Linux Device Drivers

Linux Device Drivers

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY ; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

Y ou should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the file COPY ING in the source distribution of Linux.

Table of Contents

L. DFIVEN BBSICS .ttt e et ettt e e 1
Driver Entry and EXIit POINESuuiiiiiiiieiiii et e 1
Atomic and pointer ManiPUIBLTONuueiiiiiieeii e 3
Delaying, scheduling, and timer FOULINEScoiiuiiiieiiii e 17
Wait queues and WaKe BVENEScooeiiieiiiii e e et e e e e e e e e eees 71
High-reSOlULION TIMENSveiiiie ettt e e et e e ena e eees 103
WOrkqueues and KEVENTScoouii ittt 123
INEENEl FUNCLIONS ...t ettt e e et e e e et e eenes 140
Kernel objects Manipulationoocoeiiiiiiiii e 174
Kernel Utility TUNCLIONSooueiiieii e 187
Device ReSOUrce ManagemeNtcoouuuuiiiiiii ettt e e e e 243

2. Device drivers iNfrastrUCIUNEc..uu i e e e e e e 267
The Basic Device Driver-Model SITUCIUIESiiiiiiieiiii e 267
DEVICE DIIVEIS BASE .. .iiiiieeiiii ettt e e et e 278
Device Drivers DMA Managementoooiiiiieiiiiie et e 380
Device Drivers POWer Managementccouuuieiiutnieieiiieeeeii e eeii e eesi e e eent e eeainaeeees 432
Device Drivers ACPI SUDPPOITciiiiieeeiii ettt e e et e e et e e eeaa e eees 438
Device drivers PP SUPPOITcuuuuiiiii it ettt ettt e e e e e e e 447
USEISPACE 1O TEVICESeeeiieeeeii ettt ettt e et e e 459

3. Parallel POI DEVICESuieiiiiiieeeee ettt 466
PAIPOIT_YIBI ...t e 467
Parport_Yield DIOCKINGocoeeiiieiei et 468
PArPOIt_WAIT BVENT ...t ettt et e et e e et e e e e e e e e eee 469
parport_wWait_PEripheral oo e 470
PArPOIt_NEJOLIBIE eeeeie ettt e et e et e e et e et et e e e e e e 471
PAIPOIT_WEITE ..ttt ettt e ettt e e et et e e et e e e e et n e e e e b 472
02 g oTo A == o E PSPPSR UOPPTTRPN 473
PArPOrt_SEL_TIMEOUL ... eeietie ettt ettt e e e et e e et e et et e e e era s 474
oz gl R = oK = o (1)Y= PO UPPPPTRUPPPIN 475
PArPOrt_UNFEGISIEr _AIIVEN ...ttt e et e e et e e e e e eee 476
PArPOIt_OBL POIT ...oeeiei e 477
PArPOIt_PUE_POITeeeie e 478
o2 ol R =01 = g oo PP PP PPPPTTR 479
ParPOrt_anNOUNCE PONTuuiieiiiiieiie it r e s e e e e e e e e aaes 480
(S22 o Lo Al (= 10101V ST 00 o PP 481
PArPOrt_IEQISIEr AEVICE ... iieiii ettt 482
PArPOrt_UNFEJISIEr _BVICE . .ceeeie ettt ettt e eaens 484
Parport_find_NUMDEN ... e 485
PArPOrt_fiNA DBSE ... 486
PAIPOIt_CIAIM .ottt 487
Parport_claim _or _BIOCKiiii e 488
PAIPOI_TEIEASE ...ttt e ettt ettt et et et e e e aan 489
8724 00 0] o< o I PO 490
PAIPOI_CIOSE ...ttt 491

4. MeSSAgE-DASEA TEVICESeeveieeiii ettt ettt 492
FUSION MESSAJE GEVICESiiiiii ettt ettt ettt et e e e e e e eeaes 492

5. SOUNG DEVICESvuiieeiiiiie ettt ettt ettt e et e e et et e e et et e e e eeba e eeees 611
S o I o 1] 01| TP TSP SPPPTTRN 612
S0 [o 11 01 (o TSP SPPPTTN 613
SNO_BUG .ttt e e e e e e aaee 614
SNA_Printd_ratelimit oo 615

Linux Device Drivers

LS o [=10 LT @ PP 616
1S 070 I 1 1o (o Pt 617
register_ sound_SPECIal dEVICEcivniiii e 618
= 0TS (= g o 10 0o [407D Pt 619
= 0TS (= g o 10 oo N 40T 620
= 0TS (= g o 10 oo [01 o T 621
UNregiSter SOUNA SPECIAI ...ivvuuiiii i e e e e e e e e e e e et e e e e e e eeen 622
0 1g 100 TS (= s 010 0o I 41D P 623
0101 ¢= 0TS (< g o 180T N o 1T TN 624
0191¢= 0TS (< S o100 o = o 625
snd pem_Stream lINKEAuiiiii e 626
SNd_PCM_Stream [OCK ITQSAVE . .cuvuiii e e e e e e e ees 627
snd_pcm_group_for_aCh ENIYcvee e 628
ST o ¢ T (1101211 o P 629
BYLES 10 SAMPIES ...uiii i 630
BYLES 10 fraAMES . .oueiiie i e e e 631
LSS 00 L= (o T o)1 (=< 632
L= 01T (0 T)Y == 633
framME AligNEA ... 634
snd _pem_lib buffer BYLES 635
snd pem_lib Period BYIEScoveii 636
snd_pem_playback aVvallcocouuiiiiii 637
SNA_PCM_CAPLUIE @VAIL ..vniii e e e e e e e e 638
snd_pcm_playback hw_availccoiiiiiiiii e 639
snd_PCM_Capture hW_availcooouniiiiiiiii e 640
snd_pem_playback FEAAYcoevuniiii i 641
SNA_PCM_CAPLUIE TEAAY ...vuiiiiiii et e e e e e e e e e e e st e e et e e st eeaaeeaanaaes 642
SNd_ PCM_PlaybaCk dalac.uueeei i 643
snd_PCmM_playbaCk EBMPLYciue e 644
SNA_PCM_CAPEUIE BIMPLY .eveiiii e e e e e e e e e e e et e e et e e et e e et e e et e e et e e aaeeenaas 645
1S alo I ol ¢ T e o 1= o (o] =Y 646
0= = 0 T o = V= 647
022 1= 0 £ = P 648
0T = R o= 1o o IR = 649
0= 2= TSR o= o P 650
PArAMS DUIEr SIZE ... e 651
PaArams_BUIfEr DYIES ... e 652
snd_pem_format_CPU_ eNAIANiiiiiiiii e e 653
snd pem_Set runtime BUFTEr ..o 654
ST o 41 1= 0 T 655
snd_pcm_lib_aloc vmalloc bUuffer ..o 656
snd_pcm_lib_aloc vmalloc 32 bufferoooveiii i 657
snd PCM_SOBUF gEL @Aviei i 658
S alo 0w a g IEo o1 o= Ao PP 659
snd_pcm_sgbuf_get ChUNK SIZEueiiiii i e aaans 660
Salo B ow o g I 00 007 o R F= = W0 o < o IS 661
snd_ PCM_MMaP_data ClOSEc.vuiiii e 662
snd PCM_IIMIt iSA AMA SIZEiviiicii e e 663
LS o I oo TS == 0 0 RN 664
snd_PCmM_Chmap SUDSITEAMuiii e e e 665
PCM_fOrMat_tO DTSiii i 666
SNA_PCM_FOIMAL NBIMEiie i e e e e e e e e e e e e et e et e e aaans 667
LS 0o I oo 0 T T VS 1 (== 2 668
£ 0T I o o 4 T 01, 669

Linux Device Drivers

SNA PCM_NEW _INEEINEL ... e e e e e e e e e e e e e e aaas 670
£ 0T o o ¢ T o YN 671
LS a0 I o (=Y 1o ST = AP 672
1S 0lo lo (=Y o= T o 11 o]0 = ox At 673
1S 0o I o (=Y 1o ST (Tt 674
1S 0o I o =Y To oI (= [= N 675
LS 0o T 10 N 676
SNA INFO GBL TINE oo e 677
S 0o BT 1 (o T = A= 1 P 678
snd_info_create MOAUIE ENTYivee e e 679
SNA_INfO_Create Card ENEIY ...ouuiiii i e e e e e 680
LS alo I o= o [o (o To g 1= .V 681
SNA INFO_FIBE BNEIY e e 682
LS 0o I T (o T =0 K (= PPN 683
LS 0o I - Y o [= o= A= N 684
snd_rawmidi_tranSMit BMPLY ...coveiiiie e 685
—snd _rawmidi_tranSMIt PEEK ..vu.iiuicii e 686
snd_rawmidi_tranSMIt PEEKcvvuiiiii i 687
—snd _rawmidi_tranSmMit ACKccouiiiiiiiie e 688
snd_rawmidi_tranSMit aCKoiiiiiiiii i 689
SNA rawmidi_tranSMIteieii e e 690
LS 0o I = V1 o T 5 1= PN 691
LS o I - VL o TS = Ao o P 692
LS 0o I (=0 [UT== oo [PN 693
£ 0o I oo N o T 11 0o o = - PP 694
1S 0o I (=0 T = g L= ot RN 695
S o IRV gl e S (= gl o =Y/ o TPt 696
(ore] o)V (o T 0 = g 701 01 T 697
(ore] o) R (0] 0 TNV 1= = S (oo T 698
snd_pcm_lib_preallocate free for allcoooeviiiiiiii 699
snd_pcm_lib prealloCate PAgES ... ccvuiiiii e 700
snd_pcm_lib_preallocate pages for allccooouiiiiiiiii 701
SNA_PCM_SODUF _OPS PAJE ..evvniiiiieiii et e e et e e e e e e e e e e e et e et e et e e et e e e e aaaaees 702
snd Pem_ib MallOC PAOEScviiiie e 703
SNA_PCM D FrEE PAGES .vneiee e 704
snd_pcm_lib free vmalloc BUFferocuniiii 705
snd_pcm_lib get vMalloC PAgEoeveeii i 706
SNA_AEVICE INITIAIIZE ...cvvi e e e e e e e e e 707
£ T o= (o [1= 708
1S 0T o= fo [0 TS oo 0= At 709
snd_card free When ClOSEAoiiiiiiii e 710
1S 0T oo [1 (==t 711
LS o o= o [= o N 712
SNA _Card_add deV @liiiiiei e 713
LS alo o= o [(= = (= GRS 714
1S aTo oo 0100 0= o | =" (o NN 715
SNA _Card file ald .. .ceeiiii 716
SNA_Card _fil€ TEMOVE ... e 717
LS 0o N 0oLV 7 1 718
1Sl o (g0 = T o] (0T ="y o IS 719
SNA_AMA ISADIE ...eeiii e 720
£ 0T o [40T= T oo 11 | = 721
£ T o 1 1P 722
£ T o 1. P 723

Linux Device Drivers

1S 0o I I (= S o = 724
£ T o = o (o 725
1S 0o o (= oL Tt 726
S 0T I = 1.410./ P 727
S o I (= 12102/ =T o 728
1S 0l I = ot (17 (= o S 729
£ o o I (== L= o 730
snd Gt fiND NUMIAoen e e e 731
£ T o I o o 732
1S o I (=0 11 = T | Pt 733
snd_ctl_register i0Ctl COMPELoovniiiie e e 734
1S alo I IV 0= o = (G oo 1 PP 735
snd_Ctl_uNregister 10Ct COMPAELivvinieiiieec e e e e e e e e 736
snd_ctl_boolean MONO INFO ...ouvuiiii e e e e e 737
snd_ctl_boolean StEre0 INfOuiiiei i 738
£ o o = 10 o TN 1o P 739
LS a0 I o T = o o= 740
LS a0 I oo T =)Y/ (PP 741
SNA INEEIVE TEFINE ..ooee e 742
SNA INEENVEL TAINUM ..o e e e e e e e e e e et e e et e e e e e eaaaees 743
SNA INEEIVEL LISt e 744
LS o IS V= - 01 (=< TP 745
SNd PCM QW TUIE B ... 746
snd_pcm_hw_ConStraint MaskBadco.uiiiiiiiiiii e e e e 747
snd_PCM_hW_CONSITAINE INEEOET . .evuiiii e e e e e e e e et e e eanas 748
snd_pcm_hw_CONSETaiNt. MINMEXccvuiiiiieiie e e e e e e e e e e e e e e eaeaas 749
snd_ PCmM_hw_CONSITAINE TISE ...uiiie i e e e 750
snd_PCM_hW_CONSITAINE TANGESu.evvieiiiieiie e e e e e e e e e e e e e et e e et e e e e eaneees 751
snd_pCm_hw_CONSITAINE_ TaENUIMSceviieiii e ee e e e e e e e e e e e e et e e et e e e aaeeanes 752
snd_pem_hw_CONSITAIN TAIAENSceve it e e e e ean s 753
snd_pem_hw_CONSEraint. MSITScvveiiii e e e e 754
SNA_PCM_MW_CONSITAINT SEEP ..uivviiciie e e e e e e e e e e e e e e e e e aneees 755
snd_PCM_hW_CONSITAINT POW2uiiiit e e e e e e e e e e e e et e et e e et e eetn e e eanaees 756
snd_pcm_hw _rule NOTESAMPIEiii e e 757
SNA_ PCM_MW_Param VaAIUEiiicii e e e e e e et e e e e e e eanees 758
snd PCM_hwW_param first ... 759
SNA PCM_MW_Param L8St ...oveiii e 760
SNA PCM_IID TOCH e 761
snd PCM_Period ElapSedcovviiiiiie e 762
snd _pem_add ChMaP CHIS ..o.vuiiii e 763
S 0o I 017170 U= o T 1. P 764
LS o I oo 0 4T == 0 T v Gt 765
SNA_PCM_SEFEAM _UNTOCKiiiieiii i ciie et e e aaneeaens 766
SNA_PCM_StrEAM TOCK 110 1evvneiii e e e e e e e e e 767
SNA_PCM_SErEAM _UNTOCK 110 +vuuiiiteiii et e e e et e e e e e e e e e e e e s e et e e st e e et e e e aneeanaens 768
snd_pem_stream _UNIOCK ITQFESIONE ... cuvueieieeeiee e e et e e e e e e et e e e et e e et e e e eaa e eeen 769
£ 070 I o o 4T o o TP 770
LS a0 oo T (o o DV o 771
LS o I o TS o= oo 772
SNA_PCM_SUSPENA @l ..oeniiiiii e 773
snd_pem_lib default MMaP ... 774
snd_pem_lib MMaEP T0MEM ... 775
LS 0o I 1= 1o ol o= 1= PN 776
LS o B L= ST 7= o =P 77

Vi

Linux Device Drivers

SNA_AMA AlIOC PAGJES ...vuniiiiieii e 778
snd_dma alloc_pages fallbackoooiiiiiii s 779
LS ao o (40T T = =T 0= (= T 780
B. 16X50 UART DIIVEL ..oiiiiiieeiiii e ettt e e e e e et e e e et e e e e et e e e e et aeeeerenes 781
0= oo = (T 1101 o U | PP 782
0= g T= 7= 0 (o [- (= RN 783
0= = oY= N 784
UBI CONSOIE WIITE .vuuiii e e e et e e e e e e e e e e e e e et e e e e et e e et e eanaeeees 785
O o= SR == o o Pt 786
O g o= s SR o 0) 787
0= = o) o (o PP 788
O i (=0 (S (= 0| A= 789
0 010 (= e 11 (= o L Y/ G 790
0= g =o (o o LT oo AR P 791
UAIT_TEIMOVE _ONE _POIT iuiititiiiei ettt e et e e e e e e et e e et e e e an e e e anaes 792
uart_handle ded Changeoiiiiiii e 793
Uart_ handle CtS ChaNQEoovuiiii e e e et e e e eaes 794
0 0 = A 07 G 795
1S T S 22 O o (= A o L S RN 796
SErial8250 SUSPENG POMTiiiiiiiiei e e e e e e e e e e e e e e e e e aa e aens 797
S e Y2 O (== ¥ LT oo PP 798
Serial8250 register 8250 POItcvuuiiiieiiii e e e e et e e e e e e e aas 799
S Ry O (=0 TF (= g oo o APt 800
7. Frame BUFfer LiDIaryoooiiii e e e e e e et e e e e aaa e 801
Frame BUfer IMEIMOTYoueiiii e e e e e e e e e e eaaeees 801
Frame BUffer COlOMMauuiiiiiiei e e e e et e e e e e e e aaeees 804
Frame Buffer Video Mode Databasevviiiiiiiiiiii e 809
Frame Buffer Macintosh Video Mode Databasecocvvvveiiiiiiieiiiiiieecce e 821
Frame BUFFEr FONESiiieii e eeenas 824
8. INPUL SUDSYSIEM ...ttt e e e e e e e et e e et e et e e e et e e e aaas 825
101011 | oo PP 825
U R (o0 ot o T I o = 866
POIlEd INPUE DEVICES ... e e e e e e aaa s 878
Matrix Keyboars/KeYPadsccouuiiiiiiii e 884
SPArse KEYMAD SUPPON ...vuiiiii i et e et e e e e e e e e e e e e e e e e et e e et e e et e e rteeaanaaeanaes 887
9. Seria Peripheral INterface (SPI)uiiii i e 895
LS LU Tox A o [0 =Y/ NP 896
LS LU To A o o 1Y/ G 898
LS oI L =0 TR (= o | £ = 899
paoo (01 =TS o o [Y= PN 900
LS LU To s o T 7= = (= 901
LS LU To B o T 0 = G P 905
LS LU s o T 155 o <Y PP 907
Spi_Message NIt WIth tranSFers ... e 908
LS o1 (= P 909
S o (== o PPN 910
LS oISV o =01 = 911
LS oI S TP 912
LS TS PP 913
LS oI 1G] o N 914
Struct SPi_B0ard INFO ...c.uiiii i 915
SPi_register board INFOu.iii i 916
LS oI (= o 1= (= o 1Y/ S PP 917
SPI_AIIOC EVICE ...ceiicie e 918

Vii

Linux Device Drivers

LS o= (o [0 L= V7 ot P 919
LS oI 1V o (<. o= 920
Spi_finalize current tranSferoueiiiiiiii 921
SPi_get NEXT QUEUEA IMESSATE . .evvuiiineeiieieii et ee st e e e e et e e et e e et e st eeatn e e st e eetnaeeanaees 922
SPi_fiNAliZE CUIMTENT MESSA0E ... ivviiiii e e e e e e e e e e e e e e e e e ees 923
LS o oo 117 = = N 924
S oI = o = (S g 7= = (= S P 925
(o (S Y g IS T = 011 (= 11 = P 926
LS oI =0 TE (= 10 = PP 927
1S oI LU S 10 g I (o T 2= = (P 928
LS o= (U o PPN 929
LS o= Y PP 930
SPI_BSYNC TOCKE ...oeeeie e e 931
S oY/ 932
SPI_SYNC TOCKEA ...eeiiie e e e 933
LS o o 10 ST oo P 934
1S o 10 SN | oo 935
SPI_WIILE thEN TEAiiie i e 936
10. 12C AN SMBUS SUDSYSIEM ...ttt et ettt et ee et et e et e e eee et et et eee et e e e e e een e, 937
LS Lo A 2o o | = P 938
LS Lo o o 11 | P 940
SEUCE 12C D0AId INFO L.uiiiii i 941
[2C_BOARD _INFO ...ttt ettt et e e e e e et e e e e e e e e e et n e s e e e eaeaaaennnas 942
Struct i2C_ algorithmo 943
SErUCE i2C_DUS rECOVENY INFO ..uiiiii e e e e 944
SEUCE I2C_adapter QUITKSvuiiii e e e e et e e e e aens 945
gaoo (012 odio [1Y/ SO P 946
12C_register board INfOccouiiiii e 947
oY= (1Y« 1= | PN 948
D og (oo Qo = = (S 949
12C_UNIOCK _@0atEr ... 950
D og 1= VA o (=Y o R 951
DoV = 'o TR (= g0 (=] o P 952
2 Zog 1=V o 14270)2 953
oY= (YA o = = PPN 954
Do (o [o) = Pt 955
i12c_add nUMbEred adapterccuuieiii e 956
D og o (= =0 = o (= SR 957
D og o (= o [1Y/ SR P 958
Do V(S =Y o 1= o | S 959
Do (= K== T v 11 o | 960
B o =0 = P 961
Do 1 - 41 (= S 962
D og 1T= = (= G = o P 963
Do 117= = = (= oL A 964
Do = 1 o[V TR (= 'o)V4 (=Pt 965
12C_SMDUS WIHEE BYLE . .oeeiii e e 966
i12C_SMbUS read Byte dalauvevvniiiiici e 967
i12C_SMbUS WItE BYtE Aatalcvvveiiii i 968
i12C_SMbUS read WOrd Gatalccvuiiiiieiiiee e e e e e e 969
i12C_SMbUS WItE WOId dalauuiiiiiiiii e e e e e eaees 970
i2c_smbus read blOCK datac.uveiiiiiiiiiici e 971
i2C_Smbus Write€ BIOCK dafalcevuiiiiiiie e 972
D og= 1o U = S 973

Linux Device Drivers

11. High Speed Synchronous Serial Interface (HS]) ...o.vviiiiiiii e 974
LS Tox S T 17 = 975
LS Tox S TR o 1 o PN 976
Struct hsi_Board INfOiii i 977
LS Tox S T = | N 978
LS 0Tl oS T = 0| o (Y= 979
LS Lo 0TS T 11 o 980
LS L Tox S T o o A 981
LS Lol S T o 11 o | = P 982
0 T o USRS 983
TS T oo o Ao P 984
ST = (U] o U 985
0 T 1 0 o PR 986
TSI S Y (R == o 987
T T S Y T 1 (= 988
ST - o o P USSUPPPRT 989
TS TR (o] o N o 990
hsi_port_UNregister ClIENtS ... coovn e e 991
hSl_ UNrEgiSter CONETOIIErovuiii e e e e e e e 992
NSl register CONLIOIIEY . ..oeiii e e e e e e e e e ees 993
hsi_register Client driVEroooii e 994
TS T oLl 1o = P 995
T T o ol o 011 o = 996
ST (ST 1115 o P 997
T = o ol 11 o T 998
TS =)Y/ o 999
TS T =0 T o o AP 1000
T (=122 S ST) A 1001
S (o[BS (= g 010 A =.Y{= 1| A 1002
SN a1 e 1S = gl oo A=Y= | 1003
TS T =Y/ 1| P 1004
hsi_get channel_id By NamMecooiiiiii i 1005

Chapter 1. Driver Basics

Driver Entry and Exit points

Driver Basics

Name

module_init — driver initialization entry point
Synopsis

nodule_init (x);
Arguments

x function to be run at kernel boot time or module insertion
Description

nodul e_i ni t will either be called during do_i ni t cal | s (if builtin) or at module insertion time (if
amodule). There can only be one per module.

Driver Basics

Name

module_exit — driver exit entry point
Synopsis

nodul e_exit (x);
Arguments

x function to be run when driver isremoved

Description

nodul e_exi t will wrap the driver clean-up code with cl eanup_nodul e when used with rmmod
when the driver is amodule. If the driver is statically compiled into the kernel, nodul e_exi t hasno
effect. There can only be one per module.

Atomic and pointer manipulation

Driver Basics

Name
atomic_read — read atomic variable

Synopsis
int atomc_read (const atomic_ t * v);
Arguments

v pointer of type atomic _t

Description

Atomically reads the value of v.

Driver Basics

Name
atomic_set — set atomic variable

Synopsis
void atomic_set (atomc_t * v, int i);
Arguments

v pointer of type atomic _t

i required value

Description

Atomically setsthevalueof v toi .

Driver Basics

Name

atomic_add — add integer to atomic variable
Synopsis

void atomic_add (int i, atomc t * v);
Arguments

i integer valueto add

v pointer of type atomic t

Description

Atomically addsi tov.

Driver Basics

Name

atomic_sub — subtract integer from atomic variable
Synopsis

void atomic_sub (int i, atomc_ t * v);
Arguments

i integer value to subtract

v pointer of type atomic t

Description

Atomically subtractsi fromv.

Driver Basics

Name

atomic_sub_and test — subtract value from variable and test result
Synopsis

int atomc_sub and test (int i, atomc_t * v);
Arguments

i integer value to subtract

v pointer of type atomic t

Description

Atomically subtractsi from v and returnstrueif the result is zero, or false for al other cases.

Driver Basics

Name

atomic_inc — increment atomic variable
Synopsis

void atomic_inc (atomc_t * v);
Arguments

v pointer of type atomic _t

Description

Atomically incrementsv by 1.

Driver Basics

Name

atomic_dec — decrement atomic variable
Synopsis

void atomi c_dec (atomc_t * v);
Arguments

v pointer of type atomic _t

Description

Atomically decrementsv by 1.

10

Driver Basics

Name

atomic_dec_and test — decrement and test
Synopsis

int atom c_dec_and test (atomic_t * v);
Arguments

v pointer of type atomic _t

Description

Atomically decrementsv by 1 and returnstrueif theresult is 0, or false for all other cases.

11

Driver Basics

Name

atomic_inc_and_test — increment and test
Synopsis

int atomc_inc_and test (atomic_t * v);
Arguments

v pointer of type atomic _t

Description

Atomically incrementsv by 1 and returnstrue if the result is zero, or false for all other cases.

12

Driver Basics

Name

atomic_add_negative — add and test if negative
Synopsis

int atom c_add negative (int i, atomc_t * v);
Arguments

i integer valueto add

v pointer of type atomic t

Description

Atomically addsi to v and returns true if the result is negative, or false when result is greater than or
equal to zero.

13

Driver Basics

Name
atomic_add_return — add integer and return

Synopsis
int atomc_add return (int i, atomc_t * v);
Arguments

i integer valueto add

v pointer of type atomic t

Description

Atomicaly addsi tov andreturnsi +v

14

Driver Basics

Name

atomic_sub_return — subtract integer and return
Synopsis

int atomc_sub return (int i, atomc_t * v);
Arguments

i integer value to subtract

v pointer of type atomic t

Description

Atomically subtractsi fromv and returnsv - i

15

Driver Basics

Name

__atomic_add_unless— add unless the number is already a given value

Synopsis

int _atomic_add unless (atomic t * v, int a, int u);
Arguments

v pointer of type atomic _t

a theamounttoaddtov...

u ..unlessvisequal tou.

Description

Atomically addsa to v, solong asv was not aready u. Returns the old value of v.

16

Driver Basics

Name

atomic_inc_short — increment of a short integer
Synopsis
short int atomc_inc_short (short int * v);

Arguments

vV pointer to typeint

Description

Atomically adds 1 to v Returns the new value of u

Delaying, scheduling, and timer routines

17

Driver Basics

Name

struct cputime — snaphsot of system and user cputime

Synopsis

struct cputine {
cputinme_t utine;
cputinme_t stine;
s
Members
utime time spent in user mode
stime time spent in system mode

Description

Gathers a generic snapshot of user and system time.

18

Driver Basics

Name
struct task_cputime — collected CPU time counts

Synopsis

struct task cputine {
cputinme_t utine;
cputinme_t stine;
unsi gned long | ong sum exec_runti ne;

1
Members
utime time spent in user mode, in cputime_t units
stime time spent in kernel mode, in cputime_t units
sum_exec_runtime total time spent on the CPU, in nanoseconds
Description

Thisis an extension of struct cputime that includes the total runtime spent by the task from the scheduler
point of view.

As aresult, this structure groups together three kinds of CPU time that are tracked for threads and thread
groups. Most things considering CPU time want to group these counts together and treat all three of them
inparallel.

19

Driver Basics

Name

struct thread_group_cputimer — thread group interval timer counts

Synopsis

struct thread_group_cputiner {
struct task_cputinme cputine;
i nt running;
raw _spi nl ock_t | ock;

b
Members

cputime thread group interval timers.
running non-zero when there are timers running and cput i ne receives updates.

lock lock for fieldsin this struct.

Description

This structure contains the version of task_cputime, above, that is used for thread group CPU timer cal-
culations.

20

Driver Basics

Name
pid_alive— check that atask structureis not stale

Synopsis
int pid_alive (const struct task struct * p);
Arguments

p Task structureto be checked.

Description

Test if a processis not yet dead (at most zombie state) If pid_alive fails, then pointers within the task
structure can be stale and must not be dereferenced.

Return

1if the processisalive. 0 otherwise.

21

Driver Basics

Name

is global_init — check if atask structureisinit
Synopsis

int is global _init (struct task struct * tsk);
Arguments

t sk Task structure to be checked.
Description
Check if atask structure isthe first user space task the kernel created.

Return

1if thetask structureisinit. O otherwise.

22

Driver Basics

Name

task_nice — return the nice value of a given task.
Synopsis
int task _nice (const struct task struct * p);

Arguments

p thetaskinquestion.

Return

Thenicevalue[-20...0...19].

23

Driver Basics

Name
is idle_task — isthe specified task an idle task?
Synopsis
bool is_idle task (const struct task_struct * p);
Arguments
p thetaskinquestion.
Return

lif pisanidletask. O otherwise.

24

Driver Basics

Name
threadgroup_lock — lock threadgroup

Synopsis
voi d threadgroup_| ock (struct task struct * tsk);

Arguments

t sk member task of the threadgroup to lock

Description

Lock the threadgroup t sk belongs to. No new task is allowed to enter and member tasks aren't allowed
to exit (asindicated by PF_EXITING) or change ->group_leader/pid. Thisis useful for cases where the
threadgroup needs to stay stable across blockabl e operations.

fork and exit paths explicitly call threadgroup_change { beginjend} () for synchronization. While held, no
new task will be added to threadgroup and no existing live task will haveits PF_EXITING set.

de_t hr ead does threadgroup_change {beginjend}() when a non-leader sub-thread becomes a new
leader.

25

Driver Basics

Name
threadgroup_unlock — unlock threadgroup
Synopsis
voi d threadgroup_unl ock (struct task struct * tsk);
Arguments
t sk member task of the threadgroup to unlock
Description

Reverset hr eadgr oup_| ock.

26

Driver Basics

Name

wake up_process — Wake up a specific process
Synopsis
i nt wake_up_process (struct task struct * p);
Arguments
p The processto be woken up.
Description
Attempt to wake up the nominated process and move it to the set of runnable processes.

Return

1if the process was woken up, 0 if it was aready running.

It may be assumed that this function implies a write memory barrier before changing the task state if and
only if any tasks are woken up.

27

Driver Basics

Name

preempt_notifier_register — tell me when current is being preempted & rescheduled
Synopsis

void preenpt _notifier_register (struct preenpt_notifier * notifier);
Arguments

noti fier notifier struct to register

28

Driver Basics

Name
preempt_notifier_unregister — no longer interested in preemption notifications
Synopsis
void preenpt _notifier_unregister (struct preenpt _notifier * notifier);
Arguments
noti fier notifier struct to unregister
Description

Thisis safe to call from within a preemption notifier.

29

Driver Basics

Name

preempt_schedule_context — preempt_schedule called by tracing
Synopsis
__visible void _ sched notrace preenpt_schedul e_context (void);

Arguments

voi d noarguments

Description

Thetracing infrastructure uses preempt_enable_notrace to prevent recursion and tracing preempt enabling
caused by the tracing infrastructure itself. But as tracing can happen in areas coming from userspace or
just about to enter userspace, a preempt enable can occur before user _exi t iscaled. Thiswill cause
the scheduler to be called when the system is still in usermode.

To prevent this, the preempt_enable_notrace will use this function instead of pr eenpt _schedul e to
exit user context if needed before calling the scheduler.

30

Driver Basics

Name
sched_setscheduler — change the scheduling policy and/or RT priority of athread.

Synopsis

i nt sched setschedul er (struct task struct * p, int policy, const struct
sched_param * param;

Arguments
p the task in question.
pol i cy new palicy.

param structure containing the new RT priority.

Return
0 on success. An error code otherwise.

NOTE that the task may be aready dead.

31

Driver Basics

Name
yield — yield the current processor to other threads.

Synopsis
void __sched yield (void);
Arguments

voi d noarguments

Description

Do not ever use this function, there's a 99% chance you're doing it wrong.

The scheduler is at al times free to pick the calling task as the most eligible task to run, if removing the
yi el d call from your code breaksit, its aready broken.

Typical broken usage is

while (levent) yi el d;

where one assumesthat yi el d will let 'the other' process run that will make event true. If the current task
isa SCHED_FIFO task that will never happen. Never useyi el d as aprogress guarantee!!

If youwant touseyi el d towait for something, usewai t _event . If youwanttouseyi el d tobe'nice
for others, usecond_r esched. If you still want to useyi el d, do not!

32

Driver Basics

Name

yield to — yield the current processor to another thread in your thread group, or accelerate that thread
toward the processor it's on.

Synopsis

int _sched yield to (struct task _struct * p, bool preempt);
Arguments

p target task

preenpt whether task preemption is alowed or not
Description
It'sthe caller's job to ensure that the target task struct can't go away on us before we can do any checks.

Return

true (>0) if we indeed boosted the target task. false (0) if we failed to boost the target. -ESRCH if there's
no task to yield to.

33

Driver Basics

Name
cpupri_find — find the best (lowest-pri) CPU in the system

Synopsis

int cpupri_find (struct cpupri * cp, struct task struct * p, struct
cpumask * | owest nask);

Arguments
cp The cpupri context
p The task

| owest _mask A mask tofill in with selected CPUs (or NULL)

Note
This function returns the recommended CPUs as cal culated during the current invocation. By the time the
call returns, the CPUs may havein fact changed priorities any number of times. While not ideal, it is not
an issue of correctness since the normal rebalancer logic will correct any discrepancies created by racing
against the uncertainty of the current priority configuration.

Return

(int)bool - CPUs were found

Driver Basics

Name

cpupri_set — update the cpu priority setting
Synopsis

void cpupri_set (struct cpupri * cp, int cpu, int newpri);
Arguments

cp The cpupri context

cpu The target cpu

newpri Thepriority (INVALID-RT99) to assign to this CPU
Note
Assumes cpu_rg(cpu)->lock islocked

Returns

(void)

35

Driver Basics

Name

cpupri_init — initialize the cpupri structure
Synopsis

int cpupri_init (struct cpupri * cp);
Arguments

cp Thecpupri context

Return

-ENOMEM on memory allocation failure.

36

Driver Basics

Name

cpupri_cleanup — clean up the cpupri structure
Synopsis

void cpupri _cleanup (struct cpupri * cp);
Arguments

cp Thecpupri context

37

Driver Basics

Name
get_sd load idx — Obtain the load index for a given sched domain.

Synopsis

int get_sd load idx (struct sched _donmain * sd, enumcpu_idle_type idle);

Arguments
sd The sched_domain whose load_idx is to be obtained.

i dl e Theidle status of the CPU for whose sd load_idx is obtained.

Return

The load index.

38

Driver Basics

Name
update_sg Ib_stats— Update sched group's statistics for load balancing.

Synopsis

void update sg |b stats (struct |Ib_env * env, struct sched group *

group, int load_idx, int local _group, struct sg Ib stats * sgs, bool
* overl oad);

Arguments
env The load balancing environment.
group sched _group whose statistics are to be updated.
| oad_i dx Load index of sched_domain of this_cpu for load calc.

| ocal _group Doesgroup containthis cpu.
sgs variable to hold the statistics for this group.

over | oad Indicate more than one runnable task for any CPU.

39

Driver Basics

Name
update_sd pick_busiest — return 1 on busiest group

Synopsis

bool update_sd pick busiest (struct |b_env * env, struct sd Ib_stats *
sds, struct sched group * sg, struct sg | b stats * sgs);

Arguments
env Theload balancing environment.
sds sched domain statistics
sg sched _group candidate to be checked for being the busiest
sgs sched_group statistics
Description

Determineif sg isabusier group than the previously selected busiest group.

Return

t rue if sg isabusier group than the previously selected busiest group. f al se otherwise.

40

Driver Basics

Name
update sd Ib_stats— Update sched _domain's statistics for load balancing.

Synopsis
voi d update _sd I b _stats (struct | b_env * env, struct sd |Ib stats * sds);
Arguments

env Theload balancing environment.

sds variableto hold the statistics for this sched _domain.

41

Driver Basics

Name
check_asym_packing — Check to see if the group is packed into the sched doman.

Synopsis

i nt check_asym packing (struct |b_env * env, struct sd I b _stats * sds);
Arguments

env Theload balancing environment.

sds Statistics of the sched_domain which isto be packed

Description

This is primarily intended to used at the sibling level. Some cores like POWER?7 prefer to use lower
numbered SMT threads. In the case of POWER?7, it can move to lower SMT modes only when higher
threads are idle. When in lower SMT modes, the threads will perform better since they share less core
resources. Hence when we have idle threads, we want them to be the higher ones.

This packing function is run on idle threads. It checksto seeif the busiest CPU in this domain (corein the

P7 case) has a higher CPU number than the packing function is being run on. Here we are assuming lower
CPU number will be equivalent to lower a SMT thread number.

Return

1 when packing is required and a task should be moved to this CPU. The amount of the imbalance is
returned in *imbalance.

42

Driver Basics

Name

fix_small_imbalance — Cal cul ate the minor imbal ance that exists amongst the groups of asched _domain,
during load balancing.

Synopsis

void fix small _inbalance (struct |Ib env * env, struct sd |b stats *
sds) ;

Arguments

env Theload balancing environment.

sds Statistics of the sched_domain whose imbalance is to be cal culated.

43

Driver Basics

Name

calculate imbalance — Calculate the amount of imbalance present within the groups of a given
sched_domain during load balance.

Synopsis

void calculate_ inbalance (struct |Ib env * env, struct sd |b stats *
sds) ;

Arguments

env load balance environment

sds satistics of the sched_domain whose imbalance isto be calculated.

Driver Basics

Name

find_busiest_group — Returnsthe busiest group within the sched_domainif thereisan imbalance. If there
isn't an imbalance, and the user has opted for power-savings, it returns a group whose CPUs can be put to
idle by rebalancing those tasks elsewhere, if such agroup exists.

Synopsis
struct sched group * find busiest _group (struct Ib_env * env);

Arguments

env Theload balancing environment.

Description

Also calculates the amount of weighted load which should be moved to restore balance.

Return

- The busiest group if imbalance exists. - If no imbalance and user has opted for power-savings balance,
return the least loaded group whose CPUs can be put to idle by rebalancing its tasks onto our group.

45

Driver Basics

Name
DECLARE_COMPLETION — declare and initialize a completion structure

Synopsis
DECLARE_COWPLETI ON (worKk);

Arguments

wor k identifier for the completion structure

Description

This macro declares and initializes a completion structure. Generally used for static declarations. You
should use the ONSTACK variant for automatic variables.

46

Driver Basics

Name
DECLARE_COMPLETION_ONSTACK — declare and initialize a completion structure

Synopsis
DECLARE_COVPLETI ON_ONSTACK (worKk);

Arguments

wor k identifier for the completion structure

Description

This macro declares and initializes a completion structure on the kernel stack.

47

Driver Basics

Name

init_completion — Initialize a dynamically allocated completion
Synopsis
void init_conpletion (struct conpletion * X);

Arguments

X pointer to completion structure that isto be initialized

Description

Thisinline function will initialize a dynamically created completion structure.

48

Driver Basics

Name

reinit_completion — reinitialize a completion structure
Synopsis
void reinit_conpletion (struct conpletion * x);

Arguments

X pointer to completion structure that isto be reinitialized

Description

Thisinline function should be used to reinitialize a completion structure so it can be reused. Thisis espe-
cialy important after conpl et e_al | isused.

49

Driver Basics

Name

__round_jiffies— function to round jiffies to afull second
Synopsis

unsigned long _round jiffies (unsigned long j, int cpu);
Arguments

i the timein (absolute) jiffies that should be rounded

cpu the processor number on which the timeout will happen

Description

__round_jiffies roundsan absolutetimeinthefuture (in jiffies) up or down to (approximately) full
seconds. Thisis useful for timers for which the exact time they fire does not matter too much, aslong as
they fire approximately every X seconds.

By rounding these timers to whole seconds, all such timerswill fire at the same time, rather than at various
times spread out. The goal of thisisto have the CPU wake up less, which saves power.

The exact rounding is skewed for each processor to avoid all processors firing at the exact same time,
which could lead to lock contention or spurious cache line bouncing.

The return value is the rounded version of the | parameter.

50

Driver Basics

Name

__round jiffies_relative — function to round jiffiesto afull second
Synopsis

unsigned long _round jiffies relative (unsigned long j, int cpu);
Arguments

i thetimein (relative) jiffies that should be rounded

cpu the processor number on which the timeout will happen

Description

__round_jiffies_relative roundsatime deltain the future (in jiffies) up or down to (approxi-
mately) full seconds. Thisis useful for timersfor which the exact time they fire does not matter too much,
aslong asthey fire approximately every X seconds.

By rounding these timers to whole seconds, all such timerswill fire at the same time, rather than at various
times spread out. The goal of thisisto have the CPU wake up less, which saves power.

The exact rounding is skewed for each processor to avoid all processors firing at the exact same time,
which could lead to lock contention or spurious cache line bouncing.

The return value is the rounded version of the | parameter.

51

Driver Basics

Name

round_jiffies— function to round jiffies to afull second
Synopsis
unsi gned long round jiffies (unsigned long j);

Arguments

j thetimein (absolute) jiffies that should be rounded

Description

round_j i ffi es rounds an absolute time in the future (in jiffies) up or down to (approximately) full
seconds. Thisis useful for timers for which the exact time they fire does not matter too much, aslong as
they fire approximately every X seconds.

By rounding these timersto whole seconds, all such timerswill fire at the sametime, rather than at various
times spread out. The goal of thisisto have the CPU wake up less, which saves power.

Thereturn value is the rounded version of thej parameter.

52

Driver Basics

Name

round_jiffies_relative — function to round jiffies to afull second

Synopsis

unsigned long round jiffies relative (unsigned long j);

Arguments

j thetimein (relative) jiffies that should be rounded

Description

round_jiffies_rel ativeroundsatimedeltainthefuture(injiffies) up or downto (approximately)
full seconds. Thisis useful for timers for which the exact time they fire does not matter too much, aslong
asthey fire approximately every X seconds.

By rounding these timersto whole seconds, all such timerswill fire at the sametime, rather than at various
times spread out. The goal of thisisto have the CPU wake up less, which saves power.

Thereturn value is the rounded version of thej parameter.

53

Driver Basics

Name

__round_jiffies_up — function to round jiffies up to a full second
Synopsis

unsigned long __round jiffies up (unsigned long j, int cpu);
Arguments

i the timein (absolute) jiffies that should be rounded

cpu the processor number on which the timeout will happen

Description

Thisisthesameas__round_j i f fi es except that it will never round down. Thisisuseful for timeouts
for which the exact time of firing does not matter too much, as long as they don't fire too early.

Driver Basics

Name

__round_jiffies up_relative — function to round jiffies up to afull second
Synopsis

unsigned long _round jiffies up relative (unsigned long j, int cpu);
Arguments

i thetimein (relative) jiffies that should be rounded

cpu the processor number on which the timeout will happen

Description

Thisisthesameas__round_jiffies_rel ati ve exceptthatitwill never round down. Thisisuseful
for timeouts for which the exact time of firing does not matter too much, aslong asthey don't firetoo early.

55

Driver Basics

Name

round_jiffies_up — function to round jiffies up to afull second

Synopsis

unsi gned long round jiffies up (unsigned long j);

Arguments

j thetimein (absolute) jiffies that should be rounded

Description

Thisisthesameasround_j i f fi es except that it will never round down. Thisis useful for timeouts
for which the exact time of firing does not matter too much, aslong as they don't fire too early.

56

Driver Basics

Name

round_jiffies_up_relative — function to round jiffies up to a full second

Synopsis

unsigned long round jiffies up relative (unsigned long j);

Arguments

j thetimein (relative) jiffies that should be rounded

Description

Thisisthesameasround_jiffies_rel ati ve except that it will never round down. Thisis useful
for timeoutsfor which the exact time of firing does not matter too much, aslong asthey don't firetoo early.

57

Driver Basics

Name

set timer_slack — set the allowed slack for atimer
Synopsis

void set _tiner_slack (struct timer_list * timer, int slack_hz);
Arguments

timer the timer to be modified

sl ack_hz theamount of time (injiffies) allowed for rounding

Description

Set the amount of time, in jiffies, that a certain timer hasin terms of slack. By setting this value, the timer
subsystem will schedule the actual timer somewhere between the time nod_t i ner asks for, and that

time plus the slack.

By setting the slack to -1, a percentage of the delay is used instead.

58

Driver Basics

Name

init_timer_key — initialize atimer
Synopsis

void init_tinmer_key (struct timer _list * tinmer, unsigned int flags,
const char * name, struct |ock class_key * key);

Arguments

ti mer thetimer to beinitialized

flags timerflags

name name of thetimer

key lockdep class key of the fake lock used for tracking timer sync lock dependencies
Description

init_tinmer_key must bedonetoatimer prior caling *any* of the other timer functions.

59

Driver Basics

Name
mod_timer_pending — modify a pending timer's timeout
Synopsis
int nod_tinmer_pending (struct tinmer_list * timer, unsigned |ong ex-
pires);
Arguments
timer the pending timer to be modified

expires newtimeoutinjiffies

Description

nmod_ti mer _pendi ng is the same for pending timers as nod_t i mer, but will not re-activate and
modify already deleted timers.

It is useful for unserialized use of timers.

60

Driver Basics

Name

mod_timer — modify atimer's timeout
Synopsis

int mod_tinmer (struct timer _list * timer, unsigned |ong expires);
Arguments

timer the timer to be modified

expires newtimeoutinjiffies

Description

nmod_ti mer isamore efficient way to update the expire field of an active timer (if the timer isinactive
it will be activated)

mod_timer(timer, expires) is equivalent to:
del_timer(timer); timer->expires = expires, add_timer(timer);

Note that if there are multiple unserialized concurrent users of the same timer, then nod_t i mer isthe
only safe way to modify the timeout, sinceadd_t i mer cannot modify an already running timer.

Thefunction returns whether it has modified apending timer or not. (ie. mod_t i ner of aninactivetimer
returns 0, nod_t i mer of an active timer returns 1.)

61

Driver Basics

Name

mod_timer_pinned — modify atimer's timeout

Synopsis

int nod_tinmer_pinned (struct timer_list * tiner, unsigned | ong expires);

Arguments
timer the timer to be modified

expires newtimeoutinjiffies

Description

nmod_ti mer _pi nned isaway to update the expirefield of an activetimer (if thetimer isinactiveit will
be activated) and to ensure that the timer is scheduled on the current CPU.

Note that this does not prevent the timer from being migrated when the current CPU goes offline. If this
is a problem for you, use CPU-hotplug notifiers to handle it correctly, for example, cancelling the timer
when the corresponding CPU goes offline.

mod_timer_pinned(timer, expires) is equivalent to:

del_timer(timer); timer->expires = expires, add_timer(timer);

62

Driver Basics

Name

add_timer — start atimer
Synopsis
void add_timer (struct timer_list * timer);

Arguments

timer thetimer to be added

Description

The kernel will do a ->function(->data) callback from the timer interrupt at the ->expires point in the
future. The current timeis 'jiffies.

The timer's ->expires, ->function (and if the handler uses it, ->data) fields must be set prior calling this
function.

Timers with an ->expiresfield in the past will be executed in the next timer tick.

63

Driver Basics

Name

add_timer_on — start atimer on a particular CPU

Synopsis

void add_tiner_on (struct timer _list * timer, int cpu);
Arguments

timer thetimer to be added

cpu the CPU to start it on

Description

Thisisnot very scalable on SMP. Double adds are not possible.

Driver Basics

Name

del_timer — deactive atimer.

Synopsis

int del _tiner (struct timer_list * tinmer);

Arguments

timer thetimer to be deactivated

Description

del _ti mer deactivatesatimer - thisworks on both active and inactive timers.

The function returns whether it has deactivated a pending timer or not. (ie. del _ti mer of aninactive
timer returns 0, del _t i mer of an active timer returns 1.)

65

Driver Basics

Name
try to_del_timer_sync — Try to deactivate atimer

Synopsis
int try to del _timer_sync (struct tiner_list * tiner);
Arguments

timer timerdode

Description

This function tries to deactivate a timer. Upon successful (ret >= 0) exit the timer is not queued and the
handler is not running on any CPU.

66

Driver Basics

Name

del_timer_sync — deactivate atimer and wait for the handler to finish.

Synopsis

int del _tiner_sync (struct timer _list * tinmer);

Arguments

timer thetimer to be deactivated

Description

This function only differs from del _t i mer on SMP: besides deactivating the timer it also makes sure
the handler has finished executing on other CPUs.

Synchronization rules

Note

Callers must prevent restarting of the timer, otherwise this function is meaningless. It must not be called
from interrupt contexts unless the timer is an irgsafe one. The caller must not hold locks which would
prevent completion of the timer's handler. The timer's handler must not call add_t i ner _on. Upon exit
the timer is not queued and the handler is not running on any CPU.

For lirgsafe timers, you must not hold locks that are held in interrupt context while calling this function.
Even if the lock has nothing to do with the timer in question. Here's why:

CPUO CPU1l ---- - <SOFTIRQ> call _tiner_fn; base>running_timer = mytimer;
spin_lock_irg(somelock); <IRQ> spin_lock(somelock); del_timer _sync(mytimer); while (base-
>running_timer == mytimer);

Now del _ti nmer _sync will never return and never release somelock. The interrupt on the other CPU
iswaiting to grab somelock but it has interrupted the softirg that CPUO is waiting to finish.

The function returns whether it has deactivated a pending timer or not.

67

Driver Basics

Name

schedule_timeout — sleep until timeout
Synopsis
signed |l ong _ sched schedul e _tinmeout (signed |ong tineout);

Arguments

ti meout timeoutvauein jiffies

Description

Makethecurrent task sleep until t i neout jiffieshaveelapsed. Theroutinewill returnimmediately unless
the current task state has been set (seeset _current _state).

Y ou can set the task state as follows -

TASK _UNI NTERRUPTI BLE - at least t i neout jiffies are guaranteed to pass before the routine returns.
The routine will return O

TASK_| NTERRUPTI BLE - the routine may return early if asignal is delivered to the current task. In this
case the remaining time in jiffieswill be returned, or O if the timer expired in time

The current task state is guaranteed to be TASK_RUNNING when this routine returns.

Specifying at i meout value of MAX_SCHEDULE_TI MEQUT will schedule the CPU away without a
bound on the timeout. In this case the return value will be MAX_SCHEDULE Tl MEQUT.

In all casesthe return value is guaranteed to be non-negative.

68

Driver Basics

Name
msleep — sleep safely even with waitqueue interruptions

Synopsis
voi d nsl eep (unsigned int nsecs);

Arguments

nsecs Timein millisecondsto sleep for

69

Driver Basics

Name
msleep_interruptible — sleep waiting for signals

Synopsis
unsi gned |l ong nsl eep_interruptible (unsigned int nsecs);

Arguments

nsecs Timein millisecondsto sleep for

70

Driver Basics

Name

usleep_range — Drop in replacement for udelay where wakeup is flexible

Synopsis

voi d usl eep_range (unsigned |long mn, unsigned | ong nax);
Arguments

m n Minimum timein usecsto sleep

max Maximum timein usecsto sleep

Wait queues and Wake events

71

Driver Basics

Name

wait_event — sleep until a condition gets true
Synopsis

wait _event (wg, condition);
Arguments

wg the waitqueue to wait on

condi tion aC expression for the event to wait for

Description

The processis put to sleep (TASK_UNINTERRUPTIBLE) until the condi t i on evaluatesto true. The
condi t i on ischecked each time the waitqueue wg is woken up.

wake_up hasto be called after changing any variable that could change the result of the wait condition.

72

Driver Basics

Name

wait_event_freezable — sleep (or freeze) until a condition gets true
Synopsis

wait _event freezable (wg, condition);
Arguments

wg the waitqueue to wait on

condi tion aC expression for the event to wait for

Description

The processis put to sleep (TASK_INTERRUPTIBLE -- so as not to contribute to system load) until the
condi t i on evaluatesto true. Thecondi t i on ischecked each time the waitqueue wg is woken up.

wake_up hasto be called after changing any variable that could change the result of the wait condition.

73

Driver Basics

Name

wait_event_timeout — sleep until a condition getstrue or atimeout elapses
Synopsis

wait _event tineout (wg, condition, tineout);
Arguments

wg the waitqueue to wait on

condi tion aC expression for the event to wait for

ti meout timeout, in jiffies

Description

The processis put to sleep (TASK_UNINTERRUPTIBLE) until thecondi t i on evaluatesto true. The
condi t i on ischecked each time the waitqueue wg is woken up.

wake_up hasto be called after changing any variable that could change the result of the wait condition.

Returns

Oif thecondi ti on evaluated to f al se after thet i meout elapsed, 1 if the condi ti on evaluated
totr ue after thet i meout elapsed, or the remaining jiffies (at least 1) if the condi t i on evaluated to

t r ue beforethet i neout elapsed.

74

Driver Basics

Name

wait_event_cmd — sleep until a condition gets true
Synopsis

wait _event _cnd (wg, condition, cndl, cnd2);
Arguments

wg the waitqueue to wait on

condi tion aC expression for the event to wait for

cnmdl the command will be executed before sleep
cnd2 the command will be executed after sleep
Description

The processis put to sleep (TASK_UNINTERRUPTIBLE) until thecondi t i on evaluatesto true. The
condi ti on ischecked each time the waitqueue wg iswoken up.

wake _up hasto be called after changing any variable that could change the result of the wait condition.

75

Driver Basics

Name

wait_event_interruptible — sleep until a condition gets true
Synopsis

wait _event interruptible (wg, condition);
Arguments

wg the waitqueue to wait on

condi tion aC expression for the event to wait for

Description

Theprocessisput to sleep (TASK_INTERRUPTIBLE) until thecondi t i on evaluatesto true or asignal
isreceived. Thecondi t i on ischecked each time the waitqueue wg is woken up.

wake_up hasto be called after changing any variable that could change the result of the wait condition.

Thefunctionwill return -ERESTARTSY Sif it wasinterrupted by asignal and O if condi t i on evaluated
to true.

76

Driver Basics

Name

wait_event_interruptible timeout — sleep until a condition gets true or atimeout elapses
Synopsis

wait _event interruptible timout (wg, condition, tineout);
Arguments

wg the waitqueue to wait on

condi tion aC expression for the event to wait for
ti meout timeout, in jiffies
Description

Theprocessisput to sleep (TASK_INTERRUPTIBLE) until thecondi t i on evaluatesto trueor asignal
isreceived. Thecondi t i on ischecked each time the waitqueue wg iswoken up.

wake_up hasto be called after changing any variable that could change the result of the wait condition.
Returns
Oifthecondi ti on evaluatedtof al se after thet i meout elapsed, 1if thecondi ti on evaluated to

t r ue after thet i meout elapsed, theremaining jiffies(at least 1) if thecondi ti on evaluatedtot r ue
beforethet i meout elapsed, or -ERESTARTSYS if it was interrupted by asignal.

77

Driver Basics

Name

wait_event_hrtimeout — sleep until a condition gets true or atimeout elapses
Synopsis

wait _event hrtimeout (wg, condition, tineout);
Arguments

wg the waitqueue to wait on

condi tion aC expression for the event to wait for

ti meout timeout, asaktime t

Description

The process is put to sleep (TASK_UNINTERRUPTIBLE) until the condi t i on evaluatesto true or a
signal isreceived. Thecondi t i on ischecked each time the waitqueue wg is woken up.

wake_up hasto be called after changing any variable that could change the result of the wait condition.

Thefunction returns 0 if condi t i on becametrue, or -ETIME if the timeout el apsed.

78

Driver Basics

Name

wait_event_interruptible_hrtimeout — sleep until a condition gets true or atimeout elapses
Synopsis

wait _event _interruptible hrtineout (wg, condition, tinmeout);
Arguments

wg the waitqueue to wait on

condi tion aC expression for the event to wait for

ti meout timeout, asaktime t

Description

Theprocessisput to sleep (TASK_INTERRUPTIBLE) until thecondi t i on evaluatesto trueor asignal
isreceived. Thecondi t i on ischecked each time the waitqueue wg iswoken up.

wake_up hasto be called after changing any variable that could change the result of the wait condition.

The function returns O if condi ti on became true, -ERESTARTSY Sif it was interrupted by a signal,
or -ETIME if the timeout el apsed.

79

Driver Basics

Name

wait_event_interruptible locked — dleep until a condition gets true
Synopsis

wait _event _interruptible_ |ocked (wg, condition);
Arguments

wg the waitqueue to wait on

condi tion aC expression for the event to wait for

Description

Theprocessisput to sleep (TASK_INTERRUPTIBLE) until thecondi t i on evaluatesto true or asignal
isreceived. Thecondi t i on ischecked each time the waitqueue wg is woken up.

It must be called with wg.lock being held. This spinlock is unlocked while sleeping but condi ti on
testing is done while lock is held and when this macro exits the lock is held.

The lock is locked/unlocked using spi n_I ock/spi n_unl ock functions which must match the way
they are locked/unlocked outside of this macro.

wake_up_| ocked hasto be called after changing any variable that could change the result of the wait
condition.

Thefunctionwill return -ERESTARTSY Sif it wasinterrupted by asignal and O if condi t i on evaluated
totrue.

80

Driver Basics

Name

wait_event_interruptible locked irq— sleep until a condition gets true
Synopsis

wait _event interruptible locked irq (wg, condition);
Arguments

wg the waitqueue to wait on

condi tion aC expression for the event to wait for

Description

Theprocessisput to sleep (TASK_INTERRUPTIBLE) until thecondi t i on evaluatesto true or asignal
isreceived. Thecondi t i on ischecked each time the waitqueue wg is woken up.

It must be called with wg.lock being held. This spinlock is unlocked while sleeping but condi ti on
testing is done while lock is held and when this macro exits the lock is held.

Thelock islocked/unlocked usingspi n_| ock_i r g/spi n_unl ock_i r g functionswhich must match
the way they are locked/unlocked outside of this macro.

wake_up_| ocked hasto be called after changing any variable that could change the result of the wait
condition.

Thefunctionwill return -ERESTARTSY Sif it wasinterrupted by asignal and O if condi t i on evaluated
totrue.

81

Driver Basics

Name

wait_event_interruptible_exclusive locked — sleep exclusively until a condition gets true
Synopsis

wait _event interruptibl e _exclusive |ocked (wg, condition);
Arguments

wg the waitqueue to wait on

condi tion aC expression for the event to wait for

Description

Theprocessisput to sleep (TASK_INTERRUPTIBLE) until thecondi t i on evaluatesto true or asignal
isreceived. Thecondi t i on ischecked each time the waitqueue wg is woken up.

It must be called with wg.lock being held. This spinlock is unlocked while sleeping but condi ti on
testing is done while lock is held and when this macro exits the lock is held.

The lock is locked/unlocked using spi n_I ock/spi n_unl ock functions which must match the way
they are locked/unlocked outside of this macro.

The processis put on the wait queue with an WQ_FLAG_EXCLUSIVE flag set thus when other process
walits process on the list if this process is awaken further processes are not considered.

wake_up_| ocked hasto be called after changing any variable that could change the result of the wait
condition.

Thefunction will return -ERESTARTSY Sif it wasinterrupted by asignal and O if condi t i on evaluated
to true.

82

Driver Basics

Name

wait_event_interruptible_exclusive locked irq— sleep until a condition gets true
Synopsis

wait _event interruptible_exclusive |ocked irq (wg, condition);
Arguments

wg the waitqueue to wait on

condi tion aC expression for the event to wait for

Description

Theprocessisput to sleep (TASK_INTERRUPTIBLE) until thecondi t i on evaluatesto true or asignal
isreceived. Thecondi t i on ischecked each time the waitqueue wg is woken up.

It must be called with wg.lock being held. This spinlock is unlocked while sleeping but condi ti on
testing is done while lock is held and when this macro exits the lock is held.

Thelock islocked/unlocked usingspi n_| ock_i r g/spi n_unl ock_i r g functionswhich must match
the way they are locked/unlocked outside of this macro.

The processis put on the wait queue with an WQ_FLAG_EXCLUSIVE flag set thus when other process
walits process on the list if this process is awaken further processes are not considered.

wake_up_| ocked hasto be called after changing any variable that could change the result of the wait
condition.

Thefunction will return -ERESTARTSY Sif it wasinterrupted by asignal and O if condi t i on evaluated
to true.

83

Driver Basics

Name

wait_event_killable — sleep until a condition gets true
Synopsis

wait _event killable (wg, condition);
Arguments

wg the waitqueue to wait on

condi tion aC expression for the event to wait for

Description

The process is put to sleep (TASK_KILLABLE) until the condi ti on evaluates to true or asigna is
received. Thecondi t i on ischecked each time the waitqueue wg is woken up.

wake_up hasto be called after changing any variable that could change the result of the wait condition.

Thefunctionwill return -ERESTARTSY Sif it wasinterrupted by asignal and O if condi t i on evaluated
to true.

Driver Basics

Name
wait_event_lock_irg_cmd — sleep until a condition gets true. The condition is checked under the lock.
Thisis expected to be called with the lock taken.

Synopsis

wait _event lock irq cnd (wg, condition, |ock, cnd);
Arguments

wg the waitqueue to wait on

condi tion aC expression for the event to wait for

| ock alocked spinlock_t, which will be released before cmd and schedul e and reacquired
afterwards.
cnd acommand which isinvoked outside the critical section before sleep
Description

The processis put to sleep (TASK_UNINTERRUPTIBLE) until thecondi t i on evaluatesto true. The
condi ti on ischecked each time the waitqueue wg iswoken up.

wake_up hasto be called after changing any variable that could change the result of the wait condition.

This is supposed to be called while holding the lock. The lock is dropped before invoking the cmd and
going to sleep and is reacquired afterwards.

85

Driver Basics

Name

wait_event_lock_irg — sleep until a condition gets true. The condition is checked under the lock. Thisis
expected to be called with the lock taken.

Synopsis

wait _event lock irq (wg, condition, |ock);
Arguments

wg the waitqueue to wait on

condi tion aC expression for the event to wait for

| ock alocked spinlock_t, which will be released before schedul e and reacquired afterwards.

Description

The processis put to sleep (TASK_UNINTERRUPTIBLE) until thecondi t i on evaluatesto true. The
condi t i on ischecked each time the waitqueue wg is woken up.

wake_up hasto be called after changing any variable that could change the result of the wait condition.

This is supposed to be called while holding the lock. The lock is dropped before going to sleep and is
reacquired afterwards.

86

Driver Basics

Name

wait_event_interruptible lock_irq_cmd— sleep until acondition getstrue. The conditionischecked under
thelock. Thisis expected to be called with the lock taken.

Synopsis

wait_event interruptible lock irg cnmd (wg, condition, |ock, crmd);
Arguments

wg the waitqueue to wait on

condi tion aC expression for the event to wait for

| ock alocked spinlock_t, which will be released before cmd and schedul e and reacquired
afterwards.
cnd acommand which isinvoked outside the critical section before sleep
Description

The processisput to sleep (TASK_INTERRUPTIBLE) until thecondi t i on evaluatesto true or asignal
isreceived. Thecondi t i on ischecked each time the waitqueue wg is woken up.

wake_up hasto be called after changing any variable that could change the result of the wait condition.

This is supposed to be called while holding the lock. The lock is dropped before invoking the cmd and
going to sleep and is reacquired afterwards.

The macro will return -ERESTARTSY Siif it was interrupted by asignal and O if condi t i on evaluated
to true.

87

Driver Basics

Name
wait_event_interruptible_lock_irq— sleep until a condition gets true. The condition is checked under the
lock. Thisis expected to be called with the lock taken.

Synopsis

wait_event interruptible lock irg (wg, condition, |ock);
Arguments

wg the waitqueue to wait on

condi tion aC expression for the event to wait for

| ock alocked spinlock_t, which will be released before schedul e and reacquired afterwards.

Description

The processis put to sleep (TASK_INTERRUPTIBLE) until thecondi t i on evaluates to true or signal
isreceived. Thecondi t i on ischecked each time the waitqueue wg is woken up.

wake_up hasto be called after changing any variable that could change the result of the wait condition.

This is supposed to be called while holding the lock. The lock is dropped before going to sleep and is
reacquired afterwards.

The macro will return -ERESTARTSY Siif it was interrupted by asignal and 0 if condi ti on evaluated
totrue.

88

Driver Basics

Name

wait_event_interruptible lock_irq_timeout — sleep until a condition gets true or a timeout elapses. The
condition is checked under the lock. This is expected to be called with the lock taken.

Synopsis
wait_event interruptible lock irg tinmeout (wy, condition, |ock, tinme-
out);

Arguments
wg the waitqueue to wait on

condi tion aC expression for the event to wait for

| ock alocked spinlock_t, which will be released before schedul e and reacquired afterwards.
ti meout timeout, in jiffies
Description

The processis put to sleep (TASK_INTERRUPTIBLE) until thecondi t i on evaluates to true or signal
isreceived. Thecondi t i on ischecked each time the waitqueue wg is woken up.

wake_up hasto be called after changing any variable that could change the result of the wait condition.

This is supposed to be called while holding the lock. The lock is dropped before going to sleep and is
reacquired afterwards.

The function returns 0 if thet i meout elapsed, -ERESTARTSY S if it was interrupted by a signal, and
the remaining jiffies otherwise if the condition evaluated to true before the timeout el apsed.

89

Driver Basics

Name

wait_on_bit — wait for a bit to be cleared

Synopsis

int wait_on bit (void * word, int bit, unsigned node);

Arguments
wor d theword being waited on, akernel virtual address
bi t the hit of the word being waited on

node thetask stateto sleepin

Description

Thereis astandard hashed waitqueue table for generic use. Thisisthe part of the hashtable's accessor API
that waits on abit. For instance, if one wereto have waiters on abitflag, onewouldcall wai t _on_bi t in
threads waiting for the bit to clear. Oneuseswai t _on_bi t where oneiswaiting for the bit to clear, but
has no intention of setting it. Returned value will be zero if the bit was cleared, or non-zero if the process
received asignal and the mode permitted wakeup on that signal.

90

Driver Basics

Name

wait_on_bit_io — wait for abit to be cleared

Synopsis

int wait_on bit _io (void * word, int bit, unsigned node);

Arguments
wor d theword being waited on, akernel virtual address
bi t the hit of the word being waited on

node thetask stateto sleepin

Description

Use the standard hashed waitqueue table to wait for abit to be cleared. Thisissimilartowai t _on_bi t,
but callsi o_schedul e instead of schedul e for the actual waiting.

Returned value will be zero if the bit was cleared, or non-zero if the process received a signal and the
mode permitted wakeup on that signal.

91

Driver Basics

Name

wait_on_bit_timeout — wait for a bit to be cleared or atimeout elapses

Synopsis

int wait_on_bit_tineout (void * word, int bit, unsigned node, unsigned
| ong tineout);

Arguments
wor d the word being waited on, akernel virtual address
bi t the hit of the word being waited on
node thetask stateto sleep in

ti meout timeout,injiffies

Description

Use the standard hashed waitqueue table to wait for abit to be cleared. Thisissimilartowai t _on_bi t,
except also takes atimeout parameter.

Returned value will be zero if the bit was cleared beforethet i meout elapsed, or non-zero if thet i ne-
out elapsed or process received a signal and the mode permitted wakeup on that signal.

92

Driver Basics

Name

wait_on_bit_action — wait for a bit to be cleared

Synopsis

int wait_on_bit _action (void* word, int bit, wait_bit_action_f * acti on,
unsi gned node);

Arguments
wor d the word being waited on, akernel virtual address
bi t the hit of the word being waited on

action thefunction used to sleep, which may take special actions

node the task state to Sleep in

Description

Use the standard hashed waitqueue table to wait for a bit to be cleared, and allow the waiting action to be
specified. Thisislikewai t _on_bi t but allows fine control of how the waiting is done.

Returned value will be zero if the bit was cleared, or non-zero if the process received a signal and the
mode permitted wakeup on that signal.

93

Driver Basics

Name

wait_on_bit_lock — wait for a bit to be cleared, when wanting to set it
Synopsis

int wait_on bit_lock (void * word, int bit, unsigned node);
Arguments

wor d theword being waited on, akernel virtual address

bi t the hit of the word being waited on

node thetask stateto sleepin

Description

There is a standard hashed waitqueue table for generic use. This is the part of the hashtable's accessor
API that waits on a bit when one intends to set it, for instance, trying to lock bitflags. For instance, if
one were to have waiters trying to set bitflag and waiting for it to clear before setting it, one would call
wai t _on_bi t inthreads waiting to be able to set the bit. Oneuseswai t _on_bit | ock where one
iswaiting for the bit to clear with the intention of setting it, and when done, clearing it.

Returns zero if the bit was (eventually) found to be clear and was set. Returns non-zero if a signal was
delivered to the process and the node allows that signal to wake the process.

94

Driver Basics

Name

wait_on_bit lock_io— wait for abit to be cleared, when wanting to set it

Synopsis

int wait_on bit lock io (void * word, int bit, unsigned node);

Arguments

wor d theword being waited on, akernel virtual address
bi t the hit of the word being waited on

node thetask stateto sleepin

Description

Use the standard hashed waitqueue table to wait for a bit to be cleared and then to atomically set it. This
issimilartowai t _on_bi t, but callsi o_schedul e instead of schedul e for the actual waiting.

Returns zero if the bit was (eventually) found to be clear and was set. Returns non-zero if a signal was
delivered to the process and the node allows that signal to wake the process.

95

Driver Basics

Name

wait_on_bit_lock_action — wait for a bit to be cleared, when wanting to set it

Synopsis

int wait_on bit_|ock _action (void * word, int bit, wait_bit_action f *
action, unsigned node);

Arguments
wor d the word being waited on, akernel virtual address
bi t the hit of the word being waited on

action thefunction used to sleep, which may take special actions

node the task state to Sleep in

Description

Use the standard hashed waitqueue table to wait for a bit to be cleared and then to set it, and alow the
waiting action to be specified. Thisislikewai t _on_bi t but allows fine control of how the waiting is
done.

Returns zero if the bit was (eventually) found to be clear and was set. Returns non-zero if a signal was
delivered to the process and the node allows that signal to wake the process.

96

Driver Basics

Name
wait_on_atomic_t — Wait for an atomic_t to become O
Synopsis
int wait_on_atomc_t (atomic t * val, int (*action) (atomc_t *), un-

si gned node);

Arguments
val The atomic value being waited on, akernel virtual address
action thefunction used to sleep, which may take special actions
node thetask stateto sleep in

Description

Wait for an atomic_t to become 0. We abuse the bit-wait waitqueue table for the purpose of getting a
waitqueue, but we set the key to a bit number outside of the target 'word'.

97

Driver Basics

Name
__wake _up — wake up threads blocked on a waitqueue.
Synopsis
void _ wake up (wait_queue_head t * g, wunsigned int node, int

nr_exclusive, void * key);

Arguments
q the waitqueue
node which threads

nr_excl usi ve how many wake-one or wake-many threads to wake up

key isdirectly passed to the wakeup function

Description

It may be assumed that this function implies awrite memory barrier before changing the task state if and
only if any tasks are woken up.

98

Driver Basics

Name
__wake up_sync_key — wake up threads blocked on a waitqueue.

Synopsis

void _ wake up_sync_key (wait_queue_head t * q, unsigned int node, int
nr_exclusive, void * key);

Arguments
q the waitqueue
node which threads

nr_excl usi ve how many wake-one or wake-many threads to wake up

key opague value to be passed to wakeup targets

Description

The sync wakeup differs that the waker knows that it will schedule away soon, so while the target thread
will bewoken up, it will not be migrated to another CPU - ie. the two threads are 'synchronized' with each
other. This can prevent needless bouncing between CPUs.

On UP it can prevent extra preemption.

It may be assumed that this function implies awrite memory barrier before changing the task state if and
only if any tasks are woken up.

99

Driver Basics

Name

finish_wait — clean up after waiting in a queue
Synopsis

void finish wait (wait_queue head t * g, wait_queue_ t * wait);
Arguments

q waitqueue waited on

wai t wait descriptor

Description

Sets current thread back to running state and removes the wait descriptor from the given waitqueue if till
queued.

100

Driver Basics

Name

abort_exclusive wait — abort exclusive waiting in a queue

Synopsis

voi d abort_exclusive wait (wait_queue head t * g, wait_queue_ t * wait,
unsi gned int node, void * key);

Arguments
q waitqueue waited on
wai t wait descriptor
node runstate of the waiter to be woken

key key toidentify await bit queue or NULL

Description

Sets current thread back to running state and removes the wait descriptor from the given waitqueue if still
queued.

Wakes up the next waiter if the caller is concurrently woken up through the queue.

This prevents waiter starvation where an exclusive waiter aborts and is woken up concurrently and no one
wakes up the next waiter.

101

Driver Basics

Name

wake up_bit — wake up awaiter on a bit
Synopsis

void wake up bit (void * word, int bit);
Arguments

wor d theword being waited on, akernel virtual address

bi t the hit of the word being waited on

Description

There is a standard hashed waitqueue table for generic use. This is the part of the hashtable's accessor
API that wakes up waiters on a bit. For instance, if one were to have waiters on a bitflag, one would call
wake_up_bit after clearing the bit.

In order for thisto function properly, asit useswai t queue_act i ve internally, some kind of memory
barrier must be doneprior to calling this. Typically, thiswill besnp_nb__aft er _at omi ¢, butinsome
cases where hitflags are manipulated non-atomically under a lock, one may need to use a less regular
barrier, such fs/inode.c's sp_nh, because spi n_unl ock does not guarantee a memory barrier.

102

Driver Basics

Name

wake up_atomic_t — Wake up awaiter on aatomic _t
Synopsis

void wake up atonmic_t (atomic_t * p);
Arguments

p Theatomic_t being waited on, akernel virtual address

Description
Wake up anyone waiting for the atomic_t to go to zero.

Abuse the bit-waker function and its waitqueue hash table set (the atomic_t check is done by the waiter's
wake function, not the by the waker itself).

High-resolution timers

103

Driver Basics

Name

ktime_set — Set aktime _t variable from a seconds/nanoseconds value

Synopsis

ktime_t ktinme_set (const s64 secs, const unsigned | ong nsecs);

Arguments
secs seconds to set

nsecs hanosecondsto set

Return

The ktime_t representation of the value.

104

Driver Basics

Name

ktime_equal — Compares two ktime _t variablesto see if they are equal
Synopsis

int ktinme_equal (const ktine_ t cnpl, const ktime_t cnp2);
Arguments

cnpl comparablel

cnp2 comparable2

Description

Compare two ktime _t variables.

Return

1if equal.

105

Driver Basics

Name

ktime_compare — Compares two ktime_t variables for less, greater or equal

Synopsis
int ktine_conpare (const ktine t cnpl, const ktime_t cnp2);
Arguments

cnpl comparablel

cnp2 comparable2

Return

... cmpl < cmp2: return <O cmpl == cmp2: return 0 cmpl > cmp2: return >0

106

Driver Basics

Name

ktime_after — Compareif aktime_t value is bigger than another one.

Synopsis

bool ktime_after (const ktine_t cnpl, const ktine_ t cnp2);
Arguments

cnpl comparablel

cnp2 comparable2

Return

true if cmpl happened after cmp2.

107

Driver Basics

Name

ktime_before — Compareif aktime_t valueis smaller than another one.

Synopsis

bool ktime_before (const ktine t cnpl, const ktime_t cnp2);
Arguments

cnpl comparablel

cnp2 comparable2

Return

true if cmpl happened before cmp2.

108

Driver Basics

Name

ktime_to_timespec_cond— convert aktime_t variableto timespec format only if thevariable containsdata

Synopsis

bool ktime to timespec_cond (const ktime_t kt, struct timespec * ts);

Arguments
kt thektime_t variableto convert

ts thetimespec variableto store theresult in

Return

t r ue if there was a successful conversion, f al se if kt wasO.

109

Driver Basics

Name

ktime_to_timespec64 _cond — convert aktime_t variable to timespec64 format only if the variable con-
tains data

Synopsis

bool ktine to_tinmespec64 _cond (const ktine t kt, struct tinmespec64 *
ts);

Arguments
kt thektime_t variableto convert

ts thetimespec variableto store theresult in

Return

t r ue if there was a successful conversion, f al se if kt wasO.

110

Driver Basics

Name

struct hrtimer — the basic hrtimer structure

Synopsis

struct hrtiner {
struct tinmerqueue_node node;
ktime_t _softexpires;
enum hrtiner_restart (* function) (struct hrtinmer *);
struct hrtiner_clock _base * base;

unsi gned | ong state;
#i f def CONFI G_TI MER_STATS
int start_pid;
void * start_site;
char start_commi 16];
#endi f
1
Members
node timerqueue node, which also manages node.expires, the absolute expiry time in
the hrtimers internal representation. The time is related to the clock on which the
timer is based. Is setup by adding slack to the _softexpires value. For non range
timersidentical to _softexpires.
_softexpires the absol ute earliest expiry time of the hrtimer. Thetimewhich wasgiven asexpiry
time when the timer was armed.
function timer expiry callback function
base pointer to the timer base (per cpu and per clock)
state state information (See bit values above)
start_pid timer statistics field to store the pid of the task which started the timer
start_site timer statistics field to store the site where the timer was started

start_comm[16]

Description

timer statistics field to store the name of the process which started the timer

The hrtimer structure must beinitialized by hrti mer _init

111

Driver Basics

Name
struct hrtimer_sleeper — simple slegper structure

Synopsis

struct hrtiner_sl eeper {
struct hrtimer tinmer;
struct task_struct * task;

b
Members

timer embedded timer structure

task task to wake up

Description

task is set to NULL, when the timer expires.

112

Driver Basics

Name

struct hrtimer_clock _base — the timer base for a specific clock

Synopsis

struct hrtiner_cl ock base {
struct hrtiner_cpu_base * cpu_base;
int index;
clockid_ t clockid;
struct tinerqueue_head active;
ktime_t resol ution;
ktime_t (* get _time) (void);
ktime_t softirq_tineg;
ktime_t offset;

b
Members
cpu_base per cpu clock base
index clock type index for per_cpu support when moving atimer to a base on another cpul.
clockid clock id for per_cpu support
active red black tree root node for the active timers
resolution the resolution of the clock, in nanoseconds
get_time function to retrieve the current time of the clock
softirg_time the time when running the hrtimer queue in the softirq
offset offset of this clock to the monotonic base

113

Driver Basics

Name
hrtimer_forward — forward the timer expiry
Synopsis
u64 hrtinmer forward (struct hrtinmer * tiner, ktinme_t now, ktine_ t in-
terval);
Arguments
timer hrtimer to forward
now forward past thistime

i nt erval theinterval to forward

Description

Forward the timer expiry so it will expire in the future. Returns the number of overruns.

114

Driver Basics

Name

hrtimer_start_range_ns— (re)start an hrtimer on the current CPU

Synopsis

int hrtiner_start_range_ns (struct hrtiner * tiner, ktime_t tim un-
signed | ong delta_ns, const enum hrtiner_node node);

Arguments
timer the timer to be added
tim expiry time

del ta_ns "slack" rangefor the timer

node expiry mode; absolute (HRTIMER_MODE_ABS) or relative (HRTIMER_MODE_REL)

Returns

0 on success 1 when the timer was active

115

Driver Basics

Name

hrtimer_start — (re)start an hrtimer on the current CPU

Synopsis

int hrtiner_start (struct hrtimer * tiner, ktine_t tim const enum
hrti mer _node node);

Arguments
ti mer thetimer to be added
tim expiry time

mode expiry mode: absolute (HRTIMER_MODE_ABS) or relative (HRTIMER_MODE_REL)

Returns

0 on success 1 when the timer was active

116

Driver Basics

Name

hrtimer_try to_cancel — try to deactivate atimer

Synopsis

int hrtimer _try to _cancel (struct hrtimer * tinmer);

Arguments

ti mer hrtimer to stop

Returns

0 when the timer was not active 1 when the timer was active -1 when the timer is currently excuting the
callback function and cannot be stopped

117

Driver Basics

Name

hrtimer_cancel — cancel atimer and wait for the handler to finish.
Synopsis
int hrtimer_cancel (struct hrtiner * tiner);

Arguments

timer thetimer to be cancelled

Returns

0 when the timer was not active 1 when the timer was active

118

Driver Basics

Name

hrtimer_get_remaining — get remaining time for the timer
Synopsis
ktime_t hrtinmer_get remaining (const struct hrtimer * timer);

Arguments

timer thetimer toread

119

Driver Basics

Name

hrtimer_init — initialize atimer to the given clock
Synopsis

void hrtiner_init (struct hrtimer * tinmer, clockid t clock_ id, enum
hrti mer _node node);

Arguments
timer the timer to beinitialized
cl ock_id theclockto beused

node timer mode abs/rel

120

Driver Basics

Name
hrtimer_get_res— get the timer resolution for a clock
Synopsis
int hrtimer_get res (const clockid t which _clock, struct tinespec * tp);
Arguments
whi ch_cl ock which clock to query
tp pointer to timespec variable to store the resolution
Description

Store the resolution of the clock selected by whi ch_cl ock in the variable pointed to by t p.

121

Driver Basics

Name

schedule_hrtimeout_range — sleep until timeout
Synopsis

int _ sched schedul e _hrtimeout _range (ktinme_t * expires, unsigned | ong
delta, const enum hrtiner_node node);

Arguments
expi res timeout value (ktime t)
delta slack in expires timeout (ktime t)

node timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL

Description

Make the current task sleep until the given expiry time has elapsed. The routine will return immediately
unless the current task state has been set (seeset _current _st ate).

The del t a argument gives the kernel the freedom to schedule the actual wakeup to a time that is both
power and performance friendly. Thekernel givethe normal best effort behavior for "expi r es+del t a",
but may decide to fire the timer earlier, but no earlier than expi r es.

Y ou can set the task state as follows -

TASK _UNI NTERRUPTI BLE - at least t i meout time is guaranteed to pass before the routine returns.
TASK_| NTERRUPTI BLE - the routine may return early if asignal is delivered to the current task.
The current task state is guaranteed to be TASK_RUNNING when this routine returns.

Returns 0 when the timer has expired otherwise -EINTR

122

Driver Basics

Name
schedule_hrtimeout — sleep until timeout
Synopsis
int _ sched schedule hrtimeout (ktime_t * expires,

hrti mer _node node);

Arguments

expi res timeout value (ktime t)

mode timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL

Description

const enum

Make the current task sleep until the given expiry time has elapsed. The routine will return immediately

unless the current task state has been set (seeset _current _st at e).

Y ou can set the task state as follows -

TASK_UNI NTERRUPTI BLE - at least t i meout time is guaranteed to pass before the routine returns.

TASK | NTERRUPTI BLE - the routine may return early if asignal is delivered to the current task.

The current task state is guaranteed to be TASK_RUNNING when this routine returns.

Returns 0 when the timer has expired otherwise -EINTR

Workgueues and Kevents

123

Driver Basics

Name

gueue_work_on — queue work on specific cpu
Synopsis

bool queue work on (int cpu, struct workqueue_struct
wor k_struct * work);

Arguments

cpu CPU number to execute work on

wg workqueue to use

wor k work to queue
Description

We queue the work to a specific CPU, the caller must ensure it can't go away.
Return

f al se if wor k was already on aqueue, t r ue otherwise.

*

V\Q;

struct

124

Driver Basics

Name
gueue_delayed work_on — queue work on specific CPU after delay

Synopsis

bool queue_delayed work on (int cpu, struct workqueue struct * wg,
struct del ayed work * dwork, unsigned | ong del ay);

Arguments
cpu CPU number to execute work on
wg workqueue to use

dwor k work to queue

del ay number of jiffiesto wait before queueing

Return

f al se if wor k was already on a queue, t r ue otherwise. If del ay is zero and dwor k isidle, it will
be scheduled for immediate execution.

125

Driver Basics

Name
mod_delayed work_on — modify delay of or queue a delayed work on specific CPU

Synopsis

bool nod_del ayed work _on (int cpu, struct workqueue_struct * wg, struct
del ayed work * dwork, unsigned | ong del ay);

Arguments
cpu CPU number to execute work on
wg workqueue to use

dwor k work to queue

del ay number of jiffiesto wait before queueing

Description

If dwor k isidle, equivalent to queue_del ayed_wor k_on; otherwise, modify dwor k's timer so that
it expires after del ay. If del ay is zero, wor k is guaranteed to be scheduled immediately regardless of
its current state.

Return
f al se if dwor k wasidle and queued, t r ue if dwor k was pending and its timer was modified.

Thisfunction is safe to call from any context including IRQ handler. Seetry_t o_gr ab_pendi ng for
details.

126

Driver Basics

Name

flush_workqueue — ensure that any scheduled work has run to completion.
Synopsis

void flush_workqueue (struct workqueue_struct * wq);
Arguments

wg workqueue to flush
Description

This function sleeps until all work items which were queued on entry have finished execution, but it is
not livelocked by new incoming ones.

127

Driver Basics

Name

drain_workqgueue — drain aworkqueue
Synopsis
voi d drai n_workqueue (struct workqueue_struct * wq);

Arguments

wg workqueueto drain

Description

Wait until the workqueue becomes empty. While draining isin progress, only chain queueing is allowed.
IOW, only currently pending or running work items on wg can queue further work items on it. wg is
flushed repeatedly until it becomes empty. The number of flushing is detemined by the depth of chaining
and should be relatively short. Whineiif it takes too long.

128

Driver Basics

Name

flush_work — wait for awork to finish executing the last queueing instance
Synopsis

bool flush_work (struct work struct * work);
Arguments

wor k thework to flush

Description

Wait until wor k has finished execution. wor k is guaranteed to beidle on return if it hasn't been requeued
since flush started.

Return

trueif f1 ush_wor k waited for the work to finish execution, f al se if it was aready idle.

129

Driver Basics

Name

cancel_work_sync — cancel awork and wait for it to finish

Synopsis

bool cancel work_sync (struct work_struct * work);

Arguments

wor k thework to cancel

Description

Return

Cancel wor k and wait for itsexecution to finish. Thisfunction can be used evenif thework re-queuesitself
or migrates to another workqueue. On return from this function, wor k is guaranteed to be not pending
or executing on any CPU.

cancel_work_sync(delayed work->work) must not be used for delayed work's. Use
cancel _del ayed_wor k_sync instead.

The caller must ensure that the workqueue on which wor k was last queued can't be destroyed before this
function returns.

t rue if wor k waspending, f al se otherwise.

130

Driver Basics

Name
flush_delayed_work — wait for a dwork to finish executing the last queueing

Synopsis
bool flush_del ayed work (struct delayed work * dworKk);

Arguments

dwor k the delayed work to flush

Description

Delayed timer is cancelled and the pending work is queued for immediate execution. Likef | ush_wor k,
this function only considers the last queueing instance of dwor k.

Return

trueif f1 ush_wor k waited for the work to finish execution, f al se if it was aready idle.

131

Driver Basics

Name
cancel_delayed_work — cancel adelayed work

Synopsis
bool cancel delayed work (struct delayed work * dwork);
Arguments
dwor k delayed work to cancel
Description
Kill off apending delayed work.
Return
t r ue if dwor k was pending and canceled; f al se if it wasn't pending.

Note

The work callback function may still be running on return, unlessiit returnst r ue and the work doesn't
re-armitself. Explicitly flush or usecancel _del ayed_wor k_sync to wait on it.

Thisfunction is safe to call from any context including IRQ handler.

132

Driver Basics

Name
cancel_delayed_work_sync — cancel adelayed work and wait for it to finish

Synopsis
bool cancel delayed work sync (struct delayed work * dwork);

Arguments

dwor k the delayed work cancel

Description

Thisiscancel _wor k_sync for delayed works.

Return

t rue if dwor k was pending, f al se otherwise.

133

Driver Basics

Name

flush_scheduled work — ensure that any scheduled work has run to completion.
Synopsis
void flush_schedul ed work (void);

Arguments

voi d noarguments

Description

Forces execution of the kernel-global workgqueue and blocks until its completion.

Think twice before calling thisfunction! It'svery easy to get into troubleif you don't take great care. Either
of the following situations

will lead to deadlock

One of the work items currently on the workqueue needs to acquire alock held by your code or its caller.
Y our codeis running in the context of awork routine.

They will be detected by lockdep when they occur, but the first might not occur very often. It depends on
what work items are on the workqueue and what locks they need, which you have no control over.

In most situations flushing the entire workqueue is overkill; you merely need to know that a particular
work itemisn't queued and isn't running. In such casesyou shouldusecancel _del ayed_wor k_sync
or cancel _wor k_sync instead.

134

Driver Basics

Name
execute_in_process _context — reliably execute the routine with user context

Synopsis
int execute_in_process _context (work func_ t fn, struct execute work *
ew) ;

Arguments

fn thefunction to execute
ew guaranteed storage for the execute work structure (must be available when the work executes)
Description

Executes the function immediately if process context is available, otherwise schedules the function for
delayed execution.

Return

0 - function was executed 1 - function was scheduled for execution

135

Driver Basics

Name

destroy_workqueue — safely terminate a workqueue
Synopsis
voi d destroy workqueue (struct workqueue_struct * wg);

Arguments

wg target workqueue

Description

Safely destroy aworkqueue. All work currently pending will be done first.

136

Driver Basics

Name

workqueue_set_max_active — adjust max_active of aworkqueue
Synopsis

void workqueue_set max_active (struct workqueue_struct
max_active);

Arguments
wg target workqueue

max_active new max_activevalue.

Description

Set max_active of wg tomax_acti ve.

CONTEXT

Don't call from IRQ context.

*

V\Q,

137

Driver Basics

Name
workqueue_congested — test whether a workqueue is congested

Synopsis

bool workqueue congested (int cpu, struct workqueue struct * wq);
Arguments

cpu CPU inquestion

wg target workqueue

Description

Test whether wg's cpu workqueue for cpu is congested. There is no synchronization around this function
and the test result is unreliable and only useful as advisory hints or for debugging.

If cpu isWORK_CPU_UNBOUND, thetest is performed on the local CPU. Note that both per-cpu and
unbound workqueues may be associated with multiple pool _workqueues which have separate congested
states. A workqueue being congested on one CPU doesn't mean the workqueue is also contested on other
CPUs/ NUMA nodes.

Return

t rue if congested, f al se otherwise.

138

Driver Basics

Name

work_busy — test whether awork is currently pending or running
Synopsis

unsi gned int work busy (struct work struct * work);
Arguments

wor k thework to be tested

Description

Test whether wor Kk is currently pending or running. There is no synchronization around this function and
the test result is unreliable and only useful as advisory hints or for debugging.

Return

OR'd bitmask of WORK_BUSY _* bits.

139

Driver Basics

Name

work_on_cpu— run afunction in user context on a particular cpu
Synopsis

long work_on_cpu (int cpu, long (*fn) (void *), void * arg);
Arguments

cpu thecputorunon

fn thefunctiontorun

arg thefunction arg
Description

It is up to the caller to ensure that the cpu doesn't go offline. The caller must not hold any locks which
would prevent f n from completing.

Return

Thevaluef n returns.

Internal Functions

140

Driver Basics

Name
wait_task_stopped — Wait for TASK_STOPPED or TASK_TRACED

Synopsis

int wait_task stopped (struct wait_opts * wo,
task_struct * p);

Arguments
WO wait options
ptrace isthewait for ptrace

p task to wait for

Description

int ptrace, struct

Handlesys_wai t 4 work for p in state TASK _STOPPED or TASK TRACED.

CONTEXT

read_lock(tasklist_lock), which is released if return value is non-zero. Also, grabs and releases p->sig-

hand->siglock.

RETURNS

0 if wait condition didn't exist and search for other wait conditions should continue. Non-zero return, -
errno on failure and p's pid on success, implies that tasklist_lock is released and wait condition search

should terminate.

141

Driver Basics

Name
task_set_jobctl_pending — set jobctl pending bits

Synopsis
bool task set jobctl pending (struct task struct * task, unsigned int
mask) ;

Arguments

task target task
mask pending bitsto set
Description
Clear mask from task->jobctl. mask must be subset of JOBCTL_PENDI NG MASK |

JOBCTL_STOP_CONSUME | JOBCTL_STOP_SI GVASK | JOBCTL_TRAPPI NG. If stop signo isbeing
set, the existing signo is cleared. If t ask isalready being killed or exiting, this function becomes noop.

CONTEXT

Must be called with t ask->sighand->siglock held.

RETURNS

trueif mask isset, f al se if made noop becauset ask was dying.

142

Driver Basics

Name
task_clear_jobctl_trapping — clear jobctl trapping bit

Synopsis
void task clear_jobctl _trapping (struct task struct * task);

Arguments

task target task

Description

If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. Clear it and wake up the
ptracer. Note that we don't need any further locking. t ask->siglock guaranteesthat t ask->parent points
to the ptracer.

CONTEXT

Must be called with t ask->sighand->siglock held.

143

Driver Basics

Name
task_clear_jobctl_pending — clear jobctl pending bits

Synopsis
voi d task _clear_jobctl pending (struct task _struct * task, unsigned int
mask) ;

Arguments

task target task

mask pending bitsto clear

Description

Clear mask from task->jobctl. mask must be subset of JOBCTL_PENDI NG MASK. If
JOBCTL_STOP_PENDI NGisbeing cleared, other STOP hits are cleared together.

If clearing of nask leaves no sop or trap pending, this function cals
task_cl ear _jobctl trapping.

CONTEXT

Must be called with t ask->sighand->siglock held.

144

Driver Basics

Name
task_participate_group_stop — participate in a group stop

Synopsis

bool task participate_group stop (struct task struct * task);
Arguments

task task participating in agroup stop

Description
t ask hasJOBCTL_STOP_PENDI NGset andisparticipating in agroup stop. Group stop statesare cleared

and the group stop countisconsumed if JOBCTL_STOP_ CONSUME was set. I f the consumption compl etes
the group stop, the appropriate SI GNAL_* flags are set.

CONTEXT

Must be called with t ask->sighand->siglock held.

RETURNS

t r ue if group stop completion should be notified to the parent, f al se otherwise.

145

Driver Basics

Name
ptrace trap_notify — schedule trap to notify ptracer

Synopsis
void ptrace_trap_notify (struct task struct * t);

Arguments

t tracee wanting to notify tracer

Description

This function schedules sticky ptrace trap which is cleared on the next TRAP_STORP to notify ptracer of
an event. t must have been seized by ptracer.

If t isrunning, STOP trap will be taken. If trapped for STOP and ptracer islistening for events, traceeis
woken up so that it can re-trap for the new event. If trapped otherwise, STOP trap will be eventually taken
without returning to userland after the existing traps are finished by PTRACE_CONT.

CONTEXT

Must be called with t ask->sighand->siglock held.

146

Driver Basics

Name
do_notify_parent_cldstop — notify parent of stopped/continued state change

Synopsis

void do_notify parent _cldstop (struct task struct * tsk, bool
for_ptracer, int why);

Arguments
t sk task reporting the state change
for_ptracer thenotificationisfor ptracer

why CLD_{ CONTINUEDI|STOPPED|TRAPPED} to report

Description

Notify t sk's parent that the stopped/continued state has changed. If f or _ptracer isfal se, t sk's
group leader notifiestoitsreal parent. If t r ue, t sk reportstot sk->parent which should be the ptracer.

CONTEXT

Must be called with tasklist_lock at least read locked.

147

Driver Basics

Name
do_signal_stop — handle group stop for SIGSTOP and other stop signals

Synopsis
bool do_signal _stop (int signr);
Arguments
si gnr signr causing group stop if initiating
Description
If JOBCTL_STOP_PENDI NGisnot set yet, initiate group stopwith si gnr and participateinit. If already

set, participatein the existing group stop. If participated in agroup stop (and thusslept), t r ue isreturned
with siglock released.

If ptraced, this function doesn't handle stop itself. Instead, JOBCTL_TRAP_STOP is scheduled and
f al se isreturned with siglock untouched. The caller must ensure that INTERRUPT trap handling takes
places afterwards.

CONTEXT

Must be called with cur r ent ->sighand->siglock held, which isreleased on't r ue return.

RETURNS

f al se if group stop is aready cancelled or ptrace trap is scheduled. t r ue if participated in group stop.

148

Driver Basics

Name
do_jobctl_trap — take care of ptrace jobctl traps

Synopsis
void do_jobctl _trap (void);

Arguments

voi d noarguments

Description

When PT_SEIZED, it's used for both group stop and explicit SEIZE/INTERRUPT traps. Both generate
PTRACE_EVENT_STOP trap with accompanying siginfo. If stopped, lower eight bits of exit_code con-
tain the stop signal; otherwise, SI GTRAP.

When !PT_SEIZED, it'sused only for group stop trap with stop signal number as exit_code and no siginfo.

CONTEXT

Must be called with cur r ent ->sighand->siglock held, which may be released and re-acquired before
returning with intervening sleep.

149

Driver Basics

Name

signal_delivered —
Synopsis

voi d signal _delivered (struct ksignal * ksig, int stepping);
Arguments

ksi g kernel signal struct

st eppi ng nonzero if debugger single-step or block-step in use

Description

This function should be called when a signal has successfully been delivered. It updates the blocked
signals accordingly (ksi g->ka.sa.sa mask is always blocked, and the signa itself is blocked unless
SA NODEFERissetinksi g->kasasa flags. Tracing is notified.

150

Driver Basics

Name
sys restart_syscall — restart a system call

Synopsis
I ong sys restart_syscall (void);
Arguments

voi d noarguments

151

Driver Basics

Name

set_current_blocked — change current->blocked mask
Synopsis

void set_current bl ocked (sigset_t * newset);
Arguments

newset new mask
Description

It is wrong to change ->blocked directly, this helper should be used to ensure the process can't miss a
shared signal we are going to block.

152

Driver Basics

Name
sys rt_sigprocmask — change the list of currently blocked signals
Synopsis
long sys rt_sigprocmask (int how, sigset t _ user * nset,

__user * oset, size_t sigsetsize);

Arguments
how
nset

oset

whether to add, remove, or set signals
stores pending signals

previous value of signal mask if non-null

si gsetsize sizeof sigset_ttype

sigset _t

153

Driver Basics

Name

sys rt_sigpending — examine a pending signal that has been raised while blocked
Synopsis

long sys rt_sigpending (sigset t _ user * uset, size t sigsetsize);
Arguments

uset stores pending signals

si gsetsize sizeof sigset ttypeor larger

154

Driver Basics

Name
do_sigtimedwait — wait for queued signals specified inwhi ch

Synopsis

int do_sigtimedwait (const sigset t * which, siginfo t * info,
struct tinmespec * ts);

Arguments
whi ch queued signals to wait for
i nfo if non-null, the signa's siginfo is returned here

ts upper bound on process time suspension

const

155

Driver Basics

Name
sys rt_sigtimedwait — synchronously wait for queued signals specified in ut hese
Synopsis
long sys rt_sigtinedwait (const sigset t _ user * uthese, siginfo_t

__user * uinfo, const struct tinespec __user * uts, size_t sigsetsize);

Arguments
ut hese queued signalsto wait for
uinfo if non-null, the signal's siginfo is returned here
uts upper bound on process time suspension

si gsetsize sizeof sigset_ttype

156

Driver Basics

Name

sys kill — send asignal to a process
Synopsis

long sys kill (pid_t pid, int sig);
Arguments

pi d thePID of the process

si g signa to be sent

157

Driver Basics

Name
sys tgkill — send signal to one specific thread

Synopsis

long sys tgkill (pid_t tgid, pidt pid, int sig);
Arguments

tgi d thethread group ID of the thread

pid thePID of thethread

sig signa to be sent

Description

This syscall also checksthet gi d and returns-ESRCH even if the PID exists but it's not belonging to the
target process anymore. This method solves the problem of threads exiting and PIDs getting reused.

158

Driver Basics

Name
sys tkill — send signal to one specific task

Synopsis
long sys tkill (pid_t pid, int sig);
Arguments

pi d thePID of thetask

si g signa to be sent

Description
Send asignal to only one task, eveniif it'sa CLONE_THREAD task.

159

Driver Basics

Name

sys rt_sigqueueinfo — send signal information to a signal
Synopsis

| ong sys_rt_sigqueueinfo (pid t pid, int sig, siginfo t user * uinfo);
Arguments

pi d the PID of the thread

sig signal to be sent

ui nfo signa info to be sent

160

Driver Basics

Name

sys sigpending — examine pending signals
Synopsis

| ong sys_sigpending (old sigset t _ user * set);
Arguments

set where mask of pending signal isreturned

161

Driver Basics

Name

sys sigprocmask — examine and change blocked signals

Synopsis

| ong sys_sigprocrmask (int how, old sigset t user * nset, old_sigset t
__user * oset);

Arguments
how whether to add, remove, or set signals
nset signasto add or remove (if non-null)

oset previousvalue of signal mask if non-null

Description

Some platforms have their own version with special arguments; others support only sys rt_sigprocmask.

162

Driver Basics

Name

sys rt_sigaction — alter an action taken by a process
Synopsis

long sys rt_sigaction (int sig, const struct sigaction _ _user * act,
struct sigaction __ _user * oact, size_ t sigsetsize);

Arguments
sig signal to be sent
act new sigaction
oact used to save the previous sigaction

si gsetsize sizeof sigset_ttype

163

Driver Basics

Name

sys rt_sigsuspend — replace the signal mask for avaluewiththeunewset valueuntil asignal isreceived
Synopsis

I ong sys rt_sigsuspend (sigset t _ user * unewset, size t sigsetsize);
Arguments

unewset new signal mask value

si gsetsize sizeof sigset ttype

164

Driver Basics

Name

kthread_run — create and wake a thread.
Synopsis

kthread run (threadfn, data, namefnt, ...);
Arguments

t hr eadf n thefunction to run until signal_pending(current).
dat a dataptr for t hr eadf n.
namef mt printf-style name for the thread.

variable arguments

Description

Convenient wrapper for kt hr ead_cr eat e followed by wake_up_pr ocess. Returns the kthread or
ERR_PTR(-ENOMEM).

165

Driver Basics

Name
kthread_should_stop — should this kthread return now?

Synopsis
bool kthread should stop (void);

Arguments

voi d noarguments

Description

When someone calls kt hr ead_st op on your kthread, it will be woken and this will return true. You
should then return, and your return value will be passed through to kt hr ead_st op.

166

Driver Basics

Name
kthread_freezable should_stop — should this freezable kthread return now?

Synopsis

bool kthread freezabl e should stop (bool * was frozen);

Arguments

was_frozen optiona out parameter, indicates whether cur r ent was frozen

Description

kt hr ead_shoul d_st op for freezable kthreads, which will enter refrigerator if necessary. This func-
tion is safe from kt hr ead_st op / freezer deadlock and freezable kthreads should use this function in-

stead of callingtry_to_freeze directly.

167

Driver Basics

Name
kthread_create_on_node — create a kthread.

Synopsis
struct task_struct * kthread create_on_node (int (*threadfn) (void *da-
ta), void * data, int node, const char namefm{[], ...);

Arguments

t hreadf n thefunctionto run until signal_pending(current).
dat a dataptr for t hr eadf n.

node memory node number.

nanmefm[] printf-style name for the thread.

variable arguments

Description

This helper function creates and names a kernel thread. The thread will be stopped: use
wake_up_process todartit. Seeasokt hread_run.

If thread is going to be bound on a particular cpu, give its node in node, to get NUMA affinity for
kthread stack, or else give -1. When woken, the thread will run @t hr eadf n with dat a asitsargument.
@t hr eadf n can either call do_exi t directly if it is a standalone thread for which no one will call
kt hr ead_st op, or return when 'kt hr ead_shoul d_st op' is true (which means kt hr ead_st op
has been called). The return value should be zero or a negative error number; it will be passed to
kt hr ead_st op.

Returns atask_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR).

168

Driver Basics

Name
kthread_bind — bind a just-created kthread to a cpu.

Synopsis
void kthread bind (struct task struct * p, unsigned int cpu);
Arguments

p thread created by kt hr ead_cr eat e.

cpu cpu (might not be online, must be possible) for k to run on.

Description

Thisfunctionisequivalentto set _cpus_al | owed, except that cpu doesn't need to be online, and the
thread must be stopped (i.e., just returned from kt hr ead_cr eat e).

169

Driver Basics

Name
kthread stop — stop athread created by kt hr ead_cr eat e.

Synopsis
int kthread stop (struct task _struct * k);

Arguments

k thread created by kt hr ead_cr eat e.

Description

Setskt hr ead_shoul d_st op for k to return true, wakes it, and waits for it to exit. This can also be
called after kt hr ead_cr eat e instead of calling wake_up_pr ocess: the thread will exit without
calingt hr eadf n.

If t hr eadf n may call do_exi t itself, the caller must ensure task_struct can't go away.

Returnsthe result of t hr eadf n, or - EI NTRif wake_up_pr ocess was never called.

170

Driver Basics

Name
kthread_worker_fn — kthread function to process kthread_worker

Synopsis
int kthread worker fn (void * worker_ptr);

Arguments

wor ker _ptr pointer toinitialized kthread worker

Description

Thisfunction can beused ast hr eadf n tokt hr ead_cr eat e or kt hr ead_r un withwor ker _ptr
argument pointing to an initialized kthread worker. The started kthread will process work_list until the it
is stopped with kt hr ead_st op. A kthread can also call thisfunction directly after extrainitialization.

Different kthreads can be used for the same kthread worker aslong asthere's only one kthread attached to
it at any giventime. A kthread worker without an attached kthread simply collects queued kthread_works.

171

Driver Basics

Name
gueue_kthread work — queue a kthread work

Synopsis

bool queue_kthread work (struct kthread worker * worker, struct
kt hread_work * work);

Arguments
wor ker target kthread_worker

wor k kthread work to queue

Description

Queue wor k to work processor t ask for async execution. t ask must have been created with
kt hr ead_wor ker _cr eat e. Returnst r ue if wor k was successfully queued, f al se if it wasaready

pending.

172

Driver Basics

Name
flush_kthread work — flush a kthread work
Synopsis
void flush_kthread work (struct kthread work * work);
Arguments
wor k work to flush
Description

If wor k is queued or executing, wait for it to finish execution.

173

Driver Basics

Name
flush_kthread worker — flush all current works on a kthread_worker

Synopsis
void flush_kthread worker (struct kthread worker * worker);

Arguments

wor ker worker to flush

Description

Wait until all currently executing or pending works on wor ker are finished.

Kernel objects manipulation

174

Driver Basics

Name

kobject_get path — generate and return the path associated with a given kobj and kset pair.
Synopsis

char * kobject _get path (struct kobject * kobj, gfp_t gfp_mask);
Arguments

kobj kobject in question, with which to build the path

gf p_nmask theallocation type used to allocate the path
Description

The result must be freed by the caller with kf r ee.

175

Driver Basics

Name

kobject_set name — Set the name of a kobject
Synopsis

i nt kobject _set _nane (struct kobject * kobj, const char * fm, ...);
Arguments

kobj struct kobject to set the name of
fnt format string used to build the name

variable arguments

Description

This sets the name of the kobject. If you have aready added the kobject to the system, you must call
kobj ect _r enane inorder to change the name of the kobject.

176

Driver Basics

Name
kobject_init — initialize a kobject structure
Synopsis
void kobject init (struct kobject * kobj, struct kobj type * ktype);
Arguments
kobj pointer to the kobject to initialize
kt ype pointer to the ktype for this kobject.
Description

This function will properly initialize a kobject such that it can then be passed to the kobj ect _add call.

After thisfunction is called, the kobject MUST be cleaned up by acall to kobj ect _put, not by acall
to kfree directly to ensure that all of the memory is cleaned up properly.

177

Driver Basics

Name
kobject_add — the main kobject add function
Synopsis
i nt kobject _add (struct kobject * kobj, struct kobject * parent, const
char * fnmt, ...);
Arguments
kobj the kobject to add

par ent pointer to the parent of the kobject.
fm format to name the kobject with.

variable arguments

Description
The kobject nameis set and added to the kobject hierarchy in this function.

If par ent isset, then the parent of thekobj will beset toit. If par ent isNULL, then the parent of the
kobj will be set to the kobject associated with the kset assigned to this kobject. If no kset is assigned to
the kobject, then the kobject will be located in the root of the sysfs tree.

If thisfunctionreturnsan error, kobj ect _put must becalledto properly clean up the memory associated
with the object. Under no instance should the kobject that is passed to this function be directly freed with
acall tokf r ee, that can leak memory.

Note, no “add” uevent will be created with this call, the caller should set up al of the necessary sysfs
files for the object and then call kobj ect _uevent with the UEVENT_ADD parameter to ensure that
userspace is properly notified of this kobject's creation.

178

Driver Basics

Name
kobject_init_and_add — initialize a kobject structure and add it to the kobject hierarchy
Synopsis
int kobject init_and add (struct kobject * kobj, struct kobj type *
ktype, struct kobject * parent, const char * fm, ...);
Arguments
kobj pointer to the kobject to initialize

kt ype pointer to the ktype for this kobject.
par ent pointer to the parent of this kobject.
fm the name of the kobject.

variable arguments

Description

Thisfunction combinesthecall tokobj ect _i ni t andkobj ect _add. Thesametypeof error handling
after acall tokobj ect _add and kobject lifetime rules are the same here.

179

Driver Basics

Name

kobject_rename — change the name of an object
Synopsis

i nt kobject _renanme (struct kobject * kobj, const char * new nane);
Arguments

kobj object in question.

new _name object's new name

Description

It is the responsibility of the caler to provide mutual exclusion between two different calls of
kobject_rename on the same kobject and to ensure that new_name is valid and won't conflict with other

kobjects.

180

Driver Basics

Name

kobject_del — unlink kobject from hierarchy.
Synopsis

voi d kobj ect del (struct kobject * kobj);
Arguments

kobj object.

181

Driver Basics

Name

kobject_get — increment refcount for object.
Synopsis
struct kobject * kobject get (struct kobject * kobj);

Arguments

kobj object.

182

Driver Basics

Name

kobject_put — decrement refcount for object.
Synopsis

voi d kobject put (struct kobject * kobj);
Arguments

kobj object.

Description

Decrement the refcount, and if O, call kobj ect _cl eanup.

183

Driver Basics

Name
kobject_create and_add — create a struct kobject dynamically and register it with sysfs

Synopsis

struct kobject * kobject create_and add (const char * nane,
kobj ect * parent);

Arguments
namne the name for the kobject

par ent the parent kobject of this kobject, if any.

Description

struct

This function creates a kobject structure dynamically and registers it with sysfs. When you are finished
with this structure, call kobj ect _put and the structure will be dynamically freed when it is no longer

being used.

If the kobject was not able to be created, NULL will be returned.

184

Driver Basics

Name

kset_register — initialize and add a kset.
Synopsis

int kset _register (struct kset * Kk);
Arguments

Kk Kkset.

185

Driver Basics

Name

kset_unregister — remove a kset.
Synopsis

voi d kset _unregi ster (struct kset * Kk);
Arguments

Kk Kkset.

186

Driver Basics

Name
kset_create_and_add — create a struct kset dynamically and add it to sysfs

Synopsis

struct kset * kset create_and add (const char * nanme, const struct
kset uevent ops * uevent _ops, struct kobject * parent _kobj);

Arguments
nane the name for the kset
uevent _ops astruct kset_uevent_opsfor the kset
par ent _kobj the parent kobject of thiskset, if any.

Description
This function creates a kset structure dynamically and registers it with sysfs. When you are finished with
this structure, call kset _unr egi st er and the structure will be dynamically freed when it is no longer
being used.

If the kset was not able to be created, NULL will be returned.

Kernel utility functions

187

Driver Basics

Name

upper_32_bits— return bits 32-63 of a number
Synopsis

upper _32 bits (n);
Arguments

n the number we're accessing
Description

A basic shift-right of a 64- or 32-bit quantity. Use thisto suppress the “right shift count >= width of type’
warning when that quantity is 32-bits.

188

Driver Basics

Name

lower 32 bits— return bits 0-31 of a number
Synopsis

lower 32 bits (n);
Arguments

n the number we're accessing

189

Driver Basics

Name
might_sleep — annotation for functions that can sleep

Synopsis
m ght sl eep (void);
Arguments

None

Description

this macro will print astack traceif it is executed in an atomic context (spinlock, irg-handler, ...).

Thisisauseful debugging help to be able to catch problems early and not be bitten later when the calling
function happens to sleep when it is not supposed to.

190

Driver Basics

Name

reciprocal_scale— "scale" avalueinto range [0, ep_ro)
Synopsis

u32 reciprocal scale (u32 val, u32 ep_ro);
Arguments

val value

ep_ro right openinterval endpoint

Description
Perform a “reciprocal multiplication” in order to “scale” a value into range [0, ep_ro), where the upper
interval endpoint is right-open. This is useful, e.g. for accessing a index of an array containing ep_ro

elements, for example. Think of it as sort of modulus, only that the result isn't that of modulo. ;) Note that
if initial input isasmall value, then result will return O.

Return

aresult based onval ininterva [0, ep_ro).

191

Driver Basics

Name

kstrtoul — convert a string to an unsigned long
Synopsis

int kstrtoul (const char * s, unsigned int base, unsigned |long * res);
Arguments

S The start of the string. The string must be null-terminated, and may also include a single newline

before its terminating null. The first character may also be a plus sign, but not aminus sign.

base The number base to use. The maximum supported base is 16. If base is given as O, then the base
of the string is automatically detected with the conventional semantics - If it begins with Ox the
number will be parsed as a hexadecimal (case insensitive), if it otherwise beginswith O, it will be
parsed as an octal number. Otherwise it will be parsed as adecimal.

res Where to write the result of the conversion on success.
Description

Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. Used as a replacement for
the obsolete simple_strtoull. Return code must be checked.

192

Driver Basics

Name

kstrtol — convert a string to along
Synopsis

int kstrtol (const char * s, unsigned int base, long * res);
Arguments

S The start of the string. The string must be null-terminated, and may also include a single newline

beforeits terminating null. The first character may also be a plus sign or aminus sign.

base The number base to use. The maximum supported base is 16. If base is given as O, then the base
of the string is automatically detected with the conventional semantics - If it begins with Ox the
number will be parsed as a hexadecimal (case insensitive), if it otherwise beginswith O, it will be
parsed as an octal number. Otherwise it will be parsed as adecimal.

res Where to write the result of the conversion on success.
Description

Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. Used as a replacement for
the obsolete simple_strtoull. Return code must be checked.

193

Driver Basics

Name

trace_printk — printf formatting in the ftrace buffer
Synopsis

trace_printk (fm, ...);
Arguments

fmt theprintf format for printing

variable arguments

Note

__trace printk isan interna function for trace _printk and thei p is passed in viathe trace_printk macro.

This function alows a kernel developer to debug fast path sections that printk is not appropriate for.
By scattering in various printk like tracing in the code, a developer can quickly see where problems are
occurring.

This is intended as a debugging tool for the developer only. Please refrain from leaving trace_printks
scattered around in your code. (Extra memory is used for special buffers that are alocated when
trace_printk isused)

A little optization trick is done here. If there's only one argument, there's no need to scan the string for
printf formats. Thet r ace_put s will suffice. But how can we take advantage of usingtrace_put s
whent race_pri nt k hasonly one argument? By stringifying the args and checking the size we can tell
whether or not there are args. __stringify((_VA_ARGS_)) will turn into “()\0” with a size of 3 when
there are no args, anything else will be bigger. All we need to do is define astring to this, and then takeits
size and compare to 3. If it'sbigger, usedo_t race_pri nt k otherwise, optimizeittotrace_put s.
Then just let gcc optimize the rest.

194

Driver Basics

Name

trace_puts — write a string into the ftrace buffer
Synopsis
trace _puts (str);

Arguments

str thestring to record

Note

__trace bputsisaninternal function for trace putsandthei p is passed in viathe trace _puts macro.

Thisissimilartot race_pri nt k but is made for those really fast paths that a devel oper wants the |east
amount of “Heisenbug” affects, where the processing of the print format is still too much.

This function alows a kernel developer to debug fast path sections that printk is not appropriate for.
By scattering in various printk like tracing in the code, a developer can quickly see where problems are
occurring.

Thisisintended asadebugging tool for the developer only. Pleaserefrain from leaving trace puts scattered
around in your code. (Extra memory is used for special buffers that are allocated whent race_put s
is used)

Returns

0 if nothing was written, positive # if string was. (1 when _ trace bputs is used, strlen(str) when
__trace putsis used)

195

Driver Basics

Name

min_not_zero — return the minimum that is_not_ zero, unless both are zero
Synopsis

mn_not_zero (X, Y);
Arguments

X vauel

y vaue2

196

Driver Basics

Name

clamp — return a value clamped to a given range with strict typechecking

Synopsis

clamp (val, lo, hi);
Arguments

val current value

o lowest allowable value

hi highest allowable value

Description

This macro does strict typechecking of lo/hi to make sure they are of the same type as val. See the unnec-
essary pointer comparisons.

197

Driver Basics

Name

clamp_t — return avalue clamped to a given range using a given type
Synopsis

clamp_t (type, val, lo, hi);
Arguments

type thetypeof variableto use

val current value

l o minimum allowable value

hi maximum allowable value

Description

This macro does no typechecking and uses temporary variables of type 'type' to make all the comparisons.

198

Driver Basics

Name

clamp_va — return a value clamped to a given range using val's type
Synopsis

clamp_val (val, lo, hi);
Arguments

val current value
lo minimum allowable value

hi maximum allowable value

Description

This macro does no typechecking and uses temporary variables of whatever type the input argument 'val'
is. Thisisuseful whenval isan unsigned type and min and max are literals that will otherwise be assigned

asigned integer type.

199

Driver Basics

Name

container_of — cast amember of a structure out to the containing structure
Synopsis

contai ner_of (ptr, type, nenber);
Arguments

ptr the pointer to the member.

type the type of the container struct thisis embedded in.

menber the name of the member within the struct.

200

Driver Basics

Name

printk — print a kernel message
Synopsis

__visible int printk (const char * fnt, ...);
Arguments

fm format string

variable arguments

Description

Thisispri nt k. It can be called from any context. We want it to work.

Wetry to grab the console_lock. If we succeed, it's easy - welog the output and call the console drivers. If
we fail to get the semaphore, we place the output into the log buffer and return. The current holder of the
console_sem will notice the new output in consol e_unl ock; and will send it to the consoles before
releasing the lock.

One effect of this deferred printing is that code which calls pri nt k and then changes console _loglevel
may break. Thisis because console _loglevel isinspected when the actual printing occurs.

See also
printf(3)

Seethevsnpri nt f documentation for format string extensions over C99.

201

Driver Basics

Name

console_lock — lock the console system for exclusive use.
Synopsis
voi d consol e | ock (void);

Arguments

voi d noarguments

Description

Acquires a lock which guarantees that the caller has exclusive access to the console system and the
console_driverslist.

Can sleep, returns nothing.

202

Driver Basics

Name

console_trylock — try to lock the console system for exclusive use.
Synopsis
int console_trylock (void);

Arguments

voi d noarguments

Description

Try to acquire alock which guarantees that the caller has exclusive access to the console system and the
console_driverslist.

returns 1 on success, and 0 on failure to acquire the lock.

203

Driver Basics

Name

console_unlock — unlock the console system
Synopsis
voi d consol e_unl ock (void);

Arguments

voi d noarguments

Description

Releases the console_lock which the caller holds on the console system and the console driver list.

While the console |ock was held, console output may have been buffered by pri nt k. If thisisthe case,
consol e_unl ock; emitsthe output prior to releasing the lock.

If there is output waiting, we wake /dev/kmsg and sy sl og users.

consol e_unl ock; may be called from any context.

204

Driver Basics

Name
console_conditional_schedule — yield the CPU if required

Synopsis
void _ sched consol e _conditional _schedule (void);

Arguments

voi d noarguments

Description

If the console code is currently allowed to sleep, and if this CPU should yield the CPU to another task,
do so here.

Must be called within consol e_I ock;.

205

Driver Basics

Name
printk_timed_ratelimit — caller-controlled printk ratelimiting

Synopsis

bool printk tinmed ratelimt (unsigned long * caller_jiffies, unsigned
int interval nsecs);

Arguments
caller_jiffies pointertocaler'sstate

i nterval _msecs minimum interval between prints

Description

printk _timed ratelimt returnstrueif morethani nt er val _nmsecs milliseconds have elapsed
sincethelasttimeprintk_timed_ratelimt returnedtrue.

206

Driver Basics

Name
kmsg_dump_register — register akernel log dumper.
Synopsis
int knsg_dunp_regi ster (struct knsg_dunper * dunper);
Arguments
dunper pointer to the kmsg_dumper structure
Description

Adds akernel log dumper to the system. The dump callback in the structure will be called when the kernel
oopses or panics and must be set. Returns zero on success and - EI NVAL or - EBUSY otherwise.

207

Driver Basics

Name
kmsg_dump_unregister — unregister a kmsg dumper.
Synopsis
int knsg_dunp_unregi ster (struct knsg_dunper * dunper);
Arguments
dunper pointer to the kmsg_dumper structure
Description

Removes a dump device from the system. Returns zero on success and - El NVAL otherwise.

208

Driver Basics

Name
kmsg_dump_get_line — retrieve one kmsg log line

Synopsis

bool kmsg _dunp get line (struct knsg _dunper * dunper, bool syslog, char
* line, size_t size, size t * len);

Arguments

dunper registered kmsg dumper

sysl og includethe“<4>" prefixes

line buffer to copy theline to

si ze maximum size of the buffer

I en length of line placed into buffer
Description

Start at the beginning of the kmsg buffer, with the oldest kmsg record, and copy one record into the
provided buffer.

Consecutive calls will return the next available record moving towards the end of the buffer with the
youngest messages.

A return value of FALSE indicates that there are no more records to read.

209

Driver Basics

Name
kmsg_dump_get_buffer — copy kmsg log lines

Synopsis

bool knsg dunp _get buffer (struct knsg dunper * dunper,
char * buf, size t size, size t * len);

Arguments
dunper registered kmsg dumper

sysl og includethe“<4>" prefixes

buf buffer to copy thelineto

si ze maximum size of the buffer

I en length of line placed into buffer
Description

bool sysl og,

Start at the end of the kmsg buffer and fill the provided buffer with as many of the the *youngest* kmsg
recordsthat fit into it. If the buffer islarge enough, all available kmsg records will be copied with asingle

call.

Consecutive callswill fill the buffer with the next block of available older records, not including the earlier

retrieved ones.

A return value of FALSE indicates that there are no more records to read.

210

Driver Basics

Name
kmsg_dump_rewind — reset the interator
Synopsis
void knsg_dunp_rew nd (struct knsg_dunper * dunper);
Arguments
dunper registered kmsg dumper
Description

Reset the dumper's iterator so that knmsg_dunp_get _|ine and knmsg_dunp_get _buf f er can be
called again and used multiple times within the same dumper.dunp callback.

211

Driver Basics

Name
printk_hash — print a kernel message include a hash over the message

Synopsis

int printk_hash (const char * prefix, const char * fnt,
Arguments

prefix message prefix including the".06x" for the hash

fnt format string

variable arguments

212

Driver Basics

Name
printk_dev_hash — print a kernel message include a hash over the message
Synopsis
int printk _dev_hash (const char * prefix, const char * driver_naneg,
const char * fm, ...);
Arguments
prefix message prefix including the ".06x" for the hash

driver_nane --undescribed --
fm format string

variable arguments

213

Driver Basics

Name
panic — halt the system

Synopsis
void panic (const char * fm, ...);
Arguments

fm Thetext string to print

variable arguments

Description
Display a message, then perform cleanups.

This function never returns.

214

Driver Basics

Name
add taint —
Synopsis
void add_taint (unsigned flag, enum | ockdep ok | ockdep ok);
Arguments
flag one of the TAINT _* constants.
| ockdep_ok whether lock debugging is till OK.
Description

If something bad has gonewrong, you'll want | ockdebug_ok = false, but for some notewortht-but-not-
corrupting cases, it can be set to true.

215

Driver Basics

Name

Jusr/src/linux-4.1.27-24//kernel /sys.c — Document generation inconsistency
Oops
Warning
The template for this document tried to insert the structured comment from the file/ usr/ sr c/

i nux-4.1.27-24//kernel / sys. c at this point, but none was found. This dummy sec-
tion isinserted to allow generation to continue.

216

Driver Basics

Name
init_srcu_struct — initialize a deep-RCU structure

Synopsis

int init_srcu_struct (struct srcu_struct * sp);

Arguments

sp structuretoinitialize.

Description

Must invoke this on a given srcu_struct before passing that srcu_struct to any other function. Each
srcu_struct represents a separate domain of SRCU protection.

217

Driver Basics

Name
cleanup_srcu_struct — deconstruct a sleep-RCU structure

Synopsis

void cl eanup_srcu_struct (struct srcu_struct * sp);

Arguments

sp structureto clean up.

Description

Must invoke this after you are finished using a given srcu_struct that was initidlized via
init_srcu_struct, elseyouleak memory.

218

Driver Basics

Name

synchronize_srcu — wait for prior SRCU read-side critical-section completion
Synopsis
voi d synchroni ze_srcu (struct srcu_struct * sp);

Arguments

sp srcu_struct with which to synchronize.

Description

Wait for the count to drain to zero of both indexes. To avoid the possible starvation of
synchroni ze_sr cu, it waits for the count of the index=((->completed & 1) ~ 1) to drain to zero at
first, and then flip the completed and wait for the count of the other index.

Can block; must be called from process context.

Notethat it isillegal to call synchr oni ze_sr cu from the corresponding SRCU read-side critical sec-
tion; doing so will result in deadlock. However, it is perfectly legal to call synchroni ze_srcu on
one srcu_struct from some other srcu_struct's read-side critical section, as long as the resulting graph of
srcu_structsis acyclic.

There are memory-ordering constraints implied by synchr oni ze_sr cu. On systems with more than
one CPU, whensynchr oni ze_sr cu returns, each CPU is guaranteed to have executed afull memory
barrier since the end of its last corresponding SRCU-sched read-side critical section whose beginning
preceded the call to synchr oni ze_sr cu. In addition, each CPU having an SRCU read-side critical
section that extends beyond the return from synchr oni ze_sr cu is guaranteed to have executed afull
memory barrier after the beginning of synchr oni ze_sr cu and before the beginning of that SRCU
read-side critical section. Note that these guarantees include CPUs that are offline, idle, or executing in
user mode, as well as CPUs that are executing in the kernel.

Furthermore, if CPU A invoked synchr oni ze_sr cu, which returned to its caller on CPU B, then
both CPU A and CPU B are guaranteed to have executed a full memory barrier during the execution of
synchroni ze_sr cu. This guarantee applies even if CPU A and CPU B are the same CPU, but again
only if the system has more than one CPU.

Of course, these memory-ordering guarantees apply only when synchronize srcu,
srcu_read_| ock,andsrcu_read_unl ock are passed the same srcu_struct structure.

219

Driver Basics

Name

synchronize_srcu_expedited — Brute-force SRCU grace period

Synopsis

voi d synchroni ze_srcu_expedited (struct srcu_struct * sp);

Arguments

sp srcu_struct with which to synchronize.

Description
Wait for an SRCU grace period to elapse, but be more aggressive about spinning rather than blocking
when waiting.

Notethat synchr oni ze_srcu_expedi t ed hasthe same deadlock and memory-ordering properties
asdoessynchroni ze_srcu.

220

Driver Basics

Name

srcu_barrier — Wait until al in-flight cal | _sr cu callbacks complete.
Synopsis
void srcu_barrier (struct srcu_struct * sp);

Arguments

sp srcu_struct on which to wait for in-flight callbacks.

221

Driver Basics

Name
srcu_batches completed — return batches completed.

Synopsis
unsi gned | ong srcu_batches_conpl eted (struct srcu_struct * sp);

Arguments

sp srcu_struct on which to report batch completion.

Description

Report the number of batches, correlated with, but not necessarily precisely the same as, the number of
grace periods that have elapsed.

222

Driver Basics

Name

rcu_idle_enter — inform RCU that current CPU isentering idle
Synopsis

void rcu_idle _enter (void);
Arguments

voi d noarguments

Description

Enter idle mode, in other words, -leave- the mode in which RCU read-side critical sections can oc-
cur. (Though RCU read-side critical sections can occur in irg handlers in idle, a possibility handled by
irg_enter andirg_exit.)

We crowbar the ->dynticks nesting field to zero to allow for the possibility of usermode upcalls having
messed up our count of interrupt nesting level during the prior busy period.

223

Driver Basics

Name

rcu_idle_exit — inform RCU that current CPU isleavingidle
Synopsis

void rcu_idle exit (void);
Arguments

voi d noarguments

Description

Exit idle mode, in other words, -enter- the mode in which RCU read-side critical sections can occur.

We crowbar the ->dynticks nestingfieldto DYNTICK_TASK_NEST to alow for the possibility of user-
mode upcalls messing up our count of interrupt nesting level during the busy period that isjust now starting.

224

Driver Basics

Name
rcu_is watching — seeif RCU thinksthat the current CPU isidle

Synopsis
bool notrace rcu_is watching (void);

Arguments

voi d noarguments

Description

If the current CPU isinitsidle loop and is neither in an interrupt or NMI handler, return true.

225

Driver Basics

Name

synchronize_sched — wait until an rcu-sched grace period has el apsed.
Synopsis
voi d synchroni ze_sched (void);

Arguments

voi d noarguments

Description

Control will return to the caller some time after afull rcu-sched grace period has elapsed, in other words
after al currently executing rcu-sched read-side critical sections have completed. These read-side critical
sections are delimited by rcu_read_| ock_sched andrcu_r ead_unl ock_sched, and may be
nested. Note that pr eenpt _di sabl e, | ocal _i rq_di sabl e, and so on may be used in place of
rcu_read_| ock_sched.

Thismeansthat all preempt_disable code sequences, including NMI and non-threaded hardware-interrupt
handlers, in progress on entry will have completed before this primitive returns. However, this does not
guaranteethat softirq handlerswill have completed, sincein somekernels, these handlers can runin process
context, and can block.

Note that this guarantee implies further memory-ordering guarantees. On systems with more than one
CPU, when synchr oni ze_sched returns, each CPU is guaranteed to have executed a full memory
barrier since the end of its last RCU-sched read-side critical section whose beginning preceded the call
tosynchr oni ze_sched. In addition, each CPU having an RCU read-side critical section that extends
beyond the return from synchr oni ze_sched is guaranteed to have executed a full memory barrier
after the beginning of synchr oni ze_sched and before the beginning of that RCU read-side critica
section. Note that these guarantees include CPUs that are offline, idle, or executing in user mode, as well
as CPUs that are executing in the kernel.

Furthermore, if CPU A invoked synchr oni ze_sched, which returned to its caller on CPU B, then
both CPU A and CPU B are guaranteed to have executed a full memory barrier during the execution of
synchroni ze_sched -- even if CPU A and CPU B are the same CPU (but again only if the system
has more than one CPU).

This primitive provides the guarantees made by the (now removed) synchr oni ze_ker nel API. In
contrast, synchr oni ze_r cu only guarantees that r cu_r ead_| ock sections will have completed.
In “classic RCU", these two guarantees happen to be one and the same, but can differ in reatime RCU
implementations.

226

Driver Basics

Name

synchronize _rcu_bh — wait until an rcu_bh grace period has elapsed.
Synopsis

voi d synchroni ze rcu_bh (void);
Arguments

voi d noarguments

Description

Control will return to the caller sometime after afull rcu_bh grace period has elapsed, in other words after
al currently executing rcu_bh read-side critical sections have completed. RCU read-side critical sections
aredelimitedby rcu_read_| ock_bhandrcu_read_unl ock_bh, and may be nested.

See the description of synchr oni ze_sched for more detailed information on memory ordering guar-
antees.

227

Driver Basics

Name
get_state synchronize_rcu — Snapshot current RCU state

Synopsis

unsi gned | ong get _state_synchroni ze rcu (void);

Arguments

voi d noarguments

Description

Returns a cookie that is used by alater call to cond_synchr oni ze_r cu to determine whether or not
afull grace period has elapsed in the meantime.

228

Driver Basics

Name

cond_synchronize_rcu — Conditionally wait for an RCU grace period

Synopsis

voi d cond_synchroni ze_rcu (unsigned |ong ol dstate);

Arguments

ol dstate returnvauefrom earlier call toget st ate_synchroni ze_rcu

Description

If afull RCU grace period has elapsed since the earlier call toget _st at e_synchr oni ze_r cu, just
return. Otherwise, invoke synchr oni ze_r cu to wait for afull grace period.

Y es, this function does not take counter wrap into account. But counter wrap is harmless. If the counter
wraps, we have waited for more than 2 billion grace periods (and way more on a64-bit system!), sowaiting

for one additional grace period should be just fine.

229

Driver Basics

Name
synchronize sched expedited — Brute-force RCU-sched grace period

Synopsis
voi d synchroni ze_sched _expedited (void);

Arguments

voi d noarguments

Description

Wait for an RCU-sched grace period to elapse, but use a “big hammer” approach to force the grace
period to end quickly. This consumes significant time on al CPUs and is unfriendly to rea-time
workloads, so is thus not recommended for any sort of common-case code. In fact, if you are using
synchroni ze_sched_expedi t ed inaloop, please restructure your code to batch your updates, and
thenuseasinglesynchr oni ze_sched instead.

This implementation can be thought of as an application of ticket locking to RCU, with
sync_sched expedited started and sync_sched expedited_done taking on the roles of the halves of the
ticket-lock word. Each task atomically incrementssync_sched expedited started upon entry, snapshotting
the old value, then attempts to stop all the CPUs. If this succeeds, then each CPU will have executed a
context switch, resulting in an RCU-sched grace period. We arethen done, soweuseat om ¢_cnpxchg
to update sync_sched_expedited _done to match our snapshot -- but only if someone else has not already
advanced past our snapshot.

On the other hand, if t ry_st op_cpus fails, we check the value of sync_sched expedited_done. If it
has advanced past our initial snapshot, then someone else must have forced a grace period some time after
we took our snapshot. In this case, our work is done for us, and we can ssimply return. Otherwise, we try
again, but keep our initial snapshot for purposes of checking for someone doing our work for us.

If we fail too many timesin arow, we fall back to synchr oni ze_sched.

230

Driver Basics

Name
rcu_barrier_bh — Wait until al in-flight cal | _r cu_bh callbacks complete.

Synopsis
void rcu_barrier_bh (void);

Arguments

voi d noarguments

231

Driver Basics

Name

rcu_barrier_sched — Wait for in-flight cal | _r cu_sched callbacks.
Synopsis
void rcu_barrier_sched (void);

Arguments

voi d noarguments

232

Driver Basics

Name

synchronize_rcu — wait until a grace period has el apsed.
Synopsis

voi d synchronize rcu (void);
Arguments

voi d noarguments

Description

Control will return to the caller some time after a full grace period has elapsed, in other words after al
currently executing RCU read-side critical sections have completed. Note, however, that upon return from
synchroni ze_r cu, the caler might well be executing concurrently with new RCU read-side critical
sectionsthat beganwhilesynchr oni ze_r cu waswaiting. RCU read-side critical sectionsaredelimited
byrcu_read_| ock andrcu_read_unl ock, and may be nested.

See the description of synchr oni ze_sched for more detailed information on memory ordering guar-
antees.

233

Driver Basics

Name

synchronize _rcu_expedited — Brute-force RCU grace period
Synopsis

voi d synchroni ze rcu_expedited (void);
Arguments

voi d noarguments

Description

Wait for an RCU-preempt grace period, but expedite it. The basic idea is to invoke
synchroni ze_sched_expedi t ed to push al the tasks to the ->blkd tasks lists and wait for
this list to drain. This consumes significant time on all CPUs and is unfriendly to real-time work-
loads, so is thus not recommended for any sort of common-case code. In fact, if you are using
synchroni ze_rcu_expedi t ed in aloop, please restructure your code to batch your updates, and
then Useasinglesynchr oni ze_r cu instead.

234

Driver Basics

Name

rcu_barrier — Wait until al in-flight cal | _r cu callbacks complete.
Synopsis

void rcu_barrier (void);
Arguments

voi d noarguments

Description

Note that this primitive does not necessarily wait for an RCU grace period to complete. For example, if
there are no RCU callbacks queued anywhere in the system, thenr cu_barri er iswithinitsrightsto
return immediately, without waiting for anything, much less an RCU grace period.

235

Driver Basics

Name
rcu_expedite_gp — Expedite future RCU grace periods

Synopsis
void rcu_expedite gp (void);

Arguments

voi d noarguments

Description

After a cal to this function, future calls to synchr oni ze_r cu and friends act as the corresponding
synchroni ze_rcu_expedi t ed function had instead been called.

236

Driver Basics

Name

rcu_unexpedite_gp — Cancel prior r cu_expedi t e_gp invocation
Synopsis
void rcu_unexpedite gp (void);

Arguments

voi d noarguments

Description

Undoapriorcaltor cu_expedi t e_gp. If al prior callstor cu_expedi t e_gp are undone by asub-
sequent call tor cu_unexpedi t e_gp, and if thercu_expedited sysfs/boot parameter is not set, then all
subsequent callsto synchr oni ze_r cu and friends will return to their normal non-expedited behavior.

237

Driver Basics

Name
rcu_read lock_held — might we bein RCU read-side critical section?

Synopsis
int rcu read |ock held (void);

Arguments

voi d noarguments

Description

If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU read-side critical sec-
tion. In absence of CONFIG_DEBUG_LOCK_ALLOC, thisassumeswe arein an RCU read-side critical
section unless it can prove otherwise. This is useful for debug checks in functions that require that they
be called within an RCU read-side critical section.

Checksdebug | ockdep_rcu_enabl ed to prevent false positives during boot and while lockdep is
disabled.

Note that r cu_read_| ock and the matching r cu_r ead_unl ock must occur in the same con-
text, for example, it is illegal to invoke r cu_read_unl ock in process context if the matching
rcu_read_| ock wasinvoked from within anirg handler.

Notethat r cu_r ead_I| ock isdisalowed if the CPU is either idle or offline from an RCU perspective,
so check for those as well.

238

Driver Basics

Name
rcu_read lock_bh_held — might we bein RCU-bh read-side critical section?

Synopsis

int rcu_read | ock bh_held (void);

Arguments

voi d noarguments

Description

Check for bottom half being disabled, which covers both the CONFIG_PROVE_RCU and not cases. Note
that if someone usesr cu_r ead_| ock_bh, but then later enables BH, lockdep (if enabled) will show
the situation. This is useful for debug checks in functions that require that they be called within an RCU
read-side critical section.

Check debug_| ockdep_r cu_enabl ed to prevent false positives during boot.

Notethat r cu_r ead_| ock isdisallowed if the CPU is either idle or offline from an RCU perspective,
so check for those as well.

239

Driver Basics

Name
init_rcu_head on_stack — initialize on-stack rcu_head for debugobjects

Synopsis

void init_rcu_head on_stack (struct rcu_head * head);

Arguments

head pointer to rcu_head structureto be initialized

Description

This function informs debugobjects of a new rcu_head structure that has been allocated as an
auto variable on the stack. This function is not required for rcu head structures that are stati-
caly defined or that are dynamically alocated on the heap. This function has no effect for !
CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.

240

Driver Basics

Name
destroy_rcu_head_on_stack — destroy on-stack rcu_head for debugobjects

Synopsis

voi d destroy rcu_head _on_stack (struct rcu_head * head);

Arguments

head pointer to rcu_head structureto be initialized

Description

Thisfunction informs debugobjectsthat an on-stack rcu_head structureis about to go out of scope. Aswith
init_rcu_head_on_st ack, thisfunction is not required for rcu_head structures that are statically
defined or that are dynamically allocated on the heap. Also aswithi nit _rcu_head_on_st ack, this
function has no effect for \CONFIG_DEBUG_OBJECTS RCU_HEAD kernel builds.

241

Driver Basics

Name

synchronize _rcu_tasks — wait until an rcu-tasks grace period has el apsed.
Synopsis
voi d synchroni ze rcu_tasks (void);

Arguments

voi d noarguments

Description

Control will returnto the caller sometime after afull rcu-tasks grace period has el apsed, in other words after
al currently executing rcu-tasks read-side critical sections have elapsed. These read-side critical sections
are delimited by callsto schedul e, cond_r esched_r cu_gs, idle execution, userspace execution,
callstosynchroni ze_r cu_t asks, and (in theory, anyway) cond_r esched.

Thisisavery specialized primitive, intended only for afew usesin tracing and other situations requiring
mani pulation of function preambles and profiling hooks. Thesynchr oni ze_r cu_t asks functionis
not (yet) intended for heavy use from multiple CPUs.

Notethat thisguaranteeimpliesfurther memory-ordering guarantees. On systemswith morethan one CPU,
when synchroni ze_rcu_t asks returns, each CPU is guaranteed to have executed a full memory
barrier since the end of its last RCU-tasks read-side critical section whose beginning preceded the call
tosynchroni ze_r cu_t asks. In addition, each CPU having an RCU-tasks read-side critical section
that extends beyond the return from synchr oni ze_r cu_t asks isguaranteed to have executed a full
memory barrier after the beginning of synchr oni ze_r cu_t asks and before the beginning of that
RCU-tasks read-side critical section. Note that these guarantees include CPUs that are offline, idle, or
executing in user mode, as well as CPUs that are executing in the kernel.

Furthermore, if CPU A invoked synchr oni ze_r cu_t asks, which returned to its caller on CPU B,
then both CPU A and CPU B are guaranteed to have executed a full memory barrier during the execution
of synchroni ze_rcu_t asks -- evenif CPU A and CPU B are the same CPU (but again only if the
system has more than one CPU).

242

Driver Basics

Name

rcu_barrier_tasks— Wait for in-flight cal | _r cu_t asks callbacks.
Synopsis
void rcu_barrier_tasks (void);

Arguments

voi d noarguments

Description

Although the current implementation is guaranteed to wait, it is not obligated to, for example, if there are
no pending callbacks.

Device Resource Management

243

Driver Basics

Name

devres_alloc — Allocate device resource data
Synopsis
void * devres_alloc (dr_release t release, size t size, gfp_t gfp);

Arguments

rel ease Releasefunction devreswill be associated with

si ze Allocation size
of p Allocation flags
Description

Allocate devresof si ze bytes. Theallocated areais zeroed, then associated withr el ease. Thereturned
pointer can be passed to other devres *() functions.

RETURNS

Pointer to alocated devres on success, NULL on failure.

244

Driver Basics

Name
devres for_each res— Resourceiterator
Synopsis

void devres _for_each res (struct device * dev, dr_release t release,
dr _match t match, void * match_data, void (*fn) (struct device *, void
* wvoid *), void * data);

Arguments
dev Deviceto iterate resource from
rel ease Look for resources associated with this release function
mat ch Match function (optional)

mat ch_dat a Datafor the match function

fn Function to be called for each matched resource.
dat a Datafor f n, the 3rd parameter of f n
Description

Call f n for each devres of dev which is associated with r el ease and for which mat ch returns 1.

RETURNS

void

245

Driver Basics

Name

devres free — Free device resource data
Synopsis

void devres free (void * res);
Arguments

res Pointer to devres datato free
Description

Free devres created with devr es_al | oc.

246

Driver Basics

Name

devres_add — Register device resource
Synopsis

voi d devres_add (struct device * dev, void * res);
Arguments

dev Deviceto add resource to

res Resourceto register

Description

Register devresr es to dev. r es should have been alocated using devr es_al | oc. On driver detach,
the associated release function will be invoked and devres will be freed automatically.

247

Driver Basics

Name

devres find — Find device resource
Synopsis

void * devres find (struct device * dev, dr _release_t rel ease, dr_natch_t
match, void * match_data);

Arguments
dev Device to lookup resource from
rel ease Look for resources associated with this release function
mat ch Match function (optional)

mat ch_dat a Datafor the match function

Description

Find the latest devres of dev which is associated with r el ease and for which mat ch returns 1. If
mat ch isNULL, it's considered to match all.

RETURNS

Pointer to found devres, NULL if not found.

248

Driver Basics

Name
devres get — Find devres, if non-existent, add one atomically

Synopsis

void * devres_get (struct device * dev, void * newres, dr_natch_t
match, void * match_data);

Arguments
dev Device to lookup or add devres for
new res Pointer to new initialized devres to add if not found
mat ch Match function (optional)

mat ch_dat a Datafor the match function

Description

Find the latest devres of dev which has the same release function as new_r es and for which mat ch
return 1. If found, new_r es isfreed; otherwise, new_r es isadded atomically.

RETURNS

Pointer to found or added devres.

249

Driver Basics

Name

devres remove — Find a device resource and remove it
Synopsis

void * devres renove (struct device * dev, dr_release_t release,
dr match t match, void * natch_data);

Arguments
dev Deviceto find resource from
rel ease Look for resources associated with this release function
mat ch Match function (optional)

mat ch_dat a Datafor the match function

Description

Find the latest devres of dev associated with r el ease and for which mat ch returns 1. If mat ch is
NULL, it's considered to match all. If found, the resource is removed atomically and returned.

RETURNS

Pointer to removed devres on success, NULL if not found.

250

Driver Basics

Name

devres_destroy — Find a device resource and destroy it
Synopsis

int devres destroy (struct device * dev, dr_release t release,
dr match t match, void * natch_data);

Arguments
dev Deviceto find resource from
rel ease Look for resources associated with this release function
mat ch Match function (optional)

mat ch_dat a Datafor the match function

Description

Find the latest devres of dev associated with r el ease and for which mat ch returns 1. If mat ch is
NULL, it's considered to match all. If found, the resource is removed atomically and freed.

Note that the release function for the resource will not be called, only the devres-allocated data will be
freed. The caller becomes responsible for freeing any other data.

RETURNS

Oif devresisfound and freed, -ENOENT if not found.

251

Driver Basics

Name

devres_release — Find adevice resource and destroy it, calling release
Synopsis

int devres release (struct device * dev, dr_release t release,
dr match t match, void * natch_data);

Arguments
dev Deviceto find resource from
rel ease Look for resources associated with this release function
mat ch Match function (optional)

mat ch_dat a Datafor the match function

Description
Find the latest devres of dev associated with r el ease and for which mat ch returns 1. If mat ch is

NULL, it'sconsidered to match all. If found, theresourceisremoved atomically, therel ease function called
and the resource freed.

RETURNS

Oif devresisfound and freed, -ENOENT if not found.

252

Driver Basics

Name

devres_open_group — Open anew devres group
Synopsis

void * devres_open_group (struct device * dev, void * id, gfp_t gfp);
Arguments

dev Deviceto open devres group for

id Separator ID

gf p Allocation flags
Description

Open a new devres group for dev withi d. For i d, using a pointer to an object which won't be used for
another group isrecommended. If i d isNULL, address-wise unique ID is created.

RETURNS

ID of the new group, NULL on failure.

253

Driver Basics

Name
devres _close _group — Close a devres group
Synopsis
voi d devres_close _group (struct device * dev, void * id);
Arguments
dev Deviceto close devres group for
id ID of target group, can be NULL
Description

Closethe group identified by i d. If i d isSNULL, the latest open group is selected.

254

Driver Basics

Name

devres_remove_group — Remove a devres group
Synopsis

voi d devres_renpve_group (struct device * dev, void * id);
Arguments

dev Deviceto remove group for

id ID of target group, can be NULL

Description

Removethe group identified by i d. If i d isNULL, the latest open group is selected. Note that removing
agroup doesn't affect any other resources.

255

Driver Basics

Name

devres release_group — Release resources in a devres group
Synopsis

int devres_release group (struct device * dev, void * id);
Arguments

dev Deviceto release group for

id ID of target group, can be NULL

Description

Release all resourcesin the group identified by i d. If i d isNULL, the latest open group is selected. The
selected group and groups properly nested inside the selected group are removed.

RETURNS

The number of released non-group resources.

256

Driver Basics

Name
devm_add_action — add a custom action to list of managed resources
Synopsis
i nt devm add_action (struct device * dev, void (*action) (void *), void
* data);
Arguments
dev Device that owns the action
acti on Function that should be called
dat a Pointer to data passed to act i on implementation
Description

This adds a custom action to the list of managed resources so that it gets executed as part of standard
resource unwinding.

257

Driver Basics

Name

devm_remove_action — removes previously added custom action

Synopsis

void devm renove_action (struct device * dev, void (*action) (void *),
void * data);

Arguments
dev Device that owns the action
action Functionimplementing the action

dat a Pointer to data passed to act i on implementation

Description

Removes instance of act i on previously added by devm add_act i on. Both action and data should
match one of the existing entries.

258

Driver Basics

Name

devm_kmalloc — Resource-managed kmalloc
Synopsis

void * devm knal | oc (struct device * dev, size t size, gfp_t gfp);
Arguments

dev Deviceto alocate memory for

si ze Allocation size

of p Allocation gfp flags
Description

Managed kmalloc. Memory allocated with this function is automatically freed on driver detach. Like all
other devres resources, guaranteed alignment is unsigned long long.

RETURNS

Pointer to allocated memory on success, NULL on failure.

259

Driver Basics

Name
devm_kstrdup — Allocate resource managed space and copy an existing string into that.

Synopsis

char * devm kstrdup (struct device * dev, const char * s, gfp_t gfp);

Arguments
dev Deviceto alocate memory for

S the string to duplicate

of p the GFP mask used inthedevm kmal | oc call when allocating memory

RETURNS

Pointer to allocated string on success, NULL on failure.

260

Driver Basics

Name
devm_kvasprintf — Allocate resource managed space and format a string into that.

Synopsis

char * devm kvasprintf (struct device * dev, gfp_t gfp, const char *
fm, va_ list ap);

Arguments
dev Deviceto alocate memory for

gf p the GFP mask used inthedevm knal | oc call when allocating memory
fm Theprintf -styleformat string

ap Argumentsfor the format string

RETURNS

Pointer to allocated string on success, NULL on failure.

261

Driver Basics

Name
devm_kasprintf — Allocate resource managed space and format a string into that.

Synopsis
char * devm kasprintf (struct device * dev, gfp_t gfp, const char *
fnt, ...);

Arguments

dev Deviceto alocate memory for
gf p the GFP mask used inthedevm knal | oc call when allocating memory
fm Theprintf-styleformat string @...: Arguments for the format string

variable arguments

RETURNS

Pointer to allocated string on success, NULL on failure.

262

Driver Basics

Name
devm_kfree — Resource-managed kfree
Synopsis
void devm kfree (struct device * dev, void * p);
Arguments
dev Device this memory belongsto
p Memory to free
Description

Free memory allocated withdevm kmal | oc.

263

Driver Basics

Name
devm_kmemdup — Resource-managed kmemdup

Synopsis
void * devm knendup (struct device * dev, const void * src, size t |en,
of p_t gfp);

Arguments

dev Device this memory belongsto
src Memory region to duplicate
[en Memory region length

gf p GFP mask to use

Description

Duplicate region of amemory using resource managed kmalloc

264

Driver Basics

Name
devm_get free pages— Resource-managed __ get free pages

Synopsis
unsi gned | ong devm get free_pages (struct device * dev, gfp_t gf p_nask,
unsi gned int order);

Arguments
dev Device to allocate memory for

of p_mask Allocation gfp flags

or der Allocation sizeis (1 << order) pages

Description
Managed get_free pages. Memory allocated with this function is automatically freed on driver detach.

RETURNS

Address of allocated memory on success, 0 on failure.

265

Driver Basics

Name
devm_free pages — Resource-managed free_pages
Synopsis
void devm free_pages (struct device * dev, unsigned |ong addr);
Arguments
dev Devicethis memory belongsto
addr Memory to free
Description
Free memory allocated with devm get _fr ee_pages. Unlike free_pages, there is no need to supply
theor der.

266

Chapter 2. Device drivers infrastructure

The Basic Device Driver-Model Structures

267

Device driversinfrastructure

Name

struct bus_type — The bus type of the device

Synopsis

struct bus_type {

const char * nane;

const char * dev_nane;

struct device * dev_root;

struct device attribute * dev_attrs;

const struct attribute group ** bus_groups;

const struct attribute group ** dev_groups;

const struct attribute group ** drv_groups;

int (* match) (struct device *dev, struct device driver *drv);
int (* uevent) (struct device *dev, struct kobj uevent_env *env);
int (* probe) (struct device *dev);

int (* remove) (struct device *dev);

void (* shutdown) (struct device *dev);

int (* online) (struct device *dev);

int (* offline) (struct device *dev);

int (* suspend) (struct device *dev, pmnessage_ t state);

int (* resune) (struct device *dev);

const struct dev_pmops * pm

const struct ionmu_ops * iomm_ops;

struct subsys private * p;

struct | ock _class_key | ock key;

b
Members
name The name of the bus.
dev_name Used for subsystems to enumerate devices like (“foou”, dev->id).
dev_root Default device to use as the parent.
dev_attrs Default attributes of the devices on the bus.

bus_groups Default attributes of the bus.

dev_groups Default attributes of the devices on the bus.

drv_groups Default attributes of the device drivers on the bus.

match Called, perhaps multiple times, whenever anew device or driver is added for this bus. It

should return a nonzero value if the given device can be handled by the given driver.

uevent Called when a device is added, removed, or afew other things that generate uevents to

add the environment variables.

probe Called when a new device or driver add to this bus, and callback the specific driver's

probe to initial the matched device.

remove Cadled when a device removed from this bus.

268

Device driversinfrastructure

shutdown
online
offline
suspend
resume
pm

iommu_ops

p
lock_key

Description

Called at shut-down time to quiesce the device.

Called to put the device back online (after offlining it).

Called to put the device offline for hot-removal. May fail.

Called when a device on this bus wants to go to sleep mode.

Called to bring a device on this bus out of sleep mode.

Power management operations of this bus, callback the specific device driver's pm-ops.

IOMMU specific operations for this bus, used to attach IOMMU driver implementations
to abus and allow the driver to do bus-specific setup

The private data of the driver core, only the driver core can touch this.

Lock class key for use by the lock validator

A busisachannel between the processor and one or more devices. For the purposes of the device model,
all devices are connected via a bus, even if it is an internal, virtual, “platform” bus. Buses can plug into
each other. A USB controller isusually a PCl device, for example. The device model represents the actual
connections between buses and the devices they control. A busis represented by the bus type structure. It
containsthe name, the default attributes, the bus' methods, PM operations, and thedriver core's private data.

269

Device driversinfrastructure

struct device driver — The basic device driver structure

Synopsis

struct device_driver {

const char *

struct bus_type * bus;

struct nodul e * owner;

const char * nod_nane;

bool suppress_bind_attrs;

const struct of _device id * of _match_table;
const struct acpi _device_ id * acpi_nmatch_tabl e;
int (* probe) (struct device *dev);

int (* remove) (struct device *dev);

void (* shutdown) (struct device *dev);

int (* suspend) (struct device *dev, pm nessage_t state);
int (* resune) (struct device *dev);

const struct attribute group ** groups;

const struct dev_pmops * pm

struct driver_private * p;

b

Members

name
bus

owner

mod_name
suppress _bind_attrs
of _match table
acpi_match _table

probe

remove

shutdown
suspend
resume
groups

pm

Name of the device driver.

The bus which the device of this driver belongs to.
The module owner.

Used for built-in modules.

Disables bind/unbind via sysfs.

The open firmware table.

The ACPI match table.

Called to query the existence of a specific device, whether this driver can
work with it, and bind the driver to a specific device.

Called when the device is removed from the system to unbind a device
from thisdriver.

Called at shut-down time to quiesce the device.

Called to put the device to sleep mode. Usually to alow power state.
Called to bring a device from sleep mode.

Default attributes that get created by the driver core automatically.

Power management operations of the device which matched this driver.

270

Device driversinfrastructure

p Driver core's private data, no one other than the driver core can touch this.

Description

The devicedriver-model tracks all of the drivers known to the system. The main reason for thistracking is
to enable the driver core to match up drivers with new devices. Once drivers are known objects within the
system, however, a number of other things become possible. Device drivers can export information and
configuration variables that are independent of any specific device.

271

Device driversinfrastructure

Name

struct subsys interface — interfaces to device functions

Synopsis

struct subsys_ interface {
const char * nane;
struct bus _type * subsys;
struct |ist_head node;
int (* add_dev) (struct device *dev, struct subsys interface *sif);
int (* renmove_dev) (struct device *dev, struct subsys interface *sif);

b
Members
name name of the device function
subsys subsytem of the devicesto attach to
node the list of functions registered at the subsystem
add_dev device hookup to device function handler

remove_dev device hookup to device function handler

Description

Simple interfaces attached to a subsystem. Multiple interfaces can attach to a subsystem and its devices.
Unlike drivers, they do not exclusively claim or control devices. Interfaces usually represent a specific
functionality of a subsystem/class of devices.

272

Device driversinfrastructure

Name

struct class — device classes

Synopsis

struct class {

const char * nane;

struct nodul e * owner;

struct class_attribute * class_attrs;

const struct attribute_group ** dev_groups;

struct kobject * dev_kobj;
int (* dev_uevent) (struct device *dev, struct kobj _uevent _env *env);
char *(* devnode) (struct device *dev, unpde_t *node);

void (* class_release) (struct class *class);

void (* dev_rel ease) (struct device *dev);

int (* suspend) (struct device *dev, pmnessage t state);
int (* resune) (struct device *dev);

const struct kobj _ns_type_ operations * ns_type;

const void *(* namespace) (struct device *dev);

const struct dev_pmops * pm

struct subsys private * p;

b
Members
name Name of the class.
owner The module owner.
class attrs Default attributes of this class.
dev_groups Default attributes of the devices that belong to the class.
dev_kabj The kobject that represents this class and links it into the hierarchy.
dev_uevent Cadled when a device is added, removed from this class, or afew other things that
generate uevents to add the environment variables.
devnode Callback to provide the devtmpfs.
class release Called to release this class.
dev_release Called to release the device.
suspend Used to put the device to sleep mode, usualy to alow power state.
resume Used to bring the device from the sleep mode.
ns_type Callbacks so sysfs can detemine namespaces.
namespace Namespace of the device belongsto this class.
pm The default device power management operations of this class.
p The private data of the driver core, no one other than the driver core can touch this.

273

Device driversinfrastructure

Description

A classisahigher-level view of adevice that abstracts out low-level implementation details. Drivers may
see a SCSI disk or an ATA disk, but, at the classlevel, they are al simply disks. Classes allow user space
to work with devices based on what they do, rather than how they are connected or how they work.

274

Device driversinfrastructure

Name

struct device — The basic device structure

Synopsis

struct device {
struct device * parent;
struct device_private * p;
struct kobject kobj;
const char * init_nane;
const struct device_type * type;
struct mutex mutex;
struct bus_type * bus;
struct device_driver * driver;
void * platformdata
void * driver_data
struct dev_pm.info power;
struct dev_pm.domain * pm domain
fdef CONFI G_PI NCTRL
struct dev_pin_info * pins;
#endi f
#i f def CONFI G_NUNVA
i nt numa_node;
#endi f
ué4 * dma_mask;
u64 coherent dma_nask;
unsi gned | ong dnma_pfn_of fset;
struct devi ce_dma_paraneters * dma_par ns;
struct |ist_head dma_pool s;
struct dnma_coherent _nem * dma_nem
fdef CONFI G_DVA CNVA
struct cnma * cna_area
#endi f
struct dev_archdata archdata
struct device_node * of node;
struct fwnode_handl e * fwnode;
dev_t devt;
u32 id;
spi nl ock_t devres_| ock
struct |list_head devres_head;
struct klist_node knode_cl ass;
struct class * class;
const struct attribute_group ** groups;
void (* release) (struct device *dev);
struct ionmu_group * ionmu_group
bool offline_disabled:1;
bool offline:1;

#i

#i

275

Device driversinfrastructure

Members

parent

kobj
init_name

type

mutex

bus

driver
platform_data
driver_data

power

pm_domain

pins
numa_node
dma_mask

coherent_dma_mask

dma pfn_offset

dma_parms

dma_pools
dma_mem
cma_area
archdata
of node

fwnode

Thedevice's“parent” device, the deviceto which it isattached. In most cases,
aparent device is some sort of bus or host controller. If parent is NULL, the
device, isatop-level device, which is not usually what you want.

Holds the private data of the driver core portions of the device. See the com-
ment of the struct device private for detail.

A top-level, abstract class from which other classes are derived.
Initial name of the device.

The type of device. This identifies the device type and carries type-specific
information.

Mutex to synchronize callsto its driver.
Type of bus deviceison.

Which driver has allocated this
Platform data specific to the device.
Private pointer for driver specific info.

For device power management. See Documentati on/power/devices.txt for de-
tails.

Provide callbacks that are executed during system suspend, hibernation, sys-
tem resume and during runtime PM transitions along with subsystem-level
and driver-level callbacks.

For device pin management. See Documentation/pinctrl.txt for details.
NUMA node this deviceis close to.
Dmamask (if dmable device).

Like dma_mask, but for alloc_coherent mapping as not all hardware supports
64-hit addresses for consistent all ocations such descriptors.

offset of DMA memory range relatively of RAM

A low level driver may set these to teach IOMMU code about segment limi-
tations.

Dmapools (if dmable device).

Internal for coherent mem override.
Contiguous memory area for dma allocations
For arch-specific additions.

Associated device tree node.

Associated device node supplied by platform firmware.

276

Device driversinfrastructure

devt For creating the sysfs“dev”.

id device instance

devres lock Spinlock to protect the resource of the device.

devres head The resources list of the device.

knode class The node used to add the device to the classlist.

class The class of the device.

groups Optional attribute groups.

release Callback to free the device after all references have gone away. This should be
set by the allocator of thedevice (i.e. the busdriver that discovered thedevice).

iommu_group IOMMU group the device belongs to.

offline_disabled If set, the device is permanently online.

offline Set after successful invocation of bustype's.of f 1 i ne.

Example

For devices on custom boards, as typical of enbedded

Description

and SOC based hardware, Linux often uses platformdata to point
to board-specific structures describing devices and how t hey
are wired. That can include what ports are available, chip
variants, which GPIO pins act in what additional roles, and so
on. This shrinks the “Board Support Packages” (BSPs) and

m ni m zes board-specific #ifdefs in drivers.

At the lowest level, every device in a Linux system is represented by an instance of struct device. The

device

structure contains the information that the device model core needs to model the system. Most

subsystems, however, track additional information about the devices they host. As aresult, it is rare for
devicesto be represented by bare device structures; instead, that structure, likekobject structures, isusually
embedded within a higher-level representation of the device.

277

Device driversinfrastructure

Name

module_driver — Helper macro for drivers that don't do anything special in module init/exit. This
eliminates a lot of boilerplate. Each module may only use this macro once, and calling it replaces
nodul e_i nit andnodul e_exi t.

Synopsis

nodul e_driver (_ _driver, _ register, __unregister, ...);
Arguments

__driver driver name

__register register function for this driver type

__unregister unregister function for this driver type @.... Additional arguments to be passed to
__register and __unregister.

variable arguments

Description

Use this macro to construct bus specific macros for registering drivers, and do not useit on its own.

Device Drivers Base

278

Device driversinfrastructure

Name

driver_init — initialize driver model.
Synopsis

void driver_init (void);
Arguments

voi d noarguments
Description

Call the driver model init functionsto initialize their subsystems. Called early from init/main.c.

279

Device driversinfrastructure

Name

driver_for_each device — Iterator for devices bound to a driver.

Synopsis

int driver_for_each device (struct device driver * drv, struct device
* start, void * data, int (*fn) (struct device *, void *));

Arguments
drv Driver we're iterating.
start Deviceto beginwith
data Datato passto the calback.

fn Function to call for each device.

Description

Iterate over the dr v'slist of devicescalling f n for each one.

280

Device driversinfrastructure

Name

driver_find_device— deviceiterator for locating a particular device.
Synopsis

struct device * driver_find _device (struct device driver * drv, struct
device * start, void * data, int (*match) (struct device *dev, void
*data));

Arguments

drv The device's driver
start Deviceto beginwith
data Datato passto match function

mat ch Callback function to check device

Description

Thisissimilartothedri ver _for _each_devi ce function above, but it returnsareferenceto adevice
that is'found' for later use, as determined by the mat ch callback.

The callback should return O if the device doesn't match and non-zero if it does. If the callback returns
non-zero, this function will return to the caller and not iterate over any more devices.

281

Device driversinfrastructure

Name

driver_create file— create sysfsfilefor driver.
Synopsis

int driver _create file (struct device driver * drv, const struct
driver_attribute * attr);

Arguments

drv driver.

attr driver attribute descriptor.

282

Device driversinfrastructure

Name

driver_remove _file— remove sysfsfilefor driver.
Synopsis

void driver_renove file (struct device driver * drv, const struct
driver_attribute * attr);

Arguments

drv driver.

attr driver attribute descriptor.

283

Device driversinfrastructure

Name

driver_register — register driver with bus
Synopsis
int driver_register (struct device driver * drv);

Arguments
drv driver toregister

Description

We pass off most of the work to the bus_add_dri ver call, since most of the things we have to do
deal with the bus structures.

284

Device driversinfrastructure

Name
driver_unregister — remove driver from system.
Synopsis
void driver_unregister (struct device driver * drv);
Arguments
drv driver.
Description

Again, we pass off most of the work to the bus-level call.

285

Device driversinfrastructure

Name
driver_find — locate driver on a bus by its name.

Synopsis
struct device driver * driver_find (const char * name, struct bus_type
* bus);

Arguments

nane name of thedriver.

bus bus to scan for the driver.

Description

Cdlkset find_obj toiterateover list of driversonabusto find driver by name. Returndriver if found.

Thisroutine provides no locking to prevent the driver it returns from being unregistered or unloaded while
the caller isusing it. The caller is responsible for preventing this.

286

Device driversinfrastructure

Name

dev_driver_string — Return adevice's driver name, if at all possible
Synopsis
const char * dev_driver_string (const struct device * dev);

Arguments

dev struct device to get the name of

Description

Will return the device's driver's nameif it is bound to a device. If the device is not bound to a driver, it
will return the name of the bus it is attached to. If it is not attached to a bus either, an empty string will

be returned.

287

Device driversinfrastructure

Name
device create file— create sysfs attribute file for device.
Synopsis
i nt device create file (struct device * dev, const st ruct

device attribute * attr);

Arguments

dev device.

attr deviceattribute descriptor.

288

Device driversinfrastructure

Name
device remove file— remove sysfs attribute file.
Synopsis
void device renmove file (struct device * dev, const st ruct

device attribute * attr);

Arguments

dev device.

attr deviceattribute descriptor.

289

Device driversinfrastructure

Name

device_remove file_self — remove sysfs attribute file from its own method.

Synopsis

bool device renove file self (struct device * dev,
device attribute * attr);

Arguments

dev device.

attr deviceattribute descriptor.

Description

Seekernfs_renove_sel f for details.

const

struct

290

Device driversinfrastructure

Name

device _create bin_file— create sysfs binary attribute file for device.
Synopsis

int device create bin file (struct device * dev, const struct
bin attribute * attr);

Arguments

dev device.

attr devicebinary attribute descriptor.

291

Device driversinfrastructure

Name

device_remove hin_file— remove sysfs binary attribute file
Synopsis

void device renove bin file (struct device * dev, const struct
bin attribute * attr);

Arguments

dev device.

attr devicebinary attribute descriptor.

292

Device driversinfrastructure

Name

device initialize — init device structure.
Synopsis
void device_ initialize (struct device * dev);

Arguments

dev device.

Description

This prepares the device for use by other layers by initiaizing its fields. It is the first half of
devi ce_regi st er, if called by that function, though it can also be called separately, so one may use
dev'sfields. Inparticular, get _devi ce/put _devi ce may beused for reference counting of dev after
calling this function.

All fieldsin dev must be initialized by the caller to 0, except for those explicitly set to some other value.
The simplest approachisto usekzal | oc to alocate the structure containing dev.

NOTE

Use put _devi ce to give up your reference instead of freeing dev directly once you have called this
function.

293

Device driversinfrastructure

Name

dev_set name — set adevice name
Synopsis

int dev_set nane (struct device * dev, const char * fnt, ...);
Arguments

dev device

fnt format string for the device's name

variable arguments

294

Device driversinfrastructure

Name

device_add — add device to device hierarchy.
Synopsis
int device_add (struct device * dev);

Arguments

dev device.

Description

Thisis part 2 of devi ce_r egi st er, though may be called separately _iff_devi ce_initiali ze
has been called separately.

This adds dev to the kobject hierarchy viakobj ect _add, addsit to the global and sibling lists for the
device, then adds it to the other relevant subsystems of the driver model.

Do not call this routine or devi ce_r egi st er more than once for any device structure. The driver
model coreisnot designed to work with devicesthat get unregistered and then spring back to life. (Among
other things, it's very hard to guarantee that al references to the previous incarnation of dev have been
dropped.) Allocate and register afresh new struct device instead.

NOTE

Never directly free dev after calling this function, even if it returned an error! Always use
put _devi ce to give up your reference instead.

295

Device driversinfrastructure

Name

device register — register adevice with the system.
Synopsis
int device register (struct device * dev);

Arguments

dev pointer to the device structure

Description
This happensin two clean steps - initialize the device and add it to the system. The two steps can be called
separately, but thisisthe easiest and most common. |.e. you should only call the two helpers separately if
have a clearly defined need to use and refcount the device before it is added to the hierarchy.

For more information, see the kerneldoc for devi ce_initi al i ze anddevi ce_add.

NOTE

Never directly free dev after caling this function, even if it returned an error! Always use
put _devi ce togive up the referenceinitialized in this function instead.

296

Device driversinfrastructure

Name

get_device — increment reference count for device.
Synopsis

struct device * get_device (struct device * dev);
Arguments

dev device

Description

This simply forwards the call to kobj ect _get , though we do take care to provide for the case that we
get aNULL pointer passed in.

297

Device driversinfrastructure

Name

put_device — decrement reference count.
Synopsis
voi d put _device (struct device * dev);

Arguments

dev devicein question.

298

Device driversinfrastructure

Name

device _del — delete device from system.
Synopsis

voi d device_del (struct device * dev);
Arguments

dev device

Description

Thisisthefirst part of the device unregistration sequence. Thisremovesthe device from thelistswe control
from here, has it removed from the other driver model subsystemsit was added to in devi ce_add, and
removes it from the kobject hierarchy.

NOTE

this should be called manually _iff _devi ce_add was also called manually.

299

Device driversinfrastructure

Name

device _unregister — unregister device from system.
Synopsis

voi d device_unregister (struct device * dev);
Arguments

dev devicegoing away.

Description

Wedothisintwo parts, likewedodevi ce_r egi st er . First, weremoveit from all the subsystemswith
devi ce_del , then we decrement the reference count via put _devi ce. If that is the final reference
count, the device will be cleaned up viadevi ce_r el ease above. Otherwise, the structure will stick
around until the final reference to the device is dropped.

300

Device driversinfrastructure

Name

device for_each child — device child iterator.

Synopsis

int device for_each child (struct device * parent, void * data, int
(*fn) (struct device *dev, void *data));

Arguments
par ent parent struct device.
dat a data for the callback.

fn function to be called for each device.

Description
Iterate over par ent 'schild devices, and call f n for each, passing it dat a.

We check thereturn of f n each time. If it returns anything other than 0, we break out and return that value.

301

Device driversinfrastructure

Name

device find_child — device iterator for locating a particular device.
Synopsis

struct device * device find child (struct device * parent, void * data,
int (*match) (struct device *dev, void *data));

Arguments
par ent parent struct device
dat a Data to pass to match function

mat ch Callback function to check device

Description

Thisissimilar tothedevi ce_f or _each_chi | d function above, but it returns a reference to a device
that is'found' for later use, as determined by the mat ch callback.

The callback should return O if the device doesn't match and non-zero if it does. If the callback returns

non-zero and a reference to the current device can be obtained, this function will return to the caller and
not iterate over any more devices.

NOTE

you will need to drop the reference with put _devi ce after use.

302

Device driversinfrastructure

Name
__root_device register — allocate and register aroot device

Synopsis
struct device * __root_device _register (const char * nane, struct nodul e
* owner);

Arguments

nane root device name

owner owner module of the root device, usually THIS MODULE

Description

This function allocates a root device and registers it using devi ce_r egi st er. In order to free the
returned device, user oot _devi ce_unregi ster.

Root devices are dummy devices which allow other devices to be grouped under /sys/devices. Use this
function to alocate a root device and then use it as the parent of any device which should appear under /
sys/devices/{ name}

The /sys/devices/{ name} directory will aso contain a'module’ symlink which pointsto the owner direc-
tory in sysfs.

Returns struct device pointer on success, or ERR_PTR on error.
Note

Y ou probably want to user oot _devi ce_regi ster.

303

Device driversinfrastructure

Name

root_device unregister — unregister and free aroot device
Synopsis

voi d root _device unregister (struct device * dev);
Arguments

dev device going away
Description

This function unregisters and cleans up a device that was created by r oot _devi ce_regi st er.

304

Device driversinfrastructure

Name

device create vargs— creates a device and registersit with sysfs

Synopsis

struct device * device _create vargs (struct class * class, struct device
* parent, dev_t devt, void * drvdata, const char * fm, va_ |list args);

Arguments

cl ass pointer to the struct class that this device should be registered to
par ent pointer to the parent struct device of this new device, if any
devt the dev_t for the char device to be added

drvdat a thedatato be added to the device for callbacks

fnt string for the device's name
args va_list for the device's name
Description

Note

This function can be used by char device classes. A struct device will be created in sysfs, registered to
the specified class.

A “dev” file will be created, showing the dev_t for the device, if the dev_t is not 0,0. If a pointer to a
parent struct deviceis passed in, the newly created struct device will be achild of that devicein sysfs. The
pointer to the struct device will be returned from the call. Any further sysfs files that might be required
can be created using this pointer.

Returns struct device pointer on success, or ERR_PTR on error.

the struct class passed to this function must have previously been created with acall tocl ass_cr eat e.

305

Device driversinfrastructure

Name
device _create — creates adevice and registersit with sysfs
Synopsis
struct device * device create (struct class * class, struct device *
parent, dev_t devt, void * drvdata, const char * fnt, ...);
Arguments
cl ass pointer to the struct class that this device should be registered to

par ent pointer to the parent struct device of this new device, if any
devt the dev_t for the char device to be added

drvdat a thedatato be added to the device for callbacks

fnt string for the device's name

variable arguments

Description

Note

This function can be used by char device classes. A struct device will be created in sysfs, registered to
the specified class.

A “dev” file will be created, showing the dev_t for the device, if the dev_t is not 0,0. If a pointer to a
parent struct deviceis passed in, the newly created struct device will be achild of that devicein sysfs. The
pointer to the struct device will be returned from the call. Any further sysfs files that might be required
can be created using this pointer.

Returns struct device pointer on success, or ERR_PTR on error.

the struct class passed to this function must have previously been created with acall tocl ass_cr eat e.

306

Device driversinfrastructure

Name

device _create with_groups — creates a device and registersit with sysfs

Synopsis

struct device * device create with groups (struct class * class, struct
device * parent, dev_t devt, void * drvdata, const struct attribute_group
** groups, const char * fnt, ...);

Arguments

cl ass pointer to the struct class that this device should be registered to
par ent pointer to the parent struct device of this new device, if any
devt the dev_t for the char device to be added

drvdat a thedatato be added to the device for callbacks

groups NULL-terminated list of attribute groups to be created

fm string for the device's name

variable arguments

Description

Note

This function can be used by char device classes. A struct device will be created in sysfs, registered to the
specified class. Additional attributes specified in the groups parameter will aso be created automatically.

A “dev” file will be created, showing the dev_t for the device, if the dev_t is not 0,0. If a pointer to a
parent struct deviceis passed in, the newly created struct device will be achild of that devicein sysfs. The
pointer to the struct device will be returned from the call. Any further sysfs files that might be required
can be created using this pointer.

Returns struct device pointer on success, or ERR_PTR on error.

the struct class passed to this function must have previously been created with acall tocl ass_cr eat e.

307

Device driversinfrastructure

Name

device _destroy — removes a device that was created with devi ce_creat e

Synopsis
voi d device destroy (struct class * class, dev_t devt);
Arguments

cl ass pointer to the struct class that this device was registered with

devt the dev_t of the device that was previously registered

Description

This call unregisters and cleans up a device that was created with acall todevi ce_creat e.

308

Device driversinfrastructure

Name

device_rename — renames a device

Synopsis

i nt device_renane (struct device * dev, const char * new nane);

Arguments

dev the pointer to the struct device to be renamed

new_nane the new name of the device

Description

Note

It is the responsibility of the caler to provide mutual exclusion between two different calls of
device_rename on the same deviceto ensure that new_nameisvalid and won't conflict with other devices.

Don't call this function. Currently, the networking layer calls this function, but that will change. The fol-
lowing text from Kay Sievers offers

some insight

Renaming devices is racy at many levels, symlinks and other stuff are not replaced atomically, and you
get a“move” uevent, but it's not easy to connect the event to the old and new device. Device nodes are not
renamed at all, there isn't even support for that in the kernel now.

In the meantime, during renaming, your target name might be taken by another driver, creating conflicts.
Or the old name is taken directly after you renamed it -- then you get events for the same DEVPATH,
before you even see the “move’ event. It's just a mess, and nothing new should ever rely on kernel device
renaming. Besidesthat, it's not even implemented now for other things than (driver-core wise very simple)
network devices.

We are currently about to change network renaming in udev to completely disallow renaming of devices
in the same namespace as the kernel uses, because we can't solve the problems properly, that arise with
swapping names of multiple interfaces without races. Means, renaming of eth[0-9]* will only be allowed
to some other name than eth[0-9]*, for the aforementioned reasons.

Makeup a“real” nameinthedriver beforeyou register anything, or add some other attributesfor userspace
to find the device, or use udev to add symlinks -- but never rename kernel devices later, it's a complete
mess. We don't even want to get into that and try to implement the missing pieces in the core. We really
have other piecesto fix in the driver core mess. :)

309

Device driversinfrastructure

Name

device_move — moves a device to a new parent
Synopsis

int device_nove (struct device * dev, struct device * new parent, enum
dpm order dpm order);

Arguments
dev the pointer to the struct device to be moved
new_par ent thenew parent of the device (can by NULL)

dpm or der how to reorder the dpm_list

310

Device driversinfrastructure

Name
set_primary_fwnode — Change the primary firmware node of a given device.
Synopsis
void set _prinmary fwnode (struct device * dev, struct fwnode handle *
f wnode) ;
Arguments
dev Deviceto handle.

fwnode New primary firmware node of the device.

Description

Set the device's firmware node pointer to f wnode, but if a secondary firmware node of the device is
present, preserveit.

311

Device driversinfrastructure

Name
register_syscore _ops — Register a set of system core operations.

Synopsis
voi d register_syscore_ops (struct syscore_ops * ops);
Arguments

ops System core operations to register.

312

Device driversinfrastructure

Name

unregister_syscore_ops— Unregister a set of system core operations.
Synopsis

voi d unregi ster_syscore_ops (struct syscore_ops * ops);
Arguments

ops System core operations to unregister.

313

Device driversinfrastructure

Name
syscore_suspend — Execute al the registered system core suspend callbacks.
Synopsis
i nt syscore_suspend (void);
Arguments
voi d noarguments
Description

This function is executed with one CPU on-line and disabled interrupts.

314

Device driversinfrastructure

Name

syscore_resume — Execute all the registered system core resume callbacks.
Synopsis
voi d syscore_resune (void);

Arguments

voi d noarguments

Description

This function is executed with one CPU on-line and disabled interrupts.

315

Device driversinfrastructure

Name

__class creaste— create a struct class structure

Synopsis

struct class * __class_create (struct nodul e * owner, const char * nane,
struct | ock _class_key * key);

Arguments
owner pointer to the module that isto “own” this struct class
nane pointer to astring for the name of this class.

key the lock_class key for this class; used by mutex lock debugging

Description

Thisis used to create a struct class pointer that can then beusedin callsto devi ce_creat e.

Returns struct class pointer on success, or ERR_PTR on error.

Note, the pointer created hereis to be destroyed when finished by making acall tocl ass_dest r oy.

316

Device driversinfrastructure

Name

class_destroy — destroys a struct class structure
Synopsis
void class_destroy (struct class * cls);

Arguments

cl s pointer to the struct class that isto be destroyed

Description

Note, the pointer to be destroyed must have been created with acall tocl ass_cr eat e.

317

Device driversinfrastructure

Name
class dev_iter_init — initialize class device iterator
Synopsis

void class dev_iter_init (struct class dev_iter * iter, struct class *
class, struct device * start, const struct device type * type);

Arguments
iter classiterator to initialize
cl ass theclasswewannaiterate over
start thedeviceto start iterating from, if any

type device typeof the devicesto iterate over, NULL for al

Description

Initialize classiterator i t er suchthat it iteratesover devicesof cl ass. If st art isset, thelistiteration
will start there, otherwiseif it isSNULL, the iteration starts at the beginning of the list.

318

Device driversinfrastructure

Name

class dev_iter_next — iterate to the next device
Synopsis
struct device * class_dev_iter_next (struct class dev_ iter * iter);

Arguments

i ter classiterator to proceed

Description
Proceed i t er tothe next device and return it. Returns NULL if iteration is complete.

Thereturned deviceis referenced and won't be released till iterator is proceed to the next device or exited.
The caller is free to do whatever it wants to do with the device including calling back into class code.

319

Device driversinfrastructure

Name

class dev_iter exit — finishiteration
Synopsis
void class_dev_iter_exit (struct class dev_iter * iter);

Arguments

i ter classiterator to finish

Description

Finish an iteration. Always call this function after iteration is complete whether the iteration ran till the
end or not.

320

Device driversinfrastructure

Name

class for_each device — deviceiterator

Synopsis

int class_for_each _device (struct class * class, struct device * start,
void * data, int (*fn) (struct device *, void *));

Arguments
cl ass theclasswereiterating
start thedeviceto start withinthelist, if any.
data datafor the callback

fn function to be called for each device

Description

Iterateover cl ass'slist of devices, and call f n for each, passingitdat a. If st art isset, thelistiteration
will start there, otherwise if it isNULL, the iteration starts at the beginning of the list.

We check thereturn of f n each time. If it returns anything other than 0, we break out and return that val ue.

f nisalowed to do anything including calling back into class code. There's no locking restriction.

321

Device driversinfrastructure

Name

class find_device — deviceiterator for locating a particular device
Synopsis

struct device * class_find device (struct class * class, struct device *
start, const void * data, int (*match) (struct device *, const void *));

Arguments
cl ass theclasswereiterating
start Deviceto beginwith
data datafor the match function

mat ch function to check device

Description

Thisissimilartothecl ass_f or _each_dev function above, but it returns areference to a device that
is'found for later use, as determined by the mat ch callback.

The callback should return O if the device doesn't match and non-zero if it does. If the callback returns
non-zero, this function will return to the caller and not iterate over any more devices.

Note, you will need to drop the reference with put _devi ce after use.

f n isallowed to do anything including calling back into class code. There's no locking restriction.

322

Device driversinfrastructure

Name

class_compat_register — register a compatibility class
Synopsis

struct class_conpat * class_conpat_register (const char * nane);

Arguments

nane the name of the class

Description

Compatibility class are meant as a temporary user-space compatibility workaround when converting a
family of class devicesto abus devices.

323

Device driversinfrastructure

Name

class_compat_unregister — unregister acompatibility class
Synopsis
voi d class_conpat _unregi ster (struct class_conpat * cls);

Arguments

cl s theclassto unregister

324

Device driversinfrastructure

Name

class_ compat_create link — create a compatibility class device link to a bus device
Synopsis

int class_conpat _create |ink (struct class_conpat * cls, struct device
* dev, struct device * device |link);

Arguments
cls the compatibility class
dev the target bus device

devi ce_I i nk an optional deviceto which a*“device” link should be created

325

Device driversinfrastructure

Name

class_compat_remove_link — remove a compatibility class device link to a bus device
Synopsis

voi d cl ass_conpat _renove_link (struct class _conpat * cls, struct device
* dev, struct device * device |link);

Arguments
cls the compatibility class
dev the target bus device

devi ce_I| i nk anoptional devicetowhich a“device’ link was previously created

326

Device driversinfrastructure

Name
unregister_node — unregister anode device
Synopsis
voi d unregi ster_node (struct node * node);
Arguments
node node going away
Description
;Jnregisters a node device node. All the devices on the node must be unregistered before calling this
unction.

327

Device driversinfrastructure

Name

request_firmware — send firmware request and wait for it

Synopsis

int request firmwvare (const struct firmvare ** firmmvare_p, const char
* name, struct device * device);

Arguments

firmvare_p pointer to firmware image

name name of firmwarefile
devi ce device for which firmware is being loaded
Description

firmnar e_p will be used to return a firmware image by the name of nane for devicedevi ce.
Should be called from user context where sleeping is allowed.

nare will be used as $F1 RMAARE in the uevent environment and should be distinctive enough not to be
confused with any other firmware image for this or any other device.

Cadler must hold the reference count of devi ce.

The function can be called safely inside device's suspend and resume callback.

328

Device driversinfrastructure

Name

request_firmware_direct — load firmware directly without usermode hel per

Synopsis

int request firmmvare_direct (const struct firmvare ** firmnare_p, const
char * nane, struct device * device);

Arguments

firmvare_p pointer to firmware image

nanme name of firmwarefile

devi ce device for which firmware is being loaded
Description

Thisfunction workspretty much liker equest _fi r mvar e, but thisdoesn't fall back to usermode hel per
even if the firmware couldn't be loaded directly from fs. Hence it's useful for loading optional firmwares,
which aren't always present, without extralong timeouts of udev.

329

Device driversinfrastructure

Name

release firmware — release the resource associated with a firmware image
Synopsis
void release firmvare (const struct firmvare * fw);

Arguments

fw firmware resourceto release

330

Device driversinfrastructure

Name

request_firmware _nowait — asynchronous version of request_firmware
Synopsis

int request _firmvare nowait (struct nodul e * nodul e, bool uevent, const
char * nane, struct device * device, gfp_t gfp, void * context, void
(*cont) (const struct firmvare *fw, void *context));

Arguments

nmodul e module requesting the firmware

uevent sends uevent to copy the firmware imageif thisflag is non-zero else the firmware copy must
be done manually.

name name of firmwarefile

devi ce devicefor which firmwareis being loaded

of p dlocation flags

cont ext will be passed over to cont , and f wmay be NULL if firmware request fails.

cont function will be called asynchronously when the firmware request is over.

Description
Caler must hold the reference count of devi ce.

Asynchronousvariant of r equest _f i r mavar e for user contexts. - sleep for as small periods as possible
since it may increase kernel boot time of built-in device drivers requesting firmware in their ->pr obe
methods, if gf p is GFP_KERNEL.

- can't deep at al if gf p isGFP_ATOMIC.

331

Device driversinfrastructure

Name

transport_class_register — register an initial transport class
Synopsis
int transport_class register (struct transport_class * tclass);

Arguments

tcl ass apointer to the transport class structure to be initialised

Description

The transport class contains an embedded class which is used to identify it. The caller should initialise
this structure with zeros and then generic class must have been initialised with the actual transport class
unique name. There's amacro DECLARE TRANSPORT _CLASS to do this (declared classes still must be
registered).

Returns 0 on success or error on failure.

332

Device driversinfrastructure

Name

transport_class_unregister — unregister a previously registered class
Synopsis

void transport _class_unregister (struct transport_class * tclass);

Arguments

tcl ass Thetransport classto unregister

Description

Must be called prior to deallocating the memory for the transport class.

333

Device driversinfrastructure

Name

anon_transport_class register — register an anonymous class
Synopsis
int anon_transport _class_register (struct anon_transport _class * atc);

Arguments

at ¢ Theanon transport class to register

Description

The anonymous transport class contains both a transport class and a container. The idea of an
anonymous class is that it never actually has any device attributes associated with it (and thus
saves on container storage). So it can only be used for triggering events. Use prezero and then use
DECLARE_ANON_ TRANSPORT _CLASS to initialise the anon transport class storage.

334

Device driversinfrastructure

Name
anon_transport_class_unregister — unregister an anon class

Synopsis
void anon_transport_class unregister (struct anon_transport_class *
atc);

Arguments

at ¢ Pointer to the anon transport class to unregister

Description

Must be called prior to deallocating the memory for the anon transport class.

335

Device driversinfrastructure

Name

transport_setup_device — declare a new dev for transport class association but don't make it visible yet.

Synopsis

void transport_setup_device (struct device * dev);

Arguments

dev the generic device representing the entity being added

Description

Usually, dev represents some component in the HBA system (either the HBA itself or a device remote
across the HBA bus). Thisroutineis simply atrigger point to seeif any set of transport classes wishes to
associate with the added device. This alocates storage for the class device and initialises it, but does not
yet add it to the system or add attributes to it (you do thiswith transport_add_device). If you have no need
for a separate setup and add operations, use transport_register_device (see transport_class.h).

336

Device driversinfrastructure

Name

transport_add_device — declare a new dev for transport class association
Synopsis
void transport_add_device (struct device * dev);

Arguments

dev the generic device representing the entity being added

Description

Usually, dev represents some component in the HBA system (either the HBA itself or a device remote
acrossthe HBA bus). Thisroutineissimply atrigger point used to add the device to the system and register

attributes for it.

337

Device driversinfrastructure

Name

transport_configure_device — configure an already set up device

Synopsis

void transport_configure_device (struct device * dev);

Arguments

dev generic device representing device to be configured

Description

The idea of configureis simply to provide a point within the setup processto allow the transport class to
extract information from a device after it has been setup. Thisisused in SCSI because we have to have a
setup device to begin using the HBA, but after we send theinitial inquiry, we use configure to extract the
device parameters. The device need not have been added to be configured.

338

Device driversinfrastructure

Name

transport_remove_device — remove the visibility of adevice

Synopsis

void transport_renove_device (struct device * dev);

Arguments

dev generic device to remove

Description

This call removes the visibility of the device (to the user from sysfs), but does not destroy it. To elimi-
nate a device entirely you must also call transport_destroy_device. If you don't need to do remove and
destroy as separate operations, uset r ansport _unr egi st er _devi ce (seetransport_class.h) which
will perform both calls for you.

339

Device driversinfrastructure

Name

transport_destroy_device — destroy aremoved device
Synopsis
void transport _destroy_device (struct device * dev);

Arguments

dev deviceto eliminate from the transport class.

Description

This call triggers the elimination of storage associated with the transport classdev. Note: al it really does
is relinquish a reference to the classdev. The memory will not be freed until the last reference goes to
zero. Note also that the classdev retains a reference count on dev, so dev too will remain for as long as
the transport class device remains around.

Device driversinfrastructure

Name

device bind driver — bind a driver to one device.
Synopsis

i nt device_bind driver (struct device * dev);
Arguments

dev device
Description

Allow manual attachment of adriver to adevice. Caller must have already set dev->driver.

Note that this does not modify the bus reference count nor take the bus's rwsem. Please verify those are
accounted for before calling this. (It is ok to call with no other effort from adriver's pr obe method.)

This function must be called with the device lock held.

341

Device driversinfrastructure

Name

wait_for_device probe —
Synopsis

void wait_for_device probe (void);
Arguments

voi d noarguments

Description

Wait for device probing to be compl eted.

342

Device driversinfrastructure

Name

device _attach — try to attach deviceto adriver.
Synopsis

int device_ attach (struct device * dev);
Arguments

dev device
Description

Walk thelist of driversthat the bushasand call dri ver _pr obe_devi ce for each pair. If acompatible
pair is found, break out and return.

Returns 1 if the device was bound to adriver; 0 if no matching driver was found; -ENODEY if the device
is not registered.

When called for a USB interface, dev->parent lock must be held.

Device driversinfrastructure

Name
driver_attach — try to bind driver to devices.
Synopsis
int driver_attach (struct device driver * drv);
Arguments
drv driver.
Description

Walk the list of devices that the bus has on it and try to match the driver with each one. If
dri ver _probe_devi ce returns0 and the dev->driver is set, we've found a compatible pair.

Device driversinfrastructure

Name

device release driver — manually detach device from driver.
Synopsis
voi d device_rel ease _driver (struct device * dev);

Arguments

dev device.

Description

Manually detach device from driver. When called for a USB interface, dev->parent lock must be held.

Device driversinfrastructure

Name
platform_device register_resndata — add a platform-level device with resources and platform-specific
data

Synopsis
struct platformdevice * platformdevice register resndata (struct de-

vice * parent, const char * nane, int id, const struct resource * res,
unsi gned int num const void * data, size t size);

Arguments

par ent parent device for the device we're adding

nane base name of the device we're adding

id instanceid

res set of resources that needs to be allocated for the device
num number of resources

dat a platform specific data for this platform device

si ze size of platform specific data

Description

Returns struct platform_device pointer on success, or ERR_PTR on error.

346

Device driversinfrastructure

Name

platform_device register_simple — add a platform-level device and its resources
Synopsis

struct platformdevice * platformdevice register_sinple (const char *
nane, int id, const struct resource * res, unsigned int num;

Arguments
name base name of the device we're adding
id instanceid
res setof resourcesthat needs to be allocated for the device

num number of resources

Description

This function creates a simple platform device that requires minimal resource and memory management.
Canned release function freeing memory allocated for the device allows drivers using such devices to be
unloaded without waiting for the last reference to the device to be dropped.

This interface is primarily intended for use with legacy drivers which probe hardware directly. Because
such drivers create sysfs device nodes themselves, rather than letting system infrastructure handle such
device enumeration tasks, they don't fully conform to the Linux driver model. In particular, when such
drivers are built as modules, they can't be “hotplugged”.

Returns struct platform_device pointer on success, or ERR_PTR on error.

347

Device driversinfrastructure

Name
platform_device register_data— add a platform-level device with platform-specific data

Synopsis

struct platformdevice * platformdevice register _data (struct device
* parent, const char * name, int id, const void * data, size t size);

Arguments
par ent parent device for the device we're adding
nane base name of the device we're adding
id instanceid
data platform specific data for this platform device

si ze size of platform specific data

Description

This function creates a simple platform device that requires minimal resource and memory management.
Canned release function freeing memory allocated for the device alows drivers using such devices to be
unloaded without waiting for the last reference to the device to be dropped.

Returns struct platform_device pointer on success, or ERR_PTR on error.

Device driversinfrastructure

Name

platform_get resource — get aresource for a device
Synopsis

struct resource * platformget resource (struct platformdevice * dev,
unsi gned int type, unsigned int nunj;

Arguments
dev platform device
type resourcetype

num resource index

349

Device driversinfrastructure

Name
platform_get_irg — get an IRQ for adevice

Synopsis
int platformget irqg (struct platformdevice * dev, unsigned int num;
Arguments

dev platform device

num [RQ number index

350

Device driversinfrastructure

Name

platform_get resource byname — get aresource for a device by name
Synopsis

struct resource * platformget resource _byname (struct platformdevice
* dev, unsigned int type, const char * nane);

Arguments
dev platform device
type resourcetype

name resource name

351

Device driversinfrastructure

Name
platform_get_irq_byname — get an IRQ for a device by name

Synopsis
int platformget irqg _byname (struct platformdevice * dev, const char
* nane);

Arguments

dev platform device

name IRQ name

352

Device driversinfrastructure

Name

platform_add_devices— add a numbers of platform devices
Synopsis

int platformadd devices (struct platformdevice ** devs, int num;
Arguments

devs array of platform devicesto add

num number of platform devicesin array

353

Device driversinfrastructure

Name
platform_device put — destroy a platform device
Synopsis
void platformdevice put (struct platformdevice * pdev);
Arguments
pdev platform deviceto free
Description

Free all memory associated with aplatform device. Thisfunction must _only _be externally called in error
cases. All other usageis a bug.

354

Device driversinfrastructure

Name
platform_device alloc — create a platform device

Synopsis
struct platformdevice * platformdevice alloc (const char * nane, int
id);

Arguments

name base name of the device we're adding

id instance id

Description

Create a platform device object which can have other objects attached to it, and which will have attached
objects freed when it is released.

355

Device driversinfrastructure

Name

platform_device add resources — add resources to a platform device

Synopsis

int platformdevice add _resources (struct platformdevice * pdev, const
struct resource * res, unsigned int nunj;

Arguments

pdev platform device alocated by platform_device alloc to add resources to
res setof resourcesthat needsto be allocated for the device

num number of resources

Description

Add a copy of the resources to the platform device. The memory associated with the resources will be
freed when the platform device is released.

356

Device driversinfrastructure

Name
platform_device add data— add platform-specific datato a platform device
Synopsis
int platformdevice add data (struct platformdevice * pdev, const void
* data, size_ t size);
Arguments
pdev platform device alocated by platform_device alloc to add resources to
dat a platform specific datafor this platform device
si ze sizeof platform specific data
Description

Addacopy of platform specific datato the platform device's platform_datapointer. The memory associated
with the platform data will be freed when the platform device is released.

357

Device driversinfrastructure

Name
platform_device _add — add a platform device to device hierarchy
Synopsis
int platformdevice add (struct platformdevice * pdev);
Arguments
pdev platform device we're adding
Description

This is part 2 of pl at f or m devi ce_r egi st er, though may be called separately _iff pdev was
allocated by pl at f or m devi ce_al | oc.

358

Device driversinfrastructure

Name
platform_device del — remove aplatform-level device
Synopsis
void platformdevice del (struct platformdevice * pdev);
Arguments
pdev platform device we're removing
Description

Note that this function will also release all memory- and port-based resources owned by the device (dev-
>resource). Thisfunction must _only be externally called in error cases. All other usage is a bug.

359

Device driversinfrastructure

Name
platform_device register — add a platform-level device

Synopsis
int platformdevice register (struct platformdevice * pdev);

Arguments

pdev platform device we're adding

360

Device driversinfrastructure

Name

platform_device unregister — unregister a platform-level device
Synopsis

void platformdevice unregister (struct platformdevice * pdev);
Arguments

pdev platform device we're unregistering

Description

Unregistration isdonein 2 steps. First we release all resources and remove it from the subsystem, then we
drop reference count by calling pl at f or m devi ce_put .

361

Device driversinfrastructure

Name

platform_device register_full — add a platform-level device with resources and platform-specific data

Synopsis

struct platformdevice * platformdevice register full (const struct
pl atform device_info * pdevinfo);

Arguments

pdevi nf o dataused to create device

Description

Returns struct platform_device pointer on success, or ERR_PTR on error.

362

Device driversinfrastructure

Name
__platform_driver_register — register adriver for platform-level devices
Synopsis
int _ platformdriver register (struct platformdriver * drv, struct

nodul e * owner);

Arguments
drv platform driver structure

owner owning module/driver

363

Device driversinfrastructure

Name

platform_driver_unregister — unregister adriver for platform-level devices
Synopsis
void platformdriver _unregi ster (struct platformdriver * drv);

Arguments

drv platform driver structure

364

Device driversinfrastructure

Name
__platform_driver_probe — register driver for non-hotpluggable device

Synopsis

int _platformdriver _probe (struct platformdriver * drv, int (*probe)
(struct platformdevice *), struct nmodule * nodule);

Arguments
drv platform driver structure
probe thedriver probe routine, probably froman __init section

nodul e module which will be the owner of the driver

Description

Use this instead of pl at f orm dri ver regi st er when you know the device is not hotpluggable
and has already been registered, and you want to remove its run-once pr obe infrastructure from memory
after the driver has bound to the device.

One typical use for this would be with drivers for controllers integrated into system-on-chip processors,
where the controller devices have been configured as part of board setup.

Note that this is incompatible with deferred probing.

Returns zero if the driver registered and bound to a device, else returns a negative error code and with
the driver not registered.

365

Device driversinfrastructure

Name
__platform_create_bundle — register driver and create corresponding device

Synopsis
st ruct pl at f orm devi ce * __platformcreate_bundl e (struct
platformdriver * driver, int (*probe) (struct platformdevice *),

struct resource * res, unsigned int n_res, const void * data, size_t
size, struct nmodul e * nodul e);

Arguments
driver platform driver structure
probe thedriver probe routine, probably froman __init section
res set of resources that needs to be allocated for the device
n_res number of resources
dat a platform specific data for this platform device
si ze size of platform specific data

nodul e module which will be the owner of the driver

Description

Use this in legacy-style modules that probe hardware directly and register a single platform device and
corresponding platform driver.

Returns struct platform_device pointer on success, or ERR_PTR on error.

366

Device driversinfrastructure

Name

bus for_each dev — deviceiterator.
Synopsis

int bus for_each_dev (struct bus type * bus, struct device * start, void
* data, int (*fn) (struct device *, void *));

Arguments
bus bus type.
start deviceto start iterating from.
data datafor the callback.

fn function to be called for each device.

Description

Iterate over bus'slist of devices, and call f n for each, passing it dat a. If st art isnot NULL, we use
that device to begin iterating from.

We check thereturn of f n each time. If it returns anything other than 0, we break out and return that val ue.

NOTE

The device that returns a non-zero valueis not retained in any way, nor isits refcount incremented. If the
caller needsto retain this data, it should do so, and increment the reference count in the supplied callback.

367

Device driversinfrastructure

Name

bus find_device — device iterator for locating a particular device.
Synopsis

struct device * bus _find device (struct bus type * bus, struct device
* start, void * data, int (*match) (struct device *dev, void *data));

Arguments
bus bustype
start Deviceto beginwith
data Datato passto match function

mat ch Callback function to check device

Description

Thisissimilar to thebus_f or _each_dev function above, but it returns areference to adevice that is
'found' for later use, as determined by the mat ch callback.

The callback should return O if the device doesn't match and non-zero if it does. If the callback returns
non-zero, this function will return to the caller and not iterate over any more devices.

368

Device driversinfrastructure

Name

bus find_device by name — device iterator for locating a particular device of a specific name

Synopsis

struct device * bus_find _device by nane (struct bus_type * bus, struct
device * start, const char * nane);

Arguments
bus bustype
start Deviceto beginwith

nane name of the device to match

Description

Thisissimilar tothebus_fi nd_devi ce function above, but it handles searching by a name automat-
ically, no need to write another strcmp matching function.

369

Device driversinfrastructure

Name

subsys find_device by id — find a device with a specific enumeration number

Synopsis

struct device * subsys find device by id (struct bus type * subsys,
unsigned int id, struct device * hint);

Arguments
subsys subsystem
id index 'id' in struct device
hi nt device to check first
Description

Check the hint's next object and if it is a match return it directly, otherwise, fall back to afull list search.
Either way areference for the returned object is taken.

370

Device driversinfrastructure

Name

bus for_each drv — driver iterator

Synopsis

int bus for_each drv (struct bus type * bus, struct device driver *
start, void * data, int (*fn) (struct device driver *, void *));

Arguments

bus bus we're dealing with.
start driver to start iterating on.
data datato passto the callback.

fn function to call for each driver.

Description

NOTE

Thisis nearly identical to the device iterator above. We iterate over each driver that belongsto bus, and
cal f n for each. If f n returns anything but O, we break out and returniit. If st art isnot NULL, we use
it asthe head of thelist.

we don't return the driver that returns a non-zero value, nor do we leave the reference count incremented
for that driver. If the caller needs to know that info, it must set it in the callback. It must also be sure to
increment the refcount so it doesn't disappear before returning to the caller.

371

Device driversinfrastructure

Name

bus_rescan_devices — rescan devices on the bus for possible drivers

Synopsis

i nt bus_rescan_devices (struct bus_type * bus);

Arguments

bus thebusto scan.

Description

Thisfunction will look for devices on the bus with no driver attached and rescan it against existing drivers
to seeif it matches any by calling devi ce_at t ach for the unbound devices.

372

Device driversinfrastructure

Name

device _reprobe — remove driver for adevice and probe for anew driver
Synopsis
i nt device_reprobe (struct device * dev);

Arguments

dev thedeviceto reprobe

Description

This function detaches the attached driver (if any) for the given device and restarts the driver probing
process. It isintended to use if probing criteria changed during a devices lifetime and driver attachment

should change accordingly.

373

Device driversinfrastructure

Name

bus _register — register a driver-core subsystem
Synopsis
int bus_register (struct bus_type * bus);

Arguments

bus busto register

Description

Oncewe havethat, weregister the buswith the kobject infrastructure, then register the children subsystems
it has: the devices and driversthat belong to the subsystem.

374

Device driversinfrastructure

Name

bus_unregister — remove a bus from the system
Synopsis
voi d bus_unregister (struct bus_type * bus);

Arguments

bus bus.

Description

Unregister the child subsystems and the bus itself. Finally, we call bus_put to release the refcount

375

Device driversinfrastructure

Name

subsys dev_iter_init — initialize subsys device iterator

Synopsis

void subsys dev_ iter_init (struct subsys dev_ iter * iter, struct
bus type * subsys, struct device * start, const struct device type *

type);
Arguments
iter subsysiterator to initialize
subsys the subsyswe wannaiterate over
start the device to start iterating from, if any

type device_type of the devicesto iterate over, NULL for al

Description

Initialize subsys iterator i t er such that it iterates over devices of subsys. If start is s, the list
iteration will start there, otherwiseif itisNULL, theiteration starts at the beginning of the list.

376

Device driversinfrastructure

Name

subsys dev_iter_next — iterate to the next device
Synopsis
struct device * subsys dev_iter_next (struct subsys dev_ iter * iter);

Arguments

i ter subsysiterator to proceed

Description
Proceed i t er tothe next device and return it. Returns NULL if iteration is complete.

Thereturned deviceis referenced and won't be released till iterator is proceed to the next device or exited.
The caller is free to do whatever it wants to do with the device including calling back into subsys code.

377

Device driversinfrastructure

Name

subsys dev_iter_exit — finish iteration
Synopsis
voi d subsys dev_iter_exit (struct subsys dev_ iter * iter);

Arguments

i ter subsysiterator to finish

Description

Finish an iteration. Always call this function after iteration is complete whether the iteration ran till the
end or not.

378

Device driversinfrastructure

Name
subsys system_register — register a subsystem at /sys/devices/system/

Synopsis

int subsys systemregister (struct bus type * subsys, const struct
attribute _group ** groups);

Arguments

subsys system subsystem

groups default attributes for the root device

Description

All 'system’ subsystems have a /sys/devices/system/<name> root device with the name of the subsystem.
The root device can carry subsystem- wide attributes. All registered devices are below this single root
device and are named after the subsystem with a simple enumeration number appended. The registered
devices are not explicitly named; only 'id' in the device needs to be set.

Do not usethisinterface for anything new, it exists for compatibility with bad ideas only. New subsystems
should use plain subsystems; and add the subsystem-wide attributes should be added to the subsystem
directory itself and not some create fake root-device placed in /sys/devices/system/<name>.

379

Device driversinfrastructure

Name
subsys virtual_register — register a subsystem at /sys/devices/virtual/

Synopsis

int subsys virtual _register (struct bus _type * subsys,
attribute _group ** groups);

Arguments
subsys virtual subsystem

groups default attributes for the root device

Description

const struct

All 'virtual' subsystemshave a/sys/devices/system/<name> root device with the name of the subystem. The
root device can carry subsystem-wide attributes. All registered devices are below this single root device.
There's no restriction on device naming. Thisisfor kernel software constructs which need sysfsinterface.

Device Drivers DMA Management

380

Device driversinfrastructure

Name

dma_buf_export — Creates a new dma_buf, and associates an anon file with this buffer, so it can be
exported. Also connect the allocator specific dataand opsto the buffer. Additionally, provide aname string
for exporter; useful in debugging.

Synopsis
struct dma_buf * dma_buf_export (const struct dna_buf export _info *
exp_info);

Arguments

exp_info [in] holds al the export related information provided by the exporter. see struct
dma_buf_export_info for further details.

Description

Returns, on success, anewly created dma_buf object, which wrapsthe supplied private dataand operations
for dma_buf_ops. On either missing ops, or error in alocating struct dma_buf, will return negative error.

381

Device driversinfrastructure

Name

dma _buf_fd — returns afile descriptor for the given dma_buf
Synopsis

int dna_buf fd (struct dnma_buf * dmabuf, int flags);
Arguments

dmabuf [in] pointer to dma_buf for which fd is required.

flags [in] flagstogivetofd
Description

On success, returns an associated 'fd'. Else, returns error.

382

Device driversinfrastructure

Name
dma_buf_get — returns the dma_buf structure related to an fd

Synopsis

struct dma_buf * dma_buf _get (int fd);

Arguments

fd [in] fd associated with the dma_buf to be returned

Description

On success, returns the dma_buf structure associated with an fd; uses file's refcounting done by fget to
increase refcount. returns ERR_PTR otherwise.

383

Device driversinfrastructure

Name

dma_buf_put — decreases refcount of the buffer
Synopsis

void dma_buf _put (struct dna_buf * dnmabuf);
Arguments

dmabuf [in] buffer to reduce refcount of
Description

Usesfile's refcounting done implicitly by f put

384

Device driversinfrastructure

Name

dma buf_attach — Add the device to dma buf's attachments list; optionally, calls attach of
dma_buf_opsto alow device-specific attach functionality

Synopsis
struct dma_buf_attachnment * dma_buf_attach (struct dma_buf * dmabuf,

struct device * dev);

Arguments
dmabuf [in] buffer to attach device to.
dev [in] device to be attached.
Description

Returns struct dma_buf_attachment * for this attachment; returns ERR_PTR on error.

385

Device driversinfrastructure

Name

dma_buf_detach — Remove the given attachment from dmabuf's attachments list; optionally calls de-
t ach of dma_buf_ops for device-specific detach

Synopsis

voi d dma_buf _detach (struct dma_buf * dmabuf, struct dma_buf attachment
* attach);

Arguments
dmabuf [in] buffer to detach from.

attach [in] attachment to be detached; is free'd after this call.

386

Device driversinfrastructure

Name
dma_buf_map_attachment — Returnsthe scatterlist table of the attachment; mappedinto _device_address
space. Isawrapper for map_dnma_buf of thedma_buf_ops.

Synopsis

struct sg table * dnma_buf map_attachnment (struct dna_buf attachnent *
attach, enum dma_data_direction direction);

Arguments
attach [in] attachment whose scatterlist is to be returned

di rection [in] direction of DMA transfer

Description

Returns sg_table containing the scatterlist to be returned; returns ERR_PTR on error.

387

Device driversinfrastructure

Name

dma_buf_unmap_attachment — unmaps and decreases usecount of the buffer;might deallocate the scat-
terlist associated. Isawrapper for unmap_dma_buf of dma_buf_ops.

Synopsis

void dma_buf _unmap_attachment (struct dma_buf_attachment * attach,
struct sg table * sg table, enum dma_data_direction direction);

Arguments
attach [in] attachment to unmap buffer from
sg _tabl e [in] scatterlist info of the buffer to unmap

di rection [in] direction of DMA transfer

388

Device driversinfrastructure

Name

dma_buf_begin_cpu_access — Must be called before accessing a dma_buf from the cpu in the kernel
context. Callsbegin_cpu_access to allow exporter-specific preparations. Coherency isonly guaranteed in
the specified range for the specified access direction.

Synopsis

int dma_buf begin _cpu_access (struct dma_buf * dmabuf, size t start,
size t len, enumdna_data_direction direction);

Arguments
dnmabuf [in] buffer to prepare cpu access for.
start [in] start of range for cpu access.
[en [in] length of range for cpu access.

di rection [in] length of range for cpu access.

Description

Can return negative error values, returns 0 on SUCCESS.

389

Device driversinfrastructure

Name

dma _buf_end_cpu_access— Must be called after accessing adma_buf from the cpu in the kernel context.
Calls end_cpu_access to allow exporter-specific actions. Coherency is only guaranteed in the specified
range for the specified access direction.

Synopsis

void dma_buf end cpu_access (struct dma_buf * dmabuf, size t start,
size t len, enumdna_data_direction direction);

Arguments
dnmabuf [in] buffer to complete cpu access for.
start [in] start of range for cpu access.
[en [in] length of range for cpu access.

di rection [in] length of range for cpu access.

Description

This call must always succeed.

390

Device driversinfrastructure

Name
dma_buf_kmap_atomic— Map apage of the buffer object into kernel address space. The samerestrictions

as for kmap_atomic and friends apply.

Synopsis
void * dma_buf_kmap_atomic (struct dma_buf * dmabuf, unsigned | ong
page_nunm ;

Arguments

dnmabuf [in] buffer to map page from.

page_num [in] pagein PAGE_SIZE unitsto map.

Description

This call must always succeed, any necessary preparations that might fail need to be done in
begin_cpu_access.

391

Device driversinfrastructure

Name
dma_buf_kunmap_atomic — Unmap a page obtained by dma_buf kmap_atomic.

Synopsis

void dma_buf kunmap_atonmic (struct dma_buf * dmabuf, unsigned | ong
page_num void * vaddr);

Arguments

dnmabuf [in] buffer to unmap page from.

page_num [in] pagein PAGE_SIZE unitsto unmap.

vaddr [in] kernel space pointer obtained from dma_buf_kmap_atomic.
Description

This call must always succeed.

392

Device driversinfrastructure

Name
dma_buf_kmap — Map a page of the buffer object into kernel address space. The same restrictions as for
kmap and friends apply.
Synopsis
void * dnma_buf knmap (struct dna_buf * dnabuf, unsigned | ong page num;
Arguments
dnmabuf [in] buffer to map page from.
page_num [in] pagein PAGE_SIZE unitsto map.
Description

This call must always succeed, any necessary preparations that might fail need to be done in
begin_cpu_access.

393

Device driversinfrastructure

Name
dma_buf_kunmap — Unmap a page obtained by dma_buf kmap.
Synopsis
void dna_buf kunmap (struct dnma_buf * dnmabuf, unsigned |ong page_num
void * vaddr);
Arguments
dnmabuf [in] buffer to unmap page from.
page_num [in] pagein PAGE_SIZE unitsto unmap.
vaddr [in] kernel space pointer obtained from dma_buf_kmap.
Description

This call must always succeed.

394

Device driversinfrastructure

Name

dma_buf_mmap — Setup up a userspace mmap with the given vma

Synopsis

int dma_buf_nmap (struct dma_buf * dmabuf, struct vmarea_ struct * vnmm,
unsi gned | ong pgoff);

Arguments
dmabuf [in] buffer that should back the vma

v [in] vmafor the mmap

pgof f [in] offset in pages where this mmap should start within the dma-buf buffer.

Description

This function adjusts the passed in vma so that it points at the file of the dma_buf operation. It also adjusts
the starting pgoff and does bounds checking on the size of the vma. Then it calls the exporters mmap

function to set up the mapping.

Can return negative error values, returns 0 on SUCCESS.

395

Device driversinfrastructure

Name
dma_buf_vmap— Createvirtual mapping for the buffer object into kernel address space. Samerestrictions
as for vmap and friends apply.

Synopsis

void * dnma_buf _vmap (struct dna_buf * dnmabuf);

Arguments
dmabuf [in] buffer to vmap

Description

This call may fail due to lack of virtual mapping address space. These calls are optional in drivers. The
intended use for them is for mapping objects linear in kernel space for high use objects. Please attempt to
use kmap/kunmap before thinking about these interfaces.

Returns NULL on error.

396

Device driversinfrastructure

Name
dma_buf_vunmap — Unmap avmap obtained by dma_buf_vmap.

Synopsis
void dma_buf _vunnmap (struct dna_buf * dmabuf, void * vaddr);
Arguments

dmabuf [in] buffer to vunmap

vaddr [in] vmap to vunmap

397

Device driversinfrastructure

Name

fence _context_alloc — allocate an array of fence contexts

Synopsis

unsi gned fence_context _alloc (unsigned num;

Arguments

num [in] amount of contextsto allocate

Description

This function will return the first index of the number of fences allocated. The fence context is used for
setting fence->context to a unique number.

398

Device driversinfrastructure

Name

fence signal_locked — signal completion of afence

Synopsis

int fence_signal | ocked (struct fence * fence);

Arguments

fence thefencetosigna

Description

Signal completion for software callbacks on afence, thiswill unblock f ence_wai t callsand run al the
callbacks added withf ence_add_cal | back. Can be called multiple times, but since afence can only
go from unsignaled to signaled state, it will only be effective the first time.

Unlike fence_signal, this function must be called with fence->lock held.

399

Device driversinfrastructure

Name

fence _signal — signal completion of afence
Synopsis

int fence_signal (struct fence * fence);
Arguments

fence thefencetosigna

Description

Signal completion for software callbacks on afence, thiswill unblock f ence_wai t callsand run al the
callbacks added withf ence_add_cal | back. Can be called multiple times, but since afence can only
go from unsignaled to signaled state, it will only be effective the first time.

400

Device driversinfrastructure

Name

fence wait_timeout — sleep until the fence gets signaled or until timeout elapses

Synopsis

signed long fence wait _tineout (struct fence * fence, bool intr, signed
| ong tineout);

Arguments
fence [in] the fence to wait on
intr [in] if true, do an interruptible wait

ti meout [in] timeout valuein jiffies, or MAX_SCHEDULE_TIMEOUT

Description

Returns -ERESTARTSY S if interrupted, O if the wait timed out, or the remaining timeout in jiffies on
success. Other error values may be returned on custom implementations.

Performs asynchronouswait on thisfence. It is assumed the caller directly or indirectly (buf-mgr between
reservation and committing) holds a reference to the fence, otherwise the fence might be freed before
return, resulting in undefined behavior.

401

Device driversinfrastructure

Name
fence_enable sw_signaling — enable signaling on fence
Synopsis
void fence_enable sw signaling (struct fence * fence);
Arguments
fence [in] thefenceto enable
Description

thiswill request for sw signaling to be enabled, to make the fence compl ete as soon as possible

402

Device driversinfrastructure

Name
fence_add_callback — add a callback to be called when the fence is signaled

Synopsis

int fence_add callback (struct fence * fence, struct fence cb * cb,
fence _func_t func);

Arguments
fence [in] thefencetowait on
cb [in] the callback to register

func [in] thefunction to call

Description

cb will be initialized by fence add callback, no initialization by the caller is required. Any number of
callbacks can be registered to a fence, but a callback can only be registered to one fence at atime.

Note that the callback can be called from an atomic context. If fenceis already signaled, this function will
return -ENOENT (and *not* call the callback)

Add asoftware callback to the fence. Same restrictions apply to refcount asit doesto fence_wait, however
the caller doesn't need to

keep a refcount to fence afterwards

when software access is enabled, the creator of the fence is required to keep the fence alive until after it
signals with fence_signal. The callback itself can be called from irq context.

403

Device driversinfrastructure

Name

fence_remove_callback — remove a callback from the signaling list

Synopsis

bool fence renove _call back (struct fence * fence, struct fence_cb * ch);

Arguments
fence [in] thefencetowait on

cb [in] the callback to remove

Description

Remove apreviously queued callback from the fence. Thisfunction returnstrueif the callback is success-
fully removed, or false if the fence has already been signaled.

WARNING: Cancelling a callback should only be done if you really know what you're doing, since
deadlocks and race conditions could occur all too easily. For this reason, it should only ever be done on
hardware lockup recovery, with a reference held to the fence.

404

Device driversinfrastructure

Name
fence _default_ wait — default sleep until the fence gets signaled or until timeout elapses

Synopsis

signed long fence default _wait (struct fence * fence, bool intr,
| ong tineout);

Arguments
fence [in] the fence to wait on
intr [in] if true, do an interruptible wait

ti meout [in] timeout valuein jiffies, or MAX_SCHEDULE_TIMEOUT

Description

si ghed

Returns -ERESTARTSY S if interrupted, O if the wait timed out, or the remaining timeout in jiffies on

SUCCEesS.

405

Device driversinfrastructure

Name

fence _init — Initialize a custom fence.

Synopsis

void fence_ init (struct fence * fence, const struct fence_ops * ops,
spinlock t * |ock, unsigned context, unsigned seqno);

Arguments
fence [in] thefencetoinitiadize
ops [in] the fence_ops for operations on this fence
| ock [in] theirgsafe spinlock to use for locking this fence

cont ext [in] the execution context this fenceisrun on

seqgno [in] alinear increasing sequence number for this context

Description

Initializes an allocated fence, the caller doesn't have to keep its refcount after committing with this fence,
but it will need to hold a refcount again if fence_ops.enable_signaling gets called. This can be used for
other implementing other types of fence.

context and segno are used for easy comparison between fences, allowing to check which fence is later
by simply using fence later.

406

Device driversinfrastructure

Name

Jusr/srcllinux-4.1.27-24//drivers/dma-buf/segno-fence.c — Document generation inconsistency
Oops
Warning
The template for this document tried to insert the structured comment from the file/ usr/ sr c/

[inux-4.1.27-24//drivers/dma-buf/seqgno-fence. c atthispoint, but none was
found. Thisdummy section isinserted to allow generation to continue.

407

Device driversinfrastructure

Name

struct fence — software synchronization primitive

Synopsis

struct fence {
struct kref refcount;
const struct fence_ops * ops;
struct rcu_head rcu;
struct list _head cb_I|ist;
spinlock_t * |ock;
unsi gned cont ext;
unsi gned seqgno;
unsi gned | ong fl ags;
ktime_t tinestanp;

i nt status;
b
Members

refcount refcount for this fence

ops fence_ops associated with this fence

rcu used for releasing fence with kfree rcu

cb list list of all callbacksto call

lock spin_lock_irgsave used for locking

context execution context this fence belongsto, returned by f ence_cont ext _al | oc

segno the sequence number of thisfence inside the execution context, can be compared to decide
which fence would be signaled | ater.

flags A mask of FENCE_FLAG_* defined below

timestamp Timestamp when the fence was signaled.

status Optional, only valid if <0, must be set before calling fence_signal, indicatesthat the fence
has completed with an error.

Description

the flags member must be manipulated and read using the appropriate atomic ops (bit_*), so taking the
spinlock will not be needed most of the time.

FENCE_FLAG_SIGNALED_BIT - fenceis already signaled FENCE_FLAG_ENABLE_SIGNAL_BIT
- enable_signaling might have been called* FENCE_FLAG_USER BITS - start of the unused bits, can
be used by the implementer of the fence for its own purposes. Can be used in different ways by different
fence implementers, so do not rely on this.

*) Since atomic bitops are used, this is not guaranteed to be the case. Particularly, if the bit
was set, but fence signal was called right before this bit was set, it would have been able to

408

Device driversinfrastructure

set the FENCE_FLAG_SIGNALED BIT, before enable signaling was called. Adding a check for
FENCE_FLAG_SIGNALED _BIT after setting FENCE_FLAG_ENABLE_SIGNAL_BIT closes this

race, and makes sure that after fence signal was called, any enable signaling call will have either been
completed, or never called at all.

409

Device driversinfrastructure

Name
struct fence _cb — callback for fence _add callback

Synopsis

struct fence_cb {
struct |ist_head node;
fence _func_t func;

1
Members
node used by fence add_callback to append this struct to fence::cb_list
func fence func tto call
Description

This struct will be initialized by fence_add_callback, additional data can be passed along by embedding
fence_cb in another struct.

410

Device driversinfrastructure

Name

struct fence_ops — operations implemented for fence

Synopsis

struct fence_ops {

const char * (* get _driver_nane) (struct fence *fence);

const char * (* get _tineline_name) (struct fence *fence);

bool (* enable_signaling) (struct fence *fence);

bool (* signaled) (struct fence *fence);

signed long (* wait) (struct fence *fence, bool intr, signed long tineout);
void (* release) (struct fence *fence);

int (* fill _driver_data) (struct fence *fence, void *data, int size);

void (* fence_value_str) (struct fence *fence, char *str, int size);

void (* tineline_value_str) (struct fence *fence, char *str, int size);

b
Members
get_driver_name returns the driver name.
get_timeline_name return the name of the context this fence belongs to.
enable signaling enable software signaling of fence.
signaled [optional] peek whether the fence is signaled, can be null.
wait custom wait implementation, or fence_default_wait.
release [optional] called on destruction of fence, can be null
fill_driver_data [optional] callback to fill in free-form debug info Returns amount of bytes
filled, or -errno.
fence value str [optional] fillsin the value of the fence as a string
timeline value_str [optional] fillsin the current value of the timeline as a string

Notes on enable_signaling

For fence implementations that have the capability for hw->hw signaling, they can implement this op to
enable the necessary irgs, or insert commands into cmdstream, etc. This is called in the first wai t or
add_cal | back path to let the fence implementation know that there is another driver waiting on the
signal (ie. hw->sw case).

This function can be called called from atomic context, but not from irg context, so normal spinlocks can
be used.

A return value of falseindicates the fence already passed, or some failure occurred that made it impossible
to enable signaling. True indicates successful enabling.

fence->status may be set in enable_signaling, but only when falseis returned.

Cdling fence signa before enable signaling is called allows for a tiny race window in which
enable_signalingiscalled during, before, or after fence_signal. Tofight this, it isrecommended that before

411

Device driversinfrastructure

enable_signaling returns true an extra reference is taken on the fence, to be released when the fence is
signaled. Thiswill mean fence _signal will still be called twice, but the second time will be a noop since
it was aready signaled.

Notes on signaled

May set fence->statusif returning true.

Notes on wait

Must not be NULL, set to fence_default_wait for default implementation. the fence_default_wait imple-
mentation should work for any fence, aslong as enable_signaling works correctly.

Must return -ERESTARTSY Sif the wait isintr = true and the wait was interrupted, and remaining jiffies
if fence has signaled, or 0 if wait timed out. Can also return other error values on custom implementations,
which should be treated as if the fenceis signaled. For example a hardware lockup could be reported like
that.

Notes on release

CanbeNULL, thisfunction allows additional commands to run on destruction of the fence. Can be called
from irq context. If pointer is set to NULL, kfree will get called instead.

412

Device driversinfrastructure

Name

fence_get — increases refcount of the fence
Synopsis
struct fence * fence_get (struct fence * fence);

Arguments

fence [in] fenceto increase refcount of

Description

Returns the same fence, with refcount increased by 1.

413

Device driversinfrastructure

Name

fence _get_rcu — get afence from areservation_object_list with rcu read lock

Synopsis
struct fence * fence_get rcu (struct fence * fence);

Arguments

fence [in] fenceto increase refcount of

Description

Function returns NULL if no refcount could be obtained, or the fence.

414

Device driversinfrastructure

Name

fence_put — decreases refcount of the fence
Synopsis
void fence put (struct fence * fence);

Arguments

fence [in] fenceto reduce refcount of

415

Device driversinfrastructure

Name
fence is signaled_locked — Return an indication if the fence is signaled yet.

Synopsis

bool fence_ is_signaled | ocked (struct fence * fence);

Arguments

fence [in] thefenceto check

Description

Returns true if the fence was aready signaled, false if not. Since this function doesn't enable signaling,
it is not guaranteed to ever return true if fence_add_callback, fence wait or fence_enable sw_signaling

haven't been called before.

This function requires fence->lock to be held.

416

Device driversinfrastructure

Name
fence_is signaled — Return an indication if the fenceis signaled yet.

Synopsis
bool fence_ is_signaled (struct fence * fence);

Arguments

fence [in] thefenceto check

Description

Returns true if the fence was aready signaled, false if not. Since this function doesn't enable signaling,
it is not guaranteed to ever return true if fence_add_callback, fence wait or fence_enable sw_signaling
haven't been called before.

It'srecommended for segno fencesto call fence_signal when the operationis complete, it makesit possible
to prevent issues from wraparound between time of issue and time of use by checking the return value of
this function before calling hardware-specific wait instructions.

417

Device driversinfrastructure

Name

fence later — return the chronologically later fence

Synopsis

struct fence * fence_ later (struct fence * f1, struct fence * f2);
Arguments

f1 [in] thefirst fence from the same context

f2 [in] the second fence from the same context

Description

Returns NULL if both fences are signaled, otherwise the fence that would be signaled last. Both fences
must be from the same context, since a seqno is not re-used across contexts.

418

Device driversinfrastructure

Name
fence wait — sleep until the fence gets signaled

Synopsis

signed long fence wait (struct fence * fence, bool intr);
Arguments

fence [in] thefencetowait on

intr [in] if true, do an interruptible wait
Description

Thisfunction will return -ERESTARTSY Siif interrupted by asignal, or 0 if the fence was signaled. Other
error values may be returned on custom implementations.

Performs a synchronous wait on this fence. It is assumed the caller directly or indirectly holds a reference
to the fence, otherwise the fence might be freed before return, resulting in undefined behavior.

419

Device driversinfrastructure

Name

to_segno_fence — cast afence to aseqno_fence

Synopsis

struct seqno_fence * to_seqno_fence (struct fence * fence);

Arguments

fence fenceto casttoasegno_fence

Description

Returns NULL if the fence is not a segno_fence, or the seqno_fence otherwise.

420

Device driversinfrastructure

Name
segno_fence init — initialize a segno fence
Synopsis

void segno_fence_init (struct seqno_fence * fence, spinlock t * |ock,
struct dma_buf * sync_buf, uint32_t context, uint32_t segno_ofs,
uint32 t segno, enumseqgno_fence condition cond, const struct fence_ops

* ops);
Arguments
fence segno_fencetoinitialize
| ock pointer to spinlock to use for fence

sync_buf buffer containing the memory location to signal on
cont ext the execution context this fenceis a part of

segno_of s theoffset withinsync_buf

seqgno the sequence #to signal on

cond fence wait condition

ops the fence_ops for operations on this segno fence
Description

This function initializes a struct seqno_fence with passed parameters, and takes a reference on sync_buf
which is released on fence destruction.

A segno_fenceisadma_fence which can completein software when enable signalingiscalled, but it also
completes when (s32)((sync_buf)[segno_ofs] - segno) >=0istrue

The segno_fence will take a refcount on the sync_buf until it's destroyed, but actual lifetime of sync_buf
may be longer if one of the callers take areference to it.

Certain hardware have instructions to insert this type of wait condition in the command stream, so no
intervention from software would be needed. Thistype of fence can be destroyed before completed, how-
ever areference on the sync_buf dma-buf can be taken. It is encouraged to re-use the same dma-buf for
sync_buf, since mapping or unmapping the sync_buf to the device's vm can be expensive.

It is recommended for creators of seqno_fence to call fence signal before destruction. This will prevent
possibleissuesfrom wraparound at time of issue vstime of check, since users can check fence is signaled
before submitting instructions for the hardware to wait on the fence. However, when ops.enable_signaling
is not caled, it doesn't have to be done as soon as possible, just before there's any real danger of seqno
wraparound.

421

Device driversinfrastructure

Name

Jusr/srcllinux-4.1.27-24//drivers/dma-buf/reservation.c — Document generation inconsistency
Oops
Warning
The template for this document tried to insert the structured comment from the file/ usr/ sr c/

[inux-4.1.27-24//drivers/dma-buf/reservation. c atthispoint, but none was
found. Thisdummy section isinserted to allow generation to continue.

422

Device driversinfrastructure

Name

Jusr/src/linux-4.1.27-24//include/linux/reservation.h — Document generation inconsistency
Oops
Warning
The template for this document tried to insert the structured comment from the file / usr/

src/linux-4.1.27-24//include/linux/reservation.h a this point, but none
was found. Thisdummy section is inserted to allow generation to continue.

423

Device driversinfrastructure

Name

dma_aloc_from_coherent — try to alocate memory from the per-device coherent area
Synopsis

int dnma_alloc fromcoherent (struct device * dev, ssize t size,
dma_addr _t * dma_handle, void ** ret);

Arguments
dev device from which we allocate memory
si ze size of requested memory area

dnma_handl e Thiswill be filled with the correct dmahandle

ret This pointer will befilled with the virtual addressto allocated area.

Description

This function should be only called from per-arch drma_al | oc_coher ent to support allocation from
per-device coherent memory pools.

Returns 0 if dma_alloc_coherent should continue with allocating from generic memory areas, or !0 if
dma_alloc_coherent should returnr et .

424

Device driversinfrastructure

Name
dma release from_coherent — try to free the memory allocated from per-device coherent memory pool
Synopsis
int dma_rel ease fromcoherent (struct device * dev, int order, void *
vaddr) ;
Arguments
dev device from which the memory was allocated

order the order of pages allocated

vaddr virtual address of allocated pages

Description

This checks whether the memory was allocated from the per-device coherent memory pool and if so,
releases that memory.

Returns 1 if we correctly released the memory, or 0 if dma_r el ease_coher ent should proceed with
releasing memory from generic pools.

425

Device driversinfrastructure

Name

dma_mmap_from_coherent — try to mmap the memory allocated from per-device coherent memory pool
to userspace

Synopsis

int dna_mmap_from coherent (struct device * dev, struct vm area_struct
* vma, void * vaddr, size t size, int * ret);

Arguments
dev device from which the memory was allocated
v vm_area for the userspace memory
vaddr cpu addressreturned by dma aloc_from_coherent
si ze sizeof the memory buffer allocated by dma_alloc_from_coherent

ret result fromr emap_pf n_range

Description

This checks whether the memory was allocated from the per-device coherent memory pool and if so, maps
that memory to the provided vma.

Returns 1 if we correctly mapped the memory, or 0 if the caller should proceed with mapping memory
from generic pools.

426

Device driversinfrastructure

Name

dmam_alloc_coherent — Managed drre_al | oc_coher ent
Synopsis

void * dnmam al | oc_coherent (struct device * dev, size_ t size, dna_addr t
* dma_handl e, gfp_t gofp);

Arguments
dev Device to allocate coherent memory for
si ze Size of alocation

dma_handl e Out argument for allocated DMA handle
of p Allocation flags

Description

Manageddma_al | oc_coher ent . Memory allocated using thisfunction will be automatically released
on driver detach.

RETURNS

Pointer to allocated memory on success, NULL on failure.

427

Device driversinfrastructure

Name
dmam_free coherent — Managed drma_f r ee_coher ent
Synopsis

voi d dnmam free_coherent (struct device * dev, size t size, void * vaddr,
dma_addr _t dna_handl e) ;

Arguments
dev Device to free coherent memory for
si ze Size of allocation
vaddr Virtual address of the memory to free

dnma_handl e DMA handle of the memory to free

Description

Managed dma_f r ee_coherent.

428

Device driversinfrastructure

Name

dmam_alloc_noncoherent — Managed drme_al | oc_non_coher ent
Synopsis

void * drmam alloc_noncoherent (struct device * dev, size t size,
dma_addr _t * dma_handle, gfp_t gfp);

Arguments
dev Device to allocate non_coherent memory for
si ze Size of alocation

dma_handl e Out argument for allocated DMA handle
of p Allocation flags

Description

Managed drre_al | oc_non_coher ent . Memory alocated using this function will be automatically
released on driver detach.

RETURNS

Pointer to allocated memory on success, NULL on failure.

429

Device driversinfrastructure

Name

dmam_free_noncoherent — Managed drme_f r ee_noncoher ent

Synopsis
void dmam free_noncoherent (struct device * dev, size t size, void *
vaddr, dna_addr_t dma_handl e);

Arguments
dev Device to free noncoherent memory for
si ze Size of allocation
vaddr Virtual address of the memory to free

dnma_handl e DMA handle of the memory to free

Description

Managed dma_f r ee_noncoher ent .

430

Device driversinfrastructure

Name

dmam_declare_coherent_memory — Managed drma_dec! ar e_coher ent _nenory
Synopsis

int dmam decl are_coherent _nenory (struct device * dev, phys_addr t
phys addr, dma_addr t device_addr, size t size, int flags);

Arguments
dev Device to declare coherent memory for
phys_addr Physical address of coherent memory to be declared

devi ce_addr Device address of coherent memory to be declared

si ze Size of coherent memory to be declared
flags Flags
Description

Managed dna_decl ar e_coherent _nenory.

RETURNS

0 on success, -errno on failure.

431

Device driversinfrastructure

Name

dmam_release declared memory — Managed drra_r el ease_decl ared_nenory.
Synopsis
void dmam rel ease_decl ared_nenory (struct device * dev);

Arguments

dev Deviceto release declared coherent memory for

Description

Managed dmam r el ease_decl ared_nenory.

Device Drivers Power Management

432

Device driversinfrastructure

Name

dpm_resume_start — Execute “noirq” and “early” device callbacks.
Synopsis
void dpmresune_start (pmnessage t state);

Arguments

state PM transition of the system being carried out.

433

Device driversinfrastructure

Name

dpm_resume_end — Execute “resume” callbacks and compl ete system transition.
Synopsis
void dpmresune_end (pmnessage t state);

Arguments

state PM transition of the system being carried out.

Description

Execute “resume” callbacks for all devices and complete the PM transition of the system.

Device driversinfrastructure

Name

dpm_suspend_end — Execute “late” and “noirq” device suspend callbacks.
Synopsis

i nt dpm suspend_end (pm nessage_t state);
Arguments

state PM transition of the system being carried out.

435

Device driversinfrastructure

Name

dpm_suspend_start — Prepare devices for PM transition and suspend them.
Synopsis

int dpm suspend_start (pmnessage t state);
Arguments

state PM transition of the system being carried out.
Description

Prepare all non-sysdev devices for system PM transition and execute “suspend” callbacks for them.

436

Device driversinfrastructure

Name
device pm_wait_for_dev — Wait for suspend/resume of a device to complete.

Synopsis
int device_ pmwait _for_dev (struct device * subordinate, struct device
* dev);

Arguments

subor di nat e Devicethat needsto wait for dev.

dev Device to wait for.

437

Device driversinfrastructure

Name

dpm_for_each_dev — deviceiterator.
Synopsis

void dpm for_each_dev (void * data, void (*fn) (struct device *, void

*));
Arguments

dat a datafor the calback.

fn function to be called for each device.

Description

Iterate over devicesin dpm_list, and call f n for each device, passing it dat a.

Device Drivers ACPI Support

438

Device driversinfrastructure

Name
acpi_match_device — Match a struct device against agiven list of ACPI IDs

Synopsis

const struct acpi _device id * acpi_nmatch_device (const
acpi _device_id * ids, const struct device * dev);

Arguments
i ds Array of struct acpi_device_id object to match against.

dev The device structure to match.

Description

struct

Check if dev hasavalid ACPI handle and if there is a struct acpi_device object for that handle and use

that object to match against agiven list of device IDs.

Return a pointer to the first matching ID on success or NULL on failure.

439

Device driversinfrastructure

Name
acpi_bus register_driver — register adriver with the ACPI bus

Synopsis

int acpi _bus_register_driver (struct acpi_driver * driver);

Arguments

driver driver being registered

Description

Registersadriver with the ACPI bus. Searchesthe namespacefor all devicesthat match thedriver'scriteria
and binds. Returns zero for success or a negative error status for failure.

Device driversinfrastructure

Name

acpi_bus unregister_driver — unregisters adriver with the ACPI bus

Synopsis

voi d acpi _bus_unregister_driver (struct acpi_driver * driver);

Arguments

driver driver to unregister

Description

Unregisters a driver with the ACPI bus. Searches the namespace for all devices that match the driver's
criteriaand unbinds.

441

Device driversinfrastructure

Name

acpi_bus _scan — Add ACPI device node objects in a given namespace scope.

Synopsis

i nt acpi _bus_scan (acpi _handl e handl e);

Arguments

handl e Root of the namespace scope to scan.

Description
Scan agiven ACPI tree (probably recently hot-plugged) and create and add found devices.

If no devices were found, -ENODEV is returned, but it does not mean that there has been area error.
There just have been no suitable ACPI objects in the table trunk from which the kernel could create a

device and add an appropriate driver.

Must be called under acpi_scan_lock.

442

Device driversinfrastructure

Name

acpi_bus_trim — Detach scan handlers and drivers from ACPI device objects.
Synopsis

void acpi _bus_trim (struct acpi_device * adev);
Arguments

adev Root of the ACPI namespace scope to walk.
Description

Must be called under acpi_scan_lock.

Device driversinfrastructure

Name
create_pnp_modalias — Create hid/cid(s) string for modalias and uevent

Synopsis
int create_pnp_nodalias (struct acpi _device * acpi _dev, char * nodali as,
int size);

Arguments

acpi _dev ACPI device object.

nodal i as Buffer to print into.

si ze Size of the buffer.
Description

Creates hid/cid(s) string needed for modalias and uevent e.g. on a device with hid:IBM000O1 and
cid:ACPI0001 you get:

modalias
"acpi:IBM0001:ACPI0001"

Return

0: no_HID and no _CID -EINVAL: output error -ENOMEM: output is truncated

Device driversinfrastructure

Name
create_of_modalias— Creates DT compatible string for modalias and uevent

Synopsis
int create_of nodalias (struct acpi _device * acpi _dev, char * nodali as,
int size);

Arguments

acpi _dev ACPI device object.
nodal i as Buffer to print into.

si ze Size of the buffer.

Expose DT compatible modalias as of

NnameTCcompatible. This function should only be called for devices having PRPO0OL in their list of
ACPI/PNP IDs.

Device driversinfrastructure

Name

acpi_of _match_device — Match device object using the “ compatible” property.

Synopsis

bool acpi _of match_device (struct acpi_device * adev, const struct
of device id * of _match_table);

Arguments
adev ACPI device object to match.

of _match_tabl e Listof devicelDsto match against.

Description

If dev has an ACPI companion which has the special PRPO001 device ID initslist of identifiersand a
_DSD object withthe*“ compatible” property, usethat property to match against the given list of identifiers.

446

Device driversinfrastructure

Name

acpi_scan_drop_device — Drop an ACPI device object.
Synopsis

voi d acpi _scan_drop_devi ce (acpi _handle handl e, void * context);
Arguments

handl e Handle of an ACPI hamespace node, not used.

cont ext Address of the ACPI device object to drop.

Description

Thisisinvoked by acpi _ns_del et e_node during the removal of the ACPI namespace node the de-
vice object pointed to by cont ext isattached to.

The unregistration is carried out asynchronously to avoid running acpi _devi ce_del under the
ACPICA's namespace mutex and the list is used to ensure the correct ordering (the device objects must be
unregistered in the same order in which the corresponding namespace nodes are del eted).

Device drivers PnP support

447

Device driversinfrastructure

Name

pnp_register_protocol — adds a pnp protocol to the pnp layer
Synopsis

int pnp_register_protocol (struct pnp_protocol * protocol);
Arguments

prot ocol pointer to the corresponding pnp_protocol structure

Ex protocols

ISAPNP, PNPBICS, etc

Device driversinfrastructure

Name

pnp_unregister_protocol — removes a pnp protocol from the pnp layer
Synopsis
voi d pnp_unregister_protocol (struct pnp_protocol * protocol);

Arguments

prot ocol pointer to the corresponding pnp_protocol structure

449

Device driversinfrastructure

Name
pnp_request_card_device — Searches for a PnP device under the specified card

Synopsis

struct pnp_dev * pnp_request _card_device (struct pnp_card_link * clink,
const char * id, struct pnp_dev * from;

Arguments
clink pointer to the card link, cannot be NULL
id pointer to a PnP ID structure that explains the rules for finding the device

from Starting place to search from. If NULL it will start from the beginning.

450

Device driversinfrastructure

Name

pnp_release_card_device — call this when the driver no longer needs the device
Synopsis
void pnp_rel ease _card_device (struct pnp_dev * dev);

Arguments

dev pointer to the PnP device structure

451

Device driversinfrastructure

Name
pnp_register_card_driver — registers a PnP card driver with the PnP Layer

Synopsis
int pnp_register_card _driver (struct pnp_card driver * drv);
Arguments

drv pointer to the driver to register

452

Device driversinfrastructure

Name
pnp_unregister_card_driver — unregisters a PnP card driver from the PnP Layer

Synopsis
void pnp_unregister_card _driver (struct pnp_card driver * drv);

Arguments

drv pointer to the driver to unregister

453

Device driversinfrastructure

Name
pnp_add_id — adds an EISA id to the specified device

Synopsis
struct pnp_id * pnp_add id (struct pnp_dev * dev, const char * id);
Arguments

dev pointer to the desired device

id pointertoan EISA id string

Device driversinfrastructure

Name

pnp_start_dev — low-level start of the PnP device
Synopsis

int pnp_start_dev (struct pnp_dev * dev);
Arguments

dev pointer to the desired device
Description

assumes that resources have aready been allocated

455

Device driversinfrastructure

Name

pnp_stop_dev — low-level disable of the PnP device
Synopsis

int pnp_stop_dev (struct pnp_dev * dev);
Arguments

dev pointer to the desired device
Description

does not free resources

456

Device driversinfrastructure

Name

pnp_activate dev — activates a PnP device for use
Synopsis

int pnp_activate_dev (struct pnp_dev * dev);
Arguments

dev pointer to the desired device
Description

does not validate or set resources so be careful.

457

Device driversinfrastructure

Name
pnp_disable dev — disables device
Synopsis
i nt pnp_disable_dev (struct pnp_dev * dev);
Arguments
dev pointer to the desired device
Description

inform the correct pnp protocol so that resources can be used by other devices

458

Device driversinfrastructure

Name

pnp_is_active— Determinesif adeviceis active based on its current resources
Synopsis

int pnp_is_active (struct pnp_dev * dev);
Arguments

dev pointer to the desired PnP device

Userspace IO devices

459

Device driversinfrastructure

Name

uio_event_notify — trigger an interrupt event
Synopsis
void uio_event _notify (struct uio_info * info);

Arguments

i nfo UIO device capabilities

460

Device driversinfrastructure

Name

__uio_register_device — register a new userspace | O device

Synopsis

int __uio_register_device (struct nodul e * owner, struct device * parent,
struct uio_info * info);

Arguments
owner module that crestes the new device
par ent parent device
info UI O device capabilities
Description

returns zero on sUCCess or a negative error code.

461

Device driversinfrastructure

Name

uio_unregister_device — unregister aindustrial 10 device
Synopsis

void ui o_unregister_device (struct uio_info * info);
Arguments

i nfo UIO device capabilities

462

Device driversinfrastructure

Name

struct uio_mem — description of a UIO memory region

Synopsis

struct uio_nem{
const char * nane;
phys_addr t addr;
resource_size t size;

i nt nmentype;
void __iomem?* internal _addr;
struct uio_map * map;
s
Members
name name of the memory region for identification
addr address of the device's memory (phys_addr is used since addr can belogical, virtu-
a, or physical & phys addr_t should aways be large enough to handle any of the
address types)
size sizeof 10
memtype type of memory addr pointsto
internal_addr ioremap-ped version of addr, for driver internal use
map for use by the UIO core only.

463

Device driversinfrastructure

Name

struct uio_port — description of a UIO port region

Synopsis

struct uio_port {
const char * nane;
unsi gned long start;
unsi gned | ong si ze;
i nt porttype;
struct uio_portio * portio;

b
Members
name name of the port region for identification
start start of port region
size Size of port region

porttype type of port (see UIO_PORT _* below)

portio for use by the UIO core only.

464

Device driversinfrastructure

Name

struct uio_info — UIO device capabilities

Synopsis

struct uio_info {
struct uio_device * uio_dev;
const char * nane;
const char * version;
struct uio_nmem nmen]f MAX_U O MAPS] ;
struct uio_port port[MAX U O PORT_REGQ ONS] ;
long irq;
unsi gned long irqg_fl ags;
void * priv;
irqreturn_t (* handler) (int irqg, struct uio_info *dev_info);
int (* mmap) (struct uio_info *info, struct vmarea struct *vmm);
int (* open) (struct uio_info *info, struct inode *inode);
int (* release) (struct uio_info *info, struct inode *inode);
int (* irgqcontrol) (struct uio_info *info, s32 irq_on);

b
Members
uio_dev the UIO device thisinfo belongsto
name device name
version device driver version
mem[MAX_UIO_MAPS] list of mappable memory regions, size==0 for end of list

portfMAX_UIO_PORT_REGIONS] list of port regions, size==0 for end of list

irq interrupt number or UIO_IRQ_CUSTOM

irq_flags flagsforr equest _irq

priv optional private data

handler the device'sirg handler

mmap mmap operation for this uio device

open open operation for this uio device

release release operation for this uio device

irgcontrol disable/enable irgs when 0/1 is written to /dev/uioX

465

Chapter 3. Parallel Port Devices

466

Parallel Port Devices

Name
parport_yield — relinquish a parallel port temporarily
Synopsis

int parport_yield (struct pardevice * dev);

Arguments

dev adeviceon the parallel port

Description

This function relinquishes the port if it would be helpful to other drivers to do so. Afterwards it tries to
reclaim the port using par port _cl ai m and the return value is the same as for par port _cl ai m If
it fails, the port is left unclaimed and it is the driver's responsibility to reclaim the port.

Thepar port _yi el d andpar port _yi el d_bl ocki ng functions are for marking pointsin the dri-
ver at which other drivers may claim the port and use their devices. Yielding the port issimilar to releasing
it and reclaiming it, but is more efficient because no action is taken if there are no other devices needing
the port. In fact, nothing isdone even if there are other devices waiting but the current deviceisstill within
its“timeslice”. The default timeslice is half a second, but it can be adjusted via the /proc interface.

467

Parallel Port Devices

Name

parport_yield blocking — relinquish a parallel port temporarily
Synopsis

i nt parport_yield_blocking (struct pardevice * dev);
Arguments

dev adeviceon the parallel port
Description

This function relinquishes the port if it would be helpful to other drivers to do so. Afterwards it tries
to reclaim the port using par port _cl ai m or bl ock, and the return value is the same as for

parport_clai mor_bl ock.

468

Parallel Port Devices

Name

parport_wait_event — wait for an event on a parallel port

Synopsis

int parport_wait_event (struct parport * port, signed |long tinmeout);

Arguments

port port to wait on

ti meout timetowait (injiffies)

Description

Thisfunctionwaitsfor uptot i neout jiffiesfor aninterrupt to occur on aparallel port. If the port timeout
is set to zero, it returnsimmediately.

If an interrupt occurs before the timeout period elapses, this function returns zero immediately. If it times
out, it returns one. An error code less than zero indicates an error (most likely a pending signal), and the
calling code should finish what it's doing as soon asiit can.

469

Parallel Port Devices

Name
parport_wait_peripheral — wait for status linesto change in 35ms
Synopsis

int parport_wait_peripheral (struct parport * port, unsigned char nask,
unsi gned char result);

Arguments

port port to watch
mask status lines to watch

result desred vauesof chosen status lines

Description

This function waits until the masked status lines have the desired values, or until 35ms have elapsed (see
|EEE 1284-1994 page 24 to 25 for why this value in particular is hardcoded). The mask and r esul t
parameters are bitmasks, with the bits defined by the constants in parport.h: PARPORT _STATUS BUSY,
and so on.

The port is polled quickly to start off with, in anticipation of a fast response from the peripheral. This
fast polling time is configurable (using /proc), and defaults to 500usec. If the timeout for this port (see
par port_set _ti meout)iszero, thefast pollingtimeis35ms, and thisfunction doesnot call sched-
ul e.

If the timeout for this port isnon-zero, after thefast polling failsit usespar port _wai t _event towait
for up to 10ms, waking up if an interrupt occurs.

470

Parallel Port Devices

Name
parport_negotiate — negotiate an |EEE 1284 mode

Synopsis

i nt parport_negotiate (struct parport * port, int node);

Arguments

port portto use

node mode to negotiate to

Description

Use this to negotiate to a particular IEEE 1284 transfer mode. The node parameter should be one of the
constantsin parport.h starting | EEE1284 MODE_XxXX.

ThereturnvalueisQif the peripheral has accepted the negotiation to the mode specified, -1 if the peripheral
isnot IEEE 1284 compliant (or not present), or 1 if the peripheral has rejected the negotiation.

471

Parallel Port Devices

Name
parport_write — write a block of datato a parallel port
Synopsis

ssize_t parport_wite (struct parport * port, const void * buffer,
size_t len);

Arguments

port port to write to
buf f er databuffer (in kernel space)

l en number of bytes of datato transfer

Description

Thiswill writeuptol en bytesof buf f er to the port specified, using the |EEE 1284 transfer mode most
recently negotiated to (using par port _negoti at e), aslong as that mode supports forward transfers
(host to peripheral).

It isthe caller's responsibility to ensure that the first | en bytes of buf f er arevalid.

This function returns the number of bytes transferred (if zero or positive), or else an error code.

472

Parallel Port Devices

Name
parport_read — read a block of datafrom a parallel port

Synopsis
ssize_t parport_read (struct parport * port, void * buffer, size t len);

Arguments

port port to read from
buf f er databuffer (in kernel space)

l en number of bytes of datato transfer

Description

Thiswill read up to| en bytesof buf f er to the port specified, using the IEEE 1284 transfer mode most
recently negotiated to (using par port _negoti at e), aslong as that mode supports reverse transfers
(peripheral to host).

It isthe caller's responsibility to ensure that thefirst | en bytesof buf f er are available to writeto.

This function returns the number of bytes transferred (if zero or positive), or else an error code.

473

Parallel Port Devices

Name

parport_set_timeout — set the inactivity timeout for a device

Synopsis

| ong parport_set timeout (struct pardevice * dev, long inactivity);

Arguments

dev device on aport

i nactivity inactivity timeout (injiffies)

Description

This sets the inactivity timeout for a particular device on a port. This affects functions like
parport_wait_peri pheral . The specia value 0 means not to call schedul e while dealing with

this device.
Thereturn value is the previous inactivity timeout.

Any calersof par port _wai t _event for thisdevice are woken up.

474

Parallel Port Devices

Name
parport_register_driver — register a parallel port device driver
Synopsis

int parport_register_driver (struct parport_driver * drv);

Arguments

drv structure describing the driver

Description

This can be called by a parallel port device driver in order to receive notifications about ports being found
in the system, as well as ports no longer available.

The drv structure is allocated by the caller and must not be deallocated until after calling
par port _unregi ster_driver.

Thedriver'sat t ach function may block. The port that at t ach isgiven will bevalid for the duration of
the callback, but if the driver wantsto take a copy of the pointer it must call par port _get port todo
so. Calling par port _regi ster_devi ce on that port will do thisfor you.

The driver's det ach function may block. The port that det ach is given will be valid for the duration
of the callback, but if the driver wants to take a copy of the pointer it must call par port _get port
to do so.

Returns 0 on success. Currently it always succeeds.

475

Parallel Port Devices

Name

parport_unregister_driver — deregister a parallel port device driver
Synopsis
voi d parport_unregi ster_driver (struct parport_driver * drv);

Arguments

drv structure describing the driver that was givento par port _regi ster_dri ver

Description

This should be caled by a paradlel port device driver that has registered itself using
par port_regi ster_driver whenitisabout to be unloaded.

When it returns, the driver'sat t ach routinewill no longer be called, and for each port that at t ach was
called for, the det ach routine will have been called.

All the driver's at t ach and det ach calls are guaranteed to have finished by the time this function
returns.

476

Parallel Port Devices

Name

parport_get port — increment a port's reference count
Synopsis
struct parport * parport_get _port (struct parport * port);

Arguments

port theport

Description

This ensures that a struct parport pointer remains valid until the matching par port _put _port call.

477

Parallel Port Devices

Name

parport_put_port — decrement a port's reference count
Synopsis

voi d parport_put_port (struct parport * port);
Arguments

port theport

Description

This should be called once for each call to par port _get port, oncethe port is no longer needed.

478

Parallel Port Devices

Name
parport_register_port — register a parallel port
Synopsis

struct parport * parport_register_port (unsigned |long base, int irq,
int dma, struct parport_operations * ops);

Arguments

base basel/O address
irg IRQline
dma DMA channel

ops pointer to the port driver's port operations structure

Description

When a parallel port (lowlevel) driver finds a port that should be made available to parallel port device
drivers, it should call par port _regi ster_port. Thebase, i rq, and dnma parameters are for the
convenience of port drivers, and for ports where they aren't meaningful needn't be set to anything special.
They can be altered afterwards by adjusting the relevant members of the parport structure that is returned
and represents the port. They should not be tampered with after calling parport_announce port, however.

If there are parallel port device drivers in the system that have registered themselves using
parport_regi ster_driver, they are not told about the port at this time; that is done by
par port _announce_port.

The ops structure is allocated by the caller, and must not be dealocated before calling
par port_renpve_port.

If there isno memory to alocate a new parport structure, this function will return NULL.

479

Parallel Port Devices

Name

parport_announce_port — tell device drivers about a parallel port
Synopsis
voi d parport_announce_port (struct parport * port);

Arguments

port paralé port to announce

Description

After aport driver has registered a parallel port with parport_register port, and performed any necessary
initialisation or adjustments, it should call par port _announce_port in order to notify al device
driversthat have called par port _regi ster _dri ver. Theratt ach functionswill be called, with

port asthe parameter.

480

Parallel Port Devices

Name
parport_remove_port — deregister a parallel port

Synopsis
voi d parport_renmove_port (struct parport

Arguments

* port);

port paralel port to deregister

Description

When a paralléel port driver isforcibly unloaded, or a parallel port becomes inaccessible, the port driver
must call thisfunction in order to deal with device driversthat still want to use it.

The parport structure associated with the port has its operations structure replaced with one containing
'null’ operations that return errors or just don't do anything.

Any driversthat have registered themselvesusing par port _regi st er _dri ver arenotified that the
port is no longer accessible by having their det ach routines called with por t asthe parameter.

481

Parallel Port Devices

Name
parport_register_device — register adevice on aparallel port
Synopsis
struct pardevice * parport_regi ster_device (struct parport * port, const

char * nane, int (*pf) (void *), void (*kf) (void *), void (*irg_func)
(void *), int flags, void * handl e);

Arguments
port port to which the device is attached
name anameto refer to the device
pf preemption callback
kf kick callback (wake-up)

i rq_func interrupt handler

fl ags registration flags
handl e datafor callback functions
Description

Thisfunction, called by parallel port device drivers, declares that a device is connected to a port, and tells
the system all it needs to know.

The nane is allocated by the caler and must not be deallocated until the caller calls
par port _unregi st er _devi ce for that device.

The preemption callback function, pf , is called when this device driver has claimed access to the port but
another device driver wantsto use it. It is given handl e asits parameter, and should return zero if it is
willing for the system to release the port to another driver on its behalf. If it wants to keep control of the
port it should return non-zero, and no action will betaken. It isgood mannersfor the driver totry to release
the port at the earliest opportunity after its preemption callback rejects a preemption attempt. Note that if
apreemption callback is happy for preemption to go ahead, there is no need to release the port; it is done
automatically. Thisfunction may not block, asit may be called from interrupt context. If the device driver
does not support preemption, pf can be NULL.

Thewake-up (“kick”) callback function, kf , iscalled when the port isavailable to be claimed for exclusive
access; that is, par por t _cl ai misguaranteed to succeed when called from inside the wake-up callback
function. If the driver wants to claim the port it should do so; otherwise, it need not take any action. This
function may not block, as it may be called from interrupt context. If the device driver does not want to
be explicitly invited to claim the port in thisway, kf can be NULL.

Theinterrupt handler, i r g_f unc, iscalled when an interrupt arrives from the parallel port. Note that if a
device driver wants to use interrupts it should use par port _enabl e_i r g, and can aso check theirq
member of the parport structure representing the port.

The parallel port (lowlevel) driver isthe onethat has called r equest _i r g and whose interrupt handler
iscalled first. This handler does whatever needs to be done to the hardware to acknowledge the interrupt

482

Parallel Port Devices

(for PC-style portsthereis nothing special to be done). It then tellsthe IEEE 1284 code about the interrupt,
which may involve reacting to an IEEE 1284 event depending on the current |EEE 1284 phase. After this,
itcalsi rq_func.Needlesstosay,i r g_f unc will becalled frominterrupt context, and may not block.

The PARPORT _DEV_EXCL flagisfor preventing port sharing, and so should only be used when sharing
the port with other device drivers isimpossible and would lead to incorrect behaviour. Use it sparingly!
Normally, f | ags will be zero.

This function returns a pointer to a structure that represents the device on the port, or NULL if there is not
enough memory to allocate space for that structure.

483

Parallel Port Devices

Name

parport_unregister_device — deregister a device on aparallel port
Synopsis
voi d parport_unregi ster_device (struct pardevice * dev);

Arguments

dev pointer to structure representing device

Description

Thisundoesthe effect of par port _regi st er _devi ce.

Parallel Port Devices

Name
parport_find_number — find a parallel port by humber

Synopsis

struct parport * parport_find_nunber (int nunber);

Arguments

nunber parallel port number

Description

Thisreturns the parallel port with the specified number, or NULL if thereis none.

There is an implicit par port _get _port done already; to throw away the reference to the port that
par port _find_nunber givesyou, usepar port _put _port.

485

Parallel Port Devices

Name
parport_find_base — find a parallel port by base address

Synopsis

struct parport * parport_find_base (unsigned | ong base);

Arguments

base basel/O address

Description
This returns the parallel port with the specified base address, or NULL if there is none.

There is an implicit par port _get _port done already; to throw away the reference to the port that
parport _find_base givesyou, use par port _put _port.

486

Parallel Port Devices

Name

parport_claim — claim accessto aparallel port device
Synopsis
i nt parport_claim(struct pardevice * dev);

Arguments

dev pointer to structure representing a device on the port

Description

This function will not block and so can be used from interrupt context. If par port _cl ai msucceedsin
claiming access to the port it returns zero and the port is available to use. It may fail (returning non-zero)
if the port isin use by another driver and that driver is not willing to relinquish control of the port.

487

Parallel Port Devices

Name

parport_claim_or_block — claim accessto a paralel port device

Synopsis

i nt parport_claimor_block (struct pardevice * dev);

Arguments

dev pointer to structure representing a device on the port

Description

This behaves like par port _cl ai m but will block if necessary to wait for the port to be free. A return
value of 1 indicatesthat it slept; 0 meansthat it succeeded without needing to sleep. A negative error code

indicates failure.

488

Parallel Port Devices

Name

parport_release — give up accessto aparallel port device
Synopsis

voi d parport_rel ease (struct pardevice * dev);
Arguments

dev pointer to structure representing parallel port device
Description

This function cannot fail, but it should not be called without the port claimed. Similarly, if the port is
already claimed you should not try claiming it again.

489

Parallel Port Devices

Name

parport_open — find a device by canonical device number

Synopsis

struct pardevice * parport_open (int devhum const char * nane);

Arguments

devnum canonical device number

name name to associate with the device

Description

Thisfunctionissimilar to par port _r egi st er _devi ce, except that it locates a device by its number
rather than by the port it is attached to.

All parametersexcept for devnumarethesameasfor par port _regi st er _devi ce. Thereturnvaue
isthe same asfor par port _regi ster_devi ce.

490

Parallel Port Devices

Name

parport_close — close a device opened with par port _open

Synopsis

voi d parport_cl ose (struct pardevice * dev);

Arguments

dev deviceto close

Description

This is to par port _open as par port _unregi ster_device
parport _regi ster_device.

is

to

4901

Chapter 4. Message-based devices

Fusion message devices

492

M essage-based devices

Name
mpt_register — Register protocol-specific main callback handler.
Synopsis
u8 npt register (MPT_CALLBACK cbfunc, MPT_DRIVER CLASS dcl ass, char *
func_nane);
Arguments
cbf unc callback function pointer
dcl ass Protocol driver's class (MPT_DRI VER _CLASS enum value)

func_name call function's name

Description

This routine is called by a protocol-specific driver (SCSI host, LAN, SCSI target) to register its reply
callback routine. Each protocol-specific driver must do thisbeforeit will be ableto use any |OC resources,
such as obtaining request frames.

NOTES

The SCSI protocol driver currently calls this routine thrice in order to register separate callbacks; one for
“normal” SCSI 10; one for MptScsi TaskMgmt requests; one for Scan/DV requests.

Returns u8 valued “handl€” in the range (and S.O.D. order) {N,...,7,6,5,...,1} if successful. A return value
of MPT_MAX_PROTOCOL_DRIVERS (including zero!) should be considered an error by the caller.

493

M essage-based devices

Name

mpt_deregister — Deregister a protocol drivers resources.
Synopsis

voi d npt_deregister (u8 chb_idx);
Arguments

cb_i dx previoudy registered callback handle
Description

Each protocol-specific driver should call this routine when its module is unloaded.

494

M essage-based devices

Name

mpt_event_register — Register protocol-specific event callback handler.

Synopsis
int nmpt_event register (u8 cb_idx, MPT_EVHANDLER ev_chfunc);

Arguments
cb_idx previously registered (viampt_register) callback handle

ev_cbfunc callback function

Description

This routine can be called by one or more protocol-specific drivers if/when they choose to be notified of
MPT events.

Returns O for success.

495

M essage-based devices

Name
mpt_event_deregister — Deregister protocol-specific event callback handler
Synopsis
voi d npt_event deregister (u8 cb_idx);
Arguments
cb_i dx previoudy registered callback handle
Description

Each protocol-specific driver should call this routine when it does not (or can no longer) handle events,
or when its module is unloaded.

496

M essage-based devices

Name
mpt_reset_register — Register protocol-specific 10C reset handler.

Synopsis
int mpt _reset register (u8 cb_idx, MPT_RESETHANDLER reset func);

Arguments
cb_idx previously registered (viampt_register) callback handle

reset _func resetfunction

Description

This routine can be called by one or more protocol-specific drivers if/when they choose to be notified of
10C resets.

Returns O for success.

497

M essage-based devices

Name

mpt_reset_deregister — Deregister protocol-specific 10C reset handler.
Synopsis

void npt_reset deregister (u8 cb_idx);
Arguments

cb_i dx previoudy registered callback handle
Description

Each protocol-specific driver should call this routine when it does not (or can no longer) handle 10C reset
handling, or when its module is unloaded.

498

M essage-based devices

Name
mpt_device driver_register — Register device driver hooks

Synopsis
int npt_device driver_register (struct npt_pci_driver * dd_cbfunc, u8
cb_idx);

Arguments

dd_cbfunc driver calbacks struct

cb_idx MPT protocol driver index

499

M essage-based devices

Name

mpt_device driver_deregister — DeRegister device driver hooks
Synopsis

voi d npt_device _driver_deregister (u8 cb_idx);
Arguments

cb_i dx MPT protocol driver index

500

M essage-based devices

Name
mpt_get_msg_frame — Obtain an MPT request frame from the pool

Synopsis

MPT_FRAME HDR* npt _get _nsg_frame (u8 cb_idx, MPT_ADAPTER * ioc);
Arguments

cb_i dx Handle of registered MPT protocol driver

i oc Pointer to MPT adapter structure

Description
Obtain an MPT request frame from the pool (of 1024) that are allocated per MPT adapter.

Returns pointer to a MPT request frame or NULL if none are available or IOC is not active.

501

M essage-based devices

Name
mpt_put_msg_frame — Send a protocol-specific MPT request frameto an IOC
Synopsis
\r/n?i) d npt_put_nsg frame (u8 cb_idx, MPT_ADAPTER * ioc, MPT_FRAME HDR *
Arguments
cb_i dx Handle of registered MPT protocol driver
i oc Pointer to MPT adapter structure
nf Pointer to MPT request frame
Description

This routine posts an MPT request frame to the request post FIFO of a specific MPT adapter.

502

M essage-based devices

Name
mpt_put_msg_frame_hi_pri — Send a hi-pri protocol-specific MPT request frame
Synopsis

void npt_put_nsg frame_hi _pri (u8 cb_idx, MPT_ADAPTER * i oc,
MPT_FRAME_HDR * nf);

Arguments
cb_i dx Handle of registered MPT protocol driver
i oc Pointer to MPT adapter structure
nf Pointer to MPT request frame
Description

Send a protocol-specific MPT request frame to an 10C using hi-priority request queue.

This routine posts an MPT request frame to the request post FIFO of a specific MPT adapter.

503

M essage-based devices

Name
mpt_free_msg_frame — Place MPT request frame back on FreeQ.
Synopsis
void npt_free nsg frane (MPT_ADAPTER * ioc, MPT_FRAME HDR * nf);
Arguments
i oc Pointer to MPT adapter structure
nf Pointer to MPT request frame
Description

Thisroutine places aMPT request frame back on the MPT adapter's FreeQ.

504

M essage-based devices

Name
mpt_send_handshake request — Send MPT request via doorbell handshake method.

Synopsis

i nt npt_send_handshake_request (u8 cb_idx, MPT_ADAPTER * ioc, int re-
gBytes, u32 * req, int sleepFlag);

Arguments
cb_idx Handle of registered MPT protocol driver
i oc Pointer to MPT adapter structure

regBytes Sizeof therequest in bytes
req Pointer to MPT request frame

sl eepFl ag Usescheduleif CAN_SLEEP else use udelay.

Description

Thisroutineis used exclusively to send M ptScsi TaskM gmt requests since they are required to be sent via
doorbell handshake.

NOTE

It isthe callers responsibility to byte-swap fields in the request which are greater than 1 byte in size.

Returns O for success, non-zero for failure.

505

M essage-based devices

Name

mpt_verify adapter — Given |OC identifier, set pointer to its adapter structure.
Synopsis

int mpt_verify adapter (int iocid, MPT_ADAPTER ** iocpp);
Arguments

i oci d [OC uniqueidentifier (integer)

i ocpp Pointer to pointer to |OC adapter
Description

Given aunique 1OC identifier, set pointer to the associated MPT adapter structure.

Returnsiocid and setsiocpp if iocid isfound. Returns -1 if iocid is not found.

506

M essage-based devices

Name
mpt_attach — Install a PCI intelligent MPT adapter.

Synopsis
int npt_attach (struct pci _dev * pdev, const struct pci_device id * id);
Arguments
pdev Pointer to pci_dev structure
id PCI device ID information
Description
This routine performs all the steps necessary to bring the IOC of a MPT adapter to a OPERATIONAL
state. Thisincludes registering memory regions, registering the interrupt, and allocating request and reply
memory pools.
Thisroutine also pre-fetchesthe LAN MAC address of a Fibre Channel MPT adapter.

Returns O for success, non-zero for failure.

TODO

Add support for polled controllers

507

M essage-based devices

Name
mpt_detach — Remove a PCI intelligent MPT adapter.

Synopsis
void npt_detach (struct pci_dev * pdev);

Arguments

pdev Pointer to pci_dev structure

508

M essage-based devices

Name

mpt_suspend — Fusion MPT base driver suspend routine.
Synopsis

int nmpt_suspend (struct pci_dev * pdev, pmnessage t state);
Arguments

pdev Pointer to pci_dev structure

state new stateto enter

509

M essage-based devices

Name

mpt_resume — Fusion MPT base driver resume routine.
Synopsis

int nmpt_resune (struct pci_dev * pdev);
Arguments

pdev Pointer to pci_dev structure

510

M essage-based devices

Name

mpt_GetlocState — Get the current state of a MPT adapter.
Synopsis

u32 npt_GetlocState (MPT_ADAPTER * ioc, int cooked);
Arguments

i oc Pointer to MPT_ADAPTER structure

cooked Requestraw or cooked |OC state

Description

Returns al 10C Doorbell register bits if cooked==0, else just the Doorbell
MPI_IOC_STATE_MASK.

bits

in

511

M essage-based devices

Name

mpt_aloc_fw_memory — allocate firmware memory

Synopsis
int mpt_alloc fw nmenory (MPT_ADAPTER * ioc, int size);

Arguments
i oc Pointer to MPT_ADAPTER structure
si ze tota FW bytes
Description
If memory has aready been alocated, the same (cached) value is returned.

Return O if successful, or non-zero for failure

512

M essage-based devices

Name

mpt_free fw_memory — free firmware memory
Synopsis

void npt_free fw nenory (MPT_ADAPTER * iocC);
Arguments

i oc Pointer to MPT_ADAPTER structure
Description

If alt_imgisNULL, delete from ioc structure. Else, delete a secondary image in same format.

513

M essage-based devices

Name
mptbase_sas persist_operation — Perform operation on SAS Persistent Table
Synopsis
i nt npt base_sas_persi st_operation (MPT_ADAPTER * i oc,
persi st_opcode);
Arguments
i oc Pointer to MPT_ADAPTER structure

persi st_opcode seebeow

Description

MPI_SAS OP_CLEAR _NOT_PRESENT - Free dl persist TargetlD mappings for devices not currently

present. MPI_SAS OP_CLEAR_ALL_PERSISTENT - Clear a persist TargetlD mappings

NOTE

Don't use not this function during interrupt time.

Returns O for success, non-zero error

514

M essage-based devices

Name
mpt_raid_phys_disk_pg0 — returns phys disk page zero
Synopsis
int npt_raid phys disk pg0 (MPT_ADAPTER * ioc, u8 phys _disk num
Rai dPhysDi skPageO t * phys_di sk);
Arguments
i oc Pointer to a Adapter Structure
phys_di sk_num iounit unique phys disk num generated by the ioc
phys_di sk regquested payload data returned
Return
]E)plr;ljccess-EFAULT if read of config page header failsor datapointer not NULL -ENOMEM if pci_alloc
a

515

M essage-based devices

Name
mpt_raid_phys disk_get num_paths — returns number paths associated to this phys num
Synopsis
i nt npt _rai d_phys_di sk_get _num pat hs (MPT_ADAPTER * i oc,
phys_di sk_num;
Arguments
i oc Pointer to a Adapter Structure
phys_di sk_num iounit unique phys disk num generated by the ioc
Return

returns number paths

us

516

M essage-based devices

Name
mpt_raid_phys _disk_pgl — returns phys disk page 1
Synopsis
int npt_raid phys disk pgl (MPT_ADAPTER * ioc, u8 phys _disk num
Rai dPhysDi skPagel t * phys_di sk);
Arguments
i oc Pointer to a Adapter Structure
phys_di sk_num iounit unique phys disk num generated by the ioc
phys_di sk regquested payload data returned
Return
]E)plr;ljccess-EFAULT if read of config page header failsor datapointer not NULL -ENOMEM if pci_alloc
a

517

M essage-based devices

Name
mpt_findimVolumes — Identify IDs of hidden disks and RAID Volumes
Synopsis
i nt nmpt_findl nvol unes (MPT_ADAPTER * i oc);
Arguments
i oc Pointer to a Adapter Strucutre
Return
Oonsuccess-EFAULT if read of config page header failsor datapointer not NULL -ENOMEM if pci_alloc
failed

518

M essage-based devices

Name

mpt_config — Generic function to issue config message

Synopsis
int mpt_config (MPT_ADAPTER * ioc, CONFIGPARMS * pCfQ);

Arguments

i oc Pointer to an adapter structure
pCf g Pointer to a configuration structure. Struct contains action, page address, direction, physical ad-
dress and pointer to a configuration page header Page header is updated.
Description

Returns O for success -EPERM if not allowed due to ISR context -EAGAIN if no msg frames currently
available -EFAULT for non-successful reply or no reply (timeout)

519

M essage-based devices

Name

mpt_print_ioc_summary — Write ASCII summary of 10C to a buffer.

Synopsis

void npt_print_ioc_sunmary (MPT_ADAPTER * ioc, char * buffer, int *
size, int len, int show an);

Arguments
i oc Pointer to MPT_ADAPTER structure
buf f er Pointer to buffer where |OC summary info should be written
si ze Pointer to number of bytes we wrote (set by this routine)
I en Offset at which to start writing in buffer

showl an Display LAN stuff?

Description

This routine writes (english readable) ASCII text, which represents a summary of 10C information, to a
buffer.

520

M essage-based devices

Name
mpt_set_taskmgmt_in_progress flag — set flags associated with task management

Synopsis
int nmpt_set taskngnt _in_progress flag (MPT_ADAPTER * iocC);

Arguments

i oc Pointer to MPT_ADAPTER structure

Description
Returns 0 for SUCCESS or -1 if FAILED.

If -1 isreturn, then it was not possible to set the flags

521

M essage-based devices

Name
mpt_clear_taskmgmt_in_progress_flag — clear flags associated with task management

Synopsis
void npt_clear_taskngnt _in_progress flag (MPT_ADAPTER * ioc);
Arguments

i oc Pointer to MPT_ADAPTER structure

522

M essage-based devices

Name

mpt_halt_firmware — Halts the firmware if it is operational and panic the kernel
Synopsis

void npt_halt_firmvare (MPT_ADAPTER * iocC);
Arguments

i oc Pointer to MPT_ADAPTER structure

523

M essage-based devices

Name
mpt_Soft Hard ResetHandler — Try less expensive reset

Synopsis
int nmpt_Soft Hard Reset Handl er (MPT_ADAPTER * ioc, int sleepFlag);

Arguments

i oc Pointer to MPT_ADAPTER structure

sl eepFl ag Indicatesif sleep or schedule must be called.

Description
ReturnsOfor SUCCESSor -1if FAILED. Try for softreset first, only if it failsgo for expensive HardReset.

524

M essage-based devices

Name
mpt_HardResetHandler — Generic reset handler

Synopsis

i nt nmpt_Har dReset Handl er (MPT_ADAPTER * ioc, int sleepFlag);
Arguments

i oc Pointer to MPT_ADAPTER structure

sl eepFl ag Indicatesif sleep or schedule must be called.

Description

Issues SCSI Task Management call based oninput arg values. If TaskMgmt fails, returns associated SCSI
request.

Remark

_HardResetHandler can beinvoked from aninterrupt thread (timer) or anon-interrupt thread. Intheformer,
must not call schedul e.

Note
A return of -1 isaFATAL error case, asit means a FW reload/initiadization failed.

Returns 0 for SUCCESS or -1 if FAILED.

525

M essage-based devices

Name

mpt_get_cb_idx — obtain cb_idx for registered driver
Synopsis

u8 npt _get cb_idx (MPT_DRIVER CLASS dcl ass);
Arguments

dcl ass classdriver enum
Description

Returns cb_idx, or zero means it wasn't found

526

M essage-based devices

Name

mpt_is_discovery _complete — determineif discovery has completed
Synopsis

int mpt_is_discovery conplete (MPT_ADAPTER * iocC);
Arguments

i oc per adatper instance
Description

Returns 1 when discovery completed, else zero.

527

M essage-based devices

Name

mpt_remove_dead ioc_func — kthread context to remove dead ioc
Synopsis

int nmpt_renove_dead ioc_func (void * arg);
Arguments

arg input argument, used to deriveioc
Description

Return O if controller is removed from pci subsystem. Return -1 for other case.

528

M essage-based devices

Name

mpt_fault_reset_ work — work performed on workq after ioc fault
Synopsis
void npt_fault _reset_work (struct work struct * work);

Arguments

wor k input argument, used to deriveioc

529

M essage-based devices

Name

mpt_interrupt — MPT adapter (I0C) specific interrupt handler.
Synopsis

irqreturn_t npt_interrupt (int irq, void * bus_id);
Arguments

irg irg number (not used)

bus_id busidentifier cookie == pointer to MPT_ADAPTER structure

Description

This routine is registered via the r equest _i r q kernel APl call, and handles all interrupts generated
from a specific MPT adapter (also referred to as a IO Controller or 10C). This routine must clear the
interrupt from the adapter and does so by reading the reply FIFO. Multiple replies may be processed per
single call to this routine.

This routine handles register-level access of the adapter but dispatches (calls) a protocol-specific callback
routine to handle the protocol-specific details of the MPT request completion.

530

M essage-based devices

Name
mptbase_reply — MPT base driver's callback routine

Synopsis
i nt nptbase reply (MPT_ADAPTER * i oc, MPT_FRAME HDR * req, MPT_FRAME HDR
* reply);
Arguments
i oc Pointer to MPT_ADAPTER structure
req Pointer to original MPT request frame

reply Pointer to MPT reply frame (NULL if TurboReply)

Description

MPT base driver's callback routine; all base driver “internal” request/reply processing is routed here. Cur-
rently used for EventNotification and EventAck handling.

Returns 1 indicating original alloc'd request frame ptr should be freed, or O if it shouldn't.

531

M essage-based devices

Name
mpt_add sge — Place asimple 32 bit SGE at address pAddr.
Synopsis
void npt_add sge (void * pAddr, u32 flagslength, dna_addr_t dne_addr);
Arguments
pAddr virtual address for SGE
flagsl engt h SGE flags and data transfer length
dma_addr Physical address
Description

Thisroutine places a MPT request frame back on the MPT adapter's FreeQ.

532

M essage-based devices

Name
mpt_add_sge 64bit — Place asimple 64 bit SGE at address pAddr.
Synopsis
void npt_add sge 64bit (void * pAddr, u32 flagslength, dnma_addr _t
dma_addr) ;
Arguments
pAddr virtual address for SGE
flagsl engt h SGE flags and data transfer length
dma_addr Physical address
Description

Thisroutine places a MPT request frame back on the MPT adapter's FreeQ.

533

M essage-based devices

Name
mpt_add_sge 64bit_1078 — Place asimple 64 bit SGE at address pAddr (1078 workaround).
Synopsis
void npt_add sge 64bit 1078 (void * pAddr, u32 flagslength, dnma_addr _t
dma_addr) ;
Arguments
pAddr virtual address for SGE
flagsl engt h SGE flags and data transfer length
dma_addr Physical address
Description

Thisroutine places a MPT request frame back on the MPT adapter's FreeQ.

534

M essage-based devices

Name
mpt_add_chain — Place a 32 bit chain SGE at address pAddr.
Synopsis
void npt_add chain (void * pAddr, u8 next, ul6 |length, dnma_addr _t
dma_addr) ;
Arguments
pAddr virtual address for SGE
next nextChainOffset value (u32's)

[ength length of next SGL segment

dna_addr Physical address

535

M essage-based devices

Name
mpt_add _chain_64bit — Place a 64 bit chain SGE at address pAddr.
Synopsis
void npt _add_chain_64bit (void * pAddr, u8 next, ul6 |length, dnma_addr t
dma_addr) ;
Arguments
pAddr virtual address for SGE
next nextChainOffset value (u32's)

[ength length of next SGL segment

dna_addr Physical address

536

M essage-based devices

Name
mpt_host_page access control — control the IOC's Host Page Buffer access
Synopsis
i nt npt _host page_access_control (MPT_ADAPTER * i oc,
access_control value, int sleepFlag);
Arguments
i oc Pointer to MPT adapter structure

access_control val ue definebitsbelow

sl eepFl ag Specifies whether the process can sleep

Description

Provides mechanism for the host driver to control the IOC's Host Page Buffer access.

Access Control Value - bitg[15:12] Oh Reserved 1h

able Access { MPI_DB_HPBAC ENABLE ACCESS } 2h Disable

Returns O for success, non-zero for failure.

En-
Access
{ MPI_DB_HPBAC DISABLE _ACCESS} 3h Free Buffer { MPI_DB_HPBAC_FREE BUFFER}

537

M essage-based devices

Name
mpt_host_page alloc — allocate system memory for the fw

Synopsis

int mpt_host page_all oc (MPT_ADAPTER * ioc, plOClnit_t ioc_init);
Arguments

i oc Pointer to pointer to 10C adapter

i oc_init Pointertoiocinit config page

Description

If we already allocated memory in past, then resend the same pointer. Returns O for success, non-zero
for failure.

538

M essage-based devices

Name

mpt_get_product_name — returns product string
Synopsis

const char* npt_get product name (ul6 vendor, ul6 device, u8 revision);
Arguments

vendor pci vendor id

devi ce pci deviceid

revi sion pcirevisonid

Description

Returns product string displayed when driver loads, in /proc/mpt/summary and /sysfs/class/scsi_host/
host<X>/version_product

539

M essage-based devices

Name

mpt_mapresources — map in memory mapped io
Synopsis

i nt nmpt_mapresources (MPT_ADAPTER * ioc);
Arguments

i oc Pointer to pointer to |OC adapter

M essage-based devices

Name

mpt_do_ioc_recovery — Initialize or recover MPT adapter.
Synopsis

int npt_do_ioc_recovery (MPT_ADAPTER * ioc, u32 reason, int sleepFlag);
Arguments

i oc Pointer to MPT adapter structure

reason Event word / reason

sl eepFl ag Usescheduleif CAN_SLEEP else use udelay.

Description
Thisroutine performs all the steps necessary to bring the |OC to a OPERATIONAL state.

Thisroutine also pre-fetchesthe LAN MAC address of a Fibre Channel MPT adapter.

Returns

0 for success -1 if failed to get board READY -2 if READY but IOCFacts Failed -3 if READY
but PrimelOCFifos Failed -4 if READY but 10CInit Failed -5 if failed to enable device and/or
request_selected regions -6 if failed to upload firmware

541

M essage-based devices

Name
mpt_detect_bound_ports — Search for matching PCI bus/dev_function

Synopsis
voi d npt _detect _bound ports (MPT_ADAPTER * ioc, struct pci_dev * pdev);

Arguments
i oc Pointer to MPT adapter structure

pdev Pointer to (struct pci_dev) structure

Description

Search for PCI bus/dev_function which matches PCI bus/dev_function (+/-1) for newly discovered 929,
929X, 1030 or 1035.

If match on PCI dev_function +/-1 is found, bind the two MPT adapters using alt_ioc pointer fields in
their MPT_ADAPTER structures.

542

M essage-based devices

Name
mpt_adapter_disable — Disable misbehaving MPT adapter.

Synopsis
voi d npt _adapter _di sabl e (MPT_ADAPTER * iocC);
Arguments

i oc Pointer to MPT adapter structure

M essage-based devices

Name
mpt_adapter_dispose — Free all resources associated with an MPT adapter
Synopsis
voi d npt _adapt er _di spose (MPT_ADAPTER * ioc);
Arguments
i oc Pointer to MPT adapter structure
Description
This routine unregisters h/w resources and frees all alloc'd memory associated with a MPT adapter struc-
ture.

M essage-based devices

Name
M ptDisplaylocCapabilities— Disply |OC's capabilities.

Synopsis
voi d Mt Di spl ayl ocCapabilities (MPT_ADAPTER * ioc);
Arguments

i oc Pointer to MPT adapter structure

M essage-based devices

Name

MakelocReady — Get I0C to aREADY state, using KickStart if needed.
Synopsis

i nt Makel ocReady (MPT_ADAPTER * ioc, int force, int sleepFlag);
Arguments

i oc Pointer to MPT_ADAPTER structure

force Force hard KickStart of 10C

sl eepFl ag Specifies whether the process can sleep

Returns

1- DIAGreset and READY 0 - READY initially OR soft reset and READY -1 - Any failure on KickStart
-2 - Msg Unit Reset Failed -3 - 10 Unit Reset Failed -4 - 10C owned by a PEER

546

M essage-based devices

Name

GetlocFacts — Send |OCFacts request to MPT adapter.
Synopsis

int GetlocFacts (MPT_ADAPTER * ioc, int sleepFlag, int reason);
Arguments

i oc Pointer to MPT_ADAPTER structure

sl eepFl ag Specifies whether the process can sleep

reason If recovery, only update facts.

Description

Returns O for success, non-zero for failure.

547

M essage-based devices

Name

GetPortFacts — Send PortFacts request to MPT adapter.
Synopsis

int GetPortFacts (MPT_ADAPTER * ioc, int portnum int sleepFlag);
Arguments

i oc Pointer to MPT_ADAPTER structure

portnum Port number

sl eepFl ag Specifies whether the process can sleep

Description

Returns O for success, non-zero for failure.

M essage-based devices

Name

Sendloclnit — Send 10ClInit request to MPT adapter.
Synopsis

int Sendloclnit (MPT_ADAPTER * ioc, int sleepFlag);
Arguments

i oc Pointer to MPT_ADAPTER structure

sl eepFl ag Specifies whether the process can sleep

Description
Send IOClnit followed by PortEnable to bring I0C to OPERATIONAL state.

Returns O for success, non-zero for failure.

549

M essage-based devices

Name

SendPortEnable — Send PortEnable request to MPT adapter port.
Synopsis

i nt SendPortEnabl e (MPT_ADAPTER * ioc, int portnum int sleepFlag);
Arguments

i oc Pointer to MPT_ADAPTER structure

portnum Port number to enable

sl eepFl ag Specifies whether the process can sleep

Description
Send PortEnable to bring 10C to OPERATIONAL state.

Returns O for success, non-zero for failure.

550

M essage-based devices

Name

mpt_do_upload — Construct and Send FWUpload request to MPT adapter port.
Synopsis

int nmpt_do_upl oad (MPT_ADAPTER * ioc, int sleepFlag);
Arguments

i oc Pointer to MPT_ADAPTER structure

sl eepFl ag Specifies whether the process can sleep
Description

Returns O for success, >0 for handshake failure <0 for fw upload failure.

Remark

If bound |OC and a successful FWUpload was performed on the bound |OC, the second imageis discarded
and memory isfree'd. Both channels must upload to prevent |OC from running in degraded mode.

551

M essage-based devices

Name
mpt_downloadboot — DownloadBoot code
Synopsis
i nt npt_downl oadboot (MPT_ADAPTER * ioc, Mi FwHeader t * pFwHeader, int
sl eepFl ag) ;
Arguments
i oc Pointer to MPT_ADAPTER structure

pFwHeader Pointer to firmware header info

sl eepFl ag Specifies whether the process can sleep

Description
FwDownloadBoot requires Programmed 1O access.

Returns O for success -1 FW Image sizeis 0 -2 No valid cached fw Pointer <0 for fw upload failure.

552

M essage-based devices

Name

KickStart — Perform hard reset of MPT adapter.
Synopsis

int KickStart (MPT_ADAPTER * ioc, int force, int sleepFlag);
Arguments

i oc Pointer to MPT_ADAPTER structure

force Force hard reset

sl eepFl ag Specifies whether the process can sleep

Description

This routine places MPT adapter in diagnostic mode via the WriteSequence register, and then performs a
hard reset of adapter viathe Diagnostic register.

Inputs

deepflag - CAN_SLEEP (non-interrupt thread) or NO_SLEEP (interrupt thread, use mdelay) force - 1 if
doorbell active, board fault state board operational, IOC_RECOVERY or IOC_BRINGUP and there is
anat_ioc. Oelse

Returns

1 - hard reset, READY 0 - no reset due to History bit, READY -1 - no reset due to History bit but not
READY OR reset but failed to come READY -2 - no reset, could not enter DIAG mode -3 - reset but
bad FW bit

553

M essage-based devices

Name

mpt_diag_reset — Perform hard reset of the adapter.
Synopsis

int nmpt_diag _reset (MPT_ADAPTER * ioc, int ignore, int sleepFlag);
Arguments

i oc Pointer to MPT_ADAPTER structure

i gnore Set if to honor and clear to ignore the reset history bit

sl eepFl ag CAN_SLEEPIf called in a non-interrupt thread, else set to NO_SLEEP (use mdelay in-
stead)

Description

Thisroutine placesthe adapter in diagnostic mode viathe WriteSequence register and then performsahard
reset of adapter viathe Diagnostic register. Adapter should be in ready state upon successful completion.

Returns

1 hard reset successful 0 no reset performed because reset history bit set -2 enabling diagnostic modefailed
-3 diagnostic reset failed

554

M essage-based devices

Name

SendlocReset — Send |OCReset request to MPT adapter.
Synopsis

i nt Sendl ocReset (MPT_ADAPTER * ioc, u8 reset _type, int sleepFlag);
Arguments

i oc Pointer to MPT_ADAPTER structure

reset _type resettype, expected values are MPI _FUNCTI ON_| OC_MESSAGE UNI T_RESET or
MPI _FUNCTI ON_I O_UNI T_RESET

sl eepFl ag Specifies whether the process can sleep

Description
Send |OCReset request to the MPT adapter.

Returns O for success, non-zero for failure.

555

M essage-based devices

Name

initChainBuffers — Allocate memory for and initialize chain buffers
Synopsis
int initChainBuffers (MPT_ADAPTER * ioc);

Arguments

i oc Pointer to MPT_ADAPTER structure

Description

Allocates memory for and initializes chain buffers, chain buffer control arrays and spinlock.

556

M essage-based devices

Name
Primel ocFifos — Initialize |OC request and reply FIFOs.

Synopsis
int PrinelocFifos (MPT_ADAPTER * io0cC);

Arguments

i oc Pointer to MPT_ADAPTER structure

Description

This routine allocates memory for the MPT reply and request frame pools (if necessary), and primes the
|OC reply FIFO with reply frames.

Returns O for success, non-zero for failure.

557

M essage-based devices

Name

mpt_handshake req reply wait — Send MPT request to and receive reply from 10C via doorbell hand-
shake method.

Synopsis

i nt nmpt_handshake req reply wait (MPT_ADAPTER * ioc, int reqBytes, u32
* req, int replyBytes, ul6é * ul6reply, int naxwait, int sleepFlag);

Arguments
i oc Pointer to MPT_ADAPTER structure
reqByt es Size of the request in bytes
req Pointer to MPT request frame
repl yByt es Expected size of thereply in bytes
uléreply Pointer to area where reply should be written
maxwai t Max wait time for areply (in seconds)

sl eepFl ag Specifies whether the process can sleep

NOTES

It isthe callers responsibility to byte-swap fields in the request which are greater than 1 bytein size. It is
also the callers responsibility to byte-swap response fields which are greater than 1 bytein size.

Returns O for success, non-zero for failure.

558

M essage-based devices

Name

WaitForDoorbell Ack — Wait for 10C doorbell handshake acknowledge
Synopsis

i nt Wit For Door bel | Ack (MPT_ADAPTER * ioc, int howl ong, int sleepFlag);
Arguments

i oc Pointer to MPT_ADAPTER structure

how ong How long to wait (in seconds)

sl eepFl ag Specifies whether the process can sleep

Description

This routine waits (up to ~2 seconds max) for 10C doorbell handshake ACKnowledge, indicated by the
IOP_DOORBELL_STATUS hit in its IntStatus register being clear.

Returns a negative value on failure, else wait loop count.

559

M essage-based devices

Name

WaitForDoorbellInt — Wait for |OC to set its doorbell interrupt bit
Synopsis

i nt Wit ForDoorbelllnt (MPT_ADAPTER * ioc, int howl ong, int sleepFlag);
Arguments

i oc Pointer to MPT_ADAPTER structure

how ong How long to wait (in seconds)

sl eepFl ag Specifies whether the process can sleep

Description

This routine waits (up to ~2 seconds max) for [OC doorbell
(MPI_HIS DOORBELL_INTERRUPT) to be set in the IntStatus register.

Returns a negative value on failure, else wait loop count.

interrupt

560

M essage-based devices

Name
WaitForDoorbelIReply — Wait for and capture an |OC handshake reply.
Synopsis
i nt WitForDoorbell Reply (MPT_ADAPTER * ioc, int howlong, int sleep-
Fl ag) ;
Arguments
i oc Pointer to MPT_ADAPTER structure

how ong How long to wait (in seconds)

sl eepFl ag Specifies whether the process can sleep

Description

This routine polls the I0C for a handshake reply, 16 bits at atime. Reply is cached to |OC private area
large enough to hold a maximum of 128 bytes of reply data.

Returns a negative value on failure, else size of reply in WORDS.

561

M essage-based devices

Name
GetL anConfigPages — Fetch LANConfig pages.

Synopsis
i nt GetLanConfi gPages (MPT_ADAPTER * ioc);

Arguments

i oc Pointer to MPT_ADAPTER structure

Return

0 for success -ENOMEM if no memory available -EPERM if not allowed due to ISR context -EAGAIN
if no msg frames currently available -EFAULT for non-successful reply or no reply (timeout)

562

M essage-based devices

Name
GetloUnitPage? — Retrieve BIOS version and boot order information.

Synopsis
int GetloUnitPage2 (MPT_ADAPTER * ioc);

Arguments

i oc Pointer to MPT_ADAPTER structure

Returns

0 for success -ENOMEM if no memory available -EPERM if not allowed due to ISR context -EAGAIN
if no msg frames currently available -EFAULT for non-successful reply or no reply (timeout)

563

M essage-based devices

Name
mpt_GetScsi PortSettings — read SCSI Port Page 0 and 2

Synopsis

i nt nmpt_Get Scsi Port Settings (MPT_ADAPTER * ioc, int portnum;
Arguments

i oc Pointer to a Adapter Strucutre

port num 10C port number

Return

-EFAULT if read of config page header fails or if no nvram If read of SCSI Port Page O fails, NVRAM
= MPT_HOST_NVRAM_INVALID (OxFFFFFFFF)

Adapter settings

async, narrow Return 1 If read of SCSI Port Page 2 fails, Adapter settings valid NVRAM =
MPT_HOST_NVRAM_INVALID (OxFFFFFFFF) Return 1 Else Both valid Return 0 CHECK - what type
of locking mechanisms should be used????

564

M essage-based devices

Name
mpt_readScsi DevicePageHeaders — save version and length of SDP1

Synopsis
i nt nmpt_readScsi Devi cePageHeaders (MPT_ADAPTER * ioc, int portnum;

Arguments
i oc Pointer to a Adapter Strucutre

port num 10C port number

Return
-EFAULT if read of config page header fails or O if success.

565

M essage-based devices

Name

mpt_inactive raid_list_free— Thisclearsthislink list.
Synopsis

void npt_inactive raid |ist free (MPT_ADAPTER * ioc);
Arguments

i oc pointer to per adapter structure

566

M essage-based devices

Name

mpt_inactive raid_volumes — sets up link list of phy_disk_nums for devices belonging in an inactive
volume

Synopsis

void npt_inactive_ raid volunmes (MPT_ADAPTER * ioc, u8 channel, u8 id);

Arguments

i oc pointer to per adapter structure

channel volume channel

id volume target id

567

M essage-based devices

Name
SendEventNoatification — Send EventNotification (on or off) request to adapter
Synopsis
int SendEvent Notification (MPT_ADAPTER * ioc, u8 EvSwitch, int sleep-
Fl ag) ;
Arguments
i oc Pointer to MPT_ADAPTER structure

EvSwi t ch Event switch flags

sl eepFl ag Specifies whether the process can sleep

568

M essage-based devices

Name
SendEventAck — Send EventAck request to MPT adapter.

Synopsis
i nt SendEvent Ack (MPT_ADAPTER * ioc, EventNotificationReply t * evnp);
Arguments

i oc Pointer to MPT_ADAPTER structure

evnp Pointer to original EventNotification request

569

M essage-based devices

Name

mpt_ioc_reset — Base cleanup for hard reset
Synopsis

int nmpt _ioc reset (MPT_ADAPTER * ioc, int reset phase);
Arguments

i oc Pointer to the adapter structure

reset phase Indicatespre- or post-reset functionality

Remark

Frees resources with internally generated commands.

570

M essage-based devices

Name
procmpt_create — Create MPT_PROCFS_MPTBASEDI R entries.
Synopsis
int procnpt _create (void);
Arguments
voi d noarguments
Description

Returns O for success, non-zero for failure.

571

M essage-based devices

Name
procmpt_destroy — Tear down MPT_PROCFS_MPTBASEDI R entries.
Synopsis
void procnpt _destroy (void);
Arguments
voi d noarguments
Description

Returns O for success, non-zero for failure.

572

M essage-based devices

Name

mpt_SoftResetHandler — Issues aless expensive reset

Synopsis
i nt nmpt_Soft Reset Handl er (MPT_ADAPTER * ioc, int sleepFlag);

Arguments
i oc Pointer to MPT_ADAPTER structure

sl eepFl ag Indicatesif sleep or schedule must be called.

Description
Returns 0 for SUCCESS or -1 if FAILED.

Message Unit Reset - instructs the 10C to reset the Reply Post and Free FIFO's. All the Message Frames
on Reply Free FIFO are discarded. All posted buffers are freed, and event notification is turned off. IOC
doesn't reply to any outstanding request. Thiswill transfer |OC to READY state.

573

M essage-based devices

Name
ProcessEventNotification — Route EventNotificationReply to all event handlers
Synopsis
i nt ProcessEvent Noti fication (MPT_ADAPTER * i oc,

Event NotificationReply t * pEventReply, int * evHandlers);

Arguments

i oc Pointer to MPT_ADAPTER structure
pEvent Repl y Pointer to EventNotification reply frame

evHandl ers Pointer to integer, number of event handlers

Description

Routes areceived EventNotificationReply to all currently registered event handlers. Returns sum of event
handlers return values.

574

M essage-based devices

Name

mpt_fc_log_info — Log information returned from Fibre Channel 10C.
Synopsis

void npt _fc log info (MPT_ADAPTER * ioc, u32 log_ info);
Arguments

i oc Pointer to MPT_ADAPTER structure

| og_info U32Loglnforeply word fromthe |lOC
Description

Refer to Isi/mpi_log_fc.h.

575

M essage-based devices

Name

mpt_spi_log_info — Log information returned from SCSI Parallel 10C.
Synopsis

void npt_spi _log_info (MPT_ADAPTER * ioc, u32 log info);
Arguments

i oc Pointer to MPT_ADAPTER structure

| og_i nfo U32Loglnfoword fromthelOC
Description

Refer to Isi/sp_log.h.

576

M essage-based devices

Name

mpt_sas log_info — Log information returned from SAS 1OC.
Synopsis

void npt_sas |log_info (MPT_ADAPTER * ioc, u32 log_ info, u8 cb_idx);
Arguments

i oc Pointer to MPT_ADAPTER structure

| og_info U32Loglnforeply word fromthe |lOC

cb_idx callback function's handle

Description

Refer to Isi/mpi_log_sas.h.

577

M essage-based devices

Name
mpt_iocstatus info_config — IOCSTATUS information for config pages

Synopsis

void npt_iocstatus_info _config (MPT_ADAPTER * ioc, u32 ioc_status,
MPT_FRAME_HDR * nf);

Arguments
i oc Pointer to MPT_ADAPTER structure
i oc_status U32I0CStatusword from IOC

nf Pointer to MPT request frame

Description

Refer to Isi/mpi.h.

578

M essage-based devices

Name
mpt_iocstatus info — IOCSTATUS information returned from 10C.

Synopsis

voi d npt _iocstatus_info (MPT_ADAPTER * i oc, u32 ioc_status,
MPT_FRAME_HDR * nf);

Arguments
i oc Pointer to MPT_ADAPTER structure
i oc_status U32I0CStatusword from IOC

nf Pointer to MPT request frame

Description

Refer to Isi/mpi.h.

579

M essage-based devices

Name
fusion_init — Fusion MPT base driver initialization routine.
Synopsis
int fusion_init (void);
Arguments
voi d noarguments
Description

Returns O for success, non-zero for failure.

580

M essage-based devices

Name

fusion_exit — Perform driver unload cleanup.
Synopsis

void exit fusion_exit (void);
Arguments

voi d noarguments
Description

This routine frees al resources associated with each MPT adapter and removes all
MPT_PROCFS_MPTBASEDI R entries.

581

M essage-based devices

Name
mptscsih_info — Return information about MPT adapter

Synopsis

const char * nptscsih_info (struct Scsi_Host * SChost);

Arguments

SChost Pointer to Scsi_Host structure

Description
(linux scsi_host_template.info routine)

Returns pointer to buffer where information was written.

582

M essage-based devices

Name
mptscsih_gemd — Primary Fusion MPT SCSl initiator 1O start routine.

Synopsis
int mptscsih_gcend (struct scsi_cmd * SCpnt);
Arguments

SCpnt Pointer to scsi_cmnd structure

Description

(linux scsi_host_template.queuecommand routine) Thisisthe primary SCSI 10 start routine. CreateaMPI
SCSIIORequest from alinux scsi_cmnd request and send it to the |OC.

Returns 0. (rtn value discarded by linux scsi mid-layer)

583

M essage-based devices

Name
mptscsih_|ssueTaskMgmt — Generic send Task Management function.

Synopsis

i nt nptscsih_|ssueTaskMgm (MPT_SCSI _HOST * hd, u8 type, u8 channel, u8
id, u64 lun, int ctx2abort, ulong tineout);

Arguments
hd Pointer to MPT_SCSI_HOST structure
type Task Management type
channel channel number for task management
id Logica Target ID for reset (if appropriate)
lun Logical Unit for reset (if appropriate)

ct x2abort Context for the task to be aborted (if appropriate)

ti meout timeout for task management control

Remark

_HardResetHandler can beinvoked from aninterrupt thread (timer) or anon-interrupt thread. Intheformer,
must not call schedul e.

Not all fields are meaningfull for all task types.

Returns 0 for SUCCESS, or FAILED.

584

M essage-based devices

Name

mptscsih_abort — Abort linux scsi_cmnd routine, new_eh variant
Synopsis

i nt nptscsih_abort (struct scsi_cmd * SCpnt);
Arguments

SCpnt Pointer to scsi_cmnd structure, 10 to be aborted
Description

(linux scsi_host_template.eh_abort_handler routine)

Returns SUCCESS or FAILED.

585

M essage-based devices

Name
mptscsih_dev_reset — Perform a SCSI TARGET_RESET! new_eh variant

Synopsis

int mptscsih_dev_reset (struct scsi_cmd * SCpnt);

Arguments

SCpnt Pointer to scsi_cmnd structure, 10 which reset is due to

Description
(linux scsi_host_template.eh_dev_reset_handler routine)

Returns SUCCESS or FAILED.

586

M essage-based devices

Name
mptscsih_bus_reset — Perform a SCSI BUS RESET! new_eh variant

Synopsis

int mptscsih_bus reset (struct scsi_cmd * SCpnt);

Arguments

SCpnt Pointer to scsi_cmnd structure, 10 which reset is due to

Description
(linux scsi_host_template.eh_bus reset_handler routine)

Returns SUCCESS or FAILED.

587

M essage-based devices

Name
mptscsih_host_reset — Perform a SCSI host adapter RESET (new_eh variant)

Synopsis

i nt nmptscsih_host reset (struct scsi_cmd * SCpnt);

Arguments

SCpnt Pointer to scsi_cmnd structure, 10 which reset is due to

Description
(linux scsi_host_template.eh_host_reset_handler routine)

Returns SUCCESS or FAILED.

588

M essage-based devices

Name
mptscsih_taskmgmt_complete — Registered with Fusion MPT base driver

Synopsis
i nt nmptscsih_taskmgnt conpl ete (MPT_ADAPTER * ioc, MPT_FRAME HDR * nf,
MPT_FRAME_HDR * nt1);
Arguments
i oc Pointer to MPT_ADAPTER structure
nf Pointer to SCSI task mgmt request frame

nr Pointer to SCSI task mgmt reply frame

Description

This routine is caled from mptbase.c::npt _i nt errupt at the completion of any SCSI task man-
agement request. This routine is registered with the MPT (base) driver at driver load/init time via the

npt _regi ster API cal.
Returns 1 indicating aloc'd request frame ptr should be freed.

589

M essage-based devices

Name
mptscsih_get _scsi_lookup — retrieves scmd entry
Synopsis
struct scsi_cmd * nptscsih_get scsi _| ookup (MPT_ADAPTER * ioc, int i);
Arguments
i oc Pointer to MPT_ADAPTER structure
[index into the array
Description

Returns the scsi_cmd pointer

590

M essage-based devices

Name
mptscsih_info_scsiio — debug print info on reply frame
Synopsis
void nptscsih_ info scsiio (MPT_ADAPTER * ioc, struct scsi_cmmd * sc,
SCSI I OReply_t * pScsi Reply);
Arguments
i oc Pointer to MPT_ADAPTER structure
sc original scsi cmnd pointer
pScsi Reply Pointer to MPT reply frame
Description

MPT_DEBUG_REPLY needs to be enabled to obtain thisinfo

Refer to Isi/mpi.h.

591

M essage-based devices

Name
mptscsih_getclear_scsi_lookup — retrieves and clears scmd entry from ScsiLookup[] array list
Synopsis
;trup; scsi_cmd * nptscsih _getclear_scsi_| ookup (MPT_ADAPTER * ioc,
int i);
Arguments
i oc Pointer to MPT_ADAPTER structure
[index into the array
Description

Returns the scsi_cmd pointer

592

M essage-based devices

Name
mptscsih_set_scsi_lookup — write a scmd entry into the Scsilookup[] array list
Synopsis
void nptscsih set scsi_|ookup (MPT_ADAPTER * ioc, int i, struct

scsi_cmmd * scnd);

Arguments
i oc Pointer to MPT_ADAPTER structure
[index into the array

scnd scsi_cmnd pointer

593

M essage-based devices

Name
SCPNT_TO_LOOKUP_IDX — searches for a given scmd in the ScsiLookup[] array list

Synopsis
int SCPNT_TO LOOKUP_I DX (MPT_ADAPTER * ioc, struct scsi_cnmmd * sc);
Arguments

i oc Pointer to MPT_ADAPTER structure

sc scsi_cmnd pointer

594

M essage-based devices

Name
mptscsih_get_completion_code — get completion code from MPT request

Synopsis

int nptscsih_get conpletion_code (MPT_ADAPTER * ioc, MPT_FRAME HDR *
req, MPT_FRAME HDR * reply);

Arguments
i oc Pointer to MPT_ADAPTER structure

req Pointer to original MPT request frame

reply Pointer to MPT reply frame (NULL if TurboReply)

595

M essage-based devices

Name

mptscsih_do_cmd — Do internal command.
Synopsis

int mptscsih do cnmd (MPT_SCSI_HOST * hd, INTERNAL CMVMD * i0);
Arguments

hd MPT_SCSI_HOST pointer

i 0 INTERNAL_CMD pointer.

Description

Issue the specified internally generated command and do command specific cleanup. For bus scan / DV
only.

NOTES
If command is Inquiry and statusis good, initialize atarget structure, save the data
Remark

Single threaded access only.

Return
<0if anillegal command or no resources
0if good

> 0 if command complete but some type of completion error.

596

M essage-based devices

Name
mptscsih_synchronize_cache — Send SYNCHRONIZE_CACHE to al disks.
Synopsis
voi d nptscsi h_synchroni ze_cache (MPT_SCSI_HOST * hd, VirtDevice * vde-
vi ce);
Arguments
hd Pointer to a SCSI HOST structure
vdevi ce virtual target device
Description

Usesthe ISR, but with special processing. MUST be single-threaded.

597

M essage-based devices

Name

mptctl_syscall_down — Down the MPT adapter syscall semaphore.
Synopsis

int mptctl _syscall _down (MPT_ADAPTER * ioc, int nonbl ock);
Arguments

i oc Pointer to MPT adapter

nonbl ock boolean, non-zero if O_ NONBLOCK isset

Description

All of the ioctl commands can potentially sleep, which isillegal with a spinlock held, thus we perform
mutual exclusion here.

Returns negative errno on error, or zero for success.

598

M essage-based devices

Name
mptspi_setTargetNegoParms — Update the target negotiation parameters
Synopsis
voi d npt spi _set Tar get NegoParns (MPT_SCSI _HOST * hd, VirtTarget * target,
struct scsi_device * sdev);
Arguments
hd Pointer to a SCSI Host Structure
target pertarget private data
sdev SCSl device
Description
Update the target negotiation parameters based on the the Inquiry data, adapter capabilities, and NVRAM
settings.

599

M essage-based devices

Name
mptspi_writel OCPage4 — write |0C Page 4

Synopsis

int mptspi_witel OCPage4 (MPT_SCSI HOST * hd, u8 channel, u8 id);
Arguments

hd Pointer to a SCSI Host Structure

channel channel number

id write |OC Paged for thisID & Bus

Return

-EAGAIN if unable to obtain a Message Frame or 0O if success.

Remark

We do not wait for areturn, write pages sequentialy.

600

M essage-based devices

Name
mptspi_initTarget — Target, LUN alloc/free functionality.

Synopsis

voi d nptspi _initTarget (MPT_SCSI HOST * hd, VirtTarget * vtarget, struct
scsi _device * sdev);

Arguments
hd Pointer to MPT_SCSI_HOST structure
vt arget pertarget private data

sdev SCSl device

NOTE

It'sonly SAFE to cal thisroutineif data pointsto sane & valid STANDARD INQUIRY datal

Allocate and initialize memory for this target. Save inquiry data.

601

M essage-based devices

Name

mptspi_is raid — Determines whether target is belonging to volume
Synopsis

int mptspi _is raid (struct _MPT_SCSI_HOST * hd, u32 id);
Arguments

hd Pointer to aSCSI HOST structure

i d target deviceid
Return

non-zero = true zero = false

602

M essage-based devices

Name
mptspi_print_write_nego — negotiation parameters debug info that is being sent

Synopsis

void nptspi_print_wite nego (struct _MPT _SCSI_HOST * hd, struct
scsi _target * starget, u32 ii);

Arguments
hd Pointer to a SCSI HOST structure

starget SCSl target

ii negotiation parameters

603

M essage-based devices

Name
mptspi_print_read nego — negotiation parameters debug info that is being read

Synopsis

void nptspi_print_read nego (struct _MPT _SCSI_HOST * hd, struct
scsi _target * starget, u32 ii);

Arguments
hd Pointer to a SCSI HOST structure

starget SCSl target

ii negotiation parameters

604

M essage-based devices

Name
mptspi_init — Register MPT adapter(s) as SCSI host(s) with SCSI mid-layer.

Synopsis
int mptspi _init (void);

Arguments

voi d noarguments

Description

Returns O for success, non-zero for failure.

605

M essage-based devices

Name
mptspi_exit — Unregisters MPT adapter(s)

Synopsis
void _exit nptspi_exit (void);
Arguments

voi d noarguments

606

M essage-based devices

Name
mptfc_init — Register MPT adapter(s) as SCSI host(s) with SCSI mid-layer.

Synopsis
int mptfc_init (void);

Arguments

voi d noarguments

Description

Returns O for success, non-zero for failure.

607

M essage-based devices

Name

mptfc_remove — Remove fc infrastructure for devices
Synopsis
void nptfc_renove (struct pci_dev * pdev);

Arguments

pdev Pointer to pci_dev structure

608

M essage-based devices

Name
mptfc_exit — Unregisters MPT adapter(s)

Synopsis
void exit nptfc exit (void);
Arguments

voi d noarguments

609

M essage-based devices

Name
lan_reply — Handle all data sent from the hardware.
Synopsis
int lan_reply (MPT_ADAPTER * ioc, MPT_FRAME HDR * nf, MPT_FRAME HDR *
reply);
Arguments
i oc Pointer to MPT_ADAPTER structure
nf Pointer to original MPT request frame (NULL if TurboReply)
reply Pointer to MPT reply frame
Description

Returns 1 indicating original alloc'd request frame ptr should be freed, or O if it shouldn't.

610

Chapter 5. Sound Devices

611

Sound Devices

Name

snd_printk — printk wrapper
Synopsis

snd_printk (fnt, args...);
Arguments

fnt format string

args... variablearguments
Description

Works like printk but prints the file and the line of the caler when configured with
CONFIG_SND_VERBOSE_PRINTK.

612

Sound Devices

Name

snd_printd — debug printk
Synopsis

snd_printd (fnt, args...);
Arguments

fnt format string

args... variablearguments
Description

Workslikesnd_pri nt k for debugging purposes. Ignored when CONFIG_SND_DEBUG is not set.

613

Sound Devices

Name
snd_BUG — give aBUG warning message and stack trace

Synopsis
snd_BUG (voi d);

Arguments

None

Description

CallsWARNif CONFIG_SND_DEBUG is set. Ignored when CONFIG_SND_DEBUG is not set.

614

Sound Devices

Name
snd_printd_ratelimit —

Synopsis
snd_printd_ratelimt (void);

Arguments

None

615

Sound Devices

Name

snd_BUG_ON — debugging check macro
Synopsis

snd_BUG ON (cond);
Arguments

cond condition to evaluate
Description

Has the same behavior as WARN_ON when CONFIG_SND_DEBUG is set, otherwise just evaluates the
conditional and returns the value.

616

Sound Devices

Name
snd_printdd — debug printk
Synopsis
snd_printdd (format, args...);
Arguments
f or mat format string
args... variablearguments
Description
Workslikesnd_pr i nt k for debugging purposes. Ignored when CONFIG_SND_DEBUG_VERBOSE
is not set.

617

Sound Devices

Name

register_sound_specia_device — register a special sound node
Synopsis

int regi ster_sound_speci al _device (const struct file_operations * fops,
int unit, struct device * dev);

Arguments

fops Fileoperationsfor the driver
unit Unit number to alocate

dev device pointer

Description

Allocate a special sound device by minor number from the sound subsystem.

Return

The allocated number is returned on success. On failure, a negative error code is returned.

618

Sound Devices

Name

register_sound_mixer — register a mixer device
Synopsis
i nt register_sound_m xer (const struct file_operations * fops, int dev);

Arguments

fops Fileoperationsfor the driver

dev Unit number to alocate

Description

Allocate a mixer device. Unit is the number of the mixer requested. Pass -1 to request the next free mixer
unit.

Return

On success, the allocated number isreturned. On failure, a negative error code is returned.

619

Sound Devices

Name

register_sound_midi — register amidi device
Synopsis
int register_sound_mdi (const struct file_operations * fops, int dev);

Arguments

fops Fileoperationsfor the driver

dev Unit number to alocate

Description

Allocate a midi device. Unit is the number of the midi device requested. Pass -1 to request the next free
midi unit.

Return

On success, the allocated number isreturned. On failure, a negative error code is returned.

620

Sound Devices

Name
register_sound_dsp — register a DSP device

Synopsis
int register_sound_dsp (const struct file_operations * fops, int dev);

Arguments

fops Fileoperationsfor the driver

dev Unit number to alocate

Description

Allocate a DSP device. Unit isthe number of the DSP requested. Pass -1 to request the next free DSP unit.

This function allocates both the audio and dsp device entries together and will always alocate them as a
matching pair - eg dsp3/audio3

Return

On success, the allocated number is returned. On failure, a negative error code is returned.

621

Sound Devices

Name

unregister_sound_special — unregister a special sound device
Synopsis
voi d unregi ster_sound_special (int unit);

Arguments

uni t unit number to allocate

Description

Release a sound device that was allocated with r egi st er _sound_speci al . The unit passed is the
return value from the register function.

622

Sound Devices

Name

unregister_sound_mixer — unregister amixer
Synopsis
voi d unregi ster_sound_mi xer (int unit);

Arguments

uni t unit number to allocate

Description

Release asound devicethat wasalocated withr egi st er _sound_nmi xer . Theunit passed isthereturn
value from the register function.

623

Sound Devices

Name

unregister_sound_midi — unregister amidi device
Synopsis

voi d unregister_sound _mdi (int unit);
Arguments

uni t unit number to allocate

Description

Release a sound device that was allocated withr egi st er _sound_ni di . The unit passed isthe return
value from the register function.

624

Sound Devices

Name
unregister_sound_dsp — unregister a DSP device

Synopsis

voi d unregi ster_sound_dsp (int unit);

Arguments

uni t unit number to allocate

Description

Release a sound device that was allocated with r egi st er _sound_dsp. The unit passed is the return
value from the register function.

Both of the allocated units are released together automatically.

625

Sound Devices

Name
snd_pcm_stream_linked — Check whether the substream is linked with others

Synopsis

int snd_pcmstream|inked (struct snd_pcm substream * substream;

Arguments

substream substream to check

Description

Returnstrueif the given substream is being linked with others.

626

Sound Devices

Name

snd_pcm_stream_lock_irgsave — Lock the PCM stream

Synopsis

snd_pcm stream | ock_irqgsave (substream flags);

Arguments
substream PCM substream
fl ags irq flags
Description

Thislocksthe PCM stream likesnd_pcm st r eam | ock but with thelocal IRQ (only when nonatomic
isfalse). In nonatomic case, thisisidentical assnd_pcm st ream | ock.

627

Sound Devices

Name

snd_pcm_group_for_each entry — iterate over the linked substreams

Synopsis

snd_pcm group_for_each_entry (s, substream;

Arguments

S the iterator

subst ream the substream

Description

Iterate over the all linked substreams to the given subst r eam When subst r eamisn't linked with any
others, this givesreturns subst r eamitself once.

628

Sound Devices

Name

snd_pcm_running — Check whether the substream isin arunning state
Synopsis
int snd_pcmrunning (struct snd_pcm substream * substream;

Arguments

substream substream to check

Description

Returnstrueif the given substream isin the state RUNNING, or in the state DRAINING for playback.

629

Sound Devices

Name

bytes to_samples— Unit conversion of the size from bytes to samples
Synopsis

ssize_t bytes_to_sanples (struct snd_pcmruntine * runtine, ssize_t
si ze);

Arguments

runti me PCM runtimeinstance

si ze sizein bytes

630

Sound Devices

Name

bytes to frames— Unit conversion of the size from bytes to frames
Synopsis

snd_pcm sframes_t bytes to frames (struct snd_pcmruntime * runtinmne,
ssize_t size);

Arguments

runti me PCM runtimeinstance

si ze sizein bytes

631

Sound Devices

Name

samples_to_bytes— Unit conversion of the size from samples to bytes
Synopsis

ssize_t sanples_to bytes (struct snd_pcmruntine * runtine, ssize_t
si ze);

Arguments

runti me PCM runtimeinstance

si ze sizein samples

632

Sound Devices

Name

frames_to_bytes— Unit conversion of the size from framesto bytes
Synopsis

ssize t frames_to_bytes (struct snd_pcm runtine * runtine,
snd_pcm sframes_t size);

Arguments

runti me PCM runtimeinstance

si ze sizein frames

633

Sound Devices

Name
frame_aligned — Check whether the byte sizeis aligned to frames

Synopsis
int frane_aligned (struct snd_pcmruntine * runtine, ssize_t bytes);

Arguments

runti me PCM runtimeinstance

byt es sizein bytes

634

Sound Devices

Name
snd_pcm_lib_buffer_bytes— Get the buffer size of the current PCM in bytes

Synopsis
size_t snd_pcmlib_buffer_bytes (struct snd_pcm substream?* substreamn;

Arguments

substream PCM substream

635

Sound Devices

Name
snd_pcm_lib_period_bytes — Get the period size of the current PCM in bytes

Synopsis
size_t snd_pcmlib_period_bytes (struct snd_pcm substream?* substreamn;

Arguments

substream PCM substream

636

Sound Devices

Name
snd_pcm_playback_avail — Get the available (writable) space for playback

Synopsis
snd_pcm uframes_t snd_pcm pl ayback _avail (struct snd_pcmruntime * run-
time);

Arguments

runti me PCM runtimeinstance

Description

Result is between O ... (boundary - 1)

637

Sound Devices

Name
snd_pcm_capture_avail — Get the available (readable) space for capture

Synopsis

snd_pcmuframes_t snd_pcm capture_avail (struct snd_pcmruntine * run-
time);

Arguments

runti me PCM runtimeinstance

Description

Result is between O ... (boundary - 1)

638

Sound Devices

Name
snd_pcm_playback _hw_avail — Get the queued space for playback

Synopsis

snd_pcm sframes_t snd_pcm pl ayback_hw avail (struct snd_pcmruntime *
runtine);

Arguments

runti me PCM runtimeinstance

639

Sound Devices

Name

snd_pcm_capture_hw_avail — Get the free space for capture
Synopsis

snd_pcm sframes_t snd_pcm capture_hw avail (struct snd_pcmruntime *
runtine);

Arguments

runti me PCM runtimeinstance

Sound Devices

Name
snd_pcm_playback _ready — check whether the playback buffer is available

Synopsis
i nt snd_pcm pl ayback_ready (struct snd_pcm substream * substream;

Arguments

subst ream the pcm substream instance

Description

Checks whether enough free space is available on the playback buffer.

Return

Non-zero if available, or zero if not.

641

Sound Devices

Name
snd_pcm_capture_ready — check whether the capture buffer is available

Synopsis
int snd_pcm capture_ready (struct snd_pcm substream * substream;

Arguments

subst ream the pcm substream instance

Description

Checks whether enough capture data is available on the capture buffer.

Return

Non-zero if available, or zero if not.

642

Sound Devices

Name
snd_pcm_playback data— check whether any data exists on the playback buffer

Synopsis
int snd_pcm pl ayback_data (struct snd_pcm substream * substream;

Arguments

subst ream the pcm substream instance

Description

Checks whether any data exists on the playback buffer.

Return

Non-zero if any data exists, or zero if not. If stop_threshold is bigger or equal to boundary, then this
function returns always non-zero.

Sound Devices

Name
snd_pcm_playback _empty — check whether the playback buffer is empty

Synopsis
i nt snd_pcm pl ayback_enpty (struct snd_pcm substream * substream;

Arguments

subst ream the pcm substream instance

Description

Checks whether the playback buffer is empty.

Return

Non-zero if empty, or zero if not.

Sound Devices

Name
snd_pcm_capture_empty — check whether the capture buffer is empty

Synopsis
int snd_pcm capture_enpty (struct snd_pcm substream * substream;

Arguments

subst ream the pcm substream instance

Description

Checks whether the capture buffer is empty.

Return

Non-zero if empty, or zero if not.

Sound Devices

Name

snd_pcm_trigger_done — Mark the master substream

Synopsis

void snd_pcm trigger_done (struct snd_pcm substream* substream struct
snd_pcm substream * master);

Arguments
subst ream the pcm substream instance
mast er the linked master substream
Description

When multiple substreams of the same card are linked and the hardware supports the single-shot operation,
the driver callsthisintheloopinsnd_pcm group_f or _each_ent ry for marking the substream as
“done”. Then most of trigger operations are performed only to the given master substream.

Thetrigger_master mark is cleared at timestamp updates at the end of trigger operations.

646

Sound Devices

Name

params_channels — Get the number of channels from the hw params
Synopsis
unsi gned int params_channels (const struct snd_pcm hw paranms * p);

Arguments

p hw params

647

Sound Devices

Name

params_rate — Get the sample rate from the hw params
Synopsis
unsi gned int params_rate (const struct snd_pcm hw parans * p);

Arguments

p hw params

Sound Devices

Name

params_period_size — Get the period size (in frames) from the hw params
Synopsis
unsi gned int paranms_period_size (const struct snd_pcm hw paranms * p);

Arguments

p hw params

649

Sound Devices

Name

params_periods — Get the number of periods from the hw params
Synopsis
unsi gned int paranms_periods (const struct snd_pcm hw parans * p);

Arguments

p hw params

650

Sound Devices

Name

params_buffer_size — Get the buffer size (in frames) from the hw params
Synopsis
unsi gned int paranms_buffer_size (const struct snd_pcm hw paranms * p);

Arguments

p hw params

651

Sound Devices

Name

params_buffer_bytes — Get the buffer size (in bytes) from the hw params
Synopsis
unsi gned int paranms_buffer_bytes (const struct snd_pcm hw parans * p);

Arguments

p hw params

652

Sound Devices

Name
snd_pcm_format_cpu_endian — Check the PCM format is CPU-endian

Synopsis
int snd_pcmformat_cpu_endian (snd_pcm format _t format);

Arguments

format theformat to check

Return

1if the given PCM format is CPU-endian, O if opposite, or a negative error code if endian not specified.

653

Sound Devices

Name
snd_pcm_set_runtime_buffer — Set the PCM runtime buffer

Synopsis

void snd_pcm set _runtime_buffer (struct snd_pcm substream * substream
struct snd_dma_buffer * bufp);

Arguments

substream PCM substream to set

buf p the buffer information, NULL to clear
Description

Copy the buffer information to runtime->dma_buffer when buf p is non-NULL. Otherwise it clears the
current buffer information.

654

Sound Devices

Name
snd_pcm_gettime — Fill the timespec depending on the timestamp mode

Synopsis

void snd_pcmgettine (struct snd_pcmruntime * runtime, struct tinmespec
* tv);

Arguments

runti me PCM runtimeinstance

tv timespec to fill

655

Sound Devices

Name
snd_pcm_lib_aloc_vmalloc_buffer — allocate virtual DMA buffer

Synopsis

int snd_pcmlib_alloc_vmalloc_buffer (struct snd_pcm substream * sub-
stream size_t size);

Arguments
subst ream the substream to allocate the buffer to
si ze the requested buffer size, in bytes
Description

Allocates the PCM substream buffer using vimal | oc, i.e., the memory is contiguous in kernel virtua
space, but not in physical memory. Usethisif the buffer isaccessed by kernel code but not by device DMA.

Return

1if the buffer was changed, 0 if not changed, or a negative error code.

656

Sound Devices

Name
snd_pcm_lib_aloc vmalloc_32_buffer — allocate 32-bit-addressable buffer

Synopsis

int snd_pcmlib_alloc_vmalloc_32 buffer (struct snd_pcmsubstream *
substream size_t size);

Arguments
subst ream the substream to allocate the buffer to
si ze the requested buffer size, in bytes
Description

This function works like snd_pcm |i b_al | oc_vnal | oc_buffer, but usesvmal | oc_32, i.e,
the pages are allocated from 32-bit-addressable memory.

Return

1if the buffer was changed, 0 if not changed, or a negative error code.

657

Sound Devices

Name
snd_pcm_sgbuf_get_addr — Get the DMA address at the corresponding offset

Synopsis

dma_addr _t snd_pcm sgbuf_get _addr (struct snd_pcm substream * sub-
stream unsigned int ofs);

Arguments

substream PCM substream

of s byte offset

658

Sound Devices

Name
snd_pcm_sgbuf_get_ptr — Get the virtual address at the corresponding offset

Synopsis

void * snd_pcmsgbuf_get ptr (struct snd_pcmsubstream * substream
unsi gned int ofs);

Arguments

substream PCM substream

of s byte offset

659

Sound Devices

Name

snd_pcm_sgbuf_get_chunk_size— Compute the max size that fits within the contig. page from the given
size

Synopsis

unsi gned int snd_pcm sgbuf_get chunk_size (struct snd_pcm substream *
substream wunsigned int ofs, unsigned int size);

Arguments
substream PCM substream
of s byte offset
si ze byte size to examine

660

Sound Devices

Name

snd_pcm_mmap_data_open — increase the mmap counter
Synopsis
voi d snd_pcm nmap_data_open (struct vmarea_struct * area);

Arguments

area VMA

Description

PCM mmap callback should handle this counter properly

661

Sound Devices

Name

snd_pcm_mmap_data _close — decrease the mmap counter
Synopsis
void snd_pcm nmmap_data_cl ose (struct vm area_struct * area);

Arguments

area VMA

Description

PCM mmap callback should handle this counter properly

662

Sound Devices

Name

snd_pcm_limit_isa_dma_size — Get the max size fitting with ISA DMA transfer
Synopsis

void snd_pcmlimt_isa dnma_size (int dma, size_ t * max);
Arguments

dma DMA number

max pointer to store the max size

663

Sound Devices

Name

snd_pcm_stream_str — Get a string naming the direction of a stream

Synopsis

const char * snd_pcm stream str (struct snd_pcm substream* substrean;

Arguments

subst ream the pcm substream instance

Return

A string naming the direction of the stream.

664

Sound Devices

Name
snd_pcm_chmap_substream — get the PCM substream assigned to the given chmap info

Synopsis

struct snd_pcm subst ream * snd_pcm chmap_substream (struct
snd_pcm chmap * info, unsigned int idx);

Arguments

i nfo chmapinformation

i dx the substream number index

665

Sound Devices

Name

pcm_format_to_hits — Strong-typed conversion of pcm_format to bitwise
Synopsis
u64 pcmformat _to bits (snd_pcmformat_t pcmformt);

Arguments

pcm format PCM format

666

Sound Devices

Name

snd_pcm_format_name — Return a name string for the given PCM format
Synopsis
const char * snd_pcm format_nane (snd_pcmformat_t format);

Arguments

format PCM format

667

Sound Devices

Name

snd_pcm_new_stream — create a new PCM stream
Synopsis

int snd_pcmnew stream (struct snd_pcm * pcm int stream int
substream count);

Arguments
pcm the pcm instance
stream the stream direction, SNDRV_PCM_STREAM_XXX

substream count the number of substreams

Description

Creates a new stream for the pcm. The corresponding stream on the pcm must have been empty before
caling this, i.e. zero must be given to the argument of snd_pcm new.

Return

Zero if successful, or anegative error code on failure.

668

Sound Devices

Name

snd_pcm_new — create anew PCM instance
Synopsis

int snd_pcmnew (struct snd_card * card, const char * id, int device,
i nt playback _count, int capture_count, struct snd_pcm** rpcnj;

Arguments
card the card instance
id theid string
devi ce the device index (zero based)

pl ayback count thenumber of substreams for playback
capt ure_count the number of substreams for capture

rpcm the pointer to store the new pcm instance

Description

Creates anew PCM instance.

The pcm operators have to be set afterwards to the new instanceviasnd_pcm set _ops.

Return

Zero if successful, or a negative error code on failure.

669

Sound Devices

Name

snd_pcm_new_internal — create anew internal PCM instance

Synopsis

int snd_pcmnew internal (struct snd_card * card, const char * id, int
device, int playback count, int capture_count, struct snd_pcm?** rpcnj;

Arguments
card the card instance
id theid string
devi ce the device index (zero based - shared with normal PCMs)

pl ayback count thenumber of substreams for playback
capt ure_count the number of substreams for capture

rpcm the pointer to store the new pcm instance

Description

Creates a new internal PCM instance with no userspace device or procfs entries. Thisis used by ASoC
Back End PCMs in order to create a PCM that will only be used internally by kernel drivers. i.e. it cannot
be opened by userspace. It provides existing ASoC components drivers with a substream and access to
any private data.

The pcm operators have to be set afterwards to the new instanceviasnd_pcm set _ops.

Return

Zero if successful, or a negative error code on failure.

670

Sound Devices

Name
snd_pcm_notify — Add/remove the notify list

Synopsis

int snd_pcmnotify (struct snd_pcmnotify * notify, int nfree);

Arguments
notify PCM notify list
nfree O=register, 1 =unregister

Description

Thisaddsthe given notifier to the global list so that the callback is called for each registered PCM devices.
Thisexistsonly for PCM OSS emulation, so far.

671

Sound Devices

Name

snd_device_new — create an AL SA device component
Synopsis

i nt snd_device_new (struct snd_card * card, enum snd_device_type type,
void * device_data, struct snd_device_ops * ops);

Arguments
card the card instance
type the device type, SNDRV_DEV_XXX

devi ce_dat a thedatapointer of this device

ops the operator table

Description

Creates a new device component for the given data pointer. The device will be assigned to the card and
managed together by the card.

The data pointer plays arole as the identifier, too, so the pointer address must be unique and unchanged.

Return

Zero if successful, or anegative error code on failure.

672

Sound Devices

Name

snd_device disconnect — disconnect the device

Synopsis

voi d snd_devi ce_di sconnect (struct snd_card * card, void * device_data);

Arguments

card the card instance

devi ce_dat a thedatapointer to disconnect

Description

Turnsthe device into the disconnection state, invoking dev_disconnect callback, if the device was already
registered.

Usually called fromsnd_car d_di sconnect.

Return

Zero if successful, or anegative error code on failure or if the device not found.

673

Sound Devices

Name

snd_device free — release the device from the card

Synopsis

void snd_device free (struct snd_card * card, void * device_data);

Arguments

card the card instance

devi ce_dat a thedatapointer to release

Description

Removes the device from the list on the card and invokes the callbacks, dev_disconnect and dev_free,
corresponding to the state. Then release the device.

674

Sound Devices

Name

snd_device _register — register the device
Synopsis
int snd_device_register (struct snd_card * card, void * device_data);

Arguments

card the card instance

devi ce_dat a thedatapointer to register

Description
Registers the device which was already created via snd_devi ce_new. Usualy this is called from

snd_card_regi ster, but it can be called later if any new devices are created after invocation of
snd_card_register.

Return

Zero if successful, or anegative error code on failure or if the device not found.

675

Sound Devices

Name

snd_iprintf — printf on the procfs buffer

Synopsis

int snd_iprintf (struct snd_info_buffer * buffer, const char * fnt, ...

Arguments

buf f er the procfsbuffer
fnt the printf format
variable arguments

Description

Outputs the string on the procfs buffer just likepri nt f .

Return

The size of output string, or a negative error code.

676

Sound Devices

Name

snd_info_get line— read one line from the procfs buffer

Synopsis

int snd_info_get line (struct snd_info_buffer * buffer, char * |ine,
int len);
Arguments

buf f er the procfsbuffer
line the buffer to store

| en the max. buffer size

Description

Reads one line from the buffer and stores the string.

Return

Zero if successful, or 1if error or EOF.

677

Sound Devices

Name
snd_info_get str — parse a string token

Synopsis
const char * snd_info_get_str (char * dest, const char * src, int len);

Arguments

dest thebuffer to store the string token
src theoriginal string
[en themax. length of token - 1

Description

Parses the original string and copy atoken to the given string buffer.

Return

The updated pointer of the origina string so that it can be used for the next call.

678

Sound Devices

Name

snd_info_create_ module_entry — create an info entry for the given module
Synopsis

struct snd_info_entry * snd_info_create _nodule_entry (struct mnodule *
nmodul e, const char * nane, struct snd_info_entry * parent);

Arguments

nodul e the module pointer
nane the file name

par ent the parent directory

Description

Creates anew info entry and assignsit to the given module.

Return

The pointer of the new instance, or NULL on failure.

679

Sound Devices

Name

snd_info_create card_entry — create an info entry for the given card
Synopsis

struct snd_info_entry * snd_info_create card_entry (struct snd_card *
card, const char * name, struct snd_info_entry * parent);

Arguments

card the card instance
nane thefile name

par ent the parent directory

Description

Creates anew info entry and assignsit to the given card.

Return

The pointer of the new instance, or NULL on failure.

680

Sound Devices

Name

snd_card_proc_new — create an info entry for the given card
Synopsis

int snd_card_proc_new (struct snd_card * card, const char * nanme, struct
snd_info_entry ** entryp);

Arguments

card the card instance
nane thefile name

ent ryp the pointer to store the new info entry

Description

Creates a new info entry and assigns it to the given card. Unlikesnd_i nfo_create_card _entry,
thisfunction registerstheinfo entry asan AL SA device component, so that it can be unregistered/rel eased
without explicit call. Also, you don't have to register this entry viasnd_i nf o_r egi st er, since this
will beregistered by snd_car d_r egi st er automatically.

The parent is assumed as card->proc_root.
For releasing this entry, usesnd_devi ce_freeinstead of snd_i nfo_free_entry.

Return

Zero if successful, or anegative error code on failure.

681

Sound Devices

Name
snd_info_free_entry — release the info entry
Synopsis
void snd_info free entry (struct snd_info_entry * entry);
Arguments
entry theinfoentry
Description

Releases the info entry. Don't call this after registered.

682

Sound Devices

Name
snd_info_register — register the info entry

Synopsis
int snd_info_register (struct snd_info_entry * entry);

Arguments

entry theinfoentry

Description

Registers the proc info entry.

Return

Zero if successful, or a negative error code on failure.

683

Sound Devices

Name

snd_rawmidi_receive — receive the input data from the device
Synopsis

int snd_rawn di _receive (struct snd_rawnm di _substream* substream const
unsi gned char * buffer, int count);

Arguments
substream therawmidi substream
buf f er the buffer pointer
count the data size to read
Description

Reads the data from the internal buffer.

Return

The size of read data, or a negative error code on failure.

684

Sound Devices

Name
snd_rawmidi_transmit_empty — check whether the output buffer is empty

Synopsis
int snd_rawridi _transmit_enpty (struct snd_rawnr di _substream * sub-
stream;

Arguments

substream therawmidi substream

Return

1if theinternal output buffer isempty, Oif not.

685

Sound Devices

Name

__snd_rawmidi_transmit_peek — copy data from the internal buffer

Synopsis

int _ snd rawrmidi _transmt_peek (struct snd_rawm di_substream * sub-
stream unsigned char * buffer, int count);

Arguments
substream therawmidi substream
buf f er the buffer pointer
count data size to transfer
Description

Thisisavariant of snd_rawm di _transm t_peek without spinlock.

686

Sound Devices

Name

snd_rawmidi_transmit_peek — copy data from the internal buffer
Synopsis

int snd_rawridi _transmt_peek (struct snd_rawrdi_substream * sub-
stream unsigned char * buffer, int count);

Arguments
substream therawmidi substream
buf f er the buffer pointer
count data size to transfer
Description

Copies data from the internal output buffer to the given buffer.

Cdl this in the interrupt handler when the midi output is ready, and cal
snd_rawni di _transnit_ack after thetransmission isfinished.

Return

The size of copied data, or a negative error code on failure.

687

Sound Devices

Name

__snd_rawmidi_transmit_ack — acknowledge the transmission

Synopsis

int _ snd rawmdi _transmt_ack (struct snd_rawnr di _substream * sub-
stream int count);

Arguments
subst ream therawmidi substream
count the transferred count
Description

Thisisavariantof __snd_r awmi di _transm t _ack without spinlock.

688

Sound Devices

Name

snd_rawmidi_transmit_ack — acknowledge the transmission
Synopsis

int snd_rawnridi _transmt_ack (struct snd_rawni di _substream* substream
int count);

Arguments

substream therawmidi substream

count the transferred count

Description

Advancesthe hardware pointer for the internal output buffer with the given size and updates the condition.
Call after the transmission is finished.

Return

The advanced sizeif successful, or a negative error code on failure.

689

Sound Devices

Name

snd_rawmidi_transmit — copy from the buffer to the device
Synopsis

int snd_rawrdi _transmit (struct snd_rawnr di _substream?* substream un-
signed char * buffer, int count);

Arguments
substream therawmidi substream
buf f er the buffer pointer
count the data size to transfer
Description

Copies data from the buffer to the device and advances the pointer.

Return

The copied sizeif successful, or anegative error code on failure.

690

Sound Devices

Name

snd_rawmidi_new — create arawmidi instance
Synopsis

int snd_rawm di _new (struct snd_card * card, char * id, int device, int
out put _count, int input_count, struct snd_rawridi ** rrawrdi);

Arguments
card the card instance
id theid string
devi ce the device index

out put _count the number of output streams
i nput _count the number of input streams

rrawn di the pointer to store the new rawmidi instance

Description

Createsanew rawmidi instance. Usesnd_r awm di _set _ops to set the operatorsto the new instance.

Return

Zero if successful, or a negative error code on failure.

691

Sound Devices

Name
snd_rawmidi_set_ops — set the rawmidi operators
Synopsis
voi d snd_rawm di _set_ops (struct snd_rawridi * rmdi, int stream struct

snd_rawni di _ops * ops);

Arguments

rm di the rawmidi instance

stream thestream direction, SNDRV_RAWMIDI_STREAM_XXX

ops the operator table

Description

Sets the rawmidi operators for the given stream direction.

692

Sound Devices

Name
snd_request_card — try to load the card module
Synopsis
voi d snd_request_card (int card);
Arguments
card thecard number
Description
Triestoload themodule*snd-card-X" for the given card number viarequest_ module. Returnsimmediately
if already loaded.

693

Sound Devices

Name

snd_lookup_minor_data— get user data of aregistered device
Synopsis
void * snd_I| ookup_m nor_data (unsigned int mnor, int type);

Arguments

m nor the minor number
type devicetype (SNDRV_DEVICE TYPE XXX)

Description

Checks that a minor device with the specified type is registered, and returns its user data pointer.

Thisfunction incrementsthe reference counter of the card instance if an associated instance with the given
minor number and typeisfound. The caller must call snd_car d_unr ef appropriately later.

Return

The user data pointer if the specified deviceisfound. NULL otherwise.

694

Sound Devices

Name
snd_register_device — Register the ALSA device file for the card

Synopsis

int snd_register_device (int type, struct snd_card * card, int dev,
const struct file_operations * f_ops, void * private_data, struct device

* device);
Arguments
type the device type, SNDRV_DEVICE_TYPE XXX
card the card instance
dev the device index
f _ops the file operations

private_data userpointer for f_ops->open

devi ce the device to register

Description

Registers an ALSA devicefilefor the given card. The operators have to be set in reg parameter.

Return

Zero if successful, or a negative error code on failure.

695

Sound Devices

Name

snd_unregister_device — unregister the device on the given card
Synopsis
i nt snd_unregister_device (struct device * dev);

Arguments

dev thedeviceinstance

Description

Unregisters the device file already registered viasnd_r egi st er _devi ce.

Return

Zero if successful, or a negative error code on failure.

696

Sound Devices

Name

copy_to_user_fromio — copy data from mmio-space to user-space
Synopsis

int copy_to user _fromo (void __user * dst, const volatile void __ionem
* src, size_t count);

Arguments
dst the destination pointer on user-space
src the source pointer on mmio

count thedatasizeto copy in bytes

Description

Copies the data from mmio-space to user-space.

Return

Zero if successful, or non-zero on failure.

697

Sound Devices

Name

copy_from_user_toio — copy data from user-space to mmio-space

Synopsis

int copy_fromuser _toio (volatile void __ionem?* dst,

* src, size_t count);

Arguments
dst the destination pointer on mmio-space
src the source pointer on user-space

count thedatasizeto copy in bytes

Description

Copies the data from user-space to mmio-space.

Return

Zero if successful, or non-zero on failure.

const void __user

698

Sound Devices

Name
snd_pcm_lib_preallocate free for_all — release al pre-allocated buffers on the pcm

Synopsis
int snd_pcmlib_preallocate free for_all (struct snd_pcm* pcm;

Arguments

pcm the pcminstance

Description

Releases all the pre-all ocated buffers on the given pcm.

Return

Zero if successful, or a negative error code on failure.

699

Sound Devices

Name
snd_pcm_lib_preallocate pages — pre-allocation for the given DMA type

Synopsis

int snd_pcmlib_preall ocate_pages (struct snd_pcm substream * sub-
stream int type, struct device * data, size_t size, size_t max);

Arguments
subst ream the pcm substream instance
type DMA type (SNDRV_DMA_TYPE_*)
dat a DMA type dependent data
si ze the requested pre-allocation size in bytes
nax the max. allowed pre-allocation size
Description

Do pre-alocation for the given DMA buffer type.

Return

Zero if successful, or anegative error code on failure.

700

Sound Devices

Name

snd_pcm_lib_preallocate pages for_all — pre-allocation for continuous memory type (all substreams)
Synopsis

int snd_pcmlib_preallocate pages_for_all (struct snd_pcm * pcm int
type, void * data, size_t size, size_t max);

Arguments

pcm the pcminstance

type DMA type(SNDRV_DMA TYPE_*)
data DMA type dependent data

si ze therequested pre-allocation size in bytes

max the max. alowed pre-allocation size

Description

Do pre-alocation to all substreams of the given pcm for the specified DMA type.

Return

Zero if successful, or anegative error code on failure.

701

Sound Devices

Name
snd_pcm_sgbuf_ops_page — get the page struct at the given offset

Synopsis

struct page * snd_pcm sgbuf_ops_page (struct snd_pcm substream * sub-
stream unsigned | ong offset);

Arguments
subst ream the pcm substream instance
of f set the buffer offset
Description

Used as the page callback of PCM ops.

Return

The page struct at the given buffer offset. NULL on failure.

702

Sound Devices

Name
snd_pcm_lib_malloc_pages — allocate the DMA buffer

Synopsis

int snd_pcmlib_nmalloc_pages (struct snd_pcm substream *
size_t size);

Arguments
subst ream the substream to allocate the DMA buffer to
si ze the requested buffer sizein bytes
Description

Allocates the DMA buffer on the BUS type given
snd_pcm i b_preal | ocat e_xxx_pages.

Return

1if the buffer is changed, 0 if not changed, or a negative code on failure.

substream

earlier

to

703

Sound Devices

Name
snd_pcm_lib_free pages — release the allocated DMA buffer.

Synopsis
int snd_pcmlib_free pages (struct snd_pcm substream * substream;

Arguments

subst ream the substream to release the DMA buffer

Description

Releasesthe DMA buffer allocated viasnd_pcm |i b_nal | oc_pages.

Return

Zero if successful, or a negative error code on failure.

704

Sound Devices

Name

snd_pcm_lib_free vmalloc_buffer — free vmalloc buffer

Synopsis

int snd_pcmlib free_vmalloc_buffer (struct snd_pcm substream * sub-
stream;

Arguments

subst ream the substream with abuffer allocated by snd_pcm i b_al |l oc_vmal | oc_buffer

Return

Zero if successful, or anegative error code on failure.

705

Sound Devices

Name
snd_pcm_lib_get vmalloc_page — map vmalloc buffer offset to page struct

Synopsis

struct page * snd_pcmlib_get_vmalloc_page (struct snd_pcm substream *
substream unsigned | ong offset);

Arguments
subst ream the substream with abuffer allocated by snd_pcm i b_al |l oc_vmal | oc_buffer
of f set offset in the buffer

Description

This function isto be used as the page callback in the PCM ops.

Return

The page struct, or NULL on failure.

706

Sound Devices

Name

snd_device initialize — Initialize struct device for sound devices
Synopsis
voi d snd_device_initialize (struct device * dev, struct snd_card * card);

Arguments

dev devicetoinitidize

card cardto assign, optional

707

Sound Devices

Name

snd_card_new — create and initialize a soundcard structure
Synopsis

int snd_card_new (struct device * parent, int idx, const char * xid,
struct nmodule * nodule, int extra_size, struct snd_card ** card_ret);

Arguments
par ent the parent device object
i dx card index (address) [0 ... (SNDRV_CARDS-1)]
xid card identification (ASCII string)
nodul e top level module for locking

extra_size adlocate thisextrasize after the main soundcard structure

card_ret the pointer to store the created card instance

Description

Creates and initializes a soundcard structure.

The function allocates snd_card instance via kzalloc with the given space for the driver to use freely. The
allocated struct is stored in the given card_ret pointer.

Return

Zero if successful or a negative error code.

708

Sound Devices

Name

snd_card_disconnect — disconnect al APIs from the file-operations (user space)
Synopsis
int snd_card_di sconnect (struct snd_card * card);

Arguments

card soundcard structure

Description

Disconnects all APIsfrom the file-operations (user space).

Return

Zero, otherwise a negative error code.

Note

The current implementation replaces all active file->f_op with special dummy file operations (they do
nothing except release).

709

Sound Devices

Name

snd_card_free when_closed — Disconnect the card, freeit later eventually

Synopsis

int snd_card_free_when_cl osed (struct snd_card * card);

Arguments

card soundcard structure

Description

Unlikesnd_car d_f r ee, thisfunction doesn't try to release the card resource immediately, but tries to
disconnect at first. When the card is still in use, the function returns before freeing the resources. The card
resources will be freed when the refcount gets to zero.

710

Sound Devices

Name

snd_card_free — frees given soundcard structure

Synopsis

int snd_card_free (struct snd_card * card);

Arguments

card soundcard structure

Description

Thisfunction releases the soundcard structure and the all assigned devicesautomatically. That is, you don't
have to release the devices by yourself.

This function waits until the all resources are properly released.

Return

Zero. Frees all associated devices and frees the control interface associated to given soundcard.

711

Sound Devices

Name

snd _card_set id — set card identification name

Synopsis

void snd_card_set _id (struct snd_card * card, const char * nid);

Arguments

card soundcard structure

nid new identification string

Description

This function sets the card identification and checks for name collisions.

712

Sound Devices

Name
snd_card_add dev_attr — Append a new sysfs attribute group to card

Synopsis

int snd_card_add_dev_attr (struct snd_card * card, const struct
attribute_group * group);

Arguments

card card instance

group attribute group to append

713

Sound Devices

Name

snd_card_register — register the soundcard
Synopsis
int snd_card_register (struct snd_card * card);

Arguments

card soundcard structure

Description
This function registers all the devices assigned to the soundcard. Until calling this, the ALSA control in-

terface is blocked from the external accesses. Thus, you should call this function at the end of theinitial-
ization of the card.

Return

Zero otherwise a negative error code if the registration failed.

714

Sound Devices

Name

snd_component_add — add a component string
Synopsis
i nt snd_conponent _add (struct snd_card * card, const char * component);

Arguments

card soundcard structure

conponent the component id string

Description

This function adds the component id string to the supported list. The component can be referred from the
asalib.

Return

Zero otherwise a negative error code.

715

Sound Devices

Name
snd_card file_ add — add thefile to thefilelist of the card

Synopsis
int snd_card_file_add (struct snd_card * card, struct file * file);

Arguments

card soundcard structure
file filepointer
Description

This function adds the file to the file linked-list of the card. This linked-list is used to keep tracking the
connection state, and to avoid the release of busy resources by hotplug.

Return

Zero or anegative error code.

716

Sound Devices

Name

snd _card_file_remove — remove the file from thefile list
Synopsis

int snd_card_file_renove (struct snd_card * card, struct file * file);
Arguments

card soundcard structure

file filepointer
Description

Thisfunction removesthefileformerly added tothecardviasnd_card_fi | e_add function. If all files

are removed and snd_car d_f ree_when_cl osed was called beforehand, it processes the pending
release of resources.

Return

Zero or anegative error code.

717

Sound Devices

Name

snd_power_wait — wait until the power-state is changed.
Synopsis
int snd_power_wait (struct snd_card * card, unsigned int power_state);

Arguments

card soundcard structure

power _state expected power state

Description

Waits until the power-state is changed.

Return

Zero if successful, or anegative error code.

Note

the power lock must be active before call.

718

Sound Devices

Name
snd_dma_program — program an |SA DMA transfer

Synopsis

voi d snd_dma_program (unsigned | ong dma, unsigned |ong addr, unsigned
i nt size, unsigned short node);

Arguments

dma the dmanumber
addr thephysical address of the buffer
si ze theDMA transfer size

node the DMA transfer mode, DMA_MODE_XXX

Description

Programs an ISA DMA transfer for the given buffer.

719

Sound Devices

Name
snd_dma_disable — stop the ISA DMA transfer

Synopsis
voi d snd_dma_di sabl e (unsi gned | ong dna);

Arguments

dma the dmanumber

Description

Stops the ISA DMA transfer.

720

Sound Devices

Name

snd_dma._pointer — return the current pointer to DMA transfer buffer in bytes

Synopsis

unsi gned int snd_dnma_pointer (unsigned |ong dma, unsigned int size);

Arguments

dma the dmanumber

si ze thedmatransfer size

Return

The current pointer in DMA transfer buffer in bytes.

721

Sound Devices

Name

snd_ctl_notify — Send notification to user-space for a control change

Synopsis

void snd_ctl _notify (struct snd_card * card, unsigned int mask, struct
snd_ctl _elemid * id);

Arguments

card thecard to send notification
mask theevent mask, SNDRV_CTL_EVENT_*

id the ctl element id to send notification

Description

This function adds an event record with the given id and mask, appends to the list and wakes up the user-
space for notification. This can be called in the atomic context.

722

Sound Devices

Name

snd_ctl_newl1 — create a control instance from the template
Synopsis

struct snd_kcontrol * snd_ctl_newl (const struct snd_kcontrol _new *
ncontrol, void * private_data);

Arguments
ncontr ol the initialization record
private_data theprivate datato set
Description

Allocates anew struct snd_kcontrol instance and initialize from the given template. When the accessfield
of ncontrol is 0, it's assumed as READWRITE access. When the count field is O, it's assumes as one.

Return

The pointer of the newly generated instance, or NULL on failure.

723

Sound Devices

Name

snd _ctl_free one — release the control instance

Synopsis

void snd_ctl _free_one (struct snd_kcontrol * kcontrol);

Arguments

kcont rol thecontrol instance

Description

Releases the control instance created viasnd_ct| _newor snd_ct| _newl. Don't cal this after the
control was added to the card.

724

Sound Devices

Name
snd_ctl_add — add the control instance to the card

Synopsis
int snd_ctl _add (struct snd_card * card, struct snd_kcontrol * kcontrol);

Arguments

card the card instance

kcont rol thecontrol instance to add

Description

Addsthe control instance created viasnd_ct | _neworsnd_ct | _newl tothegiven card. Assignsalso
an unique numid used for fast search.

It frees automatically the control which cannot be added.

Return

Zero if successful, or a negative error code on failure.

725

Sound Devices

Name

snd_ctl_replace — replace the control instance of the card
Synopsis

int snd_ctl_replace (struct snd_card * card, struct snd_kcontrol *
kcontrol, bool add_on_replace);

Arguments
card the card instance
kcontrol the control instance to replace

add_on_repl ace add the control if not already added

Description

Replacesthegiven contral. If the given control doesnot exist and theadd_on_replaceflagisset, the control
isadded. If the control exists, it is destroyed first.

It frees automatically the control which cannot be added or replaced.

Return

Zero if successful, or a negative error code on failure.

726

Sound Devices

Name

snd_ctl_remove — remove the control from the card and release it
Synopsis

int snd_ctl_renove (struct snd_card * card, struct snd_kcontrol * kcon-
trol);

Arguments

card the card instance

kcontrol thecontrol instance to remove

Description

Removes the control from the card and then releases the instance. You don't need to cal
snd_ct | _free_one.Youmust beinthewritelock - down_write(card->controls_rwsem).

Return

0 if successful, or anegative error code on failure.

727

Sound Devices

Name

snd_ctl_remove_id — remove the control of the given id and release it
Synopsis

int snd_ctl _remove_id (struct snd_card * card, struct snd_ctl_elem.id
*id);

Arguments

card thecardinstance

id the control id to remove

Description

Finds the control instance with the given id, removesit from the card list and releasesit.

Return

0 if successful, or anegative error code on failure.

728

Sound Devices

Name

snd_ctl_activate id — activate/inactivate the control of the given id
Synopsis

int snd_ctl _activate_id (struct snd_card * card, struct snd_ctl_elem.id
* id, int active);

Arguments
card the card instance
id the control id to activate/inactivate

active non-zeroto activate

Description

Findsthe control instance with the givenid, and activate or inactivate the control together with notification,
if changed. The given ID dataisfilled with full information.

Return

0if unchanged, 1 if changed, or a negative error code on failure.

729

Sound Devices

Name

snd_ctl_rename_id — replace the id of a control on the card
Synopsis

int snd_ctl _renanme_id (struct snd_card * card, struct snd_ctl_elem.id
* src_id, struct snd_ctl_elemid * dst_id);

Arguments

card the card instance
src_id theoldid
dst _id thenewid

Description

Finds the control with the old id from the card, and replaces the id with the new one.

Return

Zero if successful, or a negative error code on failure.

730

Sound Devices

Name

snd_ctl_find_numid — find the control instance with the given number-id
Synopsis

struct snd_kcontrol * snd_ctl _find_numd (struct snd_card * card, un-
signed int numd);

Arguments
card thecardinstance
num d the number-id to search
Description

Finds the control instance with the given number-id from the card.

Thecaller must down card->controls_rwsem before calling thisfunction (if the race condition can happen).

Return

The pointer of theinstance if found, or NULL if not.

731

Sound Devices

Name

snd_ctl_find_id — find the control instance with the given id
Synopsis

struct snd_kcontrol * snd_ctl _find_id (struct snd_card * card, struct
snd_ctl _elemid * id);

Arguments

card thecardinstance

id theid to search

Description

Finds the control instance with the given id from the card.

Thecaller must down card->controls_rwsem before calling thisfunction (if the race condition can happen).

Return

The pointer of theinstance if found, or NULL if not.

732

Sound Devices

Name

snd_ctl_register_ioctl — register the device-specific control-ioctls
Synopsis

int snd_ctl _register_ioctl (snd_kctl _ioctl _func_t fcn);
Arguments

fcn ioctl callback function
Description

called from each device manager like pcm.c, hwdep.c, etc.

733

Sound Devices

Name

snd_ctl_register_ioctl_compat — register the device-specific 32bit compat control-ioctls
Synopsis
int snd_ctl _register_ioctl_conpat (snd_kctl _ioctl_func_t fcn);

Arguments

fcn ioctl callback function

734

Sound Devices

Name

snd_ctl_unregister_ioctl — de-register the device-specific control-ioctls
Synopsis
int snd_ctl _unregister_ioctl (snd_kctl _ioctl_func_t fcn);

Arguments

fcn ioctl callback function to unregister

735

Sound Devices

Name

snd_ctl_unregister_ioctl_compat — de-register the device-specific compat 32bit control-ioctls
Synopsis
int snd_ctl _unregister_ioctl_conpat (snd_kctl _ioctl_func_t fcn);

Arguments

fcn ioctl callback function to unregister

736

Sound Devices

Name

snd_ctl_boolean_mono_info — Helper function for a standard boolean info callback with amono channel

Synopsis

int snd_ctl_bool ean_nono_info (struct snd_kcontrol * kcontrol, struct
snd_ctl _elem.info * uinfo);

Arguments
kcontrol thekcontrol instance
ui nfo info to store
Description
This is a function that can be used as info callback for a standard boolean control with a single mono
channel.

737

Sound Devices

Name

snd_ctl_boolean_stereo_info— Helper function for astandard boolean info callback with stereo two chan-
nels

Synopsis

int snd_ctl _bool ean_stereo_info (struct snd_kcontrol * kcontrol, struct
snd_ctl _elem.info * uinfo);

Arguments
kcontrol thekcontrol instance
ui nfo info to store
Description

Thisisafunction that can be used asinfo callback for astandard boolean control with stereo two channels.

738

Sound Devices

Name

snd_ctl_enum_info — fills the info structure for an enumerated control
Synopsis

int snd_ctl_enum.info (struct snd_ctl_eleminfo * info, unsigned int
channel s, unsigned int items, const char *const nanes[]);

Arguments

i nfo the structure to be filled
channel s the number of the control's channels; often one
itens the number of control values; aso the size of nanes

nanes| | an array containing the names of all control values

Description

Setsal required fieldsini nf o to their appropriate values. If the control's accessibility is not the default
(readable and writable), the caller hasto fill i nf o->access.

Return

Zero.

739

Sound Devices

Name
snd_pcm_set_ops — set the PCM operators

Synopsis

void snd_pcm set_ops (struct snd_pcm* pcm int direction,
snd_pcm ops * ops);

Arguments

pcm the pcm instance

di rection stream direction, SNDRV_PCM_STREAM_XXX

ops the operator table

Description

Sets the given PCM operators to the pcm instance.

const struct

740

Sound Devices

Name
snd_pcm_set_sync — set the PCM sync id
Synopsis
voi d snd_pcm set _sync (struct snd_pcm substream * substrean:
Arguments
subst ream the pcm substream
Description

Setsthe PCM sync identifier for the card.

741

Sound Devices

Name

snd_interval_refine— refine the interval value of configurator
Synopsis

int snd_interval _refine (struct snd_interval * i, const struct
snd_interval * v);

Arguments

i theinterval valueto refine

v theinterval valueto refer to

Description

Refines the interval value with the reference value. The interval is changed to the range satisfying both
intervals. Theinterval status (min, max, integer, etc.) are evaluated.

Return

Positive if the value is changed, zero if it's not changed, or a negative error code.

742

Sound Devices

Name

snd_interval_ratnum — refine the interval value

Synopsis

int snd_interval _ratnum (struct snd_interval * i, unsigned int
rats_count, struct snd_ratnum * rats, unsigned int * nunp, unsigned
int * denp);

Arguments

i interval to refine

rats_count number of ratnum_t

rats ratnum_t array

nunp pointer to store the resultant numerator

denp pointer to store the resultant denominator
Return

Positiveif the value is changed, zero if it's not changed, or a negative error code.

743

Sound Devices

Name

snd_interval_list — refine the interval value from the list
Synopsis

int snd_interval _list (struct snd_interval * i, unsigned int count,
const unsigned int * list, unsigned int mask);

Arguments

i the interval valueto refine
count thenumber of elementsin thelist
list thevaluelist

mask the bit-mask to evaluate

Description

Refines the interval value from the list. When mask is non-zero, only the elements corresponding to bit
1 are evaluated.

Return

Positiveif the value is changed, zero if it's not changed, or a negative error code.

744

Sound Devices

Name

snd_interval_ranges — refine the interval value from the list of ranges
Synopsis

int snd_interval _ranges (struct snd_interval * i, unsigned int count,
const struct snd_interval * ranges, unsigned int mask);

Arguments

[the interval valueto refine
count the number of elementsin thelist of ranges
ranges therangeslist

mask the bit-mask to evaluate

Description

Refinestheinterval valuefrom thelist of ranges. When mask isnon-zero, only the elements corresponding
to bit 1 are evaluated.

Return

Positiveif the value is changed, zero if it's not changed, or a negative error code.

745

Sound Devices

Name

snd_pcm_hw_rule_add — add the hw-constraint rule
Synopsis

int snd_pcmhw rule_add (struct snd_pcmruntinme * runtinme, unsigned int
cond, int var, snd_pcmhw rule func_t func, void * private, int dep,

)
Arguments

runtine thepcm runtimeinstance

cond condition bits

var the variable to evaluate

func the evaluation function

private the private data pointer passed to function
dep the dependent variables

variable arguments

Return

Zero if successful, or anegative error code on failure.

746

Sound Devices

Name
snd_pcm_hw_constraint_mask64 — apply the given bitmap mask constraint

Synopsis

int snd_pcm hw constraint_nask64 (struct snd_pcmruntinme * runtine,
snd_pcm hw _paramt var, u_int64_t mask);

Arguments

runti me PCM runtimeinstance
var hw_params variable to apply the mask

mask the 64bit bitmap mask

Description

Apply the constraint of the given bitmap mask to a 64-bit mask parameter.

Return

Zero if successful, or a negative error code on failure.

747

Sound Devices

Name

snd_pcm_hw_constraint_integer — apply an integer constraint to an interval

Synopsis

int snd_pcm hw _constraint_integer
snd_pcm hw _paramt var);

(struct snd_pcmruntinme * runtine,

Arguments

runti me PCM runtimeinstance

var hw_params variable to apply the integer constraint
Description

Apply the constraint of integer to an interval parameter.

Return

Positive if the value is changed, zero if it's not changed, or a negative error code.

748

Sound Devices

Name

snd_pcm_hw_constraint_minmax — apply a min/max range constraint to an interval

Synopsis

int snd_pcm hw constraint_mnmax (struct snd_pcmruntinme * runtine,
snd_pcm hw _paramt var, unsigned int mn, unsigned int max);

Arguments
runtime PCM runtimeinstance
var hw_params variable to apply the range
m n the minimal value
max the maximal value
Description

Apply the min/max range constraint to an interval parameter.

Return

Positiveif the value is changed, zero if it's not changed, or a negative error code.

749

Sound Devices

Name

snd_pcm_hw_constraint_list — apply alist of constraints to a parameter

Synopsis

i nt snd_pcm hw _constraint _|ist (struct snd_pcmruntime * run-
tinme, unsigned int cond, snd_pcmhw paramt var, const struct

snd_pcm hw constraint_list * |);

Arguments
runtime PCM runtimeinstance
cond condition bits
var hw_params variable to apply the list constraint
I list
Description

Apply thelist of constraints to an interval parameter.

Return

Zero if successful, or a negative error code on failure.

750

Sound Devices

Name

snd_pcm_hw_constraint_ranges — apply list of range constraints to a parameter

Synopsis

int snd_pcmhw constraint_ranges (struct snd_pcmruntime * run-
tinme, unsigned int cond, snd_pcmhw paramt var, const struct

snd_pcm hw _constrai nt_ranges * r);

Arguments
runtime PCM runtimeinstance
cond condition bits
var hw_params variable to apply the list of range constraints
r ranges
Description

Apply thelist of range constraints to an interval parameter.

Return

Zero if successful, or a negative error code on failure.

751

Sound Devices

Name

snd_pcm_hw_constraint_ratnums — apply rathums constraint to a parameter

Synopsis

int snd_pcmhw constraint_ratnums (struct snd_pcmruntine
tinme, unsi gned i nt cond, snd_pcm hw_param t var,
snd_pcm hw _constraint_ratnuns * r);

Arguments
runtime PCM runtimeinstance
cond condition bits
var hw_params variable to apply the rathums constraint
r struct snd_ratnums constriants
Return

Zero if successful, or anegative error code on failure.

*

run-
struct

752

Sound Devices

Name

snd_pcm_hw_constraint_ratdens — apply ratdens constraint to a parameter

Synopsis

int snd_pcmhw constraint_ratdens (struct snd_pcmruntine
tinme, unsi gned i nt cond, snd_pcm hw_param t var,
snd_pcm hw _constraint_ratdens * r);

Arguments
runtime PCM runtimeinstance
cond condition bits
var hw_params variable to apply the ratdens constraint
r struct snd_ratdens constriants
Return

Zero if successful, or anegative error code on failure.

*

run-
struct

753

Sound Devices

Name

snd_pcm_hw_constraint_msbits — add a hw constraint msbitsrule

Synopsis

int snd_pcm hw constraint_nsbits (struct snd_pcmruntinme * runtinme, un-
signed int cond, unsigned int wdth, unsigned int nsbits);

Arguments

runti me PCM runtimeinstance
cond condition bits
wi dt h sample bits width

nebits mshits width

Description
This constraint will set the number of most significant bits (msbits) if a sample format with the specified

width has been select. If width is set to 0 the mshits will be set for any sample format with awidth larger
than the specified mshits.

Return

Zero if successful, or a negative error code on failure.

754

Sound Devices

Name
snd_pcm_hw_constraint_step — add a hw constraint step rule

Synopsis

int snd_pcm hw constraint_step (struct snd_pcmruntinme * runtine, un-
signed int cond, snd_pcmhw paramt var, unsigned |ong step);

Arguments
runtime PCM runtimeinstance
cond condition bits
var hw_params variable to apply the step constraint
step step size
Return

Zero if successful, or anegative error code on failure.

755

Sound Devices

Name

snd_pcm_hw_constraint_pow2 — add a hw constraint power-of-2 rule

Synopsis

int snd_pcm hw constraint_pow?2 (struct snd_pcmruntinme * runtine, un-
signed int cond, snd_pcmhw paramt var);

Arguments

runti me PCM runtimeinstance

cond condition bits

var hw_params variable to apply the power-of-2 constraint
Return

Zero if successful, or anegative error code on failure.

756

Sound Devices

Name

snd_pcm_hw_rule_noresample — add aruleto allow disabling hw resampling

Synopsis

int snd_pcmhw rul e_noresanple (struct snd_pcmruntinme * runtine, un-
signed int base_rate);

Arguments

runti me PCM runtime instance

base_rate therate at which the hardware does not resample

Return

Zero if successful, or anegative error code on failure.

757

Sound Devices

Name

snd_pcm_hw_param_value — return par ans field var value

Synopsis

int snd_pcm hw param val ue (const struct snd_pcm hw parans * parans,
snd_pcm hw _paramt var, int * dir);

Arguments

par anms thehw_paramsinstance

var parameter to retrieve

dir pointer to the direction (-1,0,1) or NULL
Return

Thevaluefor field var if it'sfixed in configuration space defined by par ans. -El NVAL otherwise.

758

Sound Devices

Name

snd_pcm_hw_param_first — refine config space and return minimum value

Synopsis

int snd_pcmhw paramfirst (struct snd_pcm substream * pcm struct
snd_pcm hw_paranms * parans, snd_pcm hw paramt var, int * dir);

Arguments

pcm PCM instance

par ans the hw_paramsinstance

var parameter to retrieve
dir pointer to the direction (-1,0,1) or NULL
Description

Inside configuration space defined by par ans remove from var all values > minimum. Reduce config-
uration space accordingly.

Return

The minimum, or a negative error code on failure.

759

Sound Devices

Name

snd_pcm_hw_param_last — refine config space and return maximum value

Synopsis

int snd_pcmhw paramlast (struct snd_pcmsubstream * pcm struct
snd_pcm hw_paranms * parans, snd_pcm hw paramt var, int * dir);

Arguments

pcm PCM instance

par ans the hw_paramsinstance

var parameter to retrieve
dir pointer to the direction (-1,0,1) or NULL
Description

Inside configuration space defined by par ans remove from var al values < maximum. Reduce config-
uration space accordingly.

Return

The maximum, or a negative error code on failure.

760

Sound Devices

Name
snd_pcm_lib_ioctl — ageneric PCM ioctl callback

Synopsis

int snd_pcmlib_ioctl (struct snd_pcm substream * substream unsigned
int cnd, void * arg);

Arguments
subst ream the pcm substream instance
cnd ioctl command
arg ioctl argument
Description

Processes the generic ioctl commands for PCM. Can be passed as the ioctl callback for PCM ops.

Return

Zero if successful, or a negative error code on failure.

761

Sound Devices

Name
snd_pcm_period_elapsed — update the pcm status for the next period

Synopsis

voi d snd_pcm period_el apsed (struct snd_pcm substream * substream;

Arguments

subst ream the pcm substream instance

Description

This function is called from the interrupt handler when the PCM has processed the period size. It will
update the current pointer, wake up sleepers, etc.

Even if more than one periods have elapsed since the last call, you have to call this only once.

762

Sound Devices

Name
snd_pcm_add_chmap_ctls — create channel-mapping control elements
Synopsis

int snd_pcmadd_chmap_ctls (struct snd_pcm * pcm int stream con-
st struct snd_pcmchmap_elem * chmap, int max_channel s, unsigned | ong
private_value, struct snd_pcmchmap ** info_ret);

Arguments
pcm the assigned PCM instance
stream stream direction
chmap channel map elements (for query)

max_channel s the max number of channels for the stream
privat e _val ue thevaluepassed to each kcontrol's private value field

i nfo_ret store struct snd_pcm_chmap instance if non-NULL

Description

Create channel-mapping control elements assigned to the given PCM stream(s).

Return

Zero if successful, or anegative error value.

763

Sound Devices

Name

snd_hwdep_new — create a new hwdep instance
Synopsis

i nt snd_hwdep_new (struct snd_card * card, char * id, int device, struct
snd_hwdep ** rhwdep);

Arguments
card the card instance
id theid string

devi ce thedeviceindex (zero-based)

rhwdep the pointer to store the new hwdep instance

Description

Creates a new hwdep instance with the given index on the card. The callbacks (hwdep->ops) must be set
on the returned instance after this call manually by the caller.

Return

Zero if successful, or a negative error code on failure.

764

Sound Devices

Name
snd_pcm_stream_lock — Lock the PCM stream

Synopsis

void snd_pcm stream | ock (struct snd_pcm substream * substream;

Arguments

substream PCM substream

Description

Thislocks the PCM stream'’s spinlock or mutex depending on the nonatomic flag of the given substream.
This also takes the global link rw lock (or rw sem), too, for avoiding the race with linked streams.

765

Sound Devices

Name

snd_pcm_stream_unlock — Unlock the PCM stream

Synopsis

voi d snd_pcm stream unl ock (struct snd_pcm substream * substrean);

Arguments

substream PCM substream

Description

This unlocks the PCM stream that has been locked viasnd_pcm st ream | ock.

766

Sound Devices

Name
snd_pcm_stream_lock_irq — Lock the PCM stream

Synopsis

void snd_pcmstream|lock_irq (struct snd_pcm substream * substream;

Arguments

substream PCM substream

Description

This locks the PCM stream like snd_pcm st ream | ock and disables the local IRQ (only when
nonatomic isfalse). In nonatomic case, thisisidentical assnd_pcm st ream | ock.

767

Sound Devices

Name

snd_pcm_stream_unlock_irq — Unlock the PCM stream

Synopsis

void snd_pcm streamunl ock_irq (struct snd_pcm substream * substream;

Arguments

substream PCM substream

Description

Thisisacounter-part of snd_pcm st ream | ock_irq.

768

Sound Devices

Name

snd_pcm_stream_unlock_irgrestore — Unlock the PCM stream

Synopsis

void snd_pcm stream unl ock_irqgrestore (struct snd_pcm substream * sub-
stream unsigned | ong flags);

Arguments
substream PCM substream
fl ags irq flags
Description

Thisisacounter-part of snd_pcm st ream | ock_i rgsave.

769

Sound Devices

Name
snd_pcm_stop — try to stop al running streams in the substream group
Synopsis
int snd_pcmstop (struct snd_pcm substream* substream snd_pcm state_t
state);
Arguments
substream the PCM substream instance
state PCM state after stopping the stream
Description

The state of each stream is then changed to the given state unconditionally.

Return

Zero if successful, or anegative error code.

770

Sound Devices

Name

snd_pcm_stop_xrun — stop the running streams as XRUN
Synopsis
int snd_pcmstop_xrun (struct snd_pcm substream * substream;

Arguments

substream the PCM substream instance

Description

This stops the given running substream (and al linked substreams) as XRUN. Unlikesnd_pcm st op,
this function takes the substream lock by itself.

Return

Zero if successful, or a negative error code.

771

Sound Devices

Name
snd_pcm_suspend — trigger SUSPEND to all linked streams

Synopsis
i nt snd_pcm suspend (struct snd_pcm substream * substream;

Arguments

substream the PCM substream

Description

After thiscall, all streams are changed to SUSPENDED state.

Return

Zero if successful (or subst r eamisNULL), or a negative error code.

772

Sound Devices

Name
snd_pcm_suspend_all — trigger SUSPEND to all substreams in the given pcm

Synopsis
int snd_pcm suspend_all (struct snd_pcm* pcnj;

Arguments

pcm the PCM instance

Description

After thiscall, all streams are changed to SUSPENDED state.

Return

Zero if successful (or pcmisNULL), or a negative error code.

773

Sound Devices

Name
snd_pcm_lib_default_ mmap — Default PCM data mmap function

Synopsis

int snd_pcmlib default_nmap (struct snd_pcm substream * substream
struct vmarea_struct * area);

Arguments
substream PCM substream
area VMA
Description
Thisisthe default mmap handler for PCM data. When mmap pcm_opsis NULL, thisfunction isinvoked
implicitly.

774

Sound Devices

Name
snd_pcm_lib_mmap_iomem — Default PCM data mmap function for I/O mem

Synopsis

int snd_pcmlib_mrap_ionem(struct snd_pcm substream* substream struct
vm area_struct * area);

Arguments
substream PCM substream
area VMA
Description

When your hardware uses the iomapped pages as the hardware buffer and wants to mmap it, pass this
function as mmap pcm_ops. Note that thisis supposed to work only on limited architectures.

775

Sound Devices

Name
snd_malloc_pages — allocate pages with the given size

Synopsis
void * snd_nmal |l oc_pages (size_t size, gfp_t gfp_flags);
Arguments

si ze the size to alocate in bytes

of p_fl ags theallocation conditions, GFP_XXX

Description

Allocates the physically contiguous pages with the given size.

Return

The pointer of the buffer, or NULL if no enough memory.

776

Sound Devices

Name
snd_free pages— release the pages

Synopsis
void snd_free_pages (void * ptr, size_t size);
Arguments

ptr the buffer pointer to release

si ze theadlocated buffer size

Description

Releases the buffer allocated viasnd_rmal | oc_pages.

7

Sound Devices

Name
snd_dma_alloc_pages — allocate the buffer area according to the given type

Synopsis

int snd_dnma_al |l oc_pages (int type, struct device * device, size_t size,
struct snd_dma_buffer * dmab);

Arguments

type the DMA buffer type
devi ce thedevice pointer
si ze the buffer size to allocate

dmab buffer allocation record to store the allocated data

Description

Calls the memory-allocator function for the corresponding buffer type.

Return

Zero if the buffer with the given size is allocated successfully, otherwise a negative value on error.

778

Sound Devices

Name
snd_dma._alloc_pages fallback — allocate the buffer area according to the given type with fallback

Synopsis

int snd_dma_all oc_pages_fallback (int type, struct device * device,
size_t size, struct snd_dma_buffer * dmab);

Arguments

type the DMA buffer type
devi ce thedevice pointer
si ze the buffer size to allocate

dmab buffer allocation record to store the allocated data

Description

Callsthe memory-allocator function for the corresponding buffer type. When no spaceisleft, thisfunction
reduces the size and tries to allocate again. The size actually allocated is stored in res_size argument.

Return

Zero if the buffer with the given size is allocated successfully, otherwise a negative value on error.

779

Sound Devices

Name
snd_dma_free_pages — release the allocated buffer
Synopsis
voi d snd_dma_free _pages (struct snd_dma_buffer * dmab);
Arguments
dmab the buffer allocation record to release
Description

Releases the allocated buffer viasnd_dna_al | oc_pages.

780

Chapter 6. 16x50 UART Driver

781

16x50 UART Driver

Name

uart_update_timeout — update per-port FIFO timeouit.

Synopsis

voi d uart_update_timeout (struct uart_port * port,
unsi gned i nt baud);

Arguments

port uart_port structure describing the port
cflag termioscflag value

baud speed of the port

Description

unsi gned int cflag,

Set the port FIFO timeout value. The cf | ag value should reflect the actual hardware settings.

782

16x50 UART Driver

Name

uart_get_baud_rate — return baud rate for a particular port

Synopsis

unsigned int wuart_get_baud_rate (struct wuart_port * port, struct
ktermos * termos, struct ktermios * old, unsigned int mn, unsigned

i nt max);

Arguments

port uart_port structure describing the port in question.

term os desired termios settings.

old old termios (or NULL)

nmn minimum acceptable baud rate

nax maximum acceptable baud rate
Description

Decode the termios structure into a numeric baud rate, taking account of the magic 38400 baud rate (with
spd_* flags), and mapping the BO rate to 9600 baud.

If the new baud rate isinvalid, try the old termios setting. If it's still invalid, we try 9600 baud.

Update thet er mi os structure to reflect the baud rate we're actually going to be using. Don't do this for
the case where BO is requested (“ hang up”).

783

16x50 UART Driver

Name
uart_get_divisor — return uart clock divisor

Synopsis
unsi gned int uart_get_divisor (struct uart_port * port,
baud) ;

Arguments

port uart_port structure describing the port.

baud desired baud rate

Description

Calculate the uart clock divisor for the port.

unsi gned i nt

784

16x50 UART Driver

Name
uart_console write — write a console message to a seria port
Synopsis

void uart_console_ wite (struct uart_port * port, const char * s, un-
signed int count, void (*putchar) (struct uart_port *, int));

Arguments
port the port to write the message
S array of characters
count number of charactersin string to write

put char function to write character to port

785

16x50 UART Driver

Name

uart_parse_earlycon — Parse earlycon options

Synopsis

int uart_parse_earlycon (char * p, unsigned char * iotype, unsigned | ong
* addr, char ** options);

Arguments
p ptr to 2nd field (ie., just beyond '<name>,")
i otype ptrfor decoded iotype (out)
addr ptr for decoded mapbase/iobase (out)

options ptrfor <options> field; NULL if not present (out)

Description

Decodes earlycon kernel command line parameters of the form earlycon=<name>,io|mmio|
mmio032,<addr>,<options> console=<name>,io|mmiojmmio32,<addr>,<options>

The optional form earlycon=<name>,0x<addr>,<options> console=<name>,0x<addr>,<options> is also
accepted; thereturned i ot ype will be UPIO_MEM.

Returns 0 on success or -EINVAL on failure

786

16x50 UART Driver

Name

uart_parse options — Parse seria port baud/parity/bits/flow control.
Synopsis

voi d uart_parse_options (char * options, int * baud, int * parity, int
* bits, int * flow);

Arguments
options pointer to option string
baud pointer to an 'int' variable for the baud rate.

parity pointerto an'int' variable for the parity.

bits pointer to an 'int' variable for the number of data bits.
flow pointer to an 'int' variable for the flow control character.
Description

uart_parse _options decodes a string containing the serial console options. The format of the string is
<baud><parity><bits><flow>,

€9

115200n8r

787

16x50 UART Driver

Name

uart_set options — setup the serial console parameters
Synopsis

int uart_set_options (struct uart_port * port, struct console * co, int
baud, int parity, int bits, int flow);

Arguments
port pointer to the serial ports uart_port structure
co console pointer

baud baud rate
parity parity character - 'n' (none), ‘o' (odd), '€ (even)
bits number of data bits

fl ow flow control character - 'r* (rts)

788

16x50 UART Driver

Name

uart_register_driver — register adriver with the uart core layer

Synopsis

int uvart_register_driver (struct uart_driver * drv);

Arguments

drv low level driver structure

Description

Register a uart driver with the core driver. We in turn register with the tty layer, and initialise the core
driver per-port state.

We have a proc file in /proc/tty/driver which is named after the normal driver.

drv->port should be NULL, and the per-port structures should be registered using uart_add _one_port after
this call has succeeded.

789

16x50 UART Driver

Name

uart_unregister_driver — remove adriver from the uart core layer

Synopsis

void uart_unregister_driver (struct uart_driver * drv);

Arguments

drv low level driver structure

Description

Remove al references to a driver from the core driver. The low level driver must have removed all its
portsviatheuart renove_one_port if it registered them withuart _add_one_port. (ie, drv-

>port == NULL)

790

16x50 UART Driver

Name
uart_add_one port — attach a driver-defined port structure

Synopsis

int uart_add one port (struct wuart_driver * drv, struct uart_port *
uport);

Arguments
drv pointer to the uart low level driver structure for this port

uport uart port structure to use for this port.

Description

This allows the driver to register its own uart_port structure with the core driver. The main purpose isto
allow the low level uart driversto expand uart_port, rather than having yet more levels of structures.

791

16x50 UART Driver

Name

uart_remove_one_port — detach a driver defined port structure

Synopsis

int uart_renmpove_one_port (struct wuart_driver * drv, struct uart_port
* uport);

Arguments
drv pointer to the uart low level driver structure for this port

uport uart port structure for this port

Description

This unhooks (and hangs up) the specified port structure from the core driver. No further cals will be
made to the low-level code for this port.

792

16x50 UART Driver

Name
uart_handle_dcd_change — handle a change of carrier detect state

Synopsis
void uart_handl e_dcd_change (struct wuart_port * wuport, unsigned int
status);

Arguments

uport uart_port structure for the open port

st at us new carrier detect status, nonzero if active

Description

Caller must hold uport->lock

793

16x50 UART Driver

Name

uart_handle cts change — handle a change of clear-to-send state

Synopsis

void uart_handl e _cts_change (struct wuart_port * wuport, unsigned int
status);

Arguments

uport uart_port structure for the open port

st at us new clear to send status, nonzero if active

Description

Caller must hold uport->lock

794

16x50 UART Driver

Name

uart_insert_char — push a char to the uart layer

Synopsis

void uart_insert_char (struct uart_port * port, unsigned int status,
unsi gned int overrun, unsigned int ch, unsigned int flag);

Arguments

port corresponding port

status sateof the serial port RX buffer (LSR for 8250)
overrun mask of overrun bitsin st at us

ch character to push

flag flag for the character (see TTY_NORMAL and friends)

Description

User isresponsible to call tty flip_buffer_push when they are done with insertion.

795

16x50 UART Driver

Name
seria8250_get_port — retrieve struct uart_8250_port

Synopsis
struct uart_8250 port * serial 8250 _get _port (int line);

Arguments

| i ne serial line number

Description

This function retrieves struct uart_8250 port for the specific line. This struct *must* *not* be used to
perform a 8250 or seria core operation which is not accessible otherwise. Its only purpose is to make
the struct accessible to the runtime-pm callbacks for context suspend/restore. The lock assumption made
hereis hone because runtime-pm suspend/resume callbacks should not be invoked if thereisany operation
performed on the port.

796

16x50 UART Driver

Name
seria8250_suspend _port — suspend one serial port

Synopsis
voi d serial 8250 _suspend_port (int line);

Arguments

| i ne serial line number

Description

Suspend one serial port.

797

16x50 UART Driver

Name

serial 8250_resume_port — resume one serial port
Synopsis
voi d serial 8250 _resunme_port (int line);

Arguments

| i ne serial line number

Description

Resume one serial port.

798

16x50 UART Driver

Name
seria 8250 _register 8250 port — register a serial port
Synopsis
int serial 850 register_8250 _port (struct uart_8250 port * up);
Arguments
up seria port template
Description
Com;iglfjre the serial port specified by the request. If the port exists and isin use, it is hung up and unreg-
istered first.

The port is then probed and if necessary the IRQ is autodetected If thisfails an error is returned.

On success the port is ready to use and the line number is returned.

799

16x50 UART Driver

Name
seria8250_unregister_port — remove a 16x50 serial port at runtime
Synopsis
voi d serial 8250 _unregister_port (int line);
Arguments
l'i ne serial line number
Description
RemO\I/e one serial port. This may not be called from interrupt context. We hand the port back to the our
control.

800

Chapter 7. Frame Buffer Library

The frame buffer drivers depend heavily on four data structures. These structures are declared in in-
clude/linux/fb.h. They arefb_info, fb_var_screeninfo, fb_fix_screeninfo and fb_monospecs. Thelast three
can be made available to and from userland.

fb_info defines the current state of a particular video card. Inside fb_info, there exists afb_ops structure
which is a collection of needed functions to make fbdev and fbcon work. fb_info is only visible to the
kernel.

fb_var_screeninfo is used to describe the features of a video card that are user defined. With
fb_var_screeninfo, things such as depth and the resolution may be defined.

The next structureisfb_fix_screeninfo. This defines the properties of a card that are created when amode
isset and can't be changed otherwise. A good example of thisisthe start of the frame buffer memory. This
"locks" the address of the frame buffer memory, so that it cannot be changed or moved.

The last structure is fb_monospecs. In the old API, there was little importance for fb_monospecs. This
allowed for forbidden things such as setting a mode of 800x600 on afix frequency monitor. With the new
API, fb_monospecs prevents such things, and if used correctly, can prevent amonitor from being cooked.
fb_monospecs will not be useful until kernels 2.5.x.

Frame Buffer Memory

801

Frame Buffer Library

Name

register_framebuffer — registers a frame buffer device
Synopsis
int register_framebuffer (struct fb_info * fb_ info);

Arguments

fb_i nfo framebuffer info structure

Description
Registers aframe buffer devicef b_i nf o.

Returns negative errno on error, or zero for success.

802

Frame Buffer Library

Name

unregister_framebuffer — releases a frame buffer device
Synopsis
int unregister franebuffer (struct fb_info * fb_info);

Arguments

fb_i nfo framebuffer info structure

Description
Unregisters aframe buffer devicef b_i nf o.
Returns negative errno on error, or zero for success.
This function will also notify the framebuffer console to rel ease the driver.

This is meant to be called within a driver's nodul e_exit function. If this is called outside
nodul e_exi t, ensurethat thedriverimplementsf b_open andf b_r el ease tocheck that no process-
es are using the device.

803

Frame Buffer Library

Name
fb_set suspend — low level driver signals suspend

Synopsis

void fb_set suspend (struct fb info * info, int state);
Arguments

info framebuffer affected

state 0=resuming, !=0= suspending
Description

This is meant to be used by low level driversto signal suspend/resume to the core & clients. It must be
called with the console semaphore held

Frame Buffer Colormap

804

Frame Buffer Library

Name
fb_dealloc_cmap — deallocate a colormap
Synopsis
void fb _dealloc_crmap (struct fb _cmap * cmap);
Arguments
cmap frame buffer colormap structure
Description

Deallocates a colormap that was previously alocated withf b_al | oc_crap.

805

Frame Buffer Library

Name

fb_copy_cmap — copy a colormap

Synopsis

int fb _copy cnap (const struct fb cmap * from struct fb cmap * to);

Arguments
from frame buffer colormap structure

to frame buffer colormap structure

Description

Copy contents of colormap fromf r omtot o.

806

Frame Buffer Library

Name
fb_set cmap — set the colormap

Synopsis
int fb set cmap (struct fb_cmap * cmap, struct fb_info * info);
Arguments

cmap frame buffer colormap structure

i nf o frame buffer info structure

Description
Sets the colormap crmap for a screen of devicei nf o.

Returns negative errno on error, or Zero on SUCCess.

807

Frame Buffer Library

Name
fb_default_cmap — get default colormap
Synopsis
const struct fb_cnmap * fb_default _cmap (int len);
Arguments
| en sizeof palette for a depth
Description
Sets h'[he default colormap for a specific screen depth. | en isthe size of the palette for a particular screen
epth.

Returns pointer to a frame buffer colormap structure.

808

Frame Buffer Library

Name

fb_invert_cmaps — invert al defaults colormaps
Synopsis

void fb_invert _cnmaps (void);
Arguments

voi d noarguments

Description

Invert all default colormaps.

Frame Buffer Video Mode Database

809

Frame Buffer Library

Name

fb_try_mode — test a video mode
Synopsis

int fb try node (struct fb_var _screeninfo * var, struct fb_info * info,
const struct fb_videonode * nbde, unsigned int bpp);

Arguments

var frame buffer user defined part of display

i nfo frame buffer info structure

node frame buffer video mode structure

bpp color depthin bits per pixel
Description

Triesavideo modeto test it's validity for devicei nf o.

Returns 1 on success.

810

Frame Buffer Library

Name
fb_delete videomode — removed videomode entry from modelist

Synopsis
void fb_del ete videonode (const struct fb_videonode * node, struct
list _head * head);

Arguments

node videomode to remove

head struct list_head of modelist

NOTES

Will remove all matching mode entries

811

Frame Buffer Library

Name

fb_find_mode — finds avalid video mode

Synopsis

int fb_find _node (struct fb_var_screeninfo * var, struct fb_info * info,
const char * node_option, const struct fb_videonode * db, unsigned
int dbsize, const struct fb_videonmbde * default nopde, unsigned int
defaul t _bpp);

Arguments
var frame buffer user defined part of display
info frame buffer info structure

node_option string video mode to find

db video mode database

dbsi ze sizeof db

default _nmode default video modeto fall back to

defaul t _bpp default color depth in bits per pixel

Description

NOTE

Finds a suitable video mode, starting with the specified mode in node_opti on with fallback to
defaul t _node. If def aul t _node fails, all modesin the video mode database will be tried.

Valid mode specifiersfor nrode_opt i on:
<xres>x<yres>[M][R][-<bpp>][@<refresh>][i][m] or <name>[-<bpp>][@<refresh>]
with <xres>, <yres>, <bpp> and <refresh> decimal numbers and <name> a string.

If 'M" is present after yres (and before refresh/bpp if present), the function will compute the timings using
VESA (tm) Coordinated Video Timings (CVT). If 'R’ ispresent after 'M', will compute with reduced blank-
ing (for flatpanels). If 'i* is present, compute interlaced mode. If 'm' is present, add margins equal to 1.8%
of xresrounded down to 8 pixels, and 1.8% of yres. The char 'i' and 'm' must be after ‘M’ and 'R". Example:

1024x768MR-860m- Reduced blank with margins at 60Hz.

The passed struct var is_not_ cleared! This allows you to supply values for e.g. the grayscale and
accel_flagsfields.

Returns zero for failure, 1 if using specified node_opt i on, 2 if using specified nrode_opt i on with
an ignored refresh rate, 3 if default mode is used, 4 if fall back to any valid mode.

812

Frame Buffer Library

Name

fb_var_to_videomode — convert fb_var_screeninfo to fb_videomode
Synopsis

void fb_var_to_videonode (struct fb_videonode * node,
fb_var_screeninfo * var);

Arguments
node pointer to struct fb_videomode

var pointer to struct fb_var_screeninfo

const

struct

813

Frame Buffer Library

Name

fb_videomode to var — convert fb_videomode to fb_var_screeninfo
Synopsis

void fb_videonbde to var (struct fb_var_screeninfo * var, const struct
fb_vi deonmpbde * node);

Arguments
var pointer to struct fb_var_screeninfo

node pointer to struct fb_videomode

814

Frame Buffer Library

Name

fb_mode is_equal — compare 2 videomodes

Synopsis

int fb _nmode is _equal (const struct fb_videonpde * npbdel, const struct
fb_vi deonode * node2);

Arguments
nodel first videomode

node2 second videomode

RETURNS

1if equal, Oif not

815

Frame Buffer Library

Name
fb_find_best mode — find best matching videomode

Synopsis

const st ruct fb_vi deonpde * fb find best node (const st ruct
fb _var_screeninfo * var, struct |ist_head * head);

Arguments
var pointer to struct fb_var_screeninfo

head pointer to struct list_head of modelist

RETURNS

struct fb_videomode, NULL if none found
IMPORTANT

This function assumes that all modelist entries in info->modelist are valid.
NOTES

Finds best matching videomode which has an equal or greater dimension than var->xres and var->yres. If
more than 1 videomode is found, will return the videomode with the highest refresh rate

816

Frame Buffer Library

Name

fb_find_nearest_ mode — find closest videomode

Synopsis

const struct fb_videonode * fb _find nearest_nobde (const struct
fb _videonobde * nobde, struct |ist_head * head);

Arguments
node pointer to struct fb_videomode

head pointer to modelist

Description

Finds best matching videomode, smaller or greater in dimension. If more than 1 videomode is found, will
return the videomode with the closest refresh rate.

817

Frame Buffer Library

Name

fb_match_mode — find a videomode which exactly matches the timingsin var
Synopsis

const struct fb_vi deonode * fb_mat ch_node (const

fb _var_screeninfo * var, struct |ist_head * head);

Arguments
var pointer to struct fb_var_screeninfo

head pointer to struct list_head of modelist

RETURNS

struct fb_videomode, NULL if none found

struct

818

Frame Buffer Library

Name
fb_add videomode — adds videomode entry to modelist

Synopsis
int fb_add vi deonpde (const struct fb_vi deonode * node, struct |ist_head
* head);

Arguments

node videomode to add

head struct list_head of modelist

NOTES

Will only add unmatched mode entries

819

Frame Buffer Library

Name
fb_destroy_modelist — destroy modelist

Synopsis
void fb _destroy nopdelist (struct list_head * head);

Arguments

head struct list_head of modelist

820

Frame Buffer Library

Name

fb_videomode to_modelist — convert mode array to mode list

Synopsis

void fb_vi deonbde_to nodelist (const struct fb_vi deonbde * nodedb, int
num struct list_head * head);

Arguments
nodedb array of struct fb_videomode
num number of entriesin array

head struct list_head of modelist

Frame Buffer Macintosh Video Mode Database

821

Frame Buffer Library

Name
mac_vmode _to_var — converts vmode/cmode pair to var structure

Synopsis
int mac_vnode to var (int vnode, int cnode, struct fb_var_screeninfo
* var);

Arguments

vnode MacOS video mode
cnmode MacOS color mode

var frame buffer video mode structure

Description
Converts a MacOS vmode/cmode pair to aframe buffer video mode structure.

Returns negative errno on error, or zero for success.

822

Frame Buffer Library

Name

mac_map_monitor_sense — Convert monitor sense to vmode
Synopsis
int mac_map_nonitor_sense (int sense);

Arguments

sense Macintosh monitor sense number

Description

Converts a Macintosh monitor sense number to a MacOS vmode number.

Returns MacOS vmode video mode number.

823

Frame Buffer Library

Name

mac_find_mode — find avideo mode
Synopsis

int mac_find node (struct fb_var_screeninfo * var, struct fb_info *
i nfo, const char * node_option, unsigned int default_bpp);

Arguments
var frame buffer user defined part of display
info frame buffer info structure

node_opti on video mode name (see mac_modedbl[])
defaul t _bpp default color depth in bits per pixel
Description
Finds a suitable video mode. Tries to set mode specified by node_opt i on. If the name of the wanted

mode begins with 'mac’, the Mac video mode database will be used, otherwise it will fall back to the
standard video mode database.

Note

Function marked as__init and can only be used during system boot.

Returns error code from fb_find_mode (see fb_find_mode function).

Frame Buffer Fonts

Refer to thefile lib/fonts/fonts.c for more information.

824

Chapter 8. Input Subsystem

Input core

825

Input Subsystem

Name
struct input_value — input value representation
Synopsis
struct input_value {
__ul6 type;
__ulé code;
_s32 val ue;
s
Members

type type of value (EV_KEY, EV_ABS, €fc)
code the value code

value the value

826

Input Subsystem

Name

struct input_dev — represents an input device

Synopsis

struct input_dev {

const char * nane;
const char * phys;
const char * unigq;
struct input_id id;
unsi gned | ong propbit[BI TS _TO LONGS(| NPUT_PROP_CNT)] ;
unsi gned long evbit[BI TS TO LONGS(EV_CNT)];
unsi gned | ong keybit[BI TS_TO _LONGS(KEY_CNT)
unsi gned long rel bit[BI TS_TO LONGS(REL_CNT)
unsi gned | ong absbit[BI TS_TO LONGS(ABS_CNT)
unsi gned |l ong nschit[BI TS_TO _LONGS(MSC_CNT)

)

)

I
I
I
I
]
]

unsi gned long | edbit[BlI TS TO LONGS(LED _CNT
unsi gned | ong sndbit[BlI TS TO LONGS(SND_CNT
unsigned long ffbit[BI TS TO LONGS(FF_CNT)]
unsi gned |l ong swhit[BI TS _TO LONGS(SW CNT)] ;
unsi gned int hint_events_per_packet;

unsi gned int keycodemax;

unsi gned i nt keycodesi ze;

void * keycode;

int (* setkeycode) (struct input_dev *dev,const struct input_keymap_entry *ke, un
int (* getkeycode) (struct input_dev *dev,struct input_keymap entry *ke);

struct ff _device * ff;

unsi gned int repeat_key;

struct timer_list tinmer;

int rep[REP_CNT];

struct input_mt * nt;

struct input_absinfo * absinfo;

unsi gned | ong key[BI TS TO LONGS(KEY_CNT)];

unsi gned long | ed[BI TS TO LONGS(LED CNT)];

unsi gned |l ong snd[BI TS TO LONGS(SND _CNT)];

unsi gned |l ong sw BI TS TO LONGS(SW CNT)] ;

int (* open) (struct input_dev *dev);

void (* close) (struct input_dev *dev);

int (* flush) (struct input_dev *dev, struct file *file);

int (* event) (struct input_dev *dev, unsigned int type, unsigned int code, int

struct input_handle __rcu * grab

spi nl ock_t event | ock

struct mutex nmutex;

unsi gned int users;

bool goi ng_away;

struct device dev;

struct list_head h_list;

struct |ist_head node;

unsi gned int numvals;

unsi gned int max_vals;

struct input_value * vals;

bool devres_managed;

827

Input Subsystem

b
Members
name

phys
uniq

id

name of the device
physical path to the device in the system hierarchy
unique identification code for the device (if device hasit)

id of the device (struct input_id)

propbit[BITS TO LONGS(INPUT_PBIGRaCHf 1¢vice properties and quirks

evhit[BITS TO LONGS(EV_CNT)] bitmap of types of events supported by the device (EV_KEY,

EV_REL, etc.)

keybit[BITS TO_LONGS(KEY_CNThjtmap of keys/buttons this device has

relbit[BITS TO_LONGS(REL_CNT)hitmap of relative axes for the device

abshit[BITS TO_LONGS(ABS_CNTJitmap of absolute axes for the device

mschit[BITS TO LONGS(MSC_CNTBjfmap of miscellaneous events supported by the device

ledbit[BITS TO LONGS(LED_CNTitmap of leds present on the device

sndbit[BITS TO LONGS(SND_CNThtmap of sound effects supported by the device

ffbit[BITS TO_LONGS(FF_CNT)]

bitmap of force feedback effects supported by the device

swhit[BITS TO_LONGS(SW_CNT)] bitmap of switches present on the device

hint_events per_packet

keycodemax
keycodesize
keycode

setkeycode

getkeycode
ff

repeat_key

timer

average number of events generated by the device in a packet (be-
tween EV_SYN/SYN_REPORT events). Used by event handlers
to estimate size of the buffer needed to hold events.

size of keycode table
size of elementsin keycode table
map of scancodes to keycodes for this device

optional method to alter current keymap, used to implement sparse
keymaps. If not supplied default mechanism will be used. The
method is being called while holding event_lock and thus must not

sleep
optional legacy method to retrieve current keymap.

force feedback structure associated with the device if device sup-
ports force feedback effects

stores key code of the last key pressed; used to implement software
autorepeat

timer for software autorepeat

828

Input Subsystem

rep[REP_CNT] current values for autorepeat parameters (delay, rate)
mt pointer to multitouch state
absinfo array of struct input_absinfo elements holding information about

absolute axes (current value, min, max, flat, fuzz, resolution)
key[BITS TO LONGS(KEY_CNT)] reflects current state of device's keys/buttons
led[BITS_ TO_LONGS(LED_CNT)] reflects current state of device's LEDs
snd[BITS TO_LONGS(SND_CNT)] reflects current state of sound effects
sw[BITS TO_LONGS(SW_CNT)] reflects current state of device's switches

open this method is caled when the very first user cals
i nput _open_devi ce. The driver must prepare the device to
start generating events (start polling thread, request an IRQ, submit
URB, €tc.)

close this method is cadled when the very last user cals
i nput _cl ose_devi ce.

flush purgesthe device. Most commonly used to get rid of force feedback
effects loaded into the device when disconnecting from it

event event handler for events sent _to_ the device, like EV_LED or
EV_SND. The device is expected to carry out the requested ac-
tion (turn on a LED, play sound, etc.) The call is protected by
event _| ock and must not sleep

grab input handle that currently has the device grabbed (via EVIOC-
GRAB ioctl). When a handle grabs a device it becomes sole recip-
ient for al input events coming from the device

event_lock this spinlock is is taken when input core receives and processes a
new event for the device (ini nput _event). Code that accesses
and/or modifies parameters of a device (such askeymap or absmin,
absmax, absfuzz, etc.) after device has been registered with input
core must take this lock.

mutex seridlizes callsto open, ¢l ose and f | ush methods

users stores number of users (input handlers) that opened thisdevice. Itis
used by i nput _open_devi ce and i nput _cl ose_devi ce
to make sure that dev->open is only called when the first user
opens device and dev->cl ose is called when the very last user
closes the device

going_away marks devices that are in a middle of unregistering and causes
input_open_device*() fail with -ENODEV.

dev driver model's view of this device

h list list of input handles associated with the device. When accessing the
list dev->mutex must be held

829

Input Subsystem

node
num_vals
max_vals
vals

devres_managed

used to place the device onto input_dev_list
number of values queued in the current frame
maximum number of values queued in aframe
array of values queued in the current frame

indicatesthat devicesis managed with devres framework and needs
not be explicitly unregistered or freed.

830

Input Subsystem

Name

struct input_handler — implements one of interfaces for input devices

Synopsis

struct

i nput _handl er {

void * private;

void (* event) (struct
void (* events) (struct

i nput _handl e *handl e, unsigned int type,
i nput _handl e *handl e, const struct

bool (* filter) (struct input_handle *handl e, unsigned int type,
bool (* match) (struct input_handl er *handl er, struct input_dev *dev);
int (* connect) (struct input_handl er *handl er, struct input_dev *dev,

void (* disconnect) (struct
void (* start) (struct
| egacy_m nors;
int mnor;

bool

i nput _handl e *handl e) ;
i nput _handl e *handl e) ;

const char * nane;

const struct
list_head h_list;
i st_head node;

struct
struct

b

Members

private

event

events

filter

match

connect
disconnect

start

legacy _minors
minor

name

id_table

h_list

node

i nput _device_id * id_table;

driver-specific data

event handler. Thismethod isbeing called by input core with interrupts disabled and
dev->event_lock spinlock held and so it may not sleep

event sequence handler. This method is being called by input core with interrupts
disabled and dev->event_lock spinlock held and so it may not sleep

similar to event ; separates normal event handlers from “filters’.

called after comparing device's id with handler's id_table to perform fine-grained
matching between device and handler

called when attaching a handler to an input device
disconnects a handler from input device

startshandler for given handle. Thisfunctioniscalled by input coreright after con-
nect method and also when a process that “grabbed” a device rel eases it

settot r ue by drivers using legacy minor ranges

beginning of range of 32 legacy minors for devices this driver can provide
name of the handler, to be shown in /proc/bus/input/handlers

pointer to atable of input_device idsthis driver can handle

list of input handles associated with the handler

for placing the driver onto input_handler_list

831

unsi gned int cod
i nput _val ue *val s,
unsi gned int co

const str

Input Subsystem

Description

Input handlers attach to input devices and create input handles. There are likely several handlers attached
to any given input device at the same time. All of them will get their copy of input event generated by
the device.

Thevery same structure is used to implement input filters. Input core allowsfiltersto run first and will not
pass event to regular handlers if any of the filters indicate that the event should be filtered (by returning
true fromtheir fil t er method).

Note that input core serializes callsto connect and di sconnect methods.

832

Input Subsystem

Name

struct input_handle — links input device with an input handler

Synopsis

struct input_handle {
void * private;
i nt open;
const char * nane;

struct
struct
struct
struct

b
Members
private
open
name
dev
handler
d node

h_node

i nput _dev * dev;

i nput _handl er * handl er;
list _head d_node;

list _head h_node;

handler-specific data

counter showing whether the handle is 'open’, i.e. should deliver events from its device
name given to the handle by handler that created it

input device the handleis attached to

handler that works with the device through this handle

used to put the handle on device'slist of attached handles

used to put the handle on handler's list of handles from which it gets events

833

Input Subsystem

Name

input_set_events per packet — tell handlers about the driver event rate
Synopsis

voi d i nput _set _events_per_packet (struct input_dev * dev, int n_events);
Arguments

dev the input device used by the driver

n_events theaverage number of events between callstoi nput _sync

Description

If the event rate sent from a device is unusualy large, use this function to set the expected event rate.
This will alow handlers to set up an appropriate buffer size for the event stream, in order to minimize

information loss.

834

Input Subsystem

Name

struct ff_device — force-feedback part of an input device

Synopsis

struct ff_device {
int (* upload) (struct input_dev *dev, struct ff_effect *effect,struct ff_effect
int (* erase) (struct input_dev *dev, int effect_id);
int (* playback) (struct input_dev *dev, int effect_id, int value);
void (* set_gain) (struct input_dev *dev, ul6 gain);
void (* set_autocenter) (struct input_dev *dev, ul6 magnitude);
void (* destroy) (struct ff_device *);
void * private;
unsi gned long ffbit[BI TS TO LONGS(FF_CNT)];
struct mutex nutex;
int max_effects;
struct ff _effect * effects;
struct file * effect_owners[];

i
Members
upload Called to upload an new effect into device
erase Called to erase an effect from device
playback Called to request device to start playing specified effect
set gain Called to set specified gain
set_autocenter Called to auto-center device
destroy called by input core when parent input device is being destroyed
private driver-specific data, will be freed automatically

ffbit[BITS TO_LONGS(FF_CNT)] bitmap of force feedback capabilitiestruly supported by device (hot
emulated like onesin input_dev->ffbit)

mutex mutex for serializing access to the device

max_effects maximum number of effects supported by device

effects pointer to an array of effects currently loaded into device
effect_ownerq] array of effect owners; when file handle owning an effect gets

closed the effect is automatically erased

Description

Every force-feedback device must implement upl oad and pl ayback methods; er ase is option-
al. set _gain and set _aut ocent er need only be implemented if driver sets up FF_GAIN and
FF_AUTOCENTER hits.

835

Input Subsystem

Note that pl ayback, set _gai n and set _aut ocent er are caled with dev->event_lock spinlock
held and interrupts off and thus may not sleep.

836

Input Subsystem

Name

input_event — report new input event
Synopsis

void input_event (struct input_dev * dev, unsigned int type, unsigned
int code, int value);

Arguments
dev device that generated the event
type typeof the event
code event code

val ue value of the event

Description

This function should be used by drivers implementing various input devices to report input events. See
asoi nput _i nject_event.

NOTE

i nput _event may be safely used right after input device was alocated with
i nput _al | ocat e_devi ce, even before it isregistered with i nput _r egi st er _devi ce, but the
event will not reach any of the input handlers. Such early invocation of i nput _event may be used to
'seed' initial state of aswitch or initial position of absolute axis, etc.

837

Input Subsystem

Name

input_inject_event — send input event from input handler

Synopsis

void input_inject_event (struct input_handle * handle, unsigned int
type, unsigned int code, int value);

Arguments
handl e input handleto send event through
type type of the event
code event code

val ue value of the event

Description

Similar toi nput _event but will ignore event if deviceis“grabbed” and handle injecting event is not
the one that owns the device.

838

Input Subsystem

Name

input_alloc_absinfo — allocates array of input_absinfo structs
Synopsis

void input_alloc_absinfo (struct input_dev * dev);
Arguments

dev theinput device emitting absolute events
Description

If the absinfo struct the caller asked for is already allocated, this functions will not do anything.

839

Input Subsystem

Name
input_grab_device — grabs device for exclusive use
Synopsis
int input_grab device (struct input_handle * handle);
Arguments
handl e input handle that wantsto own the device
Description

When adeviceis grabbed by an input handle all events generated by the device are delivered only to this
handle. Also eventsinjected by other input handles are ignored while device is grabbed.

Input Subsystem

Name
input_release_device — release previously grabbed device
Synopsis
void input_rel ease_device (struct input_handl e * handl e);
Arguments
handl e input handle that owns the device
Description

Releases previously grabbed device so that other input handles can start receiving input events. Upon
release al handlers attached to the device have their st art method called so they have a change to
synchronize device state with the rest of the system.

841

Input Subsystem

Name
input_open_device — open input device
Synopsis
i nt input_open_device (struct input_handle * handle);
Arguments
handl e handle through which deviceis being accessed
Description
'ghi:_; function should be called by input handlers when they want to start receive events from given input
evice.

842

Input Subsystem

Name
input_close_device — close input device
Synopsis
void input_cl ose_device (struct input_handl e * handl e);
Arguments
handl e handle through which deviceis being accessed
Description
'ghi:_; function should be called by input handlers when they want to stop receive events from given input
evice.

Input Subsystem

Name

input_scancode to_scalar — converts scancode in struct input_keymap_entry

Synopsis

int input_scancode to_scalar (const struct input_keymap_ entry * Kke,
unsi gned int * scancode);

Arguments
ke keymap entry containing scancode to be converted.

scancode pointer to the location where converted scancode should be stored.

Description

This function is used to convert scancode stored in struct keymap_entry into scalar form understood by
legacy keymap handling methods. These methods expect scancodes to be represented as ‘unsigned int'.

Input Subsystem

Name

input_get_keycode — retrieve keycode currently mapped to a given scancode

Synopsis

i nt input_get keycode (struct input_dev * dev, struct input_keynmap entry
* ke);

Arguments
dev input device which keymap isbeing queried
ke keymap entry

Description

Thisfunction should be called by anyoneinterested in retrieving current keymap. Presently evdev handlers
useit.

Input Subsystem

Name
input_set_keycode — attribute a keycode to a given scancode
Synopsis
i nt i nput _set keycode (struct i nput _dev * dev, const st ruct

i nput _keymap_entry * ke);
Arguments

dev input device which keymap is being updated

ke new keymap entry

Description

Thisfunction should be called by anyone needing to update current keymap. Presently keyboard and evdev
handlers useit.

846

Input Subsystem

Name
input_reset_device — reset/restore the state of input device

Synopsis
void input_reset _device (struct input_dev * dev);

Arguments

dev input device whose state needs to be reset

Description

This function tries to reset the state of an opened input device and bring internal state and state if the
hardware in sync with each other. We mark all keys as released, restore LED state, repeat rate, etc.

847

Input Subsystem

Name

input_allocate _device — allocate memory for new input device
Synopsis

struct input_dev * input_allocate _device (void);
Arguments

voi d noarguments

Description

Returns prepared struct input_dev or NULL.

NOTE

Use input_free device to free devices tha have not been
i nput _unr egi st er _devi ce should be used for already registered devices.

registered;

Input Subsystem

Name

devm_input_allocate device — allocate managed input device

Synopsis

struct input_dev * devm.input_allocate device (struct device * dev);

Arguments

dev device owning the input device being created

Description

Returns prepared struct input_dev or NULL.

Managed input devices do not need to be explicitly unregistered or freed as it will be done automatically
when owner device unbinds from its driver (or binding fails). Once managed input device is allocated,
it is ready to be set up and registered in the same fashion as regular input device. There are no specia
devm_input_device [un]r egi st er variants, regular ones work with both managed and unmanaged de-
vices, should you need them. In most cases however, managed input device need not be explicitly unreg-
istered or freed.

NOTE

the owner deviceis set up as parent of input device and users should not override it.

849

Input Subsystem

Name

input_free_device — free memory occupied by input_dev structure
Synopsis

void input_free _device (struct input_dev * dev);
Arguments

dev input deviceto free

Description
Thisfunction should only beused if i nput _r egi st er _devi ce wasnot called yet or if it failed. Once
devicewasregistered usei nput _unr egi st er _devi ce and memory will befreed oncelast reference
to the device is dropped.

Device should be allocated by i nput _al | ocat e_devi ce.

NOTE

If there are references to the input device then memory will not be freed until last reference is dropped.

850

Input Subsystem

Name
input_set_capability — mark device as capable of a certain event
Synopsis
void input_set capability (struct input_dev * dev, unsigned int type,
unsi gned int code);
Arguments
dev devicethat iscapable of emitting or accepting event
type typeof theevent (EV_KEY, EV_REL, €tc...)
code event code
Description

In addition to setting up corresponding bit in appropriate capability bitmap the function also adjusts dev-
>evbit.

851

Input Subsystem

Name

input_register_device — register device with input core
Synopsis

int input_register_device (struct input_dev * dev);
Arguments

dev deviceto beregistered

Description

This function registers device with input core. The device must be alocated with
i nput _al | ocat e_devi ce and al it's capabilities set up before registering. If function fails the de-
vice must be freed with i nput _free_devi ce. Once device has been successfully registered it can
be unregistered withi nput _unr egi st er _devi ce;i nput _free_devi ce should not becalledin
this case.

Note that this function is also used to register managed input devices (ones alocated with
devm_ i nput _al | ocat e_devi ce). Such managed input devices need not be explicitly unregistered
or freed, their tear down is controlled by the devresinfrastructure. It is aso worth noting that tear down of
managed input devicesisinternally a2-step process: registered managed input deviceisfirst unregistered,
but stays in memory and can still handle i nput _event cals (athough events will not be delivered
anywhere). The freeing of managed input device will happen later, when devres stack is unwound to the
point where device alocation was made.

852

Input Subsystem

Name

input_unregister_device — unregister previously registered device
Synopsis

voi d i nput_unregister_device (struct input_dev * dev);
Arguments

dev deviceto be unregistered
Description

This function unregisters an input device. Once device is unregistered the caller should not try to access
it asit may get freed at any moment.

853

Input Subsystem

Name
input_register_handler — register anew input handler
Synopsis
int input_register_handler (struct input_handler * handler);
Arguments
handl er handler to be registered
Description

This function registers anew input handler (interface) for input devices in the system and attachesit to all
input devices that are compatible with the handler.

854

Input Subsystem

Name
input_unregister_handler — unregisters an input handler
Synopsis
voi d i nput_unregister_handl er (struct input_handler * handler);
Arguments
handl er handler to be unregistered
Description

This function disconnects a handler from its input devices and removesit from lists of known handlers.

855

Input Subsystem

Name

input_handler_for_each _handle — handle iterator

Synopsis
i nt input_handl er _for_each_handl e (struct input_handl er * handl er, void
* data, int (*fn) (struct input_handle *, void *));

Arguments

handl er input handler to iterate

dat a datafor the callback

fn function to be called for each handle
Description

Iterate over bus'slist of devices, and call f n for each, passing it dat a and stop when f n returns a non-
zero value. The function is using RCU to traverse the list and therefore may be usind in atonic contexts.

Thef n calback isinvoked from RCU critical section and thus must not sleep.

856

Input Subsystem

Name

input_register_handle — register a new input handle
Synopsis
int input_register_handle (struct input_handl e * handl e);

Arguments

handl e handleto register

Description

This function puts a new input handle onto device's and handler's lists so that events can flow through it
onceitisopened usingi nput _open_devi ce.

Thisfunction is supposed to be called from handler'sconnect method.

857

Input Subsystem

Name

input_unregister_handle — unregister an input handle
Synopsis

voi d i nput_unregister_handl e (struct input_handle * handl e);

Arguments

handl e handleto unregister

Description
This function removes input handle from device's and handler's lists.

Thisfunction is supposed to be called from handler'sdi sconnect method.

858

Input Subsystem

Name
input_get_new_minor — alocates a new input minor number
Synopsis
int input_get new ninor (int |egacy base, unsigned int | egacy num bool
al | ow_dynami c);
Arguments
| egacy_base beginning or the legacy range to be searched
| egacy_num size of legacy range
al | ow_dynam ¢ whether we can also take ID from the dynamic range
Description

This function allocates a new device minor for from input major namespace. Caller can request legacy
minor by specifyingl egacy_base and| egacy_numparametersand whether D can be allocated from

dynamic range if there are no free IDs in legacy range.

859

Input Subsystem

Name

input_free_minor — release previously allocated minor
Synopsis

void input_free mnor (unsigned int mnor);
Arguments

m nor minor to be released
Description

This function releases previously allocated input minor so that it can be reused later.

860

Input Subsystem

Name
input_ff_upload — upload effect into force-feedback device

Synopsis

int input_ff upload (struct input_dev * dev, struct ff_effect * effect,
struct file * file);

Arguments
dev input device
ef fect effect to be uploaded

file owner of the effect

861

Input Subsystem

Name
input_ff_erase — erase aforce-feedback effect from device
Synopsis
int input ff erase (struct input_dev * dev, int effect_id, struct file
* file);
Arguments
dev input device to erase effect from
ef fect _id idof theffectto beerased
file purported owner of the request
Description

This function erases aforce-feedback effect from specified device. The effect will only be erased if it was
uploaded through the same file handle that is requesting erase.

862

Input Subsystem

Name

input_ff_event — generic handler for force-feedback events
Synopsis

int input_ff _event (struct input_dev * dev, unsigned int type, unsigned
int code, int value);

Arguments
dev input device to send the effect to
type eventtype (anything but EV_FF isignored)
code event code

val ue eventvaue

863

Input Subsystem

Name

input_ff_create — create force-feedback device
Synopsis

int input ff create (struct input_dev * dev, unsigned int nax_effects);
Arguments

dev input device supporting force-feedback

max_effects maximum number of effects supported by the device

Description

This function allocates al necessary memory for aforce feedback portion of an input device and installs
al default handlers. dev->ffbit should be already set up before calling this function. Once ff device is
created you need to setup its upload, erase, playback and other handlers before registering input device

864

Input Subsystem

Name

input_ff_destroy — frees force feedback portion of input device
Synopsis

void input ff _destroy (struct input_dev * dev);
Arguments

dev input device supporting force feedback
Description

This function is only needed in error path as input core will automatically free force feedback structures
when deviceis destroyed.

865

Input Subsystem

Name
input_ff _create_memless — create memoryless force-feedback device
Synopsis
int input ff create_nmem ess (struct input_dev * dev, void * data, int
(*play_effect) (struct input_dev *, void *, struct ff _effect *));
Arguments
dev input device supporting force-feedback
dat a driver-specific datato be passed into pl ay_ef f ect

pl ay_effect driver-specific method for playing FF effect

Multitouch Library

866

Input Subsystem

Name
struct input_mt_slot — represents the state of aninput MT dlot

Synopsis

struct input_m _slot {

int abs[ABS_ MI_LAST - ABS MI_FIRST + 1];
unsi gned int frane;

unsi gned int Kkey;

} y
Members
abs/ABS MT_LAST - holds current values of ABS MT axesfor thisslot
ABS MT_FIRST + 1]
frame last frame at which i nput _m report_slot_state was
caled
key optional driver designation of this slot

867

Input Subsystem

Name

struct input_mt — state of tracked contacts

Synopsis

struct
int t
int n
int s
unsi g
unsi g
int *

i nput _nm {
rkid;
um sl ots;
| ot;

ned int flags;
ned int frame;
red;

struct input_m slot slots[];

b
Members

trkid

num_slots

slot

flags

frame

red

dotg]

stores MT tracking ID for the next contact

number of MT slots the device uses

MT dlot currently being transmitted

input_mt operation flags

increases every timei nput _nt _sync_frane iscalled
reduced cost matrix for in-kernel tracking

array of dlots holding current values of tracked contacts

868

Input Subsystem

Name

struct input_mt_pos — contact position
Synopsis

struct input_m pos {
s16 x;
sl1l6 v;
s
Members

X horizontal coordinate

y vertical coordinate

869

Input Subsystem

Name
input_mt_init_slots— initialize M T input slots

Synopsis

int input_nm _init_slots (struct input_dev * dev, unsigned int numslots,
unsi gned int flags);

Arguments
dev input device supporting MT events and finger tracking
num sl ots number of slots used by the device

fl ags mt tasks to handle in core

Description

This function allocates all necessary memory for MT slot handling in the input device, prepares the
ABS MT_SLOT and ABS MT_TRACKING_ID eventsfor use and sets up appropriate buffers. Depend-
ing on the flags set, it also performs pointer emulation and frame synchronization.

May be called repeatedly. Returns -EINV AL if attempting to reinitialize with a different number of slots.

870

Input Subsystem

Name

input_mt_destroy _slots — freesthe M T dlots of the input device
Synopsis

void input_nt_destroy_slots (struct input_dev * dev);
Arguments

dev input device with alocated MT dots
Description

This function is only needed in error path as the input core will automatically free the MT slots when the
deviceis destroyed.

871

Input Subsystem

Name
input_mt_report_slot_state — report contact state
Synopsis

void input_nt report_slot _state (struct
tool type, bool active);

i nput _dev * dev, unsigned int

Arguments

dev input device with allocated MT dlots

tool type thetool typeto usein thisslot

active true if contact is active, false otherwise

Description

Reports a contact via ABS MT_TRACKING _ID, and optionally ABS MT_TOOL_TYPE. If active is
true and the dlot is currently inactive, or if the tool type is changed, a new tracking id is assigned to the

dot. The tool typeisonly reported if the corresponding abshit field is set.

872

Input Subsystem

Name

input_mt_report_finger_count — report contact count
Synopsis

void input_nt report finger count (struct input_dev * dev, int count);
Arguments

dev input device with allocated MT dlots

count the number of contacts

Description

Reports the contact count via BTN_TOOL_FINGER, BTN_TOOL_DOUBLETAP,
BTN_TOOL_TRIPLETAPand BTN_TOOL_QUADTAP.

Theinput core ensures only the KEY events already setup for this device will produce output.

873

Input Subsystem

Name
input_mt_report_pointer_emulation — common pointer emulation

Synopsis
void input_nt report_pointer_enulation (struct input_dev * dev, bool
use_count);

Arguments
dev input device with allocated MT dlots

use_count report number of active contacts as finger count

Description

Performslegacy pointer emulationviaBTN_TOUCH, ABS X, ABS Y and ABS PRESSURE. Touchpad
finger count is emulated if use_count istrue.

Theinput core ensures only the KEY and ABS axes aready setup for this device will produce output.

874

Input Subsystem

Name

input_mt_drop_unused — Inactivate slots not seen in this frame
Synopsis

void input_nt_drop_unused (struct input_dev * dev);
Arguments

dev input device with alocated MT dots
Description

Lift all dots not seen since the last call to this function.

875

Input Subsystem

Name

input_mt_sync_frame — synchronize mt frame
Synopsis

void input_nt_sync_franme (struct input_dev * dev);
Arguments

dev input device with alocated MT dots

Description

Close the frame and prepare the internal state for a new one. Depending on the flags, marks unused slots
asinactive and performs pointer emulation.

876

Input Subsystem

Name

input_mt_assign_slots — perform a best-match assignment
Synopsis

int input_m _assign_slots (struct input_dev * dev, int * slots, const
struct input_m pos * pos, int numpos, int dnax);

Arguments
dev input device with allocated MT dlots
slots the slot assignment to befilled
pos the position array to match

num pos number of positions

dmax maximum ABS MT_POSITION displacement (zero for infinite)

Description

Performs a best match against the current contacts and returns the slot assignment list. New contacts are
assigned to unused slots.

The assignments are balanced so that al coordinate displacements are below the euclidian distance dmax.
If no such assignment can be found, some contacts are assigned to unused dlots.

Returns zero on success, or negative error in case of failure.

877

Input Subsystem

Name

input_mt_get_slot_by key — return slot matching key
Synopsis

int input_nt get slot_ by key (struct input_dev * dev, int key);
Arguments

dev input device with alocated MT dots

key thekey of the sought slot

Description
Returns the dlot of the given key, if it exists, otherwise set the key on the first unused ot and return.

If no available dot can be found, -1 is returned. Note that for this function to work properly,
i nput _nt _sync_frane hasto be called at each frame.

Polled input devices

878

Input Subsystem

Name
struct input_polled_dev — simple polled input device

Synopsis

struct input_polled dev {
void * private;
void (* open) (struct input_polled dev *dev);
void (* close) (struct input_polled dev *dev);
void (* poll) (struct input_polled dev *dev);

unsi gned int poll _interval;
unsi gned int poll _interval nax;
unsigned int poll _interval _mn;
struct input_dev * input;
1
Members
private private driver data.
open driver-supplied method that prepares device for polling (enabled the device
and maybe flushes device state).
close driver-supplied method that is called when device is no longer being polled.
Used to put device into low power mode.
poll driver-supplied method that polls the device and posts input events (manda-
tory).
poll_interval specifies how oftenthe pol | method should be called. Defaults to 500 msec
unless overridden when registering the device.
poll_interval_max specifies upper bound for the poll interval. Defaults to the initial value of
pol |l _interval.
poll_interval_min specifieslower bound for the poll interval. Defaultsto 0.
input input device structure associated with the polled device. Must be properly ini-
tialized by the driver (id, name, phys, bits).
Description

Polled input device provides a skeleton for supporting simple input devices that do not raise interrupts but
have to be periodically scanned or polled to detect changesin their state.

879

Input Subsystem

Name
input_allocate polled device — allocate memory for polled device
Synopsis
struct input_polled dev * input_allocate polled device (void);
Arguments
voi d noarguments
Description

The function allocates memory for a polled device and also for an input device associated with this polled
device.

880

Input Subsystem

Name
devm_input_allocate polled device — allocate managed polled device

Synopsis

struct input_polled dev * devm.input_allocate polled _device (struct de-
vice * dev);

Arguments

dev device owning the polled device being created

Description

Returns prepared struct input_polled_dev or NULL.

Managed polled input devices do not need to be explicitly unregistered or freed asit will be done automat-
ically when owner device unbindsfrom * itsdriver (or binding fails). Once such managed polled deviceis
alocated, it isready to be set up and registered in the same fashion as regular polled input devices (using
i nput _regi ster_pol | ed_devi ce function).

If you want to manually unregister and free such managed polled devices, it can be still done by call-

ing i nput _unregi ster_pol |l ed_device andi nput_free_pol | ed_devi ce, athough it is
rarely needed.

NOTE

the owner device is set up as parent of input device and users should not override it.

881

Input Subsystem

Name

input_free polled_device — free memory allocated for polled device
Synopsis
void input_free polled device (struct input_polled dev * dev);

Arguments

dev devicetofree

Description

Thefunction frees memory allocated for polling device and drops reference to the associated input device.

882

Input Subsystem

Name
input_register_polled device — register polled device

Synopsis
int input_register_polled device (struct input_polled dev * dev);

Arguments

dev deviceto register

Description

The function registers previously initialized polled input device with input layer. The device should be
allocated with call toi nput _al | ocat e_pol | ed_devi ce. Calers should also set up pol | method

and set up capabilities (id, name, phys, bits) of the corresponding input_dev structure.

883

Input Subsystem

Name
input_unregister_polled_device — unregister polled device

Synopsis
voi d input_unregister_polled device (struct input_polled dev * dev);

Arguments

dev deviceto unregister

Description

Thefunction unregisters previously registered polled input device from input layer. Polling is stopped and
deviceisready to befreed with call toi nput _free_pol | ed_devi ce.

Matrix keyboars/keypads

884

Input Subsystem

Name
struct matrix_keymap_data— keymap for matrix keyboards

Synopsis

struct matrix_keynap_data {
const uint32_t * keynap;
unsi gned int keymap_si ze;

1
Members
keymap pointer to array of uint32 values encoded with KEY macro representing keymap
keymap size number of entries (initialized) in this keymap
Description

This structure is supposed to be used by platform code to supply keymaps to drivers that implement ma-
trix-like keypads/keyboards.

885

Input Subsystem

Name
struct matrix_keypad platform_data— platform-dependent keypad data

Synopsis

struct matrix_keypad platformdata {
const struct matrix_keynmap_data * keynap_dat a;
const unsigned int * row _gpios;
const unsigned int * col _gpios;
unsi gned int numrow gpios;

unsi gned int num col gpi os;

unsi gned int col scan_del ay_us;

unsi gned i nt debounce_ns;

unsigned int clustered_ irq;

unsigned int clustered_irq_flags;

bool active_ | ow,

bool wakeup;

bool no_aut orepeat;

b
Members
keymap_data pointer to matrix_keymap_data
row_gpios pointer to array of gpio numbers representing rows
col_gpios pointer to array of gpio humbers reporesenting colums
num_row_gpios actual number of row gpios used by device
num_col_gpios actual number of col gpios used by device
col_scan delay us delay, measured in microseconds, that is needed before we can keypad after
activating column gpio
debounce_ms debounce interval in milliseconds
clustered_irq may be specified if interrupts of al row/column GPIOs are bundled to one
singleirq
clustered irq_flags flags that are needed for the clustered irq
active low gpio polarity
wakeup controls whether the device should be set up as wakeup source
no_autorepeat disable key autorepeat
Description

This structure represents platform-specific data that use used by matrix_keypad driver to perform proper
initialization.

886

Input Subsystem

Name
matrix_keypad_parse of params— Read parameters from matrix-keypad node

Synopsis

int matrix_keypad_parse_of parans (struct device * dev, unsigned int *
rows, unsigned int * cols);

Arguments
dev Device containing of _node
rows Returns number of matrix rows

col s Returns number of matrix columnsr et ur n 0 if OK, <0 on error

Sparse keymap support

887

Input Subsystem

Name
struct key_entry — keymap entry for use in sparse keymap
Synopsis
struct key entry {
int type;
u32 code;
uni on {unnaned_uni on};
1
Members
type Type of the key entry (KE_KEY, KE_SW, KE_VSW, KE_END); drivers are
alowed to extend the list with their own private definitions.
code Device-specific dataidentifying the button/switch
{ unnamed_union} anonymous
Description

This structure defines an entry in a sparse keymap used by some input devices for which traditional ta-
ble-based approach is not suitable.

888

Input Subsystem

Name
sparse_keymap_entry from_scancode — perform sparse keymap lookup
Synopsis
struct key entry * sparse_keymap_entry from scancode (struct input_dev
* dev, unsigned int code);
Arguments
dev Input device using sparse keymap
code Scancode
Description

Thisfunction is used to perform struct key_entry lookup in an input device using sparse keymap.

889

Input Subsystem

Name
sparse_keymap_entry_from_keycode — perform sparse keymap lookup

Synopsis
struct key entry * sparse_keymap_entry from keycode (struct input_dev
* dev, unsigned int keycode);

Arguments
dev Input device using sparse keymap
keycode Key code

Description

Thisfunction is used to perform struct key_entry lookup in an input device using sparse keymap.

890

Input Subsystem

Name
sparse_keymap_setup — set up sparse keymap for an input device

Synopsis

i nt sparse_keymap_setup (struct input_dev * dev, const struct key entry
* keymap, int (*setup) (struct input_dev *, struct key entry *));

Arguments
dev Input device
keymap Keymapinform of array of key_entry structures ending with KE_END type entry

setup Functionthat can be used to adjust keymap entries depending on device's deeds, may be NULL

Description

The function calculates size and alocates copy of the original keymap after which sets up input device
event bits appropriately. Before destroying input device allocated keymap should be freed with a call to
sparse_keynmap_free.

891

Input Subsystem

Name
sparse_keymap_free — free memory allocated for sparse keymap

Synopsis

voi d sparse_keymap free (struct input_dev * dev);
Arguments

dev Input device using sparse keymap

Description

This function is used to free memory alocated by sparse keymap in an input device that was set up by
spar se_keymap_set up.

NOTE

It is safe to cal this function while input device is till registered (however the drivers should care not to
try to use freed keymap and thus have to shut off interrupts/polling before freeing the keymap).

892

Input Subsystem

Name
sparse_keymap_report_entry — report event corresponding to given key entry

Synopsis

voi d sparse_keymap report_entry (struct input_dev * dev, const struct
key entry * ke, unsigned int val ue, bool autorelease);

Arguments
dev Input device for which event should be reported
ke key entry describing event
val ue Value that should be reported (ignored by KE_SWentries)

aut orel ease Signaswhether release event should be emitted for KE_KEY entriesright after report-
ing press event, ignored by all other entries

Description

This function is used to report input event described by given struct key_entry.

893

Input Subsystem

Name

sparse_keymap_report_event — report event corresponding to given scancode

Synopsis

bool sparse_keymap_report _event (struct input_dev * dev, unsigned int
code, unsigned int value, bool autorelease);

Arguments
dev Input device using sparse keymap
code Scan code
val ue Value that should be reported (ignored by KE_SWentries)

aut orel ease Signaswhether release event should be emitted for KE_KEY entriesright after report-
ing press event, ignored by all other entries

Description

Thisfunction is used to perform lookup in an input device using sparse keymap and report corresponding
event. Returnst r ue if lookup was successful and f al se otherwise.

894

Chapter 9. Serial Peripheral Interface
(SPI)

SPI is the "Serial Peripheral Interface”, widely used with embedded systems because it is a ssimple and
efficient interface: basically a multiplexed shift register. Itsthree signal wires hold a clock (SCK, oftenin
the range of 1-20 MHZz), a"Master Out, Slave In" (MOSI) dataline, and a"Master In, Slave Out" (MI1SO)
dataline. SPI is afull duplex protocol; for each bit shifted out the MOSI line (one per clock) another is
shifted in on the MISO line. Those bits are assembled into words of various sizes on the way to and from
system memory. An additional chipselect lineisusually active-low (nCS); four signals are normally used
for each peripheral, plus sometimes an interrupt.

The SPI busfacilitieslisted here provide ageneralized interface to declare SPI busses and devices, manage
them according to the standard Linux driver model, and perform input/output operations. At thistime, only
"master" side interfaces are supported, where Linux talksto SPI peripherals and does not implement such
aperipheral itself. (Interfaces to support implementing SPI slaves would necessarily ook different.)

The programming interfaceis structured around two kinds of driver, and two kinds of device. A "Controller
Driver" abstracts the controller hardware, which may be as simple as a set of GPIO pins or as complex as
apair of FIFOs connected to dual DMA engines on the other side of the SPI shift register (maximizing
throughput). Such drivers bridge between whatever bus they sit on (often the platform bus) and SPI, and
expose the SPI side of their device as a struct spi_master. SPI devices are children of that master, repre-
sented as a struct spi_device and manufactured from struct spi_board_info descriptors which are usually
provided by board-specific initialization code. A struct spi_driver is called a "Protocol Driver", and is
bound to a spi_device using normal driver model calls.

The 1/0 model is a set of queued messages. Protocol drivers submit one or more struct spi_message ob-
jects, which are processed and completed asynchronously. (There are synchronous wrappers, however.)
Messages are built from one or more struct spi_transfer objects, each of which wraps a full duplex SPI
transfer. A variety of protocol tweaking options are needed, because different chips adopt very different
policies for how they use the bits transferred with SPI.

895

Serial Periphera Interface (SPI)

Name

struct spi_device — Master side proxy for an SPI slave device

Synopsis

struct spi_device {

struct device dev;

struct spi_master * master;
u32 max_speed_hz;

u8 chi p_sel ect;

u8 bits_per_word;

ulé node

#define SPI_CPHA 0x01

#define SPI_CPOL 0x02

#define SPI_MODE_O (0| 0)
#define SPI_MODE_1 (0| SPI _CPHA)
#define SPI_MODE_2 (SPlI_CPOL|0)
#define SPI_MODE_3 (SPlI_CPOL| SPI _CPHA)
#define SPI_CS_H GH 0x04
#define SPI_LSB_FI RST 0x08
#define SPI_3WRE 0x10

#define SPI_LOOP 0x20

#define SPI_NO CS 0x40

#define SPI_READY 0x80

#define SPI_TX _DUAL 0x100
#define SPI_TX_QUAD 0x200
#define SPI_RX_DUAL 0x400
#define SPI_RX_QUAD 0x800

int irqg;

void * controller_state;

void * controll er_data;

char nodal i as[SPI _NAVE_SI ZE] ;
int cs_gpio;

b
Members

dev Driver model representation of the device.

master SPI controller used with the device.

max_speed_hz Maximum clock rate to be used with this chip (on thisboard); may be
changed by the device's driver. The spi_transfer.speed_hz can over-
ride this for each transfer.

chip_select Chipselect, distinguishing chips handled by mast er .

bits per word Data transfers involve one or more words; word sizes like eight or

12 hits are common. |n-memory wordsizes are powers of two bytes
(e.g. 20 bit samples use 32 hits). Thismay be changed by the device's
driver, or left at the default (O) indicating protocol words are eight
bit bytes. The spi_transfer.bits per word can override this for each
transfer.

896

Serial Periphera Interface (SPI)

mode

irq

controller_state

controller_data

modalias{SPI_NAME_SIZE]

CS _gpio

Description

The spi mode defines how data is clocked out and in. This may be
changed by the device's driver. The “active low” default for chipse-
lect mode can be overridden (by specifying SPI_CS HIGH) as can
the “MSB first” default for each word in a transfer (by specifying
SPI_LSB_FIRST).

Negative, or the number passed tor equest _i r g to receive inter-
rupts from this device.

Controller's runtime state

Board-specific definitions for controller, such as FIFO initialization
parameters; from board_info.controller_data

Name of the driver to use with this device, or an alias for that name.
This appears in the sysfs “modalias’ attribute for driver coldplug-
ging, and in uevents used for hotplugging

gpio number of the chipselect line (optional, -ENOENT when when
not using a GPIO line)

A spi _devi ce is used to interchange data between an SPI slave (usualy a discrete chip) and CPU

memory.

In dev, the platform_data is used to hold information about this device that's meaningful to the device's
protocol driver, but not to its controller. One example might be an identifier for achip variant with slightly
different functionality; another might beinformation about how this particular board wiresthe chip's pins.

897

Serial Periphera Interface (SPI)

Name

struct spi_driver — Host side “protocol” driver

Synopsis

struct spi_driver {
const struct spi_device_id * id_table;
int (* probe) (struct spi_device *spi);
int (* remove) (struct spi_device *spi);
void (* shutdown) (struct spi_device *spi);
struct device_driver driver;

b
Members

id table List of SPI devices supported by this driver

probe Bindsthis driver to the spi device. Drivers can verify that the deviceis actually present, and
may need to configure characteristics (such asbits_per_word) which weren't needed for the
initial configuration done during system setup.

remove Unbinds this driver from the spi device

shutdown Standard shutdown callback used during system state transitions such as powerdown/halt
and kexec

driver SPI device drivers should initialize the name and owner field of this structure.

Description

This represents the kind of device driver that uses SPI messages to interact with the hardware at the other
end of a SPI link. It's called a “protocol” driver because it works through messages rather than talking
directly to SPI hardware (which iswhat the underlying SPI controller driver doesto pass those messages).
These protocols are defined in the specification for the device(s) supported by the driver.

Asarule, those device protocols represent the lowest level interface supported by adriver, and it will sup-
port upper level interfacestoo. Examples of such upper levelsinclude frameworks like MTD, networking,
MMC, RTC, filesystem character device nodes, and hardware monitoring.

898

Serial Periphera Interface (SPI)

Name

spi_unregister_driver — reverse effect of spi_register_driver
Synopsis

void spi _unregister_driver (struct spi_driver * sdrv);
Arguments

sdrv thedriver to unregister

Context

can seep

899

Serial Periphera Interface (SPI)

Name

module_spi_driver — Helper macro for registering a SPI driver
Synopsis

nmodul e_spi _driver (__spi_driver);
Arguments

__spi _driver spi_driver struct

Description

Helper macro for SPI drivers which do not do anything special in module init/exit. This eliminates a lot
of boilerplate. Each module may only use this macro once, and calling it replaces nodul e_i nit and

nodul e_exi t

900

Serial Periphera Interface (SPI)

Name

struct spi_master — interface to SPI master controller

Synopsis

struct spi_master {
struct device dev;
struct list_head list;
s16 bus_num
ul6é num chi psel ect;
ulé dna_al i gnnent;
ulé node_bits;
u32 bits_per_word_nask;
#define SPI_BPWMASK(bits) BIT((bits) - 1)
#define SPI_BI T_MASK(bits) (((bits) == 32) ? ~0U: (BIT(bits) - 1))
#defi ne SPI _BPW RANGE_MASK(m n# max) (SPI_BIT_MASK(nmax) - SPI_BIT_MASK(mn - 1))
u32 mn_speed_hz;
u32 max_speed_hz;
ulé fl ags;
#define SPI _MASTER HALF_DUPLEX BI T(0)
#define SPI _MASTER NO RX BI T(1)
#define SPI _MASTER NO TX BI T(2)
#define SPI _MASTER MUST_RX Bl T(3)
#define SPI _MASTER MUST_TX Bl T(4)
spi nl ock_t bus_I ock_spi nl ock
struct mutex bus_| ock_mnut ex;
bool bus_l ock_fl ag;
int (* setup) (struct spi_device *spi);
int (* transfer) (struct spi_device *spi,struct spi_nessage *nesg);
void (* cleanup) (struct spi_device *spi);
bool (* can_dma) (struct spi_master *master,struct spi_device *spi,struct spi_tr
bool queued;
struct kthread_worker kworker;
struct task_struct * kworker _task;
struct kthread_work punp_nessages;
spi nl ock_t queue_I ock
struct |ist_head queue;
struct spi_nmessage * cur_nsg;

bool idling;
bool busy;
bool runni ng;
bool rt;

bool auto_runtine_pm

bool cur_nsg_prepared;

bool cur_nsg_mapped;

struct conpl etion xfer_conpletion

size_t max_dna_l en;

int (* prepare_transfer_hardware) (struct spi_master *master);

int (* transfer_one_nessage) (struct spi_naster *naster,struct spi_nessage *mesg
int (* unprepare_transfer_hardware) (struct spi_master *master);

int (* prepare_nessage) (struct spi_naster *nmaster,struct spi_nessage *message);
int (* unprepare_nessage) (struct spi_master *master,struct spi_nmessage *nessage

901

Serial Periphera Interface (SPI)

void (* set_cs) (struct spi_device *spi, bool enable);

int (* transfer_one) (struct spi_master *master, struct spi_device *spi,struct s
void (* handle_err) (struct spi_master *master,struct spi_nessage *message);

int * cs_gpios;

struct dma_chan * dma_tXx;

struct dma_chan * dma_rx;

void * dummy_rx;

void * dummy_tx;

b
Members

dev device interface to this driver

list link with the global spi_master list

bus num board-specific (and often SOC-specific) identifier for a given SPI
controller.

num_chipselect chipselects are used to distinguish individual SPI slaves, and are
numbered from zero to num_chipselects. each slave hasachipsel ect
signal, but it's common that not every chipselect is connected to a
save.

dma_alignment SPI controller constraint on DMA buffers alignment.

mode_bits flags understood by this controller driver

bits per word mask A mask indicating which values of bits per word are supported
by the driver. Bit n indicates that a bits per_word n+1 is support-
ed. If set, the SPI core will regject any transfer with an unsupported
bits per word. If not set, thisvalueissimply ignored, andit'sup to
the individual driver to perform any validation.

min_speed_hz L owest supported transfer speed

max_speed_hz Highest supported transfer speed

flags other constraints relevant to this driver

bus_lock_spinlock spinlock for SPI bus locking

bus lock mutex mutex for SPI bus locking

bus lock flag indicates that the SPI busislocked for exclusive use

setup updates the device mode and clocking records used by a device's
SPI controller; protocol code may call this. This must fail if an un-
recognized or unsupported mode is requested. It's always safe to
call this unless transfers are pending on the device whose settings
are being modified.

transfer adds a message to the controller's transfer queue.

cleanup frees controller-specific state

can_dma determine whether this master supports DMA

902

Serial Periphera Interface (SPI)

queued
kworker
kworker_task
pump_messages
gueue_lock
queue
cur_msg
idling

busy

running

rt

auto_runtime_pm

cur_msg_prepared
cur_msg_mapped
xfer_completion
max_dma._len

prepare_transfer_hardware

transfer_one_message

unprepare_transfer_hardware

prepare_message

unprepare_message

Set_cs

transfer_one

whether this master is providing an internal message queue
thread struct for message pump

pointer to task for message pump kworker thread
work struct for scheduling work to the message pump
spinlock to syncronise access to message queue
message queue

the currently in-flight message

the deviceis entering idle state

message pump is busy

message pump is running

whether this queueis set to run as areatime task

the core should ensure a runtime PM reference is held while the
hardware is prepared, using the parent device for the spidev

spi_prepare_message was called for the currently in-flight message
message has been mapped for DMA

used by coret r ansf er _one_nessage

Maximum length of a DMA transfer for the device.

amessagewill soon arrivefrom the queue so the subsystem requests
the driver to prepare the transfer hardware by issuing this call

the subsystem calls the driver to transfer a single mes
sage while queuing transfers that arrive in the meantime.
When the driver is finished with this message, it must call
spi _finalize_current_nessage sothesubsystemcanis
sue the next message

thereare currently no more messages on the queue so the subsystem
notifiesthe driver that it may relax the hardware by issuing this call

set up the controller to transfer asingle message, for example doing
DMA mapping. Called from threaded context.

undo any work done by pr epar e_nessage.

set thelogic level of the chip select line. May be called from inter-
rupt context.

transfer a single spi_transfer. - return O if the transfer is
finished, - return 1 if the transfer is still in progress.
When the driver is finished with this transfer it must
cal spi _finalize current_transfer so the subsys
tem can issue the next transfer. Note: transfer_one and

903

Serial Periphera Interface (SPI)

handle_err

CS _gpios

dma_tx
dma._rx
dummy_rx

dummy_tx

Description

transfer_one_message are mutually exclusive; when both are set,
the generic subsystem does not call your transfer_one callback.

the subsystem calls the driver to handle an error that occurs in the
generic implementation of t r ansf er _one_nessage.

Array of GPIOsto use as chip select lines; one per CS number. Any
individual value may be -ENOENT for CSlinesthat are not GPIOs
(driven by the SPI controller itself).

DMA transmit channel
DMA receive channel
dummy receive buffer for full-duplex devices

dummy transmit buffer for full-duplex devices

Each SPI master controller can communicate with one or more spi _devi ce children. These make a
small bus, sharing MOSI, M1SO and SCK signals but not chip select signals. Each device may be config-
ured to use a different clock rate, since those shared signals are ignored unless the chip is selected.

Thedriver for an SPI controller manages access to those devices through a queue of spi_message transac-
tions, copying data between CPU memory and an SPI slave device. For each such message it queues, it
calls the message's completion function when the transaction completes.

904

Serial Periphera Interface (SPI)

Name
struct spi_transfer — aread/write buffer pair

Synopsis

struct spi _transfer {

const void * tx_buf;

void * rx_buf;

unsi gned | en;

dma_addr _t tx_dnm;

dma_addr _t rx_dnm;

struct sg_table tx_sg;

struct sg_table rx_sg;

unsi gned cs_change: 1;

unsi gned tx_nbits: 3;

unsi gned rx_nbits: 3;
#define SPI _NBI TS_SI NGLE 0x01
#define SPI _NBI TS_DUAL 0x02
#define SPI _NBI TS_QUAD 0x04

u8 bits_per word;

ulé del ay usecs;

u32 speed_hz;

struct list_head transfer _list;

1
Members
tx_buf data to be written (dma-safe memory), or NULL
rx_buf datato be read (dma-safe memory), or NULL
len size of rx and tx buffers (in bytes)
tx_dma DMA address of tx_buf, if spi _nmessage.is dma mapped
rx_dma DMA address of rx_buf, if spi _nessage.is dma mapped
tx_sg Scatterlist for transmit, currently not for client use
rx_sg Scatterlist for receive, currently not for client use
cs _change affects chipselect after this transfer completes
tx_nbits number of bits used for writing. If O the default (SPI_NBITS_SINGLE) is used.
rx_nbits number of bits used for reading. If O the default (SPI_NBITS _SINGLE) is used.
bits per_word select abits_per_word other than the device default for thistransfer. If O the default
(fromspi _devi ce) isused.
delay usecs microseconds to delay after thistransfer before (optionally) changing the chipselect

status, then starting the next transfer or completing thisspi _nessage.

905

Serial Periphera Interface (SPI)

speed _hz Select a speed other than the device default for this transfer. If 0 the default (from
spi _devi ce) isused.
transfer_list transfers are sequenced through spi _nessage.transfers
Description

SPI transfers always write the same number of bytes as they read. Protocol drivers should always provide
r x_buf and/ort x_buf . In some cases, they may also want to provide DMA addressesfor the databeing
transferred; that may reduce overhead, when the underlying driver uses dma.

If the transmit buffer is null, zeroes will be shifted out whilefilling r x_buf . If the receive buffer is null,
the data shifted in will be discarded. Only “len” bytes shift out (or in). It's an error to try to shift out a
partial word. (For example, by shifting out three bytes with word size of sixteen or twenty bits; the former
uses two bytes per word, the latter uses four bytes.)

In-memory data values are aways in native CPU byte order, transated from the wire byte order (big-
endian except with SPI_LSB_FIRST). So for examplewhen bits per_word issixteen, buffersare 2N bytes
long (I en =2N) and hold N sixteen bit words in CPU byte order.

When the word size of the SPI transfer is not a power-of-two multiple of eight bits, those in-memory
words include extra bits. In-memory words are always seen by protocol drivers as right-justified, so the
undefined (rx) or unused (tx) bits are always the most significant bits.

All SPI transfers start with the relevant chipselect active. Normally it stays selected until after the last
transfer in amessage. Drivers can affect the chipselect signal using cs_change.

(i) If thetransfer isn't the last onein the message, thisflag is used to make the chipselect briefly go inactive
inthe middle of the message. Toggling chipselect in thisway may be needed to terminate a chip command,
letting asingle spi_message perform all of group of chip transactions together.

(if) When the transfer isthe last one in the message, the chip may stay selected until the next transfer. On
multi-device SPI busses with nothing blocking messages going to other devices, thisisjust a performance
hint; starting a message to another device deselects this one. But in other cases, this can be used to ensure
correctness. Some devices need protocol transactionsto be built from a series of spi_message submissions,
where the content of one message is determined by the results of previous messages and where the whole
transaction ends when the chipsel ect goes intactive.

When SPI can transfer in 1x,2x or 4x. It can get thistransfer information from devicethrought x_nbi ts
and rx_nbi ts. In Bi-direction, these two should both be set. User can set transfer mode with
SPI_NBITS SINGLE(1x) SPI_NBITS DUAL(2x) and SPI_NBITS QUAD(4x) to support these three
transfer.

Thecodethat submitsan spi_message (anditsspi_transfers) tothelower layersisresponsiblefor managing
its memory. Zero-initialize every field you don't set up explicitly, to insulate against future APl updates.
After you submit a message and its transfers, ignore them until its completion callback.

906

Serial Periphera Interface (SPI)

Name

struct spi_message — one multi-segment SPI transaction

Synopsis

struct spi_nessage {
struct |list _head transfers;
struct spi_device * spi
unsi gned i s_dma_mapped: 1;
void (* conplete) (void *context);
voi d * context;
unsi gned frame_| engt h;
unsi gned actual _I engt h;

i nt status;

struct |ist_head queue;

void * state;

b
Members

transfers

Spi
is_dma_mapped
complete
context
frame_length
actua_length
status

queue

state

Description

list of transfer segmentsin this transaction

SPI device to which the transaction is queued

if true, the caller provided both dmaand cpu virtual addressesfor each transfer buffer
called to report transaction completions

the argument to conpl et e whenit'scalled

the total number of bytesin the message

the total number of bytes that were transferred in all successful segments

zero for success, else negative errno

for use by whichever driver currently owns the message

for use by whichever driver currently owns the message

A spi _message is used to execute an atomic sequence of data transfers, each represented by a struct
spi_transfer. The sequence is “atomic” in the sense that no other spi_message may use that SPI bus until
that sequence completes. On some systems, many such sequences can execute as as single programmed
DMA transfer. On all systems, these messages are queued, and might compl ete after transactions to other
devices. Messages sent to a given spi_device are always executed in FIFO order.

Thecodethat submitsan spi_message (anditsspi_transfers) tothelower layersisresponsiblefor managing
its memory. Zero-initialize every field you don't set up explicitly, to insulate against future APl updates.
After you submit a message and its transfers, ignore them until its completion callback.

907

Serial Periphera Interface (SPI)

Name
spi_message init_with_transfers — Initialize spi_message and append transfers

Synopsis

void spi_nessage_init_with_transfers (struct spi_nessage * m struct
spi _transfer * xfers, unsigned int numxfers);

Arguments
m spi_message to be initialized
xfers An array of spi transfers

num xfers Number of itemsin the xfer array

Description

Thisfunctioninitializesthegiven spi_message and addseach spi_transfer inthegiven array tothe message.

908

Serial Periphera Interface (SPI)

Name

spi_write— SPI synchronous write
Synopsis

int spi_wite (struct spi_device * spi, const void * buf, size_ t |en);
Arguments

spi deviceto which datawill be written
buf databuffer
| en databuffer size

Context

can seep

Description

Thiswritesthe buffer and returns zero or anegative error code. Callable only from contexts that can sleep.

909

Serial Periphera Interface (SPI)

Name
spi_read — SPI synchronous read

Synopsis
int spi_read (struct spi_device * spi, void * buf, size_t len);
Arguments

spi devicefrom which datawill be read
buf databuffer
| en databuffer size

Context

can seep

Description

This reads the buffer and returns zero or anegative error code. Callable only from contexts that can sleep.

910

Serial Periphera Interface (SPI)

Name
spi_sync_transfer — synchronous SPI data transfer

Synopsis

int spi_sync_transfer (struct spi_device * spi, struct spi_transfer *
xfers, unsigned int numxfers);

Arguments
spi device with which datawill be exchanged
xfers An array of spi_transfers

num xfers Number of itemsin the xfer array

Context

can seep

Description
Does a synchronous SPI data transfer of the given spi_transfer array.
For more specific semantics seespi _sync.

It returns zero on success, else a negative error code.

911

Serial Periphera Interface (SPI)

Name
spi_w8r8 — SPI synchronous 8 bit write followed by 8 bit read

Synopsis
ssize_t spi_w8r8 (struct spi_device * spi, u8 cmd);
Arguments

spi devicewith which datawill be exchanged

cnmd command to be written before datais read back

Context

can sleep

Description

Thisreturnsthe (unsigned) eight bit number returned by the device, or else anegative error code. Callable
only from contexts that can sleep.

912

Serial Periphera Interface (SPI)

Name
spi_w8r16 — SPI synchronous 8 bit write followed by 16 bit read

Synopsis
ssize_t spi_w8rl1l6 (struct spi_device * spi, u8 cnd);
Arguments

spi devicewith which datawill be exchanged

cnmd command to be written before datais read back

Context

can sleep

Description

Thisreturnsthe (unsigned) sixteen bit number returned by thedevice, or el seanegative error code. Callable
only from contexts that can sleep.

The number isreturned in wire-order, which is at |east sometimes big-endian.

913

Serial Periphera Interface (SPI)

Name
spi_w8rl16be — SPI synchronous 8 bit write followed by 16 bit big-endian read

Synopsis
ssize_t spi_w8rl6be (struct spi_device * spi, u8 cmd);
Arguments

spi devicewith which datawill be exchanged

cnmd command to be written before datais read back

Context

can sleep

Description

Thisreturnsthe (unsigned) sixteen bit number returned by the device in cpu endianness, or €lse anegative
error code. Callable only from contexts that can sleep.

Thisfunctionissimilar to spi_w8r16, with the exception that it will convert the read 16 bit dataword from
big-endian to native endianness.

914

Serial Periphera Interface (SPI)

Name

struct spi_board_info — board-specific template for a SPI device

Synopsis

struct spi_board_info {

char nodal i as[SPI _NAVE_SI ZE] ;
const void * platform data;

void * controll er_data;

int irq;

u32 max_speed_hz;
ulé bus_num

ulé chip_sel ect;
ulé node;

b
Members

modalias{SPI_NAME_SIZE]

platform_data

controller_data

irq
max_speed_hz

bus num
chip_select

mode

Description

Initializes spi_device.modalias; identifies the driver.

Initializes spi_device.platform_data; the particular data stored there
is driver-specific.

Initializes spi_device.controller_data; some controllers need hints
about hardware setup, e.g. for DMA.

Initializes spi_device.irg; depends on how the board is wired.

Initializes spi_device.max_speed_hz; based on limits from the chip
datasheet and board-specific signal quality issues.

Identifies which spi_master parents the spi_device; unused by
spi _new_devi ce, and otherwise depends on board wiring.

Initializes spi_device.chip_select; depends on how the board is
wired.

Initializes spi_devicemode; based on the chip datasheet, board
wiring (some devices support both 3WIRE and standard modes), and
possibly presence of an inverter in the chipselect path.

When adding new SPI devices to the device tree, these structures serve as a partial device template. They
hold information which can't always be determined by drivers. Information that pr obe can establish (such
as the default transfer wordsize) is not included here.

These structures are used in two places. Their primary role is to be stored in tables of board-specific
device descriptors, which are declared early in board initialization and then used (much later) to populate
acontroller's device tree after the that controller's driver initializes. A secondary (and atypical) roleis as
aparameter to spi _new_devi ce cal, which happens after those controller drivers are active in some
dynamic board configuration models.

915

Serial Periphera Interface (SPI)

Name
spi_register_board_info — register SPI devices for a given board
Synopsis

int spi_register_board_ info (struct spi_board_info const * info, un-
si gned n);

Arguments

i nfo array of chip descriptors

n how many descriptors are provided

Context

can sleep

Description

Board-specific early init code calls this (probably during arch_initcall) with segments of the SPI device
table. Any device nodes are created later, after the relevant parent SPI controller (bus_num) isdefined. We
keep this table of devices forever, so that reloading a controller driver will not make Linux forget about
these hard-wired devices.

Other codecanaso call this, e.g. aparticular add-on board might provide SPI devicesthrough itsexpansion
connector, so code initializing that board would naturally declare its SPI devices.

The board info passed can safely be __initdata ... but be careful of any embedded pointers (platform_data,
etc), they're copied as-is.

916

Serial Periphera Interface (SPI)

Name
spi_register_driver — register a SPI driver
Synopsis
int spi_register_driver (struct spi_driver * sdrv);
Arguments
sdrv thedriver to register
Context
can sleep

917

Serial Periphera Interface (SPI)

Name

spi_alloc_device — Allocate anew SPI device
Synopsis
struct spi_device * spi_alloc_device (struct spi_master * nmaster);

Arguments

mast er Controller to which device is connected

Context

can sleep

Description

Allows a driver to allocate and initialize a spi_device without registering it immediately. This allows a
driver to directly fill the spi_device with device parameters before calling spi _add_devi ce onit.

Caller isresponsibleto call spi _add_devi ce on the returned spi_device structure to add it to the SPI
master. If the caller needs to discard the spi_device without adding it, then it should call spi _dev_put
onit.

Returns a pointer to the new device, or NULL.

918

Serial Periphera Interface (SPI)

Name

spi_add_device — Add spi_device alocated with spi_alloc_device
Synopsis

int spi_add_device (struct spi_device * spi);
Arguments

spi spi_deviceto register
Description

Companion function to spi_alloc_device. Devices allocated with spi_alloc_device can be added onto the
spi bus with this function.

Returns 0 on success; negative errno on failure

919

Serial Periphera Interface (SPI)

Name

spi_new_device — instantiate one new SPI device
Synopsis

struct spi_device * spi_new device (struct spi_master * nmaster, struct
spi _board_info * chip);

Arguments

mast er Controller to which device is connected

chip Describes the SPI device

Context

can sleep

Description

On typical mainboards, thisis purely internal; and it's not needed after board init creates the hard-wired
devices. Some development platforms may not be able to use spi_register_board_info though, and thisis
exported so that for example a USB or parport based adapter driver could add devices (which it would
learn about out-of-band).

Returns the new device, or NULL.

920

Serial Periphera Interface (SPI)

Name

spi_finalize_current_transfer — report completion of atransfer

Synopsis

void spi _finalize_ current_transfer (struct spi_naster * master);

Arguments

nmast er the master reporting completion

Description

Called by SPI drivers using the core t r ansf er _one_nessage implementation to notify it that the
current interrupt driven transfer has finished and the next one may be scheduled.

921

Serial Periphera Interface (SPI)

Name
Spi_get_next_queued_message — called by driver to check for queued messages

Synopsis
struct spi_nessage * spi_get_next_queued_nessage (struct spi_master *
mast er) ;

Arguments

mast er the master to check for queued messages

Description

If there are more messages in the queue, the next message is returned from this call.

922

Serial Periphera Interface (SPI)

Name

spi_finalize_current_message — the current message is complete

Synopsis

void spi _finalize_current_nessage (struct spi_master * nmaster);

Arguments

nmast er the master to return the messageto

Description

Called by the driver to notify the core that the message in the front of the queue is complete and can be
removed from the queue.

923

Serial Periphera Interface (SPI)

Name
spi_alloc_master — allocate SPI master controller

Synopsis

struct spi_master * spi_alloc_master (struct device * dev, unsigned
si ze);

Arguments

dev thecontroller, possibly using the platform_bus

si ze how much zeroed driver-private data to alocate; the pointer to this memory isin the driver_data
field of the returned device, accessiblewithspi _mast er _get devdat a.

Context

can sleep

Description

This call is used only by SPI master controller drivers, which are the only ones directly touching chip
registers. It's how they allocate an spi_master structure, prior to calling spi _r egi st er _mast er.

Thismust be called from context that can sleep. It returnsthe SPI master structure on success, else NULL.

The caller is responsible for assigning the bus number and initializing the master's methods before calling
spi _regi st er _mast er; and (after errors adding the device) calling spi _nast er _put to prevent
amemory leak.

924

Serial Periphera Interface (SPI)

Name
Spi_register_master — register SPI master controller

Synopsis
int spi_register_master (struct spi_naster * master);

Arguments

mast er initialized master, originally fromspi _al | oc_nast er

Context

can sleep

Description

SPI master controllers connect to their drivers using some non-SPI bus, such asthe platform bus. Thefinal
stage of pr obe inthat codeincludescallingspi _r egi st er _nast er to hook up to this SPI bus glue.

SPI controllersuse board specific (often SOC specific) bus numbers, and board-specific addressing for SPI
devices combines those numbers with chip select numbers. Since SPI does not directly support dynamic
deviceidentification, boards need configuration tables telling which chip is at which address.

This must be called from context that can sleep. It returns zero on success, else a negative error
code (dropping the master's refcount). After a successful return, the caller is responsible for caling
spi _unregi ster_naster.

925

Serial Periphera Interface (SPI)

Name
devm_spi_register_master — register managed SPI master controller

Synopsis

int devm spi_register_master (struct device * dev,
* master);

Arguments

dev device managing SPl master

mast er initialized master, originally fromspi _al | oc_nast er

Context

can sleep

Description

struct

spi _mast er

Register a SPI deviceaswith spi _regi st er _mast er which will automatically be unregister

926

Serial Periphera Interface (SPI)

Name
Spi_unregister_master — unregister SPlI master controller

Synopsis
voi d spi_unregister_master (struct spi_master * master);

Arguments

nmast er the master being unregistered

Context

can sleep

Description

This call is used only by SPI master controller drivers, which are the only ones directly touching chip
registers.

This must be called from context that can sleep.

927

Serial Periphera Interface (SPI)

Name

spi_busnum_to_master — look up master associated with bus_num
Synopsis
struct spi_nmaster * spi_busnumto_master (ul6 bus_num;

Arguments

bus_num the master's bus number

Context

can sleep

Description

This call may be used with devices that are registered after arch init time. It returns a refcounted pointer
to the relevant spi_master (which the caller must release), or NULL if there is no such master registered.

928

Serial Periphera Interface (SPI)

Name
spi_setup — setup SPI mode and clock rate

Synopsis
int spi_setup (struct spi_device * spi);
Arguments

spi thedevice whose settings are being modified

Context

can sleep, and no requests are queued to the device

Description

SPI protocol drivers may need to update the transfer mode if the device doesn't work with its default. They
may likewise need to update clock rates or word sizes from initial values. This function changes those
settings, and must be called from a context that can sleep. Except for SPI_CS_HIGH, which takes effect
immediately, the changes take effect the next time the device is selected and datais transferred to or from
it. When this function returns, the spi device is deselected.

Note that this call will fail if the protocol driver specifies an option that the underlying controller or its
driver does not support. For example, not all hardware supports wire transfers using nine bit words, L SB-
first wire encoding, or active-high chipselects.

929

Serial Periphera Interface (SPI)

Name
spi_async — asynchronous SPI transfer

Synopsis
int spi_async (struct spi_device * spi, struct spi_message * nmessage);

Arguments

spi device with which data will be exchanged

nessage describesthe datatransfers, including completion callback

Context

any (irgs may be blocked, etc)

Description

This call may be used in_irq and other contexts which can't sleep, as well as from task contexts which
can sleep.

The completion callback is invoked in a context which can't sleep. Before that invocation, the value of
message->status is undefined. When the callback is issued, message->status holds either zero (to indicate
complete success) or anegative error code. After that callback returns, the driver which issued the transfer
request may deallocate the associated memory; it's no longer in use by any SPI core or controller driver
code.

Note that although all messagesto a spi_device are handled in FIFO order, messages may go to different
devicesin other orders. Some device might be higher priority, or have various “hard” accesstime require-
ments, for example.

On detection of any fault during the transfer, processing of the entire message is aborted, and the deviceis
deselected. Until returning from the associ ated message compl etion callback, no other spi_message queued
to that device will be processed. (This rule applies equally to all the synchronous transfer calls, which are
wrappers around this core asynchronous primitive.)

930

Serial Periphera Interface (SPI)

Name
spi_async_locked — version of spi_async with exclusive bus usage
Synopsis

int spi_async_l ocked (struct spi_device * spi, struct spi_nessage *
nessage) ;

Arguments

spi device with which data will be exchanged

nessage describesthe datatransfers, including completion callback

Context

any (irgs may be blocked, etc)

Description

This call may be used in_irq and other contexts which can't sleep, as well as from task contexts which
can sleep.

The completion callback is invoked