
Writing s390 channel device drivers

Cornelia Huck <cornelia.huck@de.ibm.com>

Writing s390 channel device drivers
by Cornelia Huck
Copyright © 2007 IBM Corp.

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the file COPYING in the source distribution of Linux.

iii

Table of Contents
1. Introduction .. 1
2. The ccw bus ... 2

I/O functions for channel-attached devices ... 2
ccw devices .. 15
The channel-measurement facility .. 48

3. The ccwgroup bus .. 54
ccw group devices ... 54

4. Generic interfaces .. 64
register_adapter_interrupt .. 65
unregister_adapter_interrupt ... 66
airq_iv_create ... 67
airq_iv_release .. 68
airq_iv_alloc ... 69
airq_iv_free .. 70
airq_iv_scan ... 71

1

Chapter 1. Introduction
This document describes the interfaces available for device drivers that drive s390 based channel attached
I/O devices. This includes interfaces for interaction with the hardware and interfaces for interacting with
the common driver core. Those interfaces are provided by the s390 common I/O layer.

The document assumes a familarity with the technical terms associated with the s390 channel I/O archi-
tecture. For a description of this architecture, please refer to the "z/Architecture: Principles of Operation",
IBM publication no. SA22-7832.

While most I/O devices on a s390 system are typically driven through the channel I/O mechanism described
here, there are various other methods (like the diag interface). These are out of the scope of this document.

Some additional information can also be found in the kernel source under Documentation/s390/dri-
ver-model.txt.

2

Chapter 2. The ccw bus
The ccw bus typically contains the majority of devices available to a s390 system. Named after the channel
command word (ccw), the basic command structure used to address its devices, the ccw bus contains so-
called channel attached devices. They are addressed via I/O subchannels, visible on the css bus. A device
driver for channel-attached devices, however, will never interact with the subchannel directly, but only
via the I/O device on the ccw bus, the ccw device.

I/O functions for channel-attached devices
Some hardware structures have been translated into C structures for use by the common I/O layer and
device drivers. For more information on the hardware structures represented here, please consult the Prin-
ciples of Operation.

The ccw bus

3

Name
struct ccw1 — channel command word

Synopsis

struct ccw1 {
 __u8 cmd_code;
 __u8 flags;
 __u16 count;
 __u32 cda;
};

Members

cmd_code command code

flags flags, like IDA addressing, etc.

count byte count

cda data address

Description

The ccw is the basic structure to build channel programs that perform operations with the device or the
control unit. Only Format-1 channel command words are supported.

The ccw bus

4

Name
struct erw — extended report word

Synopsis

struct erw {
 __u32 res0:3;
 __u32 auth:1;
 __u32 pvrf:1;
 __u32 cpt:1;
 __u32 fsavf:1;
 __u32 cons:1;
 __u32 scavf:1;
 __u32 fsaf:1;
 __u32 scnt:6;
 __u32 res16:16;
};

Members

res0 reserved

auth authorization check

pvrf path-verification-required flag

cpt channel-path timeout

fsavf failing storage address validity flag

cons concurrent sense

scavf secondary ccw address validity flag

fsaf failing storage address format

scnt sense count, if cons == 1

res16 reserved

The ccw bus

5

Name
struct erw_eadm — EADM Subchannel extended report word

Synopsis

struct erw_eadm {
 __u32 b:1;
 __u32 r:1;
};

Members

b aob error

r arsb error

The ccw bus

6

Name
struct sublog — subchannel logout area

Synopsis

struct sublog {
 __u32 res0:1;
 __u32 esf:7;
 __u32 lpum:8;
 __u32 arep:1;
 __u32 fvf:5;
 __u32 sacc:2;
 __u32 termc:2;
 __u32 devsc:1;
 __u32 serr:1;
 __u32 ioerr:1;
 __u32 seqc:3;
};

Members

res0 reserved

esf extended status flags

lpum last path used mask

arep ancillary report

fvf field-validity flags

sacc storage access code

termc termination code

devsc device-status check

serr secondary error

ioerr i/o-error alert

seqc sequence code

The ccw bus

7

Name
struct esw0 — Format 0 Extended Status Word (ESW)

Synopsis

struct esw0 {
 struct sublog sublog;
 struct erw erw;
 __u32 faddr[2];
 __u32 saddr;
};

Members

sublog subchannel logout

erw extended report word

faddr[2] failing storage address

saddr secondary ccw address

The ccw bus

8

Name
struct esw1 — Format 1 Extended Status Word (ESW)

Synopsis

struct esw1 {
 __u8 zero0;
 __u8 lpum;
 __u16 zero16;
 struct erw erw;
 __u32 zeros[3];
};

Members

zero0 reserved zeros

lpum last path used mask

zero16 reserved zeros

erw extended report word

zeros[3] three fullwords of zeros

The ccw bus

9

Name
struct esw2 — Format 2 Extended Status Word (ESW)

Synopsis

struct esw2 {
 __u8 zero0;
 __u8 lpum;
 __u16 dcti;
 struct erw erw;
 __u32 zeros[3];
};

Members

zero0 reserved zeros

lpum last path used mask

dcti device-connect-time interval

erw extended report word

zeros[3] three fullwords of zeros

The ccw bus

10

Name
struct esw3 — Format 3 Extended Status Word (ESW)

Synopsis

struct esw3 {
 __u8 zero0;
 __u8 lpum;
 __u16 res;
 struct erw erw;
 __u32 zeros[3];
};

Members

zero0 reserved zeros

lpum last path used mask

res reserved

erw extended report word

zeros[3] three fullwords of zeros

The ccw bus

11

Name
struct esw_eadm — EADM Subchannel Extended Status Word (ESW)

Synopsis

struct esw_eadm {
 __u32 sublog;
 struct erw_eadm erw;
};

Members

sublog subchannel logout

erw extended report word

The ccw bus

12

Name
struct irb — interruption response block

Synopsis

struct irb {
 union scsw scsw;
 union esw;
 __u8 ecw[32];
};

Members

scsw subchannel status word

esw extended status word

ecw[32] extended control word

Description

The irb that is handed to the device driver when an interrupt occurs. For solicited interrupts, the common
I/O layer already performs checks whether a field is valid; a field not being valid is always passed as 0.
If a unit check occurred, ecw may contain sense data; this is retrieved by the common I/O layer itself if
the device doesn't support concurrent sense (so that the device driver never needs to perform basic sene
itself). For unsolicited interrupts, the irb is passed as-is (expect for sense data, if applicable).

The ccw bus

13

Name
struct ciw — command information word (CIW) layout

Synopsis

struct ciw {
 __u32 et:2;
 __u32 reserved:2;
 __u32 ct:4;
 __u32 cmd:8;
 __u32 count:16;
};

Members

et entry type

reserved reserved bits

ct command type

cmd command code

count command count

The ccw bus

14

Name
struct ccw_dev_id — unique identifier for ccw devices

Synopsis

struct ccw_dev_id {
 u8 ssid;
 u16 devno;
};

Members

ssid subchannel set id

devno device number

Description

This structure is not directly based on any hardware structure. The hardware identifies a device by its
device number and its subchannel, which is in turn identified by its id. In order to get a unique identifier
for ccw devices across subchannel sets, struct ccw_dev_id has been introduced.

The ccw bus

15

Name
ccw_dev_id_is_equal — compare two ccw_dev_ids

Synopsis

int ccw_dev_id_is_equal (struct ccw_dev_id * dev_id1, struct ccw_dev_id
* dev_id2);

Arguments

dev_id1 a ccw_dev_id

dev_id2 another ccw_dev_id

Returns

1 if the two structures are equal field-by-field, 0 if not.

Context

any

ccw devices
Devices that want to initiate channel I/O need to attach to the ccw bus. Interaction with the driver core is
done via the common I/O layer, which provides the abstractions of ccw devices and ccw device drivers.

The functions that initiate or terminate channel I/O all act upon a ccw device structure. Device drivers
must not bypass those functions or strange side effects may happen.

The ccw bus

16

Name
struct ccw_device — channel attached device

Synopsis

struct ccw_device {
 spinlock_t * ccwlock;
 struct ccw_device_id id;
 struct ccw_driver * drv;
 struct device dev;
 int online;
 void (* handler) (struct ccw_device *, unsigned long, struct irb *);
};

Members

ccwlock pointer to device lock

id id of this device

drv ccw driver for this device

dev embedded device structure

online online status of device

handler interrupt handler

Description

handler is a member of the device rather than the driver since a driver can have different interrupt
handlers for different ccw devices (multi-subchannel drivers).

The ccw bus

17

Name
struct ccw_driver — device driver for channel attached devices

Synopsis

struct ccw_driver {
 struct ccw_device_id * ids;
 int (* probe) (struct ccw_device *);
 void (* remove) (struct ccw_device *);
 int (* set_online) (struct ccw_device *);
 int (* set_offline) (struct ccw_device *);
 int (* notify) (struct ccw_device *, int);
 void (* path_event) (struct ccw_device *, int *);
 void (* shutdown) (struct ccw_device *);
 int (* prepare) (struct ccw_device *);
 void (* complete) (struct ccw_device *);
 int (* freeze) (struct ccw_device *);
 int (* thaw) (struct ccw_device *);
 int (* restore) (struct ccw_device *);
 enum uc_todo (* uc_handler) (struct ccw_device *, struct irb *);
 struct device_driver driver;
 enum interruption_class int_class;
};

Members

ids ids supported by this driver

probe function called on probe

remove function called on remove

set_online called when setting device online

set_offline called when setting device offline

notify notify driver of device state changes

path_event notify driver of channel path events

shutdown called at device shutdown

prepare prepare for pm state transition

complete undo work done in prepare

freeze callback for freezing during hibernation snapshotting

thaw undo work done in freeze

restore callback for restoring after hibernation

uc_handler callback for unit check handler

driver embedded device driver structure

The ccw bus

18

int_class interruption class to use for accounting interrupts

The ccw bus

19

Name
ccw_device_set_offline — disable a ccw device for I/O

Synopsis

int ccw_device_set_offline (struct ccw_device * cdev);

Arguments

cdev target ccw device

Description

This function calls the driver's set_offline function for cdev, if given, and then disables cdev.

Returns

0 on success and a negative error value on failure.

Context

enabled, ccw device lock not held

The ccw bus

20

Name
ccw_device_set_online — enable a ccw device for I/O

Synopsis

int ccw_device_set_online (struct ccw_device * cdev);

Arguments

cdev target ccw device

Description

This function first enables cdev and then calls the driver's set_online function for cdev, if given. If
set_online returns an error, cdev is disabled again.

Returns

0 on success and a negative error value on failure.

Context

enabled, ccw device lock not held

The ccw bus

21

Name
get_ccwdev_by_dev_id — obtain device from a ccw device id

Synopsis

struct ccw_device * get_ccwdev_by_dev_id (struct ccw_dev_id * dev_id);

Arguments

dev_id id of the device to be searched

Description

This function searches all devices attached to the ccw bus for a device matching dev_id.

Returns

If a device is found its reference count is increased and returned; else NULL is returned.

The ccw bus

22

Name
get_ccwdev_by_busid — obtain device from a bus id

Synopsis

struct ccw_device * get_ccwdev_by_busid (struct ccw_driver * cdrv, const
char * bus_id);

Arguments

cdrv driver the device is owned by

bus_id bus id of the device to be searched

Description

This function searches all devices owned by cdrv for a device with a bus id matching bus_id.

Returns

If a match is found, its reference count of the found device is increased and it is returned; else NULL is
returned.

The ccw bus

23

Name
ccw_driver_register — register a ccw driver

Synopsis

int ccw_driver_register (struct ccw_driver * cdriver);

Arguments

cdriver driver to be registered

Description

This function is mainly a wrapper around driver_register.

Returns

0 on success and a negative error value on failure.

The ccw bus

24

Name
ccw_driver_unregister — deregister a ccw driver

Synopsis

void ccw_driver_unregister (struct ccw_driver * cdriver);

Arguments

cdriver driver to be deregistered

Description

This function is mainly a wrapper around driver_unregister.

The ccw bus

25

Name
ccw_device_siosl — initiate logging

Synopsis

int ccw_device_siosl (struct ccw_device * cdev);

Arguments

cdev ccw device

Description

This function is used to invoke model-dependent logging within the channel subsystem.

The ccw bus

26

Name
ccw_device_set_options_mask — set some options and unset the rest

Synopsis

int ccw_device_set_options_mask (struct ccw_device * cdev, unsigned long
flags);

Arguments

cdev device for which the options are to be set

flags options to be set

Description

All flags specified in flags are set, all flags not specified in flags are cleared.

Returns

0 on success, -EINVAL on an invalid flag combination.

The ccw bus

27

Name
ccw_device_set_options — set some options

Synopsis

int ccw_device_set_options (struct ccw_device * cdev, unsigned long
flags);

Arguments

cdev device for which the options are to be set

flags options to be set

Description

All flags specified in flags are set, the remainder is left untouched.

Returns

0 on success, -EINVAL if an invalid flag combination would ensue.

The ccw bus

28

Name
ccw_device_clear_options — clear some options

Synopsis

void ccw_device_clear_options (struct ccw_device * cdev, unsigned long
flags);

Arguments

cdev device for which the options are to be cleared

flags options to be cleared

Description

All flags specified in flags are cleared, the remainder is left untouched.

The ccw bus

29

Name
ccw_device_is_pathgroup — determine if paths to this device are grouped

Synopsis

int ccw_device_is_pathgroup (struct ccw_device * cdev);

Arguments

cdev ccw device

Description

Return non-zero if there is a path group, zero otherwise.

The ccw bus

30

Name
ccw_device_is_multipath — determine if device is operating in multipath mode

Synopsis

int ccw_device_is_multipath (struct ccw_device * cdev);

Arguments

cdev ccw device

Description

Return non-zero if device is operating in multipath mode, zero otherwise.

The ccw bus

31

Name
ccw_device_clear — terminate I/O request processing

Synopsis

int ccw_device_clear (struct ccw_device * cdev, unsigned long intparm);

Arguments

cdev target ccw device

intparm interruption parameter; value is only used if no I/O is outstanding, otherwise the intparm
associated with the I/O request is returned

Description

ccw_device_clear calls csch on cdev's subchannel.

Returns

0 on success, -ENODEV on device not operational, -EINVAL on invalid device state.

Context

Interrupts disabled, ccw device lock held

The ccw bus

32

Name
ccw_device_start_key — start a s390 channel program with key

Synopsis

int ccw_device_start_key (struct ccw_device * cdev, struct ccw1 * cpa,
unsigned long intparm, __u8 lpm, __u8 key, unsigned long flags);

Arguments

cdev target ccw device

cpa logical start address of channel program

intparm user specific interruption parameter; will be presented back to cdev's interrupt handler. Al-
lows a device driver to associate the interrupt with a particular I/O request.

lpm defines the channel path to be used for a specific I/O request. A value of 0 will make cio
use the opm.

key storage key to be used for the I/O

flags additional flags; defines the action to be performed for I/O processing.

Description

Start a S/390 channel program. When the interrupt arrives, the IRQ handler is called, either immediately,
delayed (dev-end missing, or sense required) or never (no IRQ handler registered).

Returns

0, if the operation was successful; -EBUSY, if the device is busy, or status pending; -EACCES, if no path
specified in lpm is operational; -ENODEV, if the device is not operational.

Context

Interrupts disabled, ccw device lock held

The ccw bus

33

Name
ccw_device_start_timeout_key — start a s390 channel program with timeout and key

Synopsis

int ccw_device_start_timeout_key (struct ccw_device * cdev, struct ccw1
* cpa, unsigned long intparm, __u8 lpm, __u8 key, unsigned long flags,
int expires);

Arguments

cdev target ccw device

cpa logical start address of channel program

intparm user specific interruption parameter; will be presented back to cdev's interrupt handler. Al-
lows a device driver to associate the interrupt with a particular I/O request.

lpm defines the channel path to be used for a specific I/O request. A value of 0 will make cio
use the opm.

key storage key to be used for the I/O

flags additional flags; defines the action to be performed for I/O processing.

expires timeout value in jiffies

Description

Start a S/390 channel program. When the interrupt arrives, the IRQ handler is called, either immediately,
delayed (dev-end missing, or sense required) or never (no IRQ handler registered). This function notifies
the device driver if the channel program has not completed during the time specified by expires. If a
timeout occurs, the channel program is terminated via xsch, hsch or csch, and the device's interrupt handler
will be called with an irb containing ERR_PTR(-ETIMEDOUT).

Returns

0, if the operation was successful; -EBUSY, if the device is busy, or status pending; -EACCES, if no path
specified in lpm is operational; -ENODEV, if the device is not operational.

Context

Interrupts disabled, ccw device lock held

The ccw bus

34

Name
ccw_device_start — start a s390 channel program

Synopsis

int ccw_device_start (struct ccw_device * cdev, struct ccw1 * cpa,
unsigned long intparm, __u8 lpm, unsigned long flags);

Arguments

cdev target ccw device

cpa logical start address of channel program

intparm user specific interruption parameter; will be presented back to cdev's interrupt handler. Al-
lows a device driver to associate the interrupt with a particular I/O request.

lpm defines the channel path to be used for a specific I/O request. A value of 0 will make cio
use the opm.

flags additional flags; defines the action to be performed for I/O processing.

Description

Start a S/390 channel program. When the interrupt arrives, the IRQ handler is called, either immediately,
delayed (dev-end missing, or sense required) or never (no IRQ handler registered).

Returns

0, if the operation was successful; -EBUSY, if the device is busy, or status pending; -EACCES, if no path
specified in lpm is operational; -ENODEV, if the device is not operational.

Context

Interrupts disabled, ccw device lock held

The ccw bus

35

Name
ccw_device_start_timeout — start a s390 channel program with timeout

Synopsis

int ccw_device_start_timeout (struct ccw_device * cdev, struct ccw1 *
cpa, unsigned long intparm, __u8 lpm, unsigned long flags, int expires);

Arguments

cdev target ccw device

cpa logical start address of channel program

intparm user specific interruption parameter; will be presented back to cdev's interrupt handler. Al-
lows a device driver to associate the interrupt with a particular I/O request.

lpm defines the channel path to be used for a specific I/O request. A value of 0 will make cio
use the opm.

flags additional flags; defines the action to be performed for I/O processing.

expires timeout value in jiffies

Description

Start a S/390 channel program. When the interrupt arrives, the IRQ handler is called, either immediately,
delayed (dev-end missing, or sense required) or never (no IRQ handler registered). This function notifies
the device driver if the channel program has not completed during the time specified by expires. If a
timeout occurs, the channel program is terminated via xsch, hsch or csch, and the device's interrupt handler
will be called with an irb containing ERR_PTR(-ETIMEDOUT).

Returns

0, if the operation was successful; -EBUSY, if the device is busy, or status pending; -EACCES, if no path
specified in lpm is operational; -ENODEV, if the device is not operational.

Context

Interrupts disabled, ccw device lock held

The ccw bus

36

Name
ccw_device_halt — halt I/O request processing

Synopsis

int ccw_device_halt (struct ccw_device * cdev, unsigned long intparm);

Arguments

cdev target ccw device

intparm interruption parameter; value is only used if no I/O is outstanding, otherwise the intparm
associated with the I/O request is returned

Description

ccw_device_halt calls hsch on cdev's subchannel.

Returns

0 on success, -ENODEV on device not operational, -EINVAL on invalid device state, -EBUSY on device
busy or interrupt pending.

Context

Interrupts disabled, ccw device lock held

The ccw bus

37

Name
ccw_device_resume — resume channel program execution

Synopsis

int ccw_device_resume (struct ccw_device * cdev);

Arguments

cdev target ccw device

Description

ccw_device_resume calls rsch on cdev's subchannel.

Returns

0 on success, -ENODEV on device not operational, -EINVAL on invalid device state, -EBUSY on device
busy or interrupt pending.

Context

Interrupts disabled, ccw device lock held

The ccw bus

38

Name
ccw_device_get_ciw — Search for CIW command in extended sense data.

Synopsis

struct ciw * ccw_device_get_ciw (struct ccw_device * cdev, __u32 ct);

Arguments

cdev ccw device to inspect

ct command type to look for

Description

During SenseID, command information words (CIWs) describing special commands available to the de-
vice may have been stored in the extended sense data. This function searches for CIWs of a specified
command type in the extended sense data.

Returns

NULL if no extended sense data has been stored or if no CIW of the specified command type could be
found, else a pointer to the CIW of the specified command type.

The ccw bus

39

Name
ccw_device_get_path_mask — get currently available paths

Synopsis

__u8 ccw_device_get_path_mask (struct ccw_device * cdev);

Arguments

cdev ccw device to be queried

Returns

0 if no subchannel for the device is available, else the mask of currently available paths for the ccw device's
subchannel.

The ccw bus

40

Name
ccw_device_get_chp_desc — return newly allocated channel-path descriptor

Synopsis

struct channel_path_desc * ccw_device_get_chp_desc (struct ccw_device
* cdev, int chp_idx);

Arguments

cdev device to obtain the descriptor for

chp_idx index of the channel path

Description

On success return a newly allocated copy of the channel-path description data associated with the given
channel path. Return NULL on error.

The ccw bus

41

Name
ccw_device_get_id — obtain a ccw device id

Synopsis

void ccw_device_get_id (struct ccw_device * cdev, struct ccw_dev_id *
dev_id);

Arguments

cdev device to obtain the id for

dev_id where to fill in the values

The ccw bus

42

Name
ccw_device_tm_start_key — perform start function

Synopsis

int ccw_device_tm_start_key (struct ccw_device * cdev, struct tcw * tcw,
unsigned long intparm, u8 lpm, u8 key);

Arguments

cdev ccw device on which to perform the start function

tcw transport-command word to be started

intparm user defined parameter to be passed to the interrupt handler

lpm mask of paths to use

key storage key to use for storage access

Description

Start the tcw on the given ccw device. Return zero on success, non-zero otherwise.

The ccw bus

43

Name
ccw_device_tm_start_timeout_key — perform start function

Synopsis

int ccw_device_tm_start_timeout_key (struct ccw_device * cdev, struct
tcw * tcw, unsigned long intparm, u8 lpm, u8 key, int expires);

Arguments

cdev ccw device on which to perform the start function

tcw transport-command word to be started

intparm user defined parameter to be passed to the interrupt handler

lpm mask of paths to use

key storage key to use for storage access

expires time span in jiffies after which to abort request

Description

Start the tcw on the given ccw device. Return zero on success, non-zero otherwise.

The ccw bus

44

Name
ccw_device_tm_start — perform start function

Synopsis

int ccw_device_tm_start (struct ccw_device * cdev, struct tcw * tcw,
unsigned long intparm, u8 lpm);

Arguments

cdev ccw device on which to perform the start function

tcw transport-command word to be started

intparm user defined parameter to be passed to the interrupt handler

lpm mask of paths to use

Description

Start the tcw on the given ccw device. Return zero on success, non-zero otherwise.

The ccw bus

45

Name
ccw_device_tm_start_timeout — perform start function

Synopsis

int ccw_device_tm_start_timeout (struct ccw_device * cdev, struct tcw
* tcw, unsigned long intparm, u8 lpm, int expires);

Arguments

cdev ccw device on which to perform the start function

tcw transport-command word to be started

intparm user defined parameter to be passed to the interrupt handler

lpm mask of paths to use

expires time span in jiffies after which to abort request

Description

Start the tcw on the given ccw device. Return zero on success, non-zero otherwise.

The ccw bus

46

Name
ccw_device_get_mdc — accumulate max data count

Synopsis

int ccw_device_get_mdc (struct ccw_device * cdev, u8 mask);

Arguments

cdev ccw device for which the max data count is accumulated

mask mask of paths to use

Description

Return the number of 64K-bytes blocks all paths at least support for a transport command. Return values
<= 0 indicate failures.

The ccw bus

47

Name
ccw_device_tm_intrg — perform interrogate function

Synopsis

int ccw_device_tm_intrg (struct ccw_device * cdev);

Arguments

cdev ccw device on which to perform the interrogate function

Description

Perform an interrogate function on the given ccw device. Return zero on success, non-zero otherwise.

The ccw bus

48

Name
ccw_device_get_schid — obtain a subchannel id

Synopsis

void ccw_device_get_schid (struct ccw_device * cdev, struct
subchannel_id * schid);

Arguments

cdev device to obtain the id for

schid where to fill in the values

The channel-measurement facility
The channel-measurement facility provides a means to collect measurement data which is made available
by the channel subsystem for each channel attached device.

The ccw bus

49

Name
/usr/src/linux-4.1.27-24//arch/s390/include/asm/cmb.h — Document generation inconsistency

Oops

Warning

The template for this document tried to insert the structured comment from the file /usr/
src/linux-4.1.27-24//arch/s390/include/asm/cmb.h at this point, but none
was found. This dummy section is inserted to allow generation to continue.

The ccw bus

50

Name
enable_cmf — switch on the channel measurement for a specific device

Synopsis

int enable_cmf (struct ccw_device * cdev);

Arguments

cdev The ccw device to be enabled

Description

Returns 0 for success or a negative error value.

Context

non-atomic

The ccw bus

51

Name
disable_cmf — switch off the channel measurement for a specific device

Synopsis

int disable_cmf (struct ccw_device * cdev);

Arguments

cdev The ccw device to be disabled

Description

Returns 0 for success or a negative error value.

Context

non-atomic

The ccw bus

52

Name
cmf_read — read one value from the current channel measurement block

Synopsis

u64 cmf_read (struct ccw_device * cdev, int index);

Arguments

cdev the channel to be read

index the index of the value to be read

Description

Returns the value read or 0 if the value cannot be read.

Context

any

The ccw bus

53

Name
cmf_readall — read the current channel measurement block

Synopsis

int cmf_readall (struct ccw_device * cdev, struct cmbdata * data);

Arguments

cdev the channel to be read

data a pointer to a data block that will be filled

Description

Returns 0 on success, a negative error value otherwise.

Context

any

54

Chapter 3. The ccwgroup bus
The ccwgroup bus only contains artificial devices, created by the user. Many networking devices (e.g. qeth)
are in fact composed of several ccw devices (like read, write and data channel for qeth). The ccwgroup
bus provides a mechanism to create a meta-device which contains those ccw devices as slave devices and
can be associated with the netdevice.

ccw group devices

The ccwgroup bus

55

Name
struct ccwgroup_device — ccw group device

Synopsis

struct ccwgroup_device {
 enum state;
 unsigned int count;
 struct device dev;
 struct work_struct ungroup_work;
 struct ccw_device * cdev[0];
};

Members

state online/offline state

count number of attached slave devices

dev embedded device structure

ungroup_work work to be done when a ccwgroup notifier has action type
BUS_NOTIFY_UNBIND_DRIVER

cdev[0] variable number of slave devices, allocated as needed

The ccwgroup bus

56

Name
struct ccwgroup_driver — driver for ccw group devices

Synopsis

struct ccwgroup_driver {
 int (* setup) (struct ccwgroup_device *);
 void (* remove) (struct ccwgroup_device *);
 int (* set_online) (struct ccwgroup_device *);
 int (* set_offline) (struct ccwgroup_device *);
 void (* shutdown) (struct ccwgroup_device *);
 int (* prepare) (struct ccwgroup_device *);
 void (* complete) (struct ccwgroup_device *);
 int (* freeze) (struct ccwgroup_device *);
 int (* thaw) (struct ccwgroup_device *);
 int (* restore) (struct ccwgroup_device *);
 struct device_driver driver;
};

Members

setup function called during device creation to setup the device

remove function called on remove

set_online function called when device is set online

set_offline function called when device is set offline

shutdown function called when device is shut down

prepare prepare for pm state transition

complete undo work done in prepare

freeze callback for freezing during hibernation snapshotting

thaw undo work done in freeze

restore callback for restoring after hibernation

driver embedded driver structure

The ccwgroup bus

57

Name
ccwgroup_set_online — enable a ccwgroup device

Synopsis

int ccwgroup_set_online (struct ccwgroup_device * gdev);

Arguments

gdev target ccwgroup device

Description

This function attempts to put the ccwgroup device into the online state.

Returns

0 on success and a negative error value on failure.

The ccwgroup bus

58

Name
ccwgroup_set_offline — disable a ccwgroup device

Synopsis

int ccwgroup_set_offline (struct ccwgroup_device * gdev);

Arguments

gdev target ccwgroup device

Description

This function attempts to put the ccwgroup device into the offline state.

Returns

0 on success and a negative error value on failure.

The ccwgroup bus

59

Name
ccwgroup_create_dev — create and register a ccw group device

Synopsis

int ccwgroup_create_dev (struct device * parent, struct ccwgroup_driver
* gdrv, int num_devices, const char * buf);

Arguments

parent parent device for the new device

gdrv driver for the new group device

num_devices number of slave devices

buf buffer containing comma separated bus ids of slave devices

Description

Create and register a new ccw group device as a child of parent. Slave devices are obtained from the
list of bus ids given in buf.

Returns

0 on success and an error code on failure.

Context

non-atomic

The ccwgroup bus

60

Name
ccwgroup_driver_register — register a ccw group driver

Synopsis

int ccwgroup_driver_register (struct ccwgroup_driver * cdriver);

Arguments

cdriver driver to be registered

Description

This function is mainly a wrapper around driver_register.

The ccwgroup bus

61

Name
ccwgroup_driver_unregister — deregister a ccw group driver

Synopsis

void ccwgroup_driver_unregister (struct ccwgroup_driver * cdriver);

Arguments

cdriver driver to be deregistered

Description

This function is mainly a wrapper around driver_unregister.

The ccwgroup bus

62

Name
ccwgroup_probe_ccwdev — probe function for slave devices

Synopsis

int ccwgroup_probe_ccwdev (struct ccw_device * cdev);

Arguments

cdev ccw device to be probed

Description

This is a dummy probe function for ccw devices that are slave devices in a ccw group device.

Returns

always 0

The ccwgroup bus

63

Name
ccwgroup_remove_ccwdev — remove function for slave devices

Synopsis

void ccwgroup_remove_ccwdev (struct ccw_device * cdev);

Arguments

cdev ccw device to be removed

Description

This is a remove function for ccw devices that are slave devices in a ccw group device. It sets the ccw
device offline and also deregisters the embedding ccw group device.

64

Chapter 4. Generic interfaces
Some interfaces are available to other drivers that do not necessarily have anything to do with the busses
described above, but still are indirectly using basic infrastructure in the common I/O layer. One example
is the support for adapter interrupts.

Generic interfaces

65

Name
register_adapter_interrupt — register adapter interrupt handler

Synopsis
int register_adapter_interrupt (struct airq_struct * airq);

Arguments
airq pointer to adapter interrupt descriptor

Description
Returns 0 on success, or -EINVAL.

Generic interfaces

66

Name
unregister_adapter_interrupt — unregister adapter interrupt handler

Synopsis
void unregister_adapter_interrupt (struct airq_struct * airq);

Arguments
airq pointer to adapter interrupt descriptor

Generic interfaces

67

Name
airq_iv_create — create an interrupt vector

Synopsis
struct airq_iv * airq_iv_create (unsigned long bits, unsigned long
flags);

Arguments
bits number of bits in the interrupt vector

flags allocation flags

Description
Returns a pointer to an interrupt vector structure

Generic interfaces

68

Name
airq_iv_release — release an interrupt vector

Synopsis
void airq_iv_release (struct airq_iv * iv);

Arguments
iv pointer to interrupt vector structure

Generic interfaces

69

Name
airq_iv_alloc — allocate irq bits from an interrupt vector

Synopsis
unsigned long airq_iv_alloc (struct airq_iv * iv, unsigned long num);

Arguments
iv pointer to an interrupt vector structure

num number of consecutive irq bits to allocate

Description
Returns the bit number of the first irq in the allocated block of irqs, or -1UL if no bit is available or the
AIRQ_IV_ALLOC flag has not been specified

Generic interfaces

70

Name
airq_iv_free — free irq bits of an interrupt vector

Synopsis
void airq_iv_free (struct airq_iv * iv, unsigned long bit, unsigned
long num);

Arguments
iv pointer to interrupt vector structure

bit number of the first irq bit to free

num number of consecutive irq bits to free

Generic interfaces

71

Name
airq_iv_scan — scan interrupt vector for non-zero bits

Synopsis
unsigned long airq_iv_scan (struct airq_iv * iv, unsigned long start,
unsigned long end);

Arguments
iv pointer to interrupt vector structure

start bit number to start the search

end bit number to end the search

Description
Returns the bit number of the next non-zero interrupt bit, or -1UL if the scan completed without finding
any more any non-zero bits.

	Writing s390 channel device drivers
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. The ccw bus
	I/O functions for channel-attached devices
	struct ccw1
	struct erw
	struct erw_eadm
	struct sublog
	struct esw0
	struct esw1
	struct esw2
	struct esw3
	struct esw_eadm
	struct irb
	struct ciw
	struct ccw_dev_id
	ccw_dev_id_is_equal

	ccw devices
	struct ccw_device
	struct ccw_driver
	ccw_device_set_offline
	ccw_device_set_online
	get_ccwdev_by_dev_id
	get_ccwdev_by_busid
	ccw_driver_register
	ccw_driver_unregister
	ccw_device_siosl
	ccw_device_set_options_mask
	ccw_device_set_options
	ccw_device_clear_options
	ccw_device_is_pathgroup
	ccw_device_is_multipath
	ccw_device_clear
	ccw_device_start_key
	ccw_device_start_timeout_key
	ccw_device_start
	ccw_device_start_timeout
	ccw_device_halt
	ccw_device_resume
	ccw_device_get_ciw
	ccw_device_get_path_mask
	ccw_device_get_chp_desc
	ccw_device_get_id
	ccw_device_tm_start_key
	ccw_device_tm_start_timeout_key
	ccw_device_tm_start
	ccw_device_tm_start_timeout
	ccw_device_get_mdc
	ccw_device_tm_intrg
	ccw_device_get_schid

	The channel-measurement facility
	/usr/src/linux-4.1.27-24//arch/s390/include/asm/cmb.h
	enable_cmf
	disable_cmf
	cmf_read
	cmf_readall

	Chapter 3. The ccwgroup bus
	ccw group devices
	struct ccwgroup_device
	struct ccwgroup_driver
	ccwgroup_set_online
	ccwgroup_set_offline
	ccwgroup_create_dev
	ccwgroup_driver_register
	ccwgroup_driver_unregister
	ccwgroup_probe_ccwdev
	ccwgroup_remove_ccwdev

	Chapter 4. Generic interfaces
	register_adapter_interrupt
	unregister_adapter_interrupt
	airq_iv_create
	airq_iv_release
	airq_iv_alloc
	airq_iv_free
	airq_iv_scan

