descriptors include descriptors for interfaces, altsettings, endpoints, and
maybe additional class descriptors.

Perform USB operations using ioctl() requests to make endpoint I/O requests (synchronously or asynchro-
nously) or manage the device. These requests need the CAP_SYS RAWIO capability, aswell asfilesys-
tem access permissions. Only one ioctl request can be made on one of these device files at atime. This
means that if you are synchronously reading an endpoint from one thread, you won't be able to write to
a different endpoint from another thread until the read completes. This works for half duplex protocals,
but otherwise you'd use asynchronous i/o requests.

Life Cycle of User Mode Drivers

Such a driver first needs to find a device file for a device it knows how to handle. Maybe it was told
about it becausea/ sbi n/ hot pl ug event handling agent chose that driver to handle the new device. Or
maybe it's an application that scans all the /proc/bus/usb device files, and ignores most devices. In either
case, it should r ead() all the descriptors from the device file, and check them against what it knows
how to handle. It might just reject everything except a particular vendor and product ID, or need a more
complex policy.

Never assume there will only be one such device on the system at atime! If your code can't handle more
than one device at atime, at least detect when there's more than one, and have your users choose which
deviceto use.

Onceyour user mode driver knowswhat deviceto useg, it interactswithitin either of two styles. Thesimple
style isto make only control requests; some devices don't need more complex interactions than those. (An
example might be software using vendor-specific control requests for some initialization or configuration
tasks, with akernel driver for the rest.)

More likely, you need a more complex style driver: one using non-control endpoints, reading or writing
data and claiming exclusive use of an interface. Bulk transfers are easiest to use, but only their sibling
interrupt transfers work with low speed devices. Both interrupt and isochronous transfers offer service
guarantees because their bandwidth is reserved. Such "periodic” transfers are awkward to use through
usbfs, unless you're using the asynchronous calls. However, interrupt transfers can also be used in a syn-
chronous "one shot" style.

Your user-mode driver should never need to worry about cleaning up request state when the device is

disconnected, athough it should close its open file descriptors as soon as it starts seeing the ENODEV
errors.

The ioctl() Requests

To usethese ioctls, you need to include the following headers in your userspace program:

#i ncl ude <l inux/usb. h>
#i ncl ude <l inux/usbdevice_fs. h>
#i ncl ude <asm byt eorder. h>

The standard USB device model requests, from " Chapter 9" of the USB 2.0 specification, are automatically
included from the <l i nux/ usb/ ch9. h> header.

Unless noted otherwise, the ioctl requests described here will update the modification time on the usbfs
file to which they are applied (unless they fail). A return of zero indicates success; otherwise, a standard

151

The USB Filesystem (usbfs)

USB error code is returned. (These are documented in Docunent at i on/ usb/ error - codes. t xt
in your kernel sources.)

Each of these files multiplexes access to several 1/0 streams, one per endpoint. Each device has one con-
trol endpoint (endpoint zero) which supports alimited RPC style RPC access. Devices are configured by
hub_wq (in the kernel) setting a device-wide configuration that affects thingslike power consumption and
basic functionality. The endpoints are part of USB interfaces, which may have altsettings affecting things
like which endpoints are available. Many devices only have asingle configuration and interface, so drivers
for them will ignore configurations and altsettings.

Management/Status Requests

A number of usbfsrequests don't deal very directly with device I/O. They mostly relate to device manage-
ment and status. These are all synchronous requests.

USBDEVFS CLAIMINTERFACE Thisis used to force ushfsto claim a specific interface, which has
not previously been claimed by usbfs or any other kernel driver.
Theioctl parameter isan integer holding the number of theinterface
(bInterfaceNumber from descriptor).

Note that if your driver doesn't claim an interface before trying to
use one of its endpoints, and no other driver has bound to it, then
the interface is automatically claimed by usbfs.

This claim will be released by a RELEASEINTERFACE ioctl, or
by closing the file descriptor. File modification timeis not updated
by this request.

USBDEVFS CONNECTINFO Says whether the device islowspeed. Theioctl parameter pointsto
astructure like this:

struct usbdevfs_connectinfo {
unsi gned i nt devnum
unsi gned char sl ow,

H
File modification timeis not updated by this request.

You can't tell whether a"not slow" deviceisconnected at high speed
(480 MBit/sec) or just full speed (12 MBit/sec). Y ou should know
the devnum value aready, it's the DDD value of the device file
name.

USBDEVFS GETDRIVER Returns the name of the kernel driver bound to a given interface (a
string). Parameter is a pointer to this structure, which is modified:

struct usbdevfs_getdriver {
unsigned int interface;
char dri ver [USBDEVFS_MAXDRI VERNAME + 1] ;

b
File modification timeis not updated by this request.

USBDEVFS IOCTL Passes a request from userspace through to a kernel driver that has
anioctl entry in the struct usb_driver it registered.

152

The USB Filesystem (usbfs)

struct usbdevfs_ioctl {

int i fno;
i nt i octl _code;
voi d *dat a;
b
/* user node call |ooks like this.

* 'request' becones the driver->ioctl() 'code' paraneter
* the size of '"paraml is encoded in 'request’', and that
* is copied to or fromthe driver->ioctl() 'buf' paranet

*/
static int
usbdev_ioctl (int fd, int ifno, unsigned request, void *|
{
struct usbdevfs_ioctl wrapper;
wr apper.ifno = ifno;
wr apper.ioctl_code = request;
wr apper . data = param
return ioctl (fd, USBDEVFS | CCTL, &w apper);
}

File modification timeis not updated by this request.

This request lets kernel drivers talk to user mode code through
filesystem operations even when they don't create a character or
block special device. It'salso been used to do thingslike ask devices
what device special file should be used. Two pre-defined ioctls are
used to disconnect and reconnect kernel drivers, so that user mode
code can completely manage binding and configuration of devices.

USBDEVFS RELEASEINTERFACEThis is used to release the claim usbfs made on interface, either
implicitly or because of aUSBDEVFS_CLAIMINTERFACE call,
before the file descriptor is closed. The ioctl parameter is an inte-
ger holding the number of the interface (blnterfaceNumber from
descriptor); File modification time is not updated by this request.

Warning

No security check is made to ensure that the task which
madethe claimisthe onewhichisreleasing it. Thismeans
that user mode driver may interfere other ones.

USBDEVFS RESETEP Resets the data toggle value for an endpoint (bulk or interrupt) to
DATAQO. Theioctl parameter isaninteger endpoint number (1to 15,
asidentified in the endpoint descriptor), with USB_DIR_IN added
if the device's endpoint sends data to the host.

Warning

Avoid using this request. It should probably be re-
moved. Using it typically means the device and driver
will lose toggle synchronization. If you really lost syn-

153

The USB Filesystem (usbfs)

chronization, you likely need to completely handshake
with the device, using a request like CLEAR_HALT or
SET_INTERFACE.

Synchronous I/O Support

Synchronous requestsinvolve the kernel blocking until the user mode request compl etes, either by finish-
ing successfully or by reporting an error. In most cases this is the simplest way to use usbfs, although as
noted above it does prevent performing 1/0 to more than one endpoint at atime.

USBDEVFS BULK Issuesabulk read or writerequest to the device. Theioctl parameter
is apointer to this structure:

struct usbdevfs_ bul ktransfer {
unsi gned int ep;
unsigned int len;
unsigned int tinmeout; /* in mlliseconds
voi d *dat a;

b

The"ep" value identifies a bulk endpoint number (1 to 15, asiden-
tified in an endpoint descriptor), masked with USB_DIR_IN when
referring to an endpoint which sends data to the host from the de-
vice. The length of the data buffer is identified by "len"; Recent
kernels support requests up to about 128K Bytes. FIXME say how
read length is returned, and how short reads are handled..

USBDEVFS CLEAR HALT Clears endpoint halt (stall) and resets the endpoint toggle. Thisis
only meaningful for bulk or interrupt endpoints. The ioctl parame-
ter is an integer endpoint number (1 to 15, as identified in an end-
point descriptor), masked with USB_DIR_IN when referring to an
endpoint which sends data to the host from the device.

Usethison bulk or interrupt endpointswhich have stalled, returning
-EPIPE status to a data transfer request. Do not issue the control
request directly, since that could invalidate the host's record of the
datatoggle.

USBDEVFS CONTROL Issues a control request to the device. Theioctl parameter pointsto
astructure like this:

struct usbdevfs ctrltransfer {
__u8 bRequest Type;
__u8 bRequest ;
__ule wval ue;
__ulé w ndex;
__ulé wiength;
_u32 tinmeout; /* in mlliseconds */
voi d *dat a;

}s

The first eight bytes of this structure are the contents of the SET-
UP packet to be sent to the device; see the USB 2.0 specification
for details. The bRequestType value is composed by combining a
USB_TYPE_* value, aUSB_DIR_* value, and a USB_RECIP_*

154

The USB Filesystem (usbfs)

value (from <linux/usb.h>). If wLength is nonzero, it describes
the length of the data buffer, which is either written to the device
(USB_DIR_OUT) or read from the device (USB_DIR_IN).

At thiswriting, you can't transfer more than 4 KBytes of datato or
from a device; usbfs has a limit, and some host controller drivers
have alimit. (That's not usually a problem.) Also there's no way to
say it'snot OK to get a short read back from the device.

USBDEVFS RESET DoesaUSB level devicereset. Theioctl parameter isignored. After
the reset, this rebinds al device interfaces. File modification time
is not updated by this request.

Warning

Avoid using this call until some usbcore bugs get fixed,
since it does not fully synchronize device, interface, and
driver (not just usbfs) state.

USBDEVFS SETINTERFACE Sets the alternate setting for an interface. The ioctl parameter is a
pointer to astructure like this:

struct usbdevfs_setinterface {
unsigned int interface;
unsigned int altsetting;

H
File modification timeis not updated by this request.

Those struct members are from some interface descriptor apply-
ing to the current configuration. The interface number isthe binter-
faceNumber value, and the altsetting number is the bAlternateSet-
ting value. (This resets each endpoint in the interface.)

USBDEVFS SETCONFIGURATIONSssues the usb_set _confi gur ati on call for the device. The
parameter is an integer holding the number of a configuration
(bConfigurationValue from descriptor). File modification time is
not updated by this request.

Warning

Avoid using this call until some usbcore bugs get fixed,
since it does not fully synchronize device, interface, and
driver (not just usbfs) state.

Asynchronous I/O Support

As mentioned above, there are situations where it may be important to initiate concurrent operations from
user mode code. Thisis particularly important for periodic transfers (interrupt and isochronous), but it can
be used for other kinds of USB requests too. In such cases, the asynchronous requests described here are
essential. Rather than submitting one request and having the kernel block until it completes, the blocking
is separate.

These requests are packaged into a structure that resembles the URB used by kernel device drivers. (No
POSIX Async I/0O support here, sorry.) It identifies the endpoint type (USBDEVFS URB_TYPE_*), end-

155

The USB Filesystem (usbfs)

point (number, masked with USB_DIR_IN as appropriate), buffer and length, and a user "context" value
serving to uniquely identify each request. (It's usually a pointer to per-request data.) Flags can modify
requests (not as many as supported for kernel drivers).

Each request can specify arealtime signal number (between SIGRTMIN and SIGRTMAX, inclusive) to
request asignal be sent when the request compl etes.

When usbfs returns these urbs, the status value is updated, and the buffer may have been modified. Except
for isochronous transfers, the actual_length is updated to say how many bytes were transferred; if the
USBDEVFS URB_DISABLE_SPD flagisset ("short packetsare not OK"), if fewer byteswereread than
were reguested then you get an error report.

struct usbdevfs_iso_packet _desc {

unsi gned i nt | engt h;
unsi gned i nt act ual _I engt h;
unsi gned i nt st at us;
b
struct usbdevfs_urb {
unsi gned char type;
unsi gned char endpoi nt;
i nt st at us;
unsi gned i nt fl ags;
voi d *puf fer;
i nt buf f er _| engt h;
i nt act ual _I engt h;
i nt start _franme;
i nt nunber _of packets;
i nt error_count;
unsi gned i nt si gnr
voi d *user cont ext ;
struct usbdevfs_iso_packet_desc iso_frane_desc[];
b

For these asynchronous requests, the file modification time reflects when the request was initiated. This
contrasts with their use with the synchronous requests, where it reflects when requests complete.

USBDEVFS DISCARDURB TBSFile modification time is not updated by this request.

USBDEVFS DISCSIGNAL TBSFile modification timeis not updated by this request.

USBDEVFS REAPURB TBSFile modification timeis not updated by this request.

USBDEVFS REAPURBNDELAYTBS File modification time is not updated by this request.

USBDEVFS SUBMITURB TBS

156

	The Linux-USB Host Side API
	Table of Contents
	Chapter 1. Introduction to USB on Linux
	Chapter 2. USB Host-Side API Model
	Chapter 3. USB-Standard Types
	usb_speed_string
	usb_state_string

	Chapter 4. Host-Side Data Types and Macros
	struct usb_host_endpoint
	struct usb_interface
	struct usb_interface_cache
	struct usb_host_config
	struct usb_device
	usb_hub_for_each_child
	usb_interface_claimed
	usb_make_path
	USB_DEVICE
	USB_DEVICE_VER
	USB_DEVICE_INTERFACE_CLASS
	USB_DEVICE_INTERFACE_PROTOCOL
	USB_DEVICE_INTERFACE_NUMBER
	USB_DEVICE_INFO
	USB_INTERFACE_INFO
	USB_DEVICE_AND_INTERFACE_INFO
	USB_VENDOR_AND_INTERFACE_INFO
	struct usbdrv_wrap
	struct usb_driver
	struct usb_device_driver
	struct usb_class_driver
	module_usb_driver
	struct urb
	usb_fill_control_urb
	usb_fill_bulk_urb
	usb_fill_int_urb
	usb_urb_dir_in
	usb_urb_dir_out
	struct usb_sg_request

	Chapter 5. USB Core APIs
	usb_init_urb
	usb_alloc_urb
	usb_free_urb
	usb_get_urb
	usb_anchor_urb
	usb_unanchor_urb
	usb_submit_urb
	usb_unlink_urb
	usb_kill_urb
	usb_poison_urb
	usb_block_urb
	usb_kill_anchored_urbs
	usb_poison_anchored_urbs
	usb_unpoison_anchored_urbs
	usb_unlink_anchored_urbs
	usb_anchor_suspend_wakeups
	usb_anchor_resume_wakeups
	usb_wait_anchor_empty_timeout
	usb_get_from_anchor
	usb_scuttle_anchored_urbs
	usb_anchor_empty
	usb_control_msg
	usb_interrupt_msg
	usb_bulk_msg
	usb_sg_init
	usb_sg_wait
	usb_sg_cancel
	usb_get_descriptor
	usb_string
	usb_get_status
	usb_clear_halt
	usb_reset_endpoint
	usb_set_interface
	usb_reset_configuration
	usb_driver_set_configuration
	usb_register_dev
	usb_deregister_dev
	usb_driver_claim_interface
	usb_driver_release_interface
	usb_match_id
	usb_register_device_driver
	usb_deregister_device_driver
	usb_register_driver
	usb_deregister
	usb_enable_autosuspend
	usb_disable_autosuspend
	usb_autopm_put_interface
	usb_autopm_put_interface_async
	usb_autopm_put_interface_no_suspend
	usb_autopm_get_interface
	usb_autopm_get_interface_async
	usb_autopm_get_interface_no_resume
	usb_find_alt_setting
	usb_ifnum_to_if
	usb_altnum_to_altsetting
	usb_find_interface
	usb_for_each_dev
	usb_alloc_dev
	usb_get_dev
	usb_put_dev
	usb_get_intf
	usb_put_intf
	usb_lock_device_for_reset
	usb_get_current_frame_number
	usb_alloc_coherent
	usb_free_coherent
	usb_buffer_map
	usb_buffer_dmasync
	usb_buffer_unmap
	usb_buffer_map_sg
	usb_buffer_dmasync_sg
	usb_buffer_unmap_sg
	usb_hub_clear_tt_buffer
	usb_set_device_state
	usb_root_hub_lost_power
	usb_reset_device
	usb_queue_reset_device
	usb_hub_find_child

	Chapter 6. Host Controller APIs
	usb_calc_bus_time
	usb_hcd_link_urb_to_ep
	usb_hcd_check_unlink_urb
	usb_hcd_unlink_urb_from_ep
	usb_hcd_giveback_urb
	usb_alloc_streams
	usb_free_streams
	usb_hcd_resume_root_hub
	usb_bus_start_enum
	usb_hcd_irq
	usb_hc_died
	usb_create_shared_hcd
	usb_create_hcd
	usb_add_hcd
	usb_remove_hcd
	usb_hcd_pci_probe
	usb_hcd_pci_remove
	usb_hcd_pci_shutdown
	hcd_buffer_create
	hcd_buffer_destroy

	Chapter 7. The USB Filesystem (usbfs)
	What files are in "usbfs"?
	Mounting and Access Control
	/proc/bus/usb/devices
	/proc/bus/usb/BBB/DDD
	Life Cycle of User Mode Drivers
	The ioctl() Requests
	Management/Status Requests
	Synchronous I/O Support
	Asynchronous I/O Support

