
W1: Dallas' 1-wire bus

David Fries <David@Fries.net>

W1: Dallas' 1-wire bus
by David Fries
Copyright © 2013

This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. For more details see the file COPYING in the source distribution of Linux.

iii

Table of Contents
1. W1 API internal to the kernel .. 1

W1 API internal to the kernel ... 1
drivers/w1/w1.h .. 1
drivers/w1/w1.c ... 8
drivers/w1/w1_family.h .. 10
drivers/w1/w1_family.c ... 12
drivers/w1/w1_int.c .. 14
drivers/w1/w1_netlink.h .. 16
drivers/w1/w1_io.c ... 21

1

Chapter 1. W1 API internal to the kernel
W1 API internal to the kernel

drivers/w1/w1.h
W1 core functions.

W1 API internal to the kernel

2

Name
struct w1_reg_num — broken out slave device id

Synopsis

struct w1_reg_num {
#if defined(__LITTLE_ENDIAN_BITFIELD)
 __u64 family:8;
 __u64 id:48;
 __u64 crc:8;
#elif defined(__BIG_ENDIAN_BITFIELD)
 __u64 crc:8;
 __u64 id:48;
 __u64 family:8;
#else
#error "Please fix <asm/byteorder.h>"
#endif
};

Members

family identifies the type of device

id along with family is the unique device id

crc checksum of the other bytes

crc checksum of the other bytes

id along with family is the unique device id

family identifies the type of device

W1 API internal to the kernel

3

Name
struct w1_slave — holds a single slave device on the bus

Synopsis

struct w1_slave {
 struct module * owner;
 unsigned char name[W1_MAXNAMELEN];
 struct list_head w1_slave_entry;
 struct w1_reg_num reg_num;
 atomic_t refcnt;
 int ttl;
 unsigned long flags;
 struct w1_master * master;
 struct w1_family * family;
 void * family_data;
 struct device dev;
};

Members

owner Points to the one wire “wire” kernel module.

name[W1_MAXNAMELEN] Device id is ascii.

w1_slave_entry data for the linked list

reg_num the slave id in binary

refcnt reference count, delete when 0

ttl decrement per search this slave isn't found, deatch at 0

flags bit flags for W1_SLAVE_ACTIVE W1_SLAVE_DETACH

master bus which this slave is on

family module for device family type

family_data pointer for use by the family module

dev kernel device identifier

W1 API internal to the kernel

4

Name
struct w1_bus_master — operations available on a bus master

Synopsis

struct w1_bus_master {
 void * data;
 u8 (* read_bit) (void *);
 void (* write_bit) (void *, u8);
 u8 (* touch_bit) (void *, u8);
 u8 (* read_byte) (void *);
 void (* write_byte) (void *, u8);
 u8 (* read_block) (void *, u8 *, int);
 void (* write_block) (void *, const u8 *, int);
 u8 (* triplet) (void *, u8);
 u8 (* reset_bus) (void *);
 u8 (* set_pullup) (void *, int);
 void (* search) (void *, struct w1_master *,u8, w1_slave_found_callback);
};

Members

data the first parameter in all the functions below

read_bit Sample the line level return the level read (0 or 1)

write_bit Sets the line level

touch_bit the lowest-level function for devices that really support the 1-wire protocol.
touch_bit(0) = write-0 cycle touch_bit(1) = write-1 / read cycle return the bit read
(0 or 1)

read_byte Reads a bytes. Same as 8 touch_bit(1) calls. return the byte read

write_byte Writes a byte. Same as 8 touch_bit(x) calls.

read_block Same as a series of read_byte calls return the number of bytes read

write_block Same as a series of write_byte calls

triplet Combines two reads and a smart write for ROM searches return bit0=Id
bit1=comp_id bit2=dir_taken

reset_bus long write-0 with a read for the presence pulse detection return -1=Error, 0=Device
present, 1=No device present

set_pullup Put out a strong pull-up pulse of the specified duration. return -1=Error, 0=completed

search Really nice hardware can handles the different types of ROM search w1_master*
is passed to the slave found callback. u8 is search_type, W1_SEARCH or
W1_ALARM_SEARCH

Note

read_bit and write_bit are very low level functions and should only be used with hardware that doesn't
really support 1-wire operations, like a parallel/serial port. Either define read_bit and write_bit OR define,
at minimum, touch_bit and reset_bus.

W1 API internal to the kernel

5

Name
enum w1_master_flags — bitfields used in w1_master.flags

Synopsis

enum w1_master_flags {
 W1_ABORT_SEARCH,
 W1_WARN_MAX_COUNT
};

Constants

W1_ABORT_SEARCH abort searching early on shutdown

W1_WARN_MAX_COUNTlimit warning when the maximum count is reached

W1 API internal to the kernel

6

Name
struct w1_master — one per bus master

Synopsis

struct w1_master {
 struct list_head w1_master_entry;
 struct module * owner;
 unsigned char name[W1_MAXNAMELEN];
 struct mutex list_mutex;
 struct list_head slist;
 struct list_head async_list;
 int max_slave_count;
 int slave_count;
 unsigned long attempts;
 int slave_ttl;
 int initialized;
 u32 id;
 int search_count;
 u64 search_id;
 atomic_t refcnt;
 void * priv;
 int enable_pullup;
 int pullup_duration;
 long flags;
 struct task_struct * thread;
 struct mutex mutex;
 struct mutex bus_mutex;
 struct device_driver * driver;
 struct device dev;
 struct w1_bus_master * bus_master;
 u32 seq;
};

Members

w1_master_entry master linked list

owner module owner

name[W1_MAXNAMELEN] dynamically allocate bus name

list_mutex protect slist and async_list

slist linked list of slaves

async_list linked list of netlink commands to execute

max_slave_count maximum number of slaves to search for at a time

slave_count current number of slaves known

attempts number of searches ran

W1 API internal to the kernel

7

slave_ttl number of searches before a slave is timed out

initialized prevent init/removal race conditions

id w1 bus number

search_count number of automatic searches to run, -1 unlimited

search_id allows continuing a search

refcnt reference count

priv private data storage

enable_pullup allows a strong pullup

pullup_duration time for the next strong pullup

flags one of w1_master_flags

thread thread for bus search and netlink commands

mutex protect most of w1_master

bus_mutex pretect concurrent bus access

driver sysfs driver

dev sysfs device

bus_master io operations available

seq sequence number used for netlink broadcasts

W1 API internal to the kernel

8

Name
struct w1_async_cmd — execute callback from the w1_process kthread

Synopsis

struct w1_async_cmd {
 struct list_head async_entry;
 void (* cb) (struct w1_master *dev, struct w1_async_cmd *async_cmd);
};

Members

async_entry link entry

cb callback function, must list_del and destroy this list before returning

Description

When inserted into the w1_master async_list, w1_process will execute the callback. Embed this into the
structure with the command details.

drivers/w1/w1.c
W1 core functions.

W1 API internal to the kernel

9

Name
w1_search — Performs a ROM Search & registers any devices found.

Synopsis

void w1_search (struct w1_master * dev, u8 search_type,
w1_slave_found_callback cb);

Arguments

dev The master device to search

search_type W1_SEARCH to search all devices, or W1_ALARM_SEARCH to return only devices
in the alarmed state

cb Function to call when a device is found

Description

The 1-wire search is a simple binary tree search. For each bit of the address, we read two bits and write
one bit. The bit written will put to sleep all devies that don't match that bit. When the two reads differ, the
direction choice is obvious. When both bits are 0, we must choose a path to take. When we can scan all
64 bits without having to choose a path, we are done.

See “Application note 187 1-wire search algorithm” at www.maxim-ic.com

W1 API internal to the kernel

10

Name
w1_process_callbacks — execute each dev->async_list callback entry

Synopsis

int w1_process_callbacks (struct w1_master * dev);

Arguments

dev w1_master device

Description

The w1 master list_mutex must be held.

Return

1 if there were commands to executed 0 otherwise

drivers/w1/w1_family.h
Allows registering device family operations.

W1 API internal to the kernel

11

Name
struct w1_family_ops — operations for a family type

Synopsis

struct w1_family_ops {
 int (* add_slave) (struct w1_slave *);
 void (* remove_slave) (struct w1_slave *);
 const struct attribute_group ** groups;
};

Members

add_slave add_slave

remove_slave remove_slave

groups sysfs group

W1 API internal to the kernel

12

Name
struct w1_family — reference counted family structure.

Synopsis

struct w1_family {
 struct list_head family_entry;
 u8 fid;
 struct w1_family_ops * fops;
 atomic_t refcnt;
};

Members

family_entry family linked list

fid 8 bit family identifier

fops operations for this family

refcnt reference counter

drivers/w1/w1_family.c
Allows registering device family operations.

W1 API internal to the kernel

13

Name
w1_register_family — register a device family driver

Synopsis

int w1_register_family (struct w1_family * newf);

Arguments

newf family to register

W1 API internal to the kernel

14

Name
w1_unregister_family — unregister a device family driver

Synopsis

void w1_unregister_family (struct w1_family * fent);

Arguments

fent family to unregister

drivers/w1/w1_int.c
W1 internal initialization for master devices.

W1 API internal to the kernel

15

Name
w1_add_master_device — registers a new master device

Synopsis

int w1_add_master_device (struct w1_bus_master * master);

Arguments

master master bus device to register

W1 API internal to the kernel

16

Name
w1_remove_master_device — unregister a master device

Synopsis

void w1_remove_master_device (struct w1_bus_master * bm);

Arguments

bm master bus device to remove

drivers/w1/w1_netlink.h
W1 external netlink API structures and commands.

W1 API internal to the kernel

17

Name
enum w1_cn_msg_flags — bitfield flags for struct cn_msg.flags

Synopsis

enum w1_cn_msg_flags {
 W1_CN_BUNDLE
};

Constants

W1_CN_BUNDLE Request bundling replies into fewer messagse. Be prepared to handle multiple struct
cn_msg, struct w1_netlink_msg, and struct w1_netlink_cmd in one packet.

W1 API internal to the kernel

18

Name
enum w1_netlink_message_types — message type

Synopsis

enum w1_netlink_message_types {
 W1_SLAVE_ADD,
 W1_SLAVE_REMOVE,
 W1_MASTER_ADD,
 W1_MASTER_REMOVE,
 W1_MASTER_CMD,
 W1_SLAVE_CMD,
 W1_LIST_MASTERS
};

Constants

W1_SLAVE_ADD notification that a slave device was added

W1_SLAVE_REMOVE notification that a slave device was removed

W1_MASTER_ADD notification that a new bus master was added

W1_MASTER_REMOVEnotification that a bus masterwas removed

W1_MASTER_CMD initiate operations on a specific master

W1_SLAVE_CMD sends reset, selects the slave, then does a read/write/touch operation

W1_LIST_MASTERS used to determine the bus master identifiers

W1 API internal to the kernel

19

Name
struct w1_netlink_msg — holds w1 message type, id, and result

Synopsis

struct w1_netlink_msg {
 __u8 type;
 __u8 status;
 __u16 len;
 union id;
 __u8 data[0];
};

Members

type one of enum w1_netlink_message_types

status kernel feedback for success 0 or errno failure value

len length of data following w1_netlink_msg

id union holding master bus id (msg.id) and slave device id (id[8]).

data[0] start address of any following data

Description

The base message structure for w1 messages over netlink. The netlink connector data sequence is, struct
nlmsghdr, struct cn_msg, then one or more struct w1_netlink_msg (each with optional data).

W1 API internal to the kernel

20

Name
enum w1_commands — commands available for master or slave operations

Synopsis

enum w1_commands {
 W1_CMD_READ,
 W1_CMD_WRITE,
 W1_CMD_SEARCH,
 W1_CMD_ALARM_SEARCH,
 W1_CMD_TOUCH,
 W1_CMD_RESET,
 W1_CMD_SLAVE_ADD,
 W1_CMD_SLAVE_REMOVE,
 W1_CMD_LIST_SLAVES,
 W1_CMD_MAX
};

Constants

W1_CMD_READ read len bytes

W1_CMD_WRITE write len bytes

W1_CMD_SEARCH initiate a standard search, returns only the slave devices found during that
search

W1_CMD_ALARM_SEARCHsearch for devices that are currently alarming

W1_CMD_TOUCH Touches a series of bytes.

W1_CMD_RESET sends a bus reset on the given master

W1_CMD_SLAVE_ADD adds a slave to the given master, 8 byte slave id at data[0]

W1_CMD_SLAVE_REMOVEremoves a slave to the given master, 8 byte slave id at data[0]

W1_CMD_LIST_SLAVES list of slaves registered on this master

W1_CMD_MAX number of available commands

W1 API internal to the kernel

21

Name
struct w1_netlink_cmd — holds the command and data

Synopsis

struct w1_netlink_cmd {
 __u8 cmd;
 __u8 res;
 __u16 len;
 __u8 data[0];
};

Members

cmd one of enum w1_commands

res reserved

len length of data following w1_netlink_cmd

data[0] start address of any following data

Description

One or more struct w1_netlink_cmd is placed starting at w1_netlink_msg.data each with optional data.

drivers/w1/w1_io.c
W1 input/output.

W1 API internal to the kernel

22

Name
w1_write_8 — Writes 8 bits.

Synopsis

void w1_write_8 (struct w1_master * dev, u8 byte);

Arguments

dev the master device

byte the byte to write

W1 API internal to the kernel

23

Name
w1_read_8 — Reads 8 bits.

Synopsis

u8 w1_read_8 (struct w1_master * dev);

Arguments

dev the master device

Return

the byte read

W1 API internal to the kernel

24

Name
w1_write_block — Writes a series of bytes.

Synopsis

void w1_write_block (struct w1_master * dev, const u8 * buf, int len);

Arguments

dev the master device

buf pointer to the data to write

len the number of bytes to write

W1 API internal to the kernel

25

Name
w1_touch_block — Touches a series of bytes.

Synopsis

void w1_touch_block (struct w1_master * dev, u8 * buf, int len);

Arguments

dev the master device

buf pointer to the data to write

len the number of bytes to write

W1 API internal to the kernel

26

Name
w1_read_block — Reads a series of bytes.

Synopsis

u8 w1_read_block (struct w1_master * dev, u8 * buf, int len);

Arguments

dev the master device

buf pointer to the buffer to fill

len the number of bytes to read

Return

the number of bytes read

W1 API internal to the kernel

27

Name
w1_reset_bus — Issues a reset bus sequence.

Synopsis

int w1_reset_bus (struct w1_master * dev);

Arguments

dev the master device

Return

0=Device present, 1=No device present or error

W1 API internal to the kernel

28

Name
w1_reset_select_slave — reset and select a slave

Synopsis

int w1_reset_select_slave (struct w1_slave * sl);

Arguments

sl the slave to select

Description

Resets the bus and then selects the slave by sending either a skip rom or a rom match. A skip rom is issued
if there is only one device registered on the bus. The w1 master lock must be held.

Return

0=success, anything else=error

W1 API internal to the kernel

29

Name
w1_reset_resume_command — resume instead of another match ROM

Synopsis

int w1_reset_resume_command (struct w1_master * dev);

Arguments

dev the master device

Description

When the workflow with a slave amongst many requires several successive commands a reset between
each, this function is similar to doing a reset then a match ROM for the last matched ROM. The advantage
being that the matched ROM step is skipped in favor of the resume command. The slave must support
the command of course.

If the bus has only one slave, traditionnaly the match ROM is skipped and a “SKIP ROM” is done for
efficiency. On multi-slave busses, this doesn't work of course, but the resume command is the next best
thing.

The w1 master lock must be held.

W1 API internal to the kernel

30

Name
w1_next_pullup — register for a strong pullup

Synopsis

void w1_next_pullup (struct w1_master * dev, int delay);

Arguments

dev the master device

delay time in milliseconds

Description

Put out a strong pull-up of the specified duration after the next write operation. Not all hardware supports
strong pullups. Hardware that doesn't support strong pullups will sleep for the given time after the write
operation without a strong pullup. This is a one shot request for the next write, specifying zero will clear
a previous request. The w1 master lock must be held.

Return

0=success, anything else=error

W1 API internal to the kernel

31

Name
w1_touch_bit — Generates a write-0 or write-1 cycle and samples the level.

Synopsis

u8 w1_touch_bit (struct w1_master * dev, int bit);

Arguments

dev the master device

bit 0 - write a 0, 1 - write a 0 read the level

W1 API internal to the kernel

32

Name
w1_write_bit — Generates a write-0 or write-1 cycle.

Synopsis

void w1_write_bit (struct w1_master * dev, int bit);

Arguments

dev the master device

bit bit to write

Description

Only call if dev->bus_master->touch_bit is NULL

W1 API internal to the kernel

33

Name
w1_pre_write — pre-write operations

Synopsis

void w1_pre_write (struct w1_master * dev);

Arguments

dev the master device

Description

Pre-write operation, currently only supporting strong pullups. Program the hardware for a strong pullup,
if one has been requested and the hardware supports it.

W1 API internal to the kernel

34

Name
w1_post_write — post-write options

Synopsis

void w1_post_write (struct w1_master * dev);

Arguments

dev the master device

Description

Post-write operation, currently only supporting strong pullups. If a strong pullup was requested, clear it if
the hardware supports them, or execute the delay otherwise, in either case clear the request.

W1 API internal to the kernel

35

Name
w1_read_bit — Generates a write-1 cycle and samples the level.

Synopsis

u8 w1_read_bit (struct w1_master * dev);

Arguments

dev the master device

Description

Only call if dev->bus_master->touch_bit is NULL

W1 API internal to the kernel

36

Name
w1_triplet — * Does a triplet - used for searching ROM addresses.

Synopsis

u8 w1_triplet (struct w1_master * dev, int bdir);

Arguments

dev the master device

bdir the bit to write if both id_bit and comp_bit are 0

Return bits

bit 0 = id_bit bit 1 = comp_bit bit 2 = dir_taken If both bits 0 & 1 are set, the search should be restarted.

Return

bit fields - see above

	W1: Dallas' 1-wire bus
	Table of Contents
	Chapter 1. W1 API internal to the kernel
	W1 API internal to the kernel
	drivers/w1/w1.h
	struct w1_reg_num
	struct w1_slave
	struct w1_bus_master
	enum w1_master_flags
	struct w1_master
	struct w1_async_cmd

	drivers/w1/w1.c
	w1_search
	w1_process_callbacks

	drivers/w1/w1_family.h
	struct w1_family_ops
	struct w1_family

	drivers/w1/w1_family.c
	w1_register_family
	w1_unregister_family

	drivers/w1/w1_int.c
	w1_add_master_device
	w1_remove_master_device

	drivers/w1/w1_netlink.h
	enum w1_cn_msg_flags
	enum w1_netlink_message_types
	struct w1_netlink_msg
	enum w1_commands
	struct w1_netlink_cmd

	drivers/w1/w1_io.c
	w1_write_8
	w1_read_8
	w1_write_block
	w1_touch_block
	w1_read_block
	w1_reset_bus
	w1_reset_select_slave
	w1_reset_resume_command
	w1_next_pullup
	w1_touch_bit
	w1_write_bit
	w1_pre_write
	w1_post_write
	w1_read_bit
	w1_triplet

