
Linux DRM Developer's Guide

Jesse Barnes, Intel Corporation <jesse.barnes@intel.com>
Laurent Pinchart, Ideas on board SPRL

<laurent.pinchart@ideasonboard.com>
Daniel Vetter, Intel Corporation <daniel.vetter@ffwll.ch>

Linux DRM Developer's Guide
by Jesse Barnes, Laurent Pinchart, and Daniel Vetter
Copyright © 2008-2009, 2013-2014 Intel Corporation
Copyright © 2012 Laurent Pinchart

The contents of this file may be used under the terms of the GNU General Public License version 2 (the "GPL") as distributed in the kernel source
COPYING file.

iii

Table of Contents
I. DRM Core .. 1

1. Introduction .. 4
2. DRM Internals .. 5

Driver Initialization ... 5
Driver Information .. 5
Device Registration ... 6
Driver Load .. 19

Memory management ... 21
The Translation Table Manager (TTM) ... 21
The Graphics Execution Manager (GEM) .. 22
VMA Offset Manager .. 39
PRIME Buffer Sharing ... 58
PRIME Function References ... 59
DRM MM Range Allocator ... 67
DRM MM Range Allocator Function References .. 68
CMA Helper Functions Reference .. 90

Mode Setting .. 103
Display Modes Function Reference ... 103
Atomic Mode Setting Function Reference .. 128
Frame Buffer Creation .. 146
Dumb Buffer Objects ... 147
Output Polling ... 148
Locking .. 148

KMS Initialization and Cleanup ... 148
CRTCs (struct drm_crtc) ... 148
Planes (struct drm_plane) .. 150
Encoders (struct drm_encoder) ... 151
Connectors (struct drm_connector) .. 152
Cleanup .. 155
Output discovery and initialization example .. 155
KMS API Functions ... 156
KMS Data Structures .. 223
KMS Locking ... 250

Mode Setting Helper Functions .. 269
Helper Functions ... 269
CRTC Helper Operations .. 270
Encoder Helper Operations .. 271
Connector Helper Operations ... 271
Atomic Modeset Helper Functions Reference .. 274
Modeset Helper Functions Reference .. 311
Output Probing Helper Functions Reference ... 327
fbdev Helper Functions Reference .. 335
Display Port Helper Functions Reference ... 353
Display Port MST Helper Functions Reference ... 366
MIPI DSI Helper Functions Reference ... 388
EDID Helper Functions Reference .. 421
Rectangle Utilities Reference ... 443
Flip-work Helper Reference ... 460
HDMI Infoframes Helper Reference .. 468
Plane Helper Reference ... 480
Tile group .. 487

Linux DRM Developer's Guide

iv

KMS Properties ... 487
Existing KMS Properties ... 489

Vertical Blanking ... 497
Vertical Blanking and Interrupt Handling Functions Reference 498

Open/Close, File Operations and IOCTLs .. 526
Open and Close ... 526
File Operations .. 527
IOCTLs .. 527

Legacy Support Code ... 528
Legacy Suspend/Resume ... 528
Legacy DMA Services .. 528

3. Userland interfaces ... 529
Render nodes .. 529
VBlank event handling ... 529

II. DRM Drivers .. 531
4. drm/i915 Intel GFX Driver .. 533

Core Driver Infrastructure ... 533
Runtime Power Management ... 533
Interrupt Handling .. 549
Intel GVT-g Guest Support(vGPU) ... 554

Display Hardware Handling ... 557
Mode Setting Infrastructure ... 557
Frontbuffer Tracking .. 557
Display FIFO Underrun Reporting .. 566
Plane Configuration .. 571
Atomic Plane Helpers ... 571
Output Probing .. 576
High Definition Audio .. 576
Panel Self Refresh PSR (PSR/SRD) .. 581
Frame Buffer Compression (FBC) .. 586
Display Refresh Rate Switching (DRRS) ... 590
DPIO ... 596

Memory Management and Command Submission .. 597
Batchbuffer Parsing .. 597
Batchbuffer Pools .. 603
Logical Rings, Logical Ring Contexts and Execlists 606
Global GTT views ... 616
Buffer Object Eviction .. 620
Buffer Object Memory Shrinking ... 623

Tracing ... 626
i915_ppgtt_create and i915_ppgtt_release .. 626
i915_context_create and i915_context_free .. 626
switch_mm .. 626

v

List of Tables
2.1. .. 489
4.1. Dual channel PHY (VLV/CHV) ... 597
4.2. Single channel PHY (CHV) ... 597

Part I. DRM Core
This first part of the DRM Developer's Guide documents core DRM code, helper libraries for writing drivers and
generic userspace interfaces exposed by DRM drivers.

2

Table of Contents
1. Introduction .. 4
2. DRM Internals .. 5

Driver Initialization ... 5
Driver Information .. 5
Device Registration ... 6
Driver Load .. 19

Memory management ... 21
The Translation Table Manager (TTM) ... 21
The Graphics Execution Manager (GEM) .. 22
VMA Offset Manager .. 39
PRIME Buffer Sharing ... 58
PRIME Function References ... 59
DRM MM Range Allocator ... 67
DRM MM Range Allocator Function References .. 68
CMA Helper Functions Reference .. 90

Mode Setting .. 103
Display Modes Function Reference ... 103
Atomic Mode Setting Function Reference .. 128
Frame Buffer Creation .. 146
Dumb Buffer Objects ... 147
Output Polling ... 148
Locking .. 148

KMS Initialization and Cleanup ... 148
CRTCs (struct drm_crtc) ... 148
Planes (struct drm_plane) .. 150
Encoders (struct drm_encoder) ... 151
Connectors (struct drm_connector) .. 152
Cleanup .. 155
Output discovery and initialization example .. 155
KMS API Functions ... 156
KMS Data Structures .. 223
KMS Locking ... 250

Mode Setting Helper Functions .. 269
Helper Functions ... 269
CRTC Helper Operations .. 270
Encoder Helper Operations .. 271
Connector Helper Operations ... 271
Atomic Modeset Helper Functions Reference .. 274
Modeset Helper Functions Reference .. 311
Output Probing Helper Functions Reference ... 327
fbdev Helper Functions Reference .. 335
Display Port Helper Functions Reference ... 353
Display Port MST Helper Functions Reference ... 366
MIPI DSI Helper Functions Reference .. 388
EDID Helper Functions Reference .. 421
Rectangle Utilities Reference ... 443
Flip-work Helper Reference ... 460
HDMI Infoframes Helper Reference .. 468
Plane Helper Reference ... 480
Tile group .. 487

KMS Properties ... 487

DRM Core

3

Existing KMS Properties ... 489
Vertical Blanking ... 497

Vertical Blanking and Interrupt Handling Functions Reference 498
Open/Close, File Operations and IOCTLs .. 526

Open and Close ... 526
File Operations .. 527
IOCTLs .. 527

Legacy Support Code ... 528
Legacy Suspend/Resume ... 528
Legacy DMA Services .. 528

3. Userland interfaces ... 529
Render nodes .. 529
VBlank event handling ... 529

4

Chapter 1. Introduction
The Linux DRM layer contains code intended to support the needs of complex graphics devices, usually
containing programmable pipelines well suited to 3D graphics acceleration. Graphics drivers in the kernel
may make use of DRM functions to make tasks like memory management, interrupt handling and DMA
easier, and provide a uniform interface to applications.

A note on versions: this guide covers features found in the DRM tree, including the TTM memory manager,
output configuration and mode setting, and the new vblank internals, in addition to all the regular features
found in current kernels.

[Insert diagram of typical DRM stack here]

5

Chapter 2. DRM Internals
This chapter documents DRM internals relevant to driver authors and developers working to add support
for the latest features to existing drivers.

First, we go over some typical driver initialization requirements, like setting up command buffers, creating
an initial output configuration, and initializing core services. Subsequent sections cover core internals in
more detail, providing implementation notes and examples.

The DRM layer provides several services to graphics drivers, many of them driven by the application
interfaces it provides through libdrm, the library that wraps most of the DRM ioctls. These include vblank
event handling, memory management, output management, framebuffer management, command submis-
sion & fencing, suspend/resume support, and DMA services.

Driver Initialization
At the core of every DRM driver is a drm_driver structure. Drivers typically statically initialize a
drm_driver structure, and then pass it to one of the drm_*_init() functions to register it with the DRM
subsystem.

Newer drivers that no longer require a drm_bus structure can alternatively use the low-level device initial-
ization and registration functions such as drm_dev_alloc() and drm_dev_register() directly.

The drm_driver structure contains static information that describes the driver and features it supports, and
pointers to methods that the DRM core will call to implement the DRM API. We will first go through
the drm_driver static information fields, and will then describe individual operations in details as they get
used in later sections.

Driver Information

Driver Features

Drivers inform the DRM core about their requirements and supported features by setting appropriate flags
in the driver_features field. Since those flags influence the DRM core behaviour since registration
time, most of them must be set to registering the drm_driver instance.

u32 driver_features;

Driver Feature Flags

DRIVER_USE_AGP Driver uses AGP interface, the DRM core will manage AGP resources.

DRIVER_REQUIRE_AGP Driver needs AGP interface to function. AGP initialization failure will be-
come a fatal error.

DRIVER_PCI_DMA Driver is capable of PCI DMA, mapping of PCI DMA buffers to userspace
will be enabled. Deprecated.

DRIVER_SG Driver can perform scatter/gather DMA, allocation and mapping of scat-
ter/gather buffers will be enabled. Deprecated.

DRIVER_HAVE_DMA Driver supports DMA, the userspace DMA API will be supported. Depre-
cated.

DRM Internals

6

DRIVER_HAVE_IRQ,
DRIVER_IRQ_SHARED

DRIVER_HAVE_IRQ indicates whether the driver has an IRQ handler man-
aged by the DRM Core. The core will support simple IRQ handler installa-
tion when the flag is set. The installation process is described in the section
called “IRQ Registration”.

DRIVER_IRQ_SHARED indicates whether the device & handler support
shared IRQs (note that this is required of PCI drivers).

DRIVER_GEM Driver use the GEM memory manager.

DRIVER_MODESET Driver supports mode setting interfaces (KMS).

DRIVER_PRIME Driver implements DRM PRIME buffer sharing.

DRIVER_RENDER Driver supports dedicated render nodes.

DRIVER_ATOMIC Driver supports atomic properties. In this case the driver must implement
appropriate obj->atomic_get_property() vfuncs for any modeset objects with
driver specific properties.

Major, Minor and Patchlevel

int major;
int minor;
int patchlevel;

The DRM core identifies driver versions by a major, minor and patch level triplet. The information is print-
ed to the kernel log at initialization time and passed to userspace through the DRM_IOCTL_VERSION
ioctl.

The major and minor numbers are also used to verify the requested driver API version passed
to DRM_IOCTL_SET_VERSION. When the driver API changes between minor versions, applica-
tions can call DRM_IOCTL_SET_VERSION to select a specific version of the API. If the request-
ed major isn't equal to the driver major, or the requested minor is larger than the driver minor, the
DRM_IOCTL_SET_VERSION call will return an error. Otherwise the driver's set_version() method will
be called with the requested version.

Name, Description and Date

char *name;
char *desc;
char *date;

The driver name is printed to the kernel log at initialization time, used for IRQ registration and passed to
userspace through DRM_IOCTL_VERSION.

The driver description is a purely informative string passed to userspace through the
DRM_IOCTL_VERSION ioctl and otherwise unused by the kernel.

The driver date, formatted as YYYYMMDD, is meant to identify the date of the latest modification to the
driver. However, as most drivers fail to update it, its value is mostly useless. The DRM core prints it to
the kernel log at initialization time and passes it to userspace through the DRM_IOCTL_VERSION ioctl.

Device Registration
A number of functions are provided to help with device registration. The functions deal with PCI and
platform devices, respectively.

DRM Internals

7

Name
drm_pci_alloc — Allocate a PCI consistent memory block, for DMA.

Synopsis

drm_dma_handle_t * drm_pci_alloc (struct drm_device * dev, size_t size,
size_t align);

Arguments

dev DRM device

size size of block to allocate

align alignment of block

Return

A handle to the allocated memory block on success or NULL on failure.

DRM Internals

8

Name
drm_pci_free — Free a PCI consistent memory block

Synopsis

void drm_pci_free (struct drm_device * dev, drm_dma_handle_t * dmah);

Arguments

dev DRM device

dmah handle to memory block

DRM Internals

9

Name
drm_get_pci_dev — Register a PCI device with the DRM subsystem

Synopsis

int drm_get_pci_dev (struct pci_dev * pdev, const struct pci_device_id
* ent, struct drm_driver * driver);

Arguments

pdev PCI device

ent entry from the PCI ID table that matches pdev

driver DRM device driver

Description

Attempt to gets inter module “drm” information. If we are first then register the character device and inter
module information. Try and register, if we fail to register, backout previous work.

Return

0 on success or a negative error code on failure.

DRM Internals

10

Name
drm_pci_init — Register matching PCI devices with the DRM subsystem

Synopsis

int drm_pci_init (struct drm_driver * driver, struct pci_driver * pdriv-
er);

Arguments

driver DRM device driver

pdriver PCI device driver

Description

Initializes a drm_device structures, registering the stubs and initializing the AGP device.

Return

0 on success or a negative error code on failure.

DRM Internals

11

Name
drm_pci_exit — Unregister matching PCI devices from the DRM subsystem

Synopsis

void drm_pci_exit (struct drm_driver * driver, struct pci_driver *
pdriver);

Arguments

driver DRM device driver

pdriver PCI device driver

Description

Unregisters one or more devices matched by a PCI driver from the DRM subsystem.

DRM Internals

12

Name
drm_platform_init — Register a platform device with the DRM subsystem

Synopsis

int drm_platform_init (struct drm_driver * driver, struct
platform_device * platform_device);

Arguments

driver DRM device driver

platform_device platform device to register

Description

Registers the specified DRM device driver and platform device with the DRM subsystem, initializing a
drm_device structure and calling the driver's .load function.

Return

0 on success or a negative error code on failure.

New drivers that no longer rely on the services provided by the drm_bus structure can call the low-
level device registration functions directly. The drm_dev_alloc() function can be used to allo-
cate and initialize a new drm_device structure. Drivers will typically want to perform some addi-
tional setup on this structure, such as allocating driver-specific data and storing a pointer to it in
the DRM device's dev_private field. Drivers should also set the device's unique name using the
drm_dev_set_unique() function. After it has been set up a device can be registered with the
DRM subsystem by calling drm_dev_register(). This will cause the device to be exposed to user-
space and will call the driver's .load() implementation. When a device is removed, the DRM de-
vice can safely be unregistered and freed by calling drm_dev_unregister() followed by a call to
drm_dev_unref().

DRM Internals

13

Name
drm_put_dev — Unregister and release a DRM device

Synopsis

void drm_put_dev (struct drm_device * dev);

Arguments

dev DRM device

Description

Called at module unload time or when a PCI device is unplugged.

Use of this function is discouraged. It will eventually go away completely. Please use
drm_dev_unregister and drm_dev_unref explicitly instead.

Cleans up all DRM device, calling drm_lastclose.

DRM Internals

14

Name
drm_dev_alloc — Allocate new DRM device

Synopsis

struct drm_device * drm_dev_alloc (struct drm_driver * driver, struct
device * parent);

Arguments

driver DRM driver to allocate device for

parent Parent device object

Description

Allocate and initialize a new DRM device. No device registration is done. Call drm_dev_register to
advertice the device to user space and register it with other core subsystems.

The initial ref-count of the object is 1. Use drm_dev_ref and drm_dev_unref to take and drop
further ref-counts.

Note that for purely virtual devices parent can be NULL.

RETURNS

Pointer to new DRM device, or NULL if out of memory.

DRM Internals

15

Name
drm_dev_ref — Take reference of a DRM device

Synopsis

void drm_dev_ref (struct drm_device * dev);

Arguments

dev device to take reference of or NULL

Description

This increases the ref-count of dev by one. You *must* already own a reference when calling this. Use
drm_dev_unref to drop this reference again.

This function never fails. However, this function does not provide *any* guarantee whether the device is
alive or running. It only provides a reference to the object and the memory associated with it.

DRM Internals

16

Name
drm_dev_unref — Drop reference of a DRM device

Synopsis

void drm_dev_unref (struct drm_device * dev);

Arguments

dev device to drop reference of or NULL

Description

This decreases the ref-count of dev by one. The device is destroyed if the ref-count drops to zero.

DRM Internals

17

Name
drm_dev_register — Register DRM device

Synopsis

int drm_dev_register (struct drm_device * dev, unsigned long flags);

Arguments

dev Device to register

flags Flags passed to the driver's .load function

Description

Register the DRM device dev with the system, advertise device to user-space and start normal device
operation. dev must be allocated via drm_dev_alloc previously.

Never call this twice on any device!

RETURNS

0 on success, negative error code on failure.

DRM Internals

18

Name
drm_dev_unregister — Unregister DRM device

Synopsis

void drm_dev_unregister (struct drm_device * dev);

Arguments

dev Device to unregister

Description

Unregister the DRM device from the system. This does the reverse of drm_dev_register but does
not deallocate the device. The caller must call drm_dev_unref to drop their final reference.

DRM Internals

19

Name
drm_dev_set_unique — Set the unique name of a DRM device

Synopsis

int drm_dev_set_unique (struct drm_device * dev, const char * fmt, ...);

Arguments

dev device of which to set the unique name

fmt format string for unique name

... variable arguments

Description

Sets the unique name of a DRM device using the specified format string and a variable list of arguments.
Drivers can use this at driver probe time if the unique name of the devices they drive is static.

Return

0 on success or a negative error code on failure.

Driver Load
The load method is the driver and device initialization entry point. The method is responsible for allocat-
ing and initializing driver private data, performing resource allocation and mapping (e.g. acquiring clocks,
mapping registers or allocating command buffers), initializing the memory manager (the section called
“Memory management”), installing the IRQ handler (the section called “IRQ Registration”), setting up
vertical blanking handling (the section called “Vertical Blanking”), mode setting (the section called “Mode
Setting”) and initial output configuration (the section called “KMS Initialization and Cleanup”).

Note

If compatibility is a concern (e.g. with drivers converted over from User Mode Setting to Kernel
Mode Setting), care must be taken to prevent device initialization and control that is incompatible
with currently active userspace drivers. For instance, if user level mode setting drivers are in use, it
would be problematic to perform output discovery & configuration at load time. Likewise, if user-
level drivers unaware of memory management are in use, memory management and command
buffer setup may need to be omitted. These requirements are driver-specific, and care needs to
be taken to keep both old and new applications and libraries working.

int (*load) (struct drm_device *, unsigned long flags);

The method takes two arguments, a pointer to the newly created drm_device and flags. The flags are used
to pass the driver_data field of the device id corresponding to the device passed to drm_*_init().
Only PCI devices currently use this, USB and platform DRM drivers have their load method called with
flags to 0.

Driver Private Data

The driver private hangs off the main drm_device structure and can be used for tracking various device-spe-
cific bits of information, like register offsets, command buffer status, register state for suspend/resume,

DRM Internals

20

etc. At load time, a driver may simply allocate one and set drm_device.dev_priv appropriately; it should
be freed and drm_device.dev_priv set to NULL when the driver is unloaded.

IRQ Registration

The DRM core tries to facilitate IRQ handler registration and unregistration by providing
drm_irq_install and drm_irq_uninstall functions. Those functions only support a single in-
terrupt per device, devices that use more than one IRQs need to be handled manually.

Managed IRQ Registration

drm_irq_install starts by calling the irq_preinstall driver operation. The operation is optional
and must make sure that the interrupt will not get fired by clearing all pending interrupt flags or disabling
the interrupt.

The passed-in IRQ will then be requested by a call to request_irq. If the DRIVER_IRQ_SHARED
driver feature flag is set, a shared (IRQF_SHARED) IRQ handler will be requested.

The IRQ handler function must be provided as the mandatory irq_handler driver operation. It will get
passed directly to request_irq and thus has the same prototype as all IRQ handlers. It will get called
with a pointer to the DRM device as the second argument.

Finally the function calls the optional irq_postinstall driver operation. The operation usually en-
ables interrupts (excluding the vblank interrupt, which is enabled separately), but drivers may choose to
enable/disable interrupts at a different time.

drm_irq_uninstall is similarly used to uninstall an IRQ handler. It starts by waking up all processes
waiting on a vblank interrupt to make sure they don't hang, and then calls the optional irq_uninstall
driver operation. The operation must disable all hardware interrupts. Finally the function frees the IRQ
by calling free_irq.

Manual IRQ Registration

Drivers that require multiple interrupt handlers can't use the managed IRQ registration functions. In
that case IRQs must be registered and unregistered manually (usually with the request_irq and
free_irq functions, or their devm_* equivalent).

When manually registering IRQs, drivers must not set the DRIVER_HAVE_IRQ driver feature flag, and
must not provide the irq_handler driver operation. They must set the drm_device irq_enabled
field to 1 upon registration of the IRQs, and clear it to 0 after unregistering the IRQs.

Memory Manager Initialization

Every DRM driver requires a memory manager which must be initialized at load time. DRM currently
contains two memory managers, the Translation Table Manager (TTM) and the Graphics Execution Man-
ager (GEM). This document describes the use of the GEM memory manager only. See the section called
“Memory management” for details.

Miscellaneous Device Configuration

Another task that may be necessary for PCI devices during configuration is mapping the video BIOS.
On many devices, the VBIOS describes device configuration, LCD panel timings (if any), and contains
flags indicating device state. Mapping the BIOS can be done using the pci_map_rom() call, a convenience
function that takes care of mapping the actual ROM, whether it has been shadowed into memory (typically

DRM Internals

21

at address 0xc0000) or exists on the PCI device in the ROM BAR. Note that after the ROM has been
mapped and any necessary information has been extracted, it should be unmapped; on many devices, the
ROM address decoder is shared with other BARs, so leaving it mapped could cause undesired behaviour
like hangs or memory corruption.

Memory management
Modern Linux systems require large amount of graphics memory to store frame buffers, textures, vertices
and other graphics-related data. Given the very dynamic nature of many of that data, managing graphics
memory efficiently is thus crucial for the graphics stack and plays a central role in the DRM infrastructure.

The DRM core includes two memory managers, namely Translation Table Maps (TTM) and Graphics
Execution Manager (GEM). TTM was the first DRM memory manager to be developed and tried to be a
one-size-fits-them all solution. It provides a single userspace API to accommodate the need of all hardware,
supporting both Unified Memory Architecture (UMA) devices and devices with dedicated video RAM
(i.e. most discrete video cards). This resulted in a large, complex piece of code that turned out to be hard
to use for driver development.

GEM started as an Intel-sponsored project in reaction to TTM's complexity. Its design philosophy is com-
pletely different: instead of providing a solution to every graphics memory-related problems, GEM iden-
tified common code between drivers and created a support library to share it. GEM has simpler initializa-
tion and execution requirements than TTM, but has no video RAM management capabilities and is thus
limited to UMA devices.

The Translation Table Manager (TTM)
TTM design background and information belongs here.

TTM initialization

Warning

This section is outdated.

Drivers wishing to support TTM must fill out a drm_bo_driver structure. The structure contains several
fields with function pointers for initializing the TTM, allocating and freeing memory, waiting for command
completion and fence synchronization, and memory migration. See the radeon_ttm.c file for an example
of usage.

The ttm_global_reference structure is made up of several fields:

 struct ttm_global_reference {
 enum ttm_global_types global_type;
 size_t size;
 void *object;
 int (*init) (struct ttm_global_reference *);
 void (*release) (struct ttm_global_reference *);
 };

There should be one global reference structure for your memory manager as a whole, and there will
be others for each object created by the memory manager at runtime. Your global TTM should have

DRM Internals

22

a type of TTM_GLOBAL_TTM_MEM. The size field for the global object should be sizeof(struct
ttm_mem_global), and the init and release hooks should point at your driver-specific init and release rou-
tines, which probably eventually call ttm_mem_global_init and ttm_mem_global_release, respectively.

Once your global TTM accounting structure is set up and initialized by calling ttm_global_item_ref()
on it, you need to create a buffer object TTM to provide a pool for buffer object allocation by clients
and the kernel itself. The type of this object should be TTM_GLOBAL_TTM_BO, and its size should
be sizeof(struct ttm_bo_global). Again, driver-specific init and release functions may be provided, likely
eventually calling ttm_bo_global_init() and ttm_bo_global_release(), respectively. Also, like the previous
object, ttm_global_item_ref() is used to create an initial reference count for the TTM, which will call your
initialization function.

The Graphics Execution Manager (GEM)
The GEM design approach has resulted in a memory manager that doesn't provide full coverage of all (or
even all common) use cases in its userspace or kernel API. GEM exposes a set of standard memory-related
operations to userspace and a set of helper functions to drivers, and let drivers implement hardware-specific
operations with their own private API.

The GEM userspace API is described in the GEM - the Graphics Execution Manager [http://lwn.net/
Articles/283798/] article on LWN. While slightly outdated, the document provides a good overview of the
GEM API principles. Buffer allocation and read and write operations, described as part of the common
GEM API, are currently implemented using driver-specific ioctls.

GEM is data-agnostic. It manages abstract buffer objects without knowing what individual buffers contain.
APIs that require knowledge of buffer contents or purpose, such as buffer allocation or synchronization
primitives, are thus outside of the scope of GEM and must be implemented using driver-specific ioctls.

On a fundamental level, GEM involves several operations:

• Memory allocation and freeing

• Command execution

• Aperture management at command execution time

Buffer object allocation is relatively straightforward and largely provided by Linux's shmem layer, which
provides memory to back each object.

Device-specific operations, such as command execution, pinning, buffer read & write, mapping, and do-
main ownership transfers are left to driver-specific ioctls.

GEM Initialization

Drivers that use GEM must set the DRIVER_GEM bit in the struct drm_driver driver_features
field. The DRM core will then automatically initialize the GEM core before calling the load operation.
Behind the scene, this will create a DRM Memory Manager object which provides an address space pool
for object allocation.

In a KMS configuration, drivers need to allocate and initialize a command ring buffer following core GEM
initialization if required by the hardware. UMA devices usually have what is called a "stolen" memory
region, which provides space for the initial framebuffer and large, contiguous memory regions required
by the device. This space is typically not managed by GEM, and must be initialized separately into its
own DRM MM object.

http://lwn.net/Articles/283798/
http://lwn.net/Articles/283798/
http://lwn.net/Articles/283798/

DRM Internals

23

GEM Objects Creation

GEM splits creation of GEM objects and allocation of the memory that backs them in two distinct oper-
ations.

GEM objects are represented by an instance of struct drm_gem_object. Drivers usually need to extend
GEM objects with private information and thus create a driver-specific GEM object structure type that
embeds an instance of struct drm_gem_object.

To create a GEM object, a driver allocates memory for an instance of its specific GEM object type and
initializes the embedded struct drm_gem_object with a call to drm_gem_object_init. The function
takes a pointer to the DRM device, a pointer to the GEM object and the buffer object size in bytes.

GEM uses shmem to allocate anonymous pageable memory. drm_gem_object_init will create an
shmfs file of the requested size and store it into the struct drm_gem_object filp field. The memory is
used as either main storage for the object when the graphics hardware uses system memory directly or
as a backing store otherwise.

Drivers are responsible for the actual physical pages allocation by calling
shmem_read_mapping_page_gfp for each page. Note that they can decide to allocate pages when
initializing the GEM object, or to delay allocation until the memory is needed (for instance when a page
fault occurs as a result of a userspace memory access or when the driver needs to start a DMA transfer
involving the memory).

Anonymous pageable memory allocation is not always desired, for instance when the hardware requires
physically contiguous system memory as is often the case in embedded devices. Drivers can create
GEM objects with no shmfs backing (called private GEM objects) by initializing them with a call to
drm_gem_private_object_init instead of drm_gem_object_init. Storage for private GEM
objects must be managed by drivers.

Drivers that do not need to extend GEM objects with private information can call the
drm_gem_object_alloc function to allocate and initialize a struct drm_gem_object instance. The
GEM core will call the optional driver gem_init_object operation after initializing the GEM object
with drm_gem_object_init.

int (*gem_init_object) (struct drm_gem_object *obj);

No alloc-and-init function exists for private GEM objects.

GEM Objects Lifetime

All GEM objects are reference-counted by the GEM core. References can be acquired and re-
lease by calling drm_gem_object_reference and drm_gem_object_unreference
respectively. The caller must hold the drm_device struct_mutex lock. As
a convenience, GEM provides the drm_gem_object_reference_unlocked and
drm_gem_object_unreference_unlocked functions that can be called without holding the lock.

When the last reference to a GEM object is released the GEM core calls the drm_driver
gem_free_object operation. That operation is mandatory for GEM-enabled drivers and must free the
GEM object and all associated resources.

void (*gem_free_object) (struct drm_gem_object *obj);

Drivers are responsible for freeing all GEM object resources, including the resources created by the GEM
core. If an mmap offset has been created for the object (in which case drm_gem_object::map_list::map

DRM Internals

24

is not NULL) it must be freed by a call to drm_gem_free_mmap_offset. The shmfs backing store
must be released by calling drm_gem_object_release (that function can safely be called if no shmfs
backing store has been created).

GEM Objects Naming

Communication between userspace and the kernel refers to GEM objects using local handles, global names
or, more recently, file descriptors. All of those are 32-bit integer values; the usual Linux kernel limits
apply to the file descriptors.

GEM handles are local to a DRM file. Applications get a handle to a GEM object through a driver-specific
ioctl, and can use that handle to refer to the GEM object in other standard or driver-specific ioctls. Closing
a DRM file handle frees all its GEM handles and dereferences the associated GEM objects.

To create a handle for a GEM object drivers call drm_gem_handle_create. The function takes a
pointer to the DRM file and the GEM object and returns a locally unique handle. When the handle is
no longer needed drivers delete it with a call to drm_gem_handle_delete. Finally the GEM object
associated with a handle can be retrieved by a call to drm_gem_object_lookup.

Handles don't take ownership of GEM objects, they only take a reference to the object that will be dropped
when the handle is destroyed. To avoid leaking GEM objects, drivers must make sure they drop the
reference(s) they own (such as the initial reference taken at object creation time) as appropriate, without
any special consideration for the handle. For example, in the particular case of combined GEM object
and handle creation in the implementation of the dumb_create operation, drivers must drop the initial
reference to the GEM object before returning the handle.

GEM names are similar in purpose to handles but are not local to DRM files. They can be passed
between processes to reference a GEM object globally. Names can't be used directly to refer to ob-
jects in the DRM API, applications must convert handles to names and names to handles using the
DRM_IOCTL_GEM_FLINK and DRM_IOCTL_GEM_OPEN ioctls respectively. The conversion is han-
dled by the DRM core without any driver-specific support.

GEM also supports buffer sharing with dma-buf file descriptors through PRIME. GEM-based drivers must
use the provided helpers functions to implement the exporting and importing correctly. See the section
called “PRIME Buffer Sharing”. Since sharing file descriptors is inherently more secure than the easily
guessable and global GEM names it is the preferred buffer sharing mechanism. Sharing buffers through
GEM names is only supported for legacy userspace. Furthermore PRIME also allows cross-device buffer
sharing since it is based on dma-bufs.

GEM Objects Mapping

Because mapping operations are fairly heavyweight GEM favours read/write-like access to buffers, im-
plemented through driver-specific ioctls, over mapping buffers to userspace. However, when random ac-
cess to the buffer is needed (to perform software rendering for instance), direct access to the object can
be more efficient.

The mmap system call can't be used directly to map GEM objects, as they don't have their own file handle.
Two alternative methods currently co-exist to map GEM objects to userspace. The first method uses a
driver-specific ioctl to perform the mapping operation, calling do_mmap under the hood. This is often
considered dubious, seems to be discouraged for new GEM-enabled drivers, and will thus not be described
here.

The second method uses the mmap system call on the DRM file handle.

void *mmap(void *addr, size_t length, int prot, int flags, int fd,

DRM Internals

25

 off_t offset);

DRM identifies the GEM object to be mapped by a fake offset passed through the mmap offset argument.
Prior to being mapped, a GEM object must thus be associated with a fake offset. To do so, drivers must
call drm_gem_create_mmap_offset on the object. The function allocates a fake offset range from
a pool and stores the offset divided by PAGE_SIZE in obj->map_list.hash.key. Care must be
taken not to call drm_gem_create_mmap_offset if a fake offset has already been allocated for the
object. This can be tested by obj->map_list.map being non-NULL.

Once allocated, the fake offset value (obj->map_list.hash.key << PAGE_SHIFT) must be
passed to the application in a driver-specific way and can then be used as the mmap offset argument.

The GEM core provides a helper method drm_gem_mmap to handle object mapping. The method can be
set directly as the mmap file operation handler. It will look up the GEM object based on the offset value
and set the VMA operations to the drm_driver gem_vm_ops field. Note that drm_gem_mmap doesn't
map memory to userspace, but relies on the driver-provided fault handler to map pages individually.

To use drm_gem_mmap, drivers must fill the struct drm_driver gem_vm_ops field with a pointer to
VM operations.

struct vm_operations_struct *gem_vm_ops

 struct vm_operations_struct {
 void (*open)(struct vm_area_struct * area);
 void (*close)(struct vm_area_struct * area);
 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
 };

The open and close operations must update the GEM object reference count. Drivers can use the
drm_gem_vm_open and drm_gem_vm_close helper functions directly as open and close handlers.

The fault operation handler is responsible for mapping individual pages to userspace when a page fault
occurs. Depending on the memory allocation scheme, drivers can allocate pages at fault time, or can decide
to allocate memory for the GEM object at the time the object is created.

Drivers that want to map the GEM object upfront instead of handling page faults can implement their own
mmap file operation handler.

Memory Coherency

When mapped to the device or used in a command buffer, backing pages for an object are flushed to
memory and marked write combined so as to be coherent with the GPU. Likewise, if the CPU accesses an
object after the GPU has finished rendering to the object, then the object must be made coherent with the
CPU's view of memory, usually involving GPU cache flushing of various kinds. This core CPU<->GPU
coherency management is provided by a device-specific ioctl, which evaluates an object's current domain
and performs any necessary flushing or synchronization to put the object into the desired coherency domain
(note that the object may be busy, i.e. an active render target; in that case, setting the domain blocks the
client and waits for rendering to complete before performing any necessary flushing operations).

Command Execution

Perhaps the most important GEM function for GPU devices is providing a command execution interface to
clients. Client programs construct command buffers containing references to previously allocated memory
objects, and then submit them to GEM. At that point, GEM takes care to bind all the objects into the GTT,
execute the buffer, and provide necessary synchronization between clients accessing the same buffers. This

DRM Internals

26

often involves evicting some objects from the GTT and re-binding others (a fairly expensive operation),
and providing relocation support which hides fixed GTT offsets from clients. Clients must take care not to
submit command buffers that reference more objects than can fit in the GTT; otherwise, GEM will reject
them and no rendering will occur. Similarly, if several objects in the buffer require fence registers to be
allocated for correct rendering (e.g. 2D blits on pre-965 chips), care must be taken not to require more
fence registers than are available to the client. Such resource management should be abstracted from the
client in libdrm.

GEM Function Reference

DRM Internals

27

Name
drm_gem_object_init — initialize an allocated shmem-backed GEM object

Synopsis

int drm_gem_object_init (struct drm_device * dev, struct drm_gem_object
* obj, size_t size);

Arguments

dev drm_device the object should be initialized for

obj drm_gem_object to initialize

size object size

Description

Initialize an already allocated GEM object of the specified size with shmfs backing store.

DRM Internals

28

Name
drm_gem_private_object_init — initialize an allocated private GEM object

Synopsis

void drm_gem_private_object_init (struct drm_device * dev, struct
drm_gem_object * obj, size_t size);

Arguments

dev drm_device the object should be initialized for

obj drm_gem_object to initialize

size object size

Description

Initialize an already allocated GEM object of the specified size with no GEM provided backing store.
Instead the caller is responsible for backing the object and handling it.

DRM Internals

29

Name
drm_gem_handle_delete — deletes the given file-private handle

Synopsis

int drm_gem_handle_delete (struct drm_file * filp, u32 handle);

Arguments

filp drm file-private structure to use for the handle look up

handle userspace handle to delete

Description

Removes the GEM handle from the filp lookup table and if this is the last handle also cleans up linked
resources like GEM names.

DRM Internals

30

Name
drm_gem_dumb_destroy — dumb fb callback helper for gem based drivers

Synopsis

int drm_gem_dumb_destroy (struct drm_file * file, struct drm_device *
dev, uint32_t handle);

Arguments

file drm file-private structure to remove the dumb handle from

dev corresponding drm_device

handle the dumb handle to remove

Description

This implements the ->dumb_destroy kms driver callback for drivers which use gem to manage their
backing storage.

DRM Internals

31

Name
drm_gem_handle_create — create a gem handle for an object

Synopsis

int drm_gem_handle_create (struct drm_file * file_priv, struct
drm_gem_object * obj, u32 * handlep);

Arguments

file_priv drm file-private structure to register the handle for

obj object to register

handlep pionter to return the created handle to the caller

Description

Create a handle for this object. This adds a handle reference to the object, which includes a regular reference
count. Callers will likely want to dereference the object afterwards.

DRM Internals

32

Name
drm_gem_free_mmap_offset — release a fake mmap offset for an object

Synopsis

void drm_gem_free_mmap_offset (struct drm_gem_object * obj);

Arguments

obj obj in question

Description

This routine frees fake offsets allocated by drm_gem_create_mmap_offset.

DRM Internals

33

Name
drm_gem_create_mmap_offset_size — create a fake mmap offset for an object

Synopsis

int drm_gem_create_mmap_offset_size (struct drm_gem_object * obj, size_t
size);

Arguments

obj obj in question

size the virtual size

Description

GEM memory mapping works by handing back to userspace a fake mmap offset it can use in a subsequent
mmap(2) call. The DRM core code then looks up the object based on the offset and sets up the various
memory mapping structures.

This routine allocates and attaches a fake offset for obj, in cases where the virtual size differs from the
physical size (ie. obj->size). Otherwise just use drm_gem_create_mmap_offset.

DRM Internals

34

Name
drm_gem_create_mmap_offset — create a fake mmap offset for an object

Synopsis

int drm_gem_create_mmap_offset (struct drm_gem_object * obj);

Arguments

obj obj in question

Description

GEM memory mapping works by handing back to userspace a fake mmap offset it can use in a subsequent
mmap(2) call. The DRM core code then looks up the object based on the offset and sets up the various
memory mapping structures.

This routine allocates and attaches a fake offset for obj.

DRM Internals

35

Name
drm_gem_get_pages — helper to allocate backing pages for a GEM object from shmem

Synopsis

struct page ** drm_gem_get_pages (struct drm_gem_object * obj);

Arguments

obj obj in question

Description

This reads the page-array of the shmem-backing storage of the given gem object. An array of pages is
returned. If a page is not allocated or swapped-out, this will allocate/swap-in the required pages. Note that
the whole object is covered by the page-array and pinned in memory.

Use drm_gem_put_pages to release the array and unpin all pages.

This uses the GFP-mask set on the shmem-mapping (see mapping_set_gfp_mask). If you require
other GFP-masks, you have to do those allocations yourself.

Note that you are not allowed to change gfp-zones during runtime. That is,
shmem_read_mapping_page_gfp must be called with the same gfp_zone(gfp) as set during
initialization. If you have special zone constraints, set them after drm_gem_init_object via
mapping_set_gfp_mask. shmem-core takes care to keep pages in the required zone during swap-in.

DRM Internals

36

Name
drm_gem_put_pages — helper to free backing pages for a GEM object

Synopsis

void drm_gem_put_pages (struct drm_gem_object * obj, struct page **
pages, bool dirty, bool accessed);

Arguments

obj obj in question

pages pages to free

dirty if true, pages will be marked as dirty

accessed if true, the pages will be marked as accessed

DRM Internals

37

Name
drm_gem_object_free — free a GEM object

Synopsis

void drm_gem_object_free (struct kref * kref);

Arguments

kref kref of the object to free

Description

Called after the last reference to the object has been lost. Must be called holding struct_ mutex

Frees the object

DRM Internals

38

Name
drm_gem_mmap_obj — memory map a GEM object

Synopsis

int drm_gem_mmap_obj (struct drm_gem_object * obj, unsigned long
obj_size, struct vm_area_struct * vma);

Arguments

obj the GEM object to map

obj_size the object size to be mapped, in bytes

vma VMA for the area to be mapped

Description

Set up the VMA to prepare mapping of the GEM object using the gem_vm_ops provided by the dri-
ver. Depending on their requirements, drivers can either provide a fault handler in their gem_vm_ops
(in which case any accesses to the object will be trapped, to perform migration, GTT binding, surface
register allocation, or performance monitoring), or mmap the buffer memory synchronously after calling
drm_gem_mmap_obj.

This function is mainly intended to implement the DMABUF mmap operation, when the GEM object is
not looked up based on its fake offset. To implement the DRM mmap operation, drivers should use the
drm_gem_mmap function.

drm_gem_mmap_obj assumes the user is granted access to the buffer while drm_gem_mmap prevents
unprivileged users from mapping random objects. So callers must verify access restrictions before calling
this helper.

NOTE

This function has to be protected with dev->struct_mutex

Return 0 or success or -EINVAL if the object size is smaller than the VMA size, or if no gem_vm_ops
are provided.

DRM Internals

39

Name
drm_gem_mmap — memory map routine for GEM objects

Synopsis

int drm_gem_mmap (struct file * filp, struct vm_area_struct * vma);

Arguments

filp DRM file pointer

vma VMA for the area to be mapped

Description

If a driver supports GEM object mapping, mmap calls on the DRM file descriptor will end up here.

Look up the GEM object based on the offset passed in (vma->vm_pgoff will contain the fake offset we
created when the GTT map ioctl was called on the object) and map it with a call to drm_gem_mmap_obj.

If the caller is not granted access to the buffer object, the mmap will fail with EACCES. Please see the
vma manager for more information.

VMA Offset Manager

The vma-manager is responsible to map arbitrary driver-dependent memory regions into the linear user
address-space. It provides offsets to the caller which can then be used on the address_space of the drm-
device. It takes care to not overlap regions, size them appropriately and to not confuse mm-core by in-
consistent fake vm_pgoff fields. Drivers shouldn't use this for object placement in VMEM. This manager
should only be used to manage mappings into linear user-space VMs.

We use drm_mm as backend to manage object allocations. But it is highly optimized for alloc/free calls,
not lookups. Hence, we use an rb-tree to speed up offset lookups.

You must not use multiple offset managers on a single address_space. Otherwise, mm-core will be unable
to tear down memory mappings as the VM will no longer be linear.

This offset manager works on page-based addresses. That is, every argument and return code (with the
exception of drm_vma_node_offset_addr) is given in number of pages, not number of bytes. That
means, object sizes and offsets must always be page-aligned (as usual). If you want to get a valid byte-
based user-space address for a given offset, please see drm_vma_node_offset_addr.

Additionally to offset management, the vma offset manager also handles access management. For every
open-file context that is allowed to access a given node, you must call drm_vma_node_allow. Other-
wise, an mmap call on this open-file with the offset of the node will fail with -EACCES. To revoke access
again, use drm_vma_node_revoke. However, the caller is responsible for destroying already existing
mappings, if required.

DRM Internals

40

Name
drm_vma_offset_manager_init — Initialize new offset-manager

Synopsis

void drm_vma_offset_manager_init (struct drm_vma_offset_manager * mgr,
unsigned long page_offset, unsigned long size);

Arguments

mgr Manager object

page_offset Offset of available memory area (page-based)

size Size of available address space range (page-based)

Description

Initialize a new offset-manager. The offset and area size available for the manager are given as
page_offset and size. Both are interpreted as page-numbers, not bytes.

Adding/removing nodes from the manager is locked internally and protected against concurrent access.
However, node allocation and destruction is left for the caller. While calling into the vma-manager, a given
node must always be guaranteed to be referenced.

DRM Internals

41

Name
drm_vma_offset_manager_destroy — Destroy offset manager

Synopsis

void drm_vma_offset_manager_destroy (struct drm_vma_offset_manager *
mgr);

Arguments

mgr Manager object

Description

Destroy an object manager which was previously created via drm_vma_offset_manager_init.
The caller must remove all allocated nodes before destroying the manager. Otherwise, drm_mm will refuse
to free the requested resources.

The manager must not be accessed after this function is called.

DRM Internals

42

Name
drm_vma_offset_lookup — Find node in offset space

Synopsis

struct drm_vma_offset_node * drm_vma_offset_lookup (struct
drm_vma_offset_manager * mgr, unsigned long start, unsigned long pages);

Arguments

mgr Manager object

start Start address for object (page-based)

pages Size of object (page-based)

Description

Find a node given a start address and object size. This returns the _best_ match for the given node. That
is, start may point somewhere into a valid region and the given node will be returned, as long as the
node spans the whole requested area (given the size in number of pages as pages).

RETURNS

Returns NULL if no suitable node can be found. Otherwise, the best match is returned. It's the caller's
responsibility to make sure the node doesn't get destroyed before the caller can access it.

DRM Internals

43

Name
drm_vma_offset_lookup_locked — Find node in offset space

Synopsis

struct drm_vma_offset_node * drm_vma_offset_lookup_locked (struct
drm_vma_offset_manager * mgr, unsigned long start, unsigned long pages);

Arguments

mgr Manager object

start Start address for object (page-based)

pages Size of object (page-based)

Description

Same as drm_vma_offset_lookup but requires the caller to lock offset lookup manually. See
drm_vma_offset_lock_lookup for an example.

RETURNS

Returns NULL if no suitable node can be found. Otherwise, the best match is returned.

DRM Internals

44

Name
drm_vma_offset_add — Add offset node to manager

Synopsis

int drm_vma_offset_add (struct drm_vma_offset_manager * mgr, struct
drm_vma_offset_node * node, unsigned long pages);

Arguments

mgr Manager object

node Node to be added

pages Allocation size visible to user-space (in number of pages)

Description

Add a node to the offset-manager. If the node was already added, this does nothing and return 0. pages
is the size of the object given in number of pages. After this call succeeds, you can access the offset of
the node until it is removed again.

If this call fails, it is safe to retry the operation or call drm_vma_offset_remove, anyway. However,
no cleanup is required in that case.

pages is not required to be the same size as the underlying memory object that you want to map. It only
limits the size that user-space can map into their address space.

RETURNS

0 on success, negative error code on failure.

DRM Internals

45

Name
drm_vma_offset_remove — Remove offset node from manager

Synopsis

void drm_vma_offset_remove (struct drm_vma_offset_manager * mgr, struct
drm_vma_offset_node * node);

Arguments

mgr Manager object

node Node to be removed

Description

Remove a node from the offset manager. If the node wasn't added before, this does nothing. After this call
returns, the offset and size will be 0 until a new offset is allocated via drm_vma_offset_add again.
Helper functions like drm_vma_node_start and drm_vma_node_offset_addr will return 0 if
no offset is allocated.

DRM Internals

46

Name
drm_vma_node_allow — Add open-file to list of allowed users

Synopsis

int drm_vma_node_allow (struct drm_vma_offset_node * node, struct file
* filp);

Arguments

node Node to modify

filp Open file to add

Description

Add filp to the list of allowed open-files for this node. If filp is already on this list, the ref-count is
incremented.

The list of allowed-users is preserved across drm_vma_offset_add and
drm_vma_offset_remove calls. You may even call it if the node is currently not added to any off-
set-manager.

You must remove all open-files the same number of times as you added them before destroying the node.
Otherwise, you will leak memory.

This is locked against concurrent access internally.

RETURNS

0 on success, negative error code on internal failure (out-of-mem)

DRM Internals

47

Name
drm_vma_node_revoke — Remove open-file from list of allowed users

Synopsis

void drm_vma_node_revoke (struct drm_vma_offset_node * node, struct file
* filp);

Arguments

node Node to modify

filp Open file to remove

Description

Decrement the ref-count of filp in the list of allowed open-files on node. If the ref-count drops to zero,
remove filp from the list. You must call this once for every drm_vma_node_allow on filp.

This is locked against concurrent access internally.

If filp is not on the list, nothing is done.

DRM Internals

48

Name
drm_vma_node_is_allowed — Check whether an open-file is granted access

Synopsis

bool drm_vma_node_is_allowed (struct drm_vma_offset_node * node, struct
file * filp);

Arguments

node Node to check

filp Open-file to check for

Description

Search the list in node whether filp is currently on the list of allowed open-files (see
drm_vma_node_allow).

This is locked against concurrent access internally.

RETURNS

true iff filp is on the list

DRM Internals

49

Name
drm_vma_offset_exact_lookup — Look up node by exact address

Synopsis

struct drm_vma_offset_node * drm_vma_offset_exact_lookup (struct
drm_vma_offset_manager * mgr, unsigned long start, unsigned long pages);

Arguments

mgr Manager object

start Start address (page-based, not byte-based)

pages Size of object (page-based)

Description

Same as drm_vma_offset_lookup but does not allow any offset into the node. It only returns the
exact object with the given start address.

RETURNS

Node at exact start address start.

DRM Internals

50

Name
drm_vma_offset_lock_lookup — Lock lookup for extended private use

Synopsis

void drm_vma_offset_lock_lookup (struct drm_vma_offset_manager * mgr);

Arguments

mgr Manager object

Description

Lock VMA manager for extended lookups. Only *_locked VMA function calls are allowed
while holding this lock. All other contexts are blocked from VMA until the lock is released via
drm_vma_offset_unlock_lookup.

Use this if you need to take a reference to the objects returned by drm_vma_offset_lookup_locked
before releasing this lock again.

This lock must not be used for anything else than extended lookups. You must not call any other VMA
helpers while holding this lock.

Note

You're in atomic-context while holding this lock!

Example

 drm_vma_offset_lock_lookup(mgr);
 node = drm_vma_offset_lookup_locked(mgr);
 if (node)
 kref_get_unless_zero(container_of(node, sth, entr));
 drm_vma_offset_unlock_lookup(mgr);

DRM Internals

51

Name
drm_vma_offset_unlock_lookup — Unlock lookup for extended private use

Synopsis

void drm_vma_offset_unlock_lookup (struct drm_vma_offset_manager *
mgr);

Arguments

mgr Manager object

Description

Release lookup-lock. See drm_vma_offset_lock_lookup for more information.

DRM Internals

52

Name
drm_vma_node_reset — Initialize or reset node object

Synopsis

void drm_vma_node_reset (struct drm_vma_offset_node * node);

Arguments

node Node to initialize or reset

Description

Reset a node to its initial state. This must be called before using it with any VMA offset manager.

This must not be called on an already allocated node, or you will leak memory.

DRM Internals

53

Name
drm_vma_node_start — Return start address for page-based addressing

Synopsis

unsigned long drm_vma_node_start (struct drm_vma_offset_node * node);

Arguments

node Node to inspect

Description

Return the start address of the given node. This can be used as offset into the linear VM space that
is provided by the VMA offset manager. Note that this can only be used for page-based addressing.
If you need a proper offset for user-space mappings, you must apply “<< PAGE_SHIFT” or use the
drm_vma_node_offset_addr helper instead.

RETURNS

Start address of node for page-based addressing. 0 if the node does not have an offset allocated.

DRM Internals

54

Name
drm_vma_node_size — Return size (page-based)

Synopsis

unsigned long drm_vma_node_size (struct drm_vma_offset_node * node);

Arguments

node Node to inspect

Description

Return the size as number of pages for the given node. This is the same size that was passed to
drm_vma_offset_add. If no offset is allocated for the node, this is 0.

RETURNS

Size of node as number of pages. 0 if the node does not have an offset allocated.

DRM Internals

55

Name
drm_vma_node_has_offset — Check whether node is added to offset manager

Synopsis

bool drm_vma_node_has_offset (struct drm_vma_offset_node * node);

Arguments

node Node to be checked

RETURNS

true iff the node was previously allocated an offset and added to an vma offset manager.

DRM Internals

56

Name
drm_vma_node_offset_addr — Return sanitized offset for user-space mmaps

Synopsis

__u64 drm_vma_node_offset_addr (struct drm_vma_offset_node * node);

Arguments

node Linked offset node

Description

Same as drm_vma_node_start but returns the address as a valid offset that can be used for user-space
mappings during mmap. This must not be called on unlinked nodes.

RETURNS

Offset of node for byte-based addressing. 0 if the node does not have an object allocated.

DRM Internals

57

Name
drm_vma_node_unmap — Unmap offset node

Synopsis

void drm_vma_node_unmap (struct drm_vma_offset_node * node, struct
address_space * file_mapping);

Arguments

node Offset node

file_mapping Address space to unmap node from

Description

Unmap all userspace mappings for a given offset node. The mappings must be associated with the
file_mapping address-space. If no offset exists nothing is done.

This call is unlocked. The caller must guarantee that drm_vma_offset_remove is not called on this
node concurrently.

DRM Internals

58

Name
drm_vma_node_verify_access — Access verification helper for TTM

Synopsis

int drm_vma_node_verify_access (struct drm_vma_offset_node * node,
struct file * filp);

Arguments

node Offset node

filp Open-file

Description

This checks whether filp is granted access to node. It is the same as drm_vma_node_is_allowed
but suitable as drop-in helper for TTM verify_access callbacks.

RETURNS

0 if access is granted, -EACCES otherwise.

PRIME Buffer Sharing
PRIME is the cross device buffer sharing framework in drm, originally created for the OPTIMUS range
of multi-gpu platforms. To userspace PRIME buffers are dma-buf based file descriptors.

Overview and Driver Interface

Similar to GEM global names, PRIME file descriptors are also used to share buffer objects across process-
es. They offer additional security: as file descriptors must be explicitly sent over UNIX domain sockets to
be shared between applications, they can't be guessed like the globally unique GEM names.

Drivers that support the PRIME API must set the DRIVER_PRIME bit in the struct
drm_driver driver_features field, and implement the prime_handle_to_fd and
prime_fd_to_handle operations.

int (*prime_handle_to_fd)(struct drm_device *dev,
 struct drm_file *file_priv, uint32_t handle,
 uint32_t flags, int *prime_fd);
int (*prime_fd_to_handle)(struct drm_device *dev,
 struct drm_file *file_priv, int prime_fd,
 uint32_t *handle);

Those two operations convert a handle to a PRIME file descriptor and vice versa. Drivers must use the
kernel dma-buf buffer sharing framework to manage the PRIME file descriptors. Similar to the mode
setting API PRIME is agnostic to the underlying buffer object manager, as long as handles are 32bit
unsigned integers.

While non-GEM drivers must implement the operations themselves, GEM drivers must use the
drm_gem_prime_handle_to_fd and drm_gem_prime_fd_to_handle helper functions.
Those helpers rely on the driver gem_prime_export and gem_prime_import operations to create
a dma-buf instance from a GEM object (dma-buf exporter role) and to create a GEM object from a dma-
buf instance (dma-buf importer role).

DRM Internals

59

struct dma_buf * (*gem_prime_export)(struct drm_device *dev,
 struct drm_gem_object *obj,
 int flags);
struct drm_gem_object * (*gem_prime_import)(struct drm_device *dev,
 struct dma_buf *dma_buf);

These two operations are mandatory for GEM drivers that support PRIME.

PRIME Helper Functions

Drivers can implement gem_prime_export and gem_prime_import in terms of simpler APIs by
using the helper functions drm_gem_prime_export and drm_gem_prime_import. These func-
tions implement dma-buf support in terms of five lower-level driver callbacks:

Export callbacks:

- gem_prime_pin (optional): prepare a GEM object for exporting

- gem_prime_get_sg_table: provide a scatter/gather table of pinned pages

- gem_prime_vmap: vmap a buffer exported by your driver

- gem_prime_vunmap: vunmap a buffer exported by your driver

Import callback:

- gem_prime_import_sg_table (import): produce a GEM object from another driver's scatter/gath-
er table

PRIME Function References

DRM Internals

60

Name
drm_gem_dmabuf_release — dma_buf release implementation for GEM

Synopsis

void drm_gem_dmabuf_release (struct dma_buf * dma_buf);

Arguments

dma_buf buffer to be released

Description

Generic release function for dma_bufs exported as PRIME buffers. GEM drivers must use this in their
dma_buf ops structure as the release callback.

DRM Internals

61

Name
drm_gem_prime_export — helper library implementation of the export callback

Synopsis

struct dma_buf * drm_gem_prime_export (struct drm_device * dev, struct
drm_gem_object * obj, int flags);

Arguments

dev drm_device to export from

obj GEM object to export

flags flags like DRM_CLOEXEC

Description

This is the implementation of the gem_prime_export functions for GEM drivers using the PRIME helpers.

DRM Internals

62

Name
drm_gem_prime_handle_to_fd — PRIME export function for GEM drivers

Synopsis

int drm_gem_prime_handle_to_fd (struct drm_device * dev, struct drm_file
* file_priv, uint32_t handle, uint32_t flags, int * prime_fd);

Arguments

dev dev to export the buffer from

file_priv drm file-private structure

handle buffer handle to export

flags flags like DRM_CLOEXEC

prime_fd pointer to storage for the fd id of the create dma-buf

Description

This is the PRIME export function which must be used mandatorily by GEM drivers to ensure correct
lifetime management of the underlying GEM object. The actual exporting from GEM object to a dma-buf
is done through the gem_prime_export driver callback.

DRM Internals

63

Name
drm_gem_prime_import — helper library implementation of the import callback

Synopsis

struct drm_gem_object * drm_gem_prime_import (struct drm_device * dev,
struct dma_buf * dma_buf);

Arguments

dev drm_device to import into

dma_buf dma-buf object to import

Description

This is the implementation of the gem_prime_import functions for GEM drivers using the PRIME helpers.

DRM Internals

64

Name
drm_gem_prime_fd_to_handle — PRIME import function for GEM drivers

Synopsis

int drm_gem_prime_fd_to_handle (struct drm_device * dev, struct drm_file
* file_priv, int prime_fd, uint32_t * handle);

Arguments

dev dev to export the buffer from

file_priv drm file-private structure

prime_fd fd id of the dma-buf which should be imported

handle pointer to storage for the handle of the imported buffer object

Description

This is the PRIME import function which must be used mandatorily by GEM drivers to ensure correct
lifetime management of the underlying GEM object. The actual importing of GEM object from the dma-
buf is done through the gem_import_export driver callback.

DRM Internals

65

Name
drm_prime_pages_to_sg — converts a page array into an sg list

Synopsis

struct sg_table * drm_prime_pages_to_sg (struct page ** pages, unsigned
int nr_pages);

Arguments

pages pointer to the array of page pointers to convert

nr_pages length of the page vector

Description

This helper creates an sg table object from a set of pages the driver is responsible for mapping the pages
into the importers address space for use with dma_buf itself.

DRM Internals

66

Name
drm_prime_sg_to_page_addr_arrays — convert an sg table into a page array

Synopsis

int drm_prime_sg_to_page_addr_arrays (struct sg_table * sgt, struct page
** pages, dma_addr_t * addrs, int max_pages);

Arguments

sgt scatter-gather table to convert

pages array of page pointers to store the page array in

addrs optional array to store the dma bus address of each page

max_pages size of both the passed-in arrays

Description

Exports an sg table into an array of pages and addresses. This is currently required by the TTM driver in
order to do correct fault handling.

DRM Internals

67

Name
drm_prime_gem_destroy — helper to clean up a PRIME-imported GEM object

Synopsis

void drm_prime_gem_destroy (struct drm_gem_object * obj, struct sg_table
* sg);

Arguments

obj GEM object which was created from a dma-buf

sg the sg-table which was pinned at import time

Description

This is the cleanup functions which GEM drivers need to call when they use drm_gem_prime_import
to import dma-bufs.

DRM MM Range Allocator

Overview

drm_mm provides a simple range allocator. The drivers are free to use the resource allocator from the
linux core if it suits them, the upside of drm_mm is that it's in the DRM core. Which means that it's easier
to extend for some of the crazier special purpose needs of gpus.

The main data struct is drm_mm, allocations are tracked in drm_mm_node. Drivers are free to embed
either of them into their own suitable datastructures. drm_mm itself will not do any allocations of its own,
so if drivers choose not to embed nodes they need to still allocate them themselves.

The range allocator also supports reservation of preallocated blocks. This is useful for taking over initial
mode setting configurations from the firmware, where an object needs to be created which exactly matches
the firmware's scanout target. As long as the range is still free it can be inserted anytime after the allocator
is initialized, which helps with avoiding looped depencies in the driver load sequence.

drm_mm maintains a stack of most recently freed holes, which of all simplistic datastructures seems to be
a fairly decent approach to clustering allocations and avoiding too much fragmentation. This means free
space searches are O(num_holes). Given that all the fancy features drm_mm supports something better
would be fairly complex and since gfx thrashing is a fairly steep cliff not a real concern. Removing a node
again is O(1).

drm_mm supports a few features: Alignment and range restrictions can be supplied. Further more every
drm_mm_node has a color value (which is just an opaqua unsigned long) which in conjunction with a
driver callback can be used to implement sophisticated placement restrictions. The i915 DRM driver uses
this to implement guard pages between incompatible caching domains in the graphics TT.

Two behaviors are supported for searching and allocating: bottom-up and top-down. The default is bot-
tom-up. Top-down allocation can be used if the memory area has different restrictions, or just to reduce
fragmentation.

Finally iteration helpers to walk all nodes and all holes are provided as are some basic allocator dumpers
for debugging.

DRM Internals

68

LRU Scan/Eviction Support

Very often GPUs need to have continuous allocations for a given object. When evicting objects to make
space for a new one it is therefore not most efficient when we simply start to select all objects from the
tail of an LRU until there's a suitable hole: Especially for big objects or nodes that otherwise have special
allocation constraints there's a good chance we evict lots of (smaller) objects unecessarily.

The DRM range allocator supports this use-case through the scanning interfaces. First a scan operation
needs to be initialized with drm_mm_init_scan or drm_mm_init_scan_with_range. The the
driver adds objects to the roaster (probably by walking an LRU list, but this can be freely implemented)
until a suitable hole is found or there's no further evitable object.

The the driver must walk through all objects again in exactly the reverse order to restore the allocator state.
Note that while the allocator is used in the scan mode no other operation is allowed.

Finally the driver evicts all objects selected in the scan. Adding and removing an object is O(1), and since
freeing a node is also O(1) the overall complexity is O(scanned_objects). So like the free stack which
needs to be walked before a scan operation even begins this is linear in the number of objects. It doesn't
seem to hurt badly.

DRM MM Range Allocator Function References

DRM Internals

69

Name
drm_mm_reserve_node — insert an pre-initialized node

Synopsis

int drm_mm_reserve_node (struct drm_mm * mm, struct drm_mm_node * node);

Arguments

mm drm_mm allocator to insert node into

node drm_mm_node to insert

Description

This functions inserts an already set-up drm_mm_node into the allocator, meaning that start, size and color
must be set by the caller. This is useful to initialize the allocator with preallocated objects which must be
set-up before the range allocator can be set-up, e.g. when taking over a firmware framebuffer.

Returns

0 on success, -ENOSPC if there's no hole where node is.

DRM Internals

70

Name
drm_mm_insert_node_generic — search for space and insert node

Synopsis

int drm_mm_insert_node_generic (struct drm_mm * mm, struct drm_mm_node
* node, u64 size, unsigned alignment, unsigned long color, enum
drm_mm_search_flags sflags, enum drm_mm_allocator_flags aflags);

Arguments

mm drm_mm to allocate from

node preallocate node to insert

size size of the allocation

alignment alignment of the allocation

color opaque tag value to use for this node

sflags flags to fine-tune the allocation search

aflags flags to fine-tune the allocation behavior

Description

The preallocated node must be cleared to 0.

Returns

0 on success, -ENOSPC if there's no suitable hole.

DRM Internals

71

Name
drm_mm_insert_node_in_range_generic — ranged search for space and insert node

Synopsis

int drm_mm_insert_node_in_range_generic (struct drm_mm * mm, struct
drm_mm_node * node, u64 size, unsigned alignment, unsigned long
color, u64 start, u64 end, enum drm_mm_search_flags sflags, enum
drm_mm_allocator_flags aflags);

Arguments

mm drm_mm to allocate from

node preallocate node to insert

size size of the allocation

alignment alignment of the allocation

color opaque tag value to use for this node

start start of the allowed range for this node

end end of the allowed range for this node

sflags flags to fine-tune the allocation search

aflags flags to fine-tune the allocation behavior

Description

The preallocated node must be cleared to 0.

Returns

0 on success, -ENOSPC if there's no suitable hole.

DRM Internals

72

Name
drm_mm_remove_node — Remove a memory node from the allocator.

Synopsis

void drm_mm_remove_node (struct drm_mm_node * node);

Arguments

node drm_mm_node to remove

Description

This just removes a node from its drm_mm allocator. The node does not need to be cleared again before
it can be re-inserted into this or any other drm_mm allocator. It is a bug to call this function on a un-
allocated node.

DRM Internals

73

Name
drm_mm_replace_node — move an allocation from old to new

Synopsis

void drm_mm_replace_node (struct drm_mm_node * old, struct drm_mm_node
* new);

Arguments

old drm_mm_node to remove from the allocator

new drm_mm_node which should inherit old's allocation

Description

This is useful for when drivers embed the drm_mm_node structure and hence can't move allocations by
reassigning pointers. It's a combination of remove and insert with the guarantee that the allocation start
will match.

DRM Internals

74

Name
drm_mm_init_scan — initialize lru scanning

Synopsis

void drm_mm_init_scan (struct drm_mm * mm, u64 size, unsigned alignment,
unsigned long color);

Arguments

mm drm_mm to scan

size size of the allocation

alignment alignment of the allocation

color opaque tag value to use for the allocation

Description

This simply sets up the scanning routines with the parameters for the desired hole. Note that there's no need
to specify allocation flags, since they only change the place a node is allocated from within a suitable hole.

Warning

As long as the scan list is non-empty, no other operations than adding/removing nodes to/from the scan
list are allowed.

DRM Internals

75

Name
drm_mm_init_scan_with_range — initialize range-restricted lru scanning

Synopsis

void drm_mm_init_scan_with_range (struct drm_mm * mm, u64 size, unsigned
alignment, unsigned long color, u64 start, u64 end);

Arguments

mm drm_mm to scan

size size of the allocation

alignment alignment of the allocation

color opaque tag value to use for the allocation

start start of the allowed range for the allocation

end end of the allowed range for the allocation

Description

This simply sets up the scanning routines with the parameters for the desired hole. Note that there's no need
to specify allocation flags, since they only change the place a node is allocated from within a suitable hole.

Warning

As long as the scan list is non-empty, no other operations than adding/removing nodes to/from the scan
list are allowed.

DRM Internals

76

Name
drm_mm_scan_add_block — add a node to the scan list

Synopsis

bool drm_mm_scan_add_block (struct drm_mm_node * node);

Arguments

node drm_mm_node to add

Description

Add a node to the scan list that might be freed to make space for the desired hole.

Returns

True if a hole has been found, false otherwise.

DRM Internals

77

Name
drm_mm_scan_remove_block — remove a node from the scan list

Synopsis

bool drm_mm_scan_remove_block (struct drm_mm_node * node);

Arguments

node drm_mm_node to remove

Description

Nodes _must_ be removed in the exact same order from the scan list as they have been added, otherwise
the internal state of the memory manager will be corrupted.

When the scan list is empty, the selected memory nodes can be freed. An immediately following
drm_mm_search_free with !DRM_MM_SEARCH_BEST will then return the just freed block (because
its at the top of the free_stack list).

Returns

True if this block should be evicted, false otherwise. Will always return false when no hole has been found.

DRM Internals

78

Name
drm_mm_clean — checks whether an allocator is clean

Synopsis

bool drm_mm_clean (struct drm_mm * mm);

Arguments

mm drm_mm allocator to check

Returns

True if the allocator is completely free, false if there's still a node allocated in it.

DRM Internals

79

Name
drm_mm_init — initialize a drm-mm allocator

Synopsis

void drm_mm_init (struct drm_mm * mm, u64 start, u64 size);

Arguments

mm the drm_mm structure to initialize

start start of the range managed by mm

size end of the range managed by mm

Description

Note that mm must be cleared to 0 before calling this function.

DRM Internals

80

Name
drm_mm_takedown — clean up a drm_mm allocator

Synopsis

void drm_mm_takedown (struct drm_mm * mm);

Arguments

mm drm_mm allocator to clean up

Description

Note that it is a bug to call this function on an allocator which is not clean.

DRM Internals

81

Name
drm_mm_debug_table — dump allocator state to dmesg

Synopsis

void drm_mm_debug_table (struct drm_mm * mm, const char * prefix);

Arguments

mm drm_mm allocator to dump

prefix prefix to use for dumping to dmesg

DRM Internals

82

Name
drm_mm_dump_table — dump allocator state to a seq_file

Synopsis

int drm_mm_dump_table (struct seq_file * m, struct drm_mm * mm);

Arguments

m seq_file to dump to

mm drm_mm allocator to dump

DRM Internals

83

Name
drm_mm_node_allocated — checks whether a node is allocated

Synopsis

bool drm_mm_node_allocated (struct drm_mm_node * node);

Arguments

node drm_mm_node to check

Description

Drivers should use this helpers for proper encapusulation of drm_mm internals.

Returns

True if the node is allocated.

DRM Internals

84

Name
drm_mm_initialized — checks whether an allocator is initialized

Synopsis

bool drm_mm_initialized (struct drm_mm * mm);

Arguments

mm drm_mm to check

Description

Drivers should use this helpers for proper encapusulation of drm_mm internals.

Returns

True if the mm is initialized.

DRM Internals

85

Name
drm_mm_hole_node_start — computes the start of the hole following node

Synopsis

u64 drm_mm_hole_node_start (struct drm_mm_node * hole_node);

Arguments

hole_node drm_mm_node which implicitly tracks the following hole

Description

This is useful for driver-sepific debug dumpers. Otherwise drivers should not inspect holes themselves.
Drivers must check first whether a hole indeed follows by looking at node->hole_follows.

Returns

Start of the subsequent hole.

DRM Internals

86

Name
drm_mm_hole_node_end — computes the end of the hole following node

Synopsis

u64 drm_mm_hole_node_end (struct drm_mm_node * hole_node);

Arguments

hole_node drm_mm_node which implicitly tracks the following hole

Description

This is useful for driver-sepific debug dumpers. Otherwise drivers should not inspect holes themselves.
Drivers must check first whether a hole indeed follows by looking at node->hole_follows.

Returns

End of the subsequent hole.

DRM Internals

87

Name
drm_mm_for_each_node — iterator to walk over all allocated nodes

Synopsis

drm_mm_for_each_node (entry, mm);

Arguments

entry drm_mm_node structure to assign to in each iteration step

mm drm_mm allocator to walk

Description

This iterator walks over all nodes in the range allocator. It is implemented with list_for_each, so not save
against removal of elements.

DRM Internals

88

Name
drm_mm_for_each_hole — iterator to walk over all holes

Synopsis

drm_mm_for_each_hole (entry, mm, hole_start, hole_end);

Arguments

entry drm_mm_node used internally to track progress

mm drm_mm allocator to walk

hole_start ulong variable to assign the hole start to on each iteration

hole_end ulong variable to assign the hole end to on each iteration

Description

This iterator walks over all holes in the range allocator. It is implemented with list_for_each, so not save
against removal of elements. entry is used internally and will not reflect a real drm_mm_node for the
very first hole. Hence users of this iterator may not access it.

Implementation Note

We need to inline list_for_each_entry in order to be able to set hole_start and hole_end on each iteration
while keeping the macro sane.

The __drm_mm_for_each_hole version is similar, but with added support for going backwards.

DRM Internals

89

Name
drm_mm_insert_node — search for space and insert node

Synopsis

int drm_mm_insert_node (struct drm_mm * mm, struct drm_mm_node * node,
u64 size, unsigned alignment, enum drm_mm_search_flags flags);

Arguments

mm drm_mm to allocate from

node preallocate node to insert

size size of the allocation

alignment alignment of the allocation

flags flags to fine-tune the allocation

Description

This is a simplified version of drm_mm_insert_node_generic with color set to 0.

The preallocated node must be cleared to 0.

Returns

0 on success, -ENOSPC if there's no suitable hole.

DRM Internals

90

Name
drm_mm_insert_node_in_range — ranged search for space and insert node

Synopsis

int drm_mm_insert_node_in_range (struct drm_mm * mm, struct drm_mm_node
* node, u64 size, unsigned alignment, u64 start, u64 end, enum
drm_mm_search_flags flags);

Arguments

mm drm_mm to allocate from

node preallocate node to insert

size size of the allocation

alignment alignment of the allocation

start start of the allowed range for this node

end end of the allowed range for this node

flags flags to fine-tune the allocation

Description

This is a simplified version of drm_mm_insert_node_in_range_generic with color set to 0.

The preallocated node must be cleared to 0.

Returns

0 on success, -ENOSPC if there's no suitable hole.

CMA Helper Functions Reference

The Contiguous Memory Allocator reserves a pool of memory at early boot that is used to service requests
for large blocks of contiguous memory.

The DRM GEM/CMA helpers use this allocator as a means to provide buffer objects that are physically
contiguous in memory. This is useful for display drivers that are unable to map scattered buffers via an
IOMMU.

DRM Internals

91

Name
drm_gem_cma_create — allocate an object with the given size

Synopsis

struct drm_gem_cma_object * drm_gem_cma_create (struct drm_device * drm,
size_t size);

Arguments

drm DRM device

size size of the object to allocate

Description

This function creates a CMA GEM object and allocates a contiguous chunk of memory as backing store.
The backing memory has the writecombine attribute set.

Returns

A struct drm_gem_cma_object * on success or an ERR_PTR-encoded negative error code on failure.

DRM Internals

92

Name
drm_gem_cma_free_object — free resources associated with a CMA GEM object

Synopsis

void drm_gem_cma_free_object (struct drm_gem_object * gem_obj);

Arguments

gem_obj GEM object to free

Description

This function frees the backing memory of the CMA GEM object, cleans up the GEM object state and
frees the memory used to store the object itself. Drivers using the CMA helpers should set this as their
DRM driver's ->gem_free_object callback.

DRM Internals

93

Name
drm_gem_cma_dumb_create_internal — create a dumb buffer object

Synopsis

int drm_gem_cma_dumb_create_internal (struct drm_file * file_priv,
struct drm_device * drm, struct drm_mode_create_dumb * args);

Arguments

file_priv DRM file-private structure to create the dumb buffer for

drm DRM device

args IOCTL data

Description

This aligns the pitch and size arguments to the minimum required. This is an internal helper that can be
wrapped by a driver to account for hardware with more specific alignment requirements. It should not be
used directly as the ->dumb_create callback in a DRM driver.

Returns

0 on success or a negative error code on failure.

DRM Internals

94

Name
drm_gem_cma_dumb_create — create a dumb buffer object

Synopsis

int drm_gem_cma_dumb_create (struct drm_file * file_priv, struct
drm_device * drm, struct drm_mode_create_dumb * args);

Arguments

file_priv DRM file-private structure to create the dumb buffer for

drm DRM device

args IOCTL data

Description

This function computes the pitch of the dumb buffer and rounds it up to an integer number of bytes per
pixel. Drivers for hardware that doesn't have any additional restrictions on the pitch can directly use this
function as their ->dumb_create callback.

For hardware with additional restrictions, drivers can adjust the fields set up by userspace and pass the
IOCTL data along to the drm_gem_cma_dumb_create_internal function.

Returns

0 on success or a negative error code on failure.

DRM Internals

95

Name
drm_gem_cma_dumb_map_offset — return the fake mmap offset for a CMA GEM object

Synopsis

int drm_gem_cma_dumb_map_offset (struct drm_file * file_priv, struct
drm_device * drm, u32 handle, u64 * offset);

Arguments

file_priv DRM file-private structure containing the GEM object

drm DRM device

handle GEM object handle

offset return location for the fake mmap offset

Description

This function look up an object by its handle and returns the fake mmap offset associated with it. Drivers
using the CMA helpers should set this as their DRM driver's ->dumb_map_offset callback.

Returns

0 on success or a negative error code on failure.

DRM Internals

96

Name
drm_gem_cma_mmap — memory-map a CMA GEM object

Synopsis

int drm_gem_cma_mmap (struct file * filp, struct vm_area_struct * vma);

Arguments

filp file object

vma VMA for the area to be mapped

Description

This function implements an augmented version of the GEM DRM file mmap

operation for CMA objects

In addition to the usual GEM VMA setup it immediately faults in the entire object instead of using on-
demaind faulting. Drivers which employ the CMA helpers should use this function as their ->mmap handler
in the DRM device file's file_operations structure.

Returns

0 on success or a negative error code on failure.

DRM Internals

97

Name
drm_gem_cma_describe — describe a CMA GEM object for debugfs

Synopsis

void drm_gem_cma_describe (struct drm_gem_cma_object * cma_obj, struct
seq_file * m);

Arguments

cma_obj CMA GEM object

m debugfs file handle

Description

This function can be used to dump a human-readable representation of the CMA GEM object into a syn-
thetic file.

DRM Internals

98

Name
drm_gem_cma_prime_get_sg_table — provide a scatter/gather table of pinned pages for a CMA GEM
object

Synopsis

struct sg_table * drm_gem_cma_prime_get_sg_table (struct drm_gem_object
* obj);

Arguments

obj GEM object

Description

This function exports a scatter/gather table suitable for PRIME usage by calling the standard
DMA mapping API. Drivers using the CMA helpers should set this as their DRM driver's -
>gem_prime_get_sg_table callback.

Returns

A pointer to the scatter/gather table of pinned pages or NULL on failure.

DRM Internals

99

Name
drm_gem_cma_prime_import_sg_table — produce a CMA GEM object from another driver's scatter/gath-
er table of pinned pages

Synopsis

struct drm_gem_object * drm_gem_cma_prime_import_sg_table (struct
drm_device * dev, struct dma_buf_attachment * attach, struct sg_table
* sgt);

Arguments

dev device to import into

attach DMA-BUF attachment

sgt scatter/gather table of pinned pages

Description

This function imports a scatter/gather table exported via DMA-BUF by another driver. Imported buffers
must be physically contiguous in memory (i.e. the scatter/gather table must contain a single entry). Drivers
that use the CMA helpers should set this as their DRM driver's ->gem_prime_import_sg_table
callback.

Returns

A pointer to a newly created GEM object or an ERR_PTR-encoded negative error code on failure.

DRM Internals

100

Name
drm_gem_cma_prime_mmap — memory-map an exported CMA GEM object

Synopsis

int drm_gem_cma_prime_mmap (struct drm_gem_object * obj, struct
vm_area_struct * vma);

Arguments

obj GEM object

vma VMA for the area to be mapped

Description

This function maps a buffer imported via DRM PRIME into a userspace process's address space. Drivers
that use the CMA helpers should set this as their DRM driver's ->gem_prime_mmap callback.

Returns

0 on success or a negative error code on failure.

DRM Internals

101

Name
drm_gem_cma_prime_vmap — map a CMA GEM object into the kernel's virtual address space

Synopsis

void * drm_gem_cma_prime_vmap (struct drm_gem_object * obj);

Arguments

obj GEM object

Description

This function maps a buffer exported via DRM PRIME into the kernel's virtual address space. Since the
CMA buffers are already mapped into the kernel virtual address space this simply returns the cached virtual
address. Drivers using the CMA helpers should set this as their DRM driver's ->gem_prime_vmap
callback.

Returns

The kernel virtual address of the CMA GEM object's backing store.

DRM Internals

102

Name
drm_gem_cma_prime_vunmap — unmap a CMA GEM object from the kernel's virtual address space

Synopsis

void drm_gem_cma_prime_vunmap (struct drm_gem_object * obj, void * vad-
dr);

Arguments

obj GEM object

vaddr kernel virtual address where the CMA GEM object was mapped

Description

This function removes a buffer exported via DRM PRIME from the kernel's virtual address space. This
is a no-op because CMA buffers cannot be unmapped from kernel space. Drivers using the CMA helpers
should set this as their DRM driver's ->gem_prime_vunmap callback.

DRM Internals

103

Name
struct drm_gem_cma_object — GEM object backed by CMA memory allocations

Synopsis

struct drm_gem_cma_object {
 struct drm_gem_object base;
 dma_addr_t paddr;
 struct sg_table * sgt;
 void * vaddr;
};

Members

base base GEM object

paddr physical address of the backing memory

sgt scatter/gather table for imported PRIME buffers

vaddr kernel virtual address of the backing memory

Mode Setting
Drivers must initialize the mode setting core by calling drm_mode_config_init on the DRM device.
The function initializes the drm_device mode_config field and never fails. Once done, mode configu-
ration must be setup by initializing the following fields.

• int min_width, min_height;
int max_width, max_height;

Minimum and maximum width and height of the frame buffers in pixel units.

• struct drm_mode_config_funcs *funcs;

Mode setting functions.

Display Modes Function Reference

DRM Internals

104

Name
drm_mode_is_stereo — check for stereo mode flags

Synopsis

bool drm_mode_is_stereo (const struct drm_display_mode * mode);

Arguments

mode drm_display_mode to check

Returns

True if the mode is one of the stereo modes (like side-by-side), false if not.

DRM Internals

105

Name
drm_mode_debug_printmodeline — print a mode to dmesg

Synopsis

void drm_mode_debug_printmodeline (const struct drm_display_mode *
mode);

Arguments

mode mode to print

Description

Describe mode using DRM_DEBUG.

DRM Internals

106

Name
drm_mode_create — create a new display mode

Synopsis

struct drm_display_mode * drm_mode_create (struct drm_device * dev);

Arguments

dev DRM device

Description

Create a new, cleared drm_display_mode with kzalloc, allocate an ID for it and return it.

Returns

Pointer to new mode on success, NULL on error.

DRM Internals

107

Name
drm_mode_destroy — remove a mode

Synopsis

void drm_mode_destroy (struct drm_device * dev, struct drm_display_mode
* mode);

Arguments

dev DRM device

mode mode to remove

Description

Release mode's unique ID, then free it mode structure itself using kfree.

DRM Internals

108

Name
drm_mode_probed_add — add a mode to a connector's probed_mode list

Synopsis

void drm_mode_probed_add (struct drm_connector * connector, struct
drm_display_mode * mode);

Arguments

connector connector the new mode

mode mode data

Description

Add mode to connector's probed_mode list for later use. This list should then in a second step get
filtered and all the modes actually supported by the hardware moved to the connector's modes list.

DRM Internals

109

Name
drm_cvt_mode — create a modeline based on the CVT algorithm

Synopsis

struct drm_display_mode * drm_cvt_mode (struct drm_device * dev, int
hdisplay, int vdisplay, int vrefresh, bool reduced, bool interlaced,
bool margins);

Arguments

dev drm device

hdisplay hdisplay size

vdisplay vdisplay size

vrefresh vrefresh rate

reduced whether to use reduced blanking

interlaced whether to compute an interlaced mode

margins whether to add margins (borders)

Description

This function is called to generate the modeline based on CVT algorithm according to the hdisplay, vdis-
play, vrefresh. It is based from the VESA(TM) Coordinated Video Timing Generator by Graham Loveridge
April 9, 2003 available at

http

//www.elo.utfsm.cl/~elo212/docs/CVTd6r1.xls

And it is copied from xf86CVTmode in xserver/hw/xfree86/modes/xf86cvt.c. What I have done is to trans-
late it by using integer calculation.

Returns

The modeline based on the CVT algorithm stored in a drm_display_mode object. The display mode object
is allocated with drm_mode_create. Returns NULL when no mode could be allocated.

DRM Internals

110

Name
drm_gtf_mode_complex — create the modeline based on the full GTF algorithm

Synopsis

struct drm_display_mode * drm_gtf_mode_complex (struct drm_device * dev,
int hdisplay, int vdisplay, int vrefresh, bool interlaced, int margins,
int GTF_M, int GTF_2C, int GTF_K, int GTF_2J);

Arguments

dev drm device

hdisplay hdisplay size

vdisplay vdisplay size

vrefresh vrefresh rate.

interlaced whether to compute an interlaced mode

margins desired margin (borders) size

GTF_M extended GTF formula parameters

GTF_2C extended GTF formula parameters

GTF_K extended GTF formula parameters

GTF_2J extended GTF formula parameters

Description

GTF feature blocks specify C and J in multiples of 0.5, so we pass them in here multiplied by two. For
a C of 40, pass in 80.

Returns

The modeline based on the full GTF algorithm stored in a drm_display_mode object. The display mode
object is allocated with drm_mode_create. Returns NULL when no mode could be allocated.

DRM Internals

111

Name
drm_gtf_mode — create the modeline based on the GTF algorithm

Synopsis

struct drm_display_mode * drm_gtf_mode (struct drm_device * dev, int
hdisplay, int vdisplay, int vrefresh, bool interlaced, int margins);

Arguments

dev drm device

hdisplay hdisplay size

vdisplay vdisplay size

vrefresh vrefresh rate.

interlaced whether to compute an interlaced mode

margins desired margin (borders) size

Description

return the modeline based on GTF algorithm

This function is to create the modeline based on the GTF algorithm.

Generalized Timing Formula is derived from

GTF Spreadsheet by Andy Morrish (1/5/97)

available at http

//www.vesa.org

And it is copied from the file of xserver/hw/xfree86/modes/xf86gtf.c. What I have done is to translate it by
using integer calculation. I also refer to the function of fb_get_mode in the file of drivers/video/fbmon.c

Standard GTF parameters

M = 600 C = 40 K = 128 J = 20

Returns

The modeline based on the GTF algorithm stored in a drm_display_mode object. The display mode object
is allocated with drm_mode_create. Returns NULL when no mode could be allocated.

DRM Internals

112

Name
drm_display_mode_from_videomode — fill in dmode using vm,

Synopsis

void drm_display_mode_from_videomode (const struct videomode * vm,
struct drm_display_mode * dmode);

Arguments

vm videomode structure to use as source

dmode drm_display_mode structure to use as destination

Description

Fills out dmode using the display mode specified in vm.

DRM Internals

113

Name
drm_display_mode_to_videomode — fill in vm using dmode,

Synopsis

void drm_display_mode_to_videomode (const struct drm_display_mode *
dmode, struct videomode * vm);

Arguments

dmode drm_display_mode structure to use as source

vm videomode structure to use as destination

Description

Fills out vm using the display mode specified in dmode.

DRM Internals

114

Name
of_get_drm_display_mode — get a drm_display_mode from devicetree

Synopsis

int of_get_drm_display_mode (struct device_node * np, struct
drm_display_mode * dmode, int index);

Arguments

np device_node with the timing specification

dmode will be set to the return value

index index into the list of display timings in devicetree

Description

This function is expensive and should only be used, if only one mode is to be read from DT. To get multiple
modes start with of_get_display_timings and work with that instead.

Returns

0 on success, a negative errno code when no of videomode node was found.

DRM Internals

115

Name
drm_mode_set_name — set the name on a mode

Synopsis

void drm_mode_set_name (struct drm_display_mode * mode);

Arguments

mode name will be set in this mode

Description

Set the name of mode to a standard format which is <hdisplay>x<vdisplay> with an optional 'i' suffix
for interlaced modes.

DRM Internals

116

Name
drm_mode_vrefresh — get the vrefresh of a mode

Synopsis

int drm_mode_vrefresh (const struct drm_display_mode * mode);

Arguments

mode mode

Returns

modes's vrefresh rate in Hz, rounded to the nearest integer. Calculates the value first if it is not yet set.

DRM Internals

117

Name
drm_mode_set_crtcinfo — set CRTC modesetting timing parameters

Synopsis

void drm_mode_set_crtcinfo (struct drm_display_mode * p, int
adjust_flags);

Arguments

p mode

adjust_flags a combination of adjustment flags

Description

Setup the CRTC modesetting timing parameters for p, adjusting if necessary.

- The CRTC_INTERLACE_HALVE_V flag can be used to halve vertical timings of interlaced modes.
- The CRTC_STEREO_DOUBLE flag can be used to compute the timings for buffers containing two
eyes (only adjust the timings when needed, eg. for “frame packing” or “side by side full”). - The
CRTC_NO_DBLSCAN and CRTC_NO_VSCAN flags request that adjustment *not* be performed for
doublescan and vscan > 1 modes respectively.

DRM Internals

118

Name
drm_mode_copy — copy the mode

Synopsis

void drm_mode_copy (struct drm_display_mode * dst, const struct
drm_display_mode * src);

Arguments

dst mode to overwrite

src mode to copy

Description

Copy an existing mode into another mode, preserving the object id and list head of the destination mode.

DRM Internals

119

Name
drm_mode_duplicate — allocate and duplicate an existing mode

Synopsis

struct drm_display_mode * drm_mode_duplicate (struct drm_device * dev,
const struct drm_display_mode * mode);

Arguments

dev drm_device to allocate the duplicated mode for

mode mode to duplicate

Description

Just allocate a new mode, copy the existing mode into it, and return a pointer to it. Used to create new
instances of established modes.

Returns

Pointer to duplicated mode on success, NULL on error.

DRM Internals

120

Name
drm_mode_equal — test modes for equality

Synopsis

bool drm_mode_equal (const struct drm_display_mode * mode1, const struct
drm_display_mode * mode2);

Arguments

mode1 first mode

mode2 second mode

Description

Check to see if mode1 and mode2 are equivalent.

Returns

True if the modes are equal, false otherwise.

DRM Internals

121

Name
drm_mode_equal_no_clocks_no_stereo — test modes for equality

Synopsis

bool drm_mode_equal_no_clocks_no_stereo (const struct drm_display_mode
* mode1, const struct drm_display_mode * mode2);

Arguments

mode1 first mode

mode2 second mode

Description

Check to see if mode1 and mode2 are equivalent, but don't check the pixel clocks nor the stereo layout.

Returns

True if the modes are equal, false otherwise.

DRM Internals

122

Name
drm_mode_validate_basic — make sure the mode is somewhat sane

Synopsis

enum drm_mode_status drm_mode_validate_basic (const struct
drm_display_mode * mode);

Arguments

mode mode to check

Description

Check that the mode timings are at least somewhat reasonable. Any hardware specific limits are left up
for each driver to check.

Returns

The mode status

DRM Internals

123

Name
drm_mode_validate_size — make sure modes adhere to size constraints

Synopsis

enum drm_mode_status drm_mode_validate_size (const struct
drm_display_mode * mode, int maxX, int maxY);

Arguments

mode mode to check

maxX maximum width

maxY maximum height

Description

This function is a helper which can be used to validate modes against size limitations of the DRM de-
vice/connector. If a mode is too big its status member is updated with the appropriate validation failure
code. The list itself is not changed.

Returns

The mode status

DRM Internals

124

Name
drm_mode_prune_invalid — remove invalid modes from mode list

Synopsis

void drm_mode_prune_invalid (struct drm_device * dev, struct list_head
* mode_list, bool verbose);

Arguments

dev DRM device

mode_list list of modes to check

verbose be verbose about it

Description

This helper function can be used to prune a display mode list after validation has been completed. All
modes who's status is not MODE_OK will be removed from the list, and if verbose the status code and
mode name is also printed to dmesg.

DRM Internals

125

Name
drm_mode_sort — sort mode list

Synopsis

void drm_mode_sort (struct list_head * mode_list);

Arguments

mode_list list of drm_display_mode structures to sort

Description

Sort mode_list by favorability, moving good modes to the head of the list.

DRM Internals

126

Name
drm_mode_connector_list_update — update the mode list for the connector

Synopsis

void drm_mode_connector_list_update (struct drm_connector * connector,
bool merge_type_bits);

Arguments

connector the connector to update

merge_type_bits whether to merge or overwrite type bits

Description

This moves the modes from the connector probed_modes list to the actual mode list. It compares the
probed mode against the current list and only adds different/new modes.

This is just a helper functions doesn't validate any modes itself and also doesn't prune any invalid modes.
Callers need to do that themselves.

DRM Internals

127

Name
drm_mode_parse_command_line_for_connector — parse command line modeline for connector

Synopsis

bool drm_mode_parse_command_line_for_connector (const char *
mode_option, struct drm_connector * connector, struct drm_cmdline_mode
* mode);

Arguments

mode_option optional per connector mode option

connector connector to parse modeline for

mode preallocated drm_cmdline_mode structure to fill out

Description

This parses mode_option command line modeline for modes and options to configure the connector. If
mode_option is NULL the default command line modeline in fb_mode_option will be parsed instead.

This uses the same parameters as the fb modedb.c, except for an extra force-enable, force-enable-digital
and force-disable bit at the end:

<xres>x<yres>[M][R][-<bpp>][@<refresh>][i][m][eDd]

The intermediate drm_cmdline_mode structure is required to store additional options from the command
line modline like the force-enable/disable flag.

Returns

True if a valid modeline has been parsed, false otherwise.

DRM Internals

128

Name
drm_mode_create_from_cmdline_mode — convert a command line modeline into a DRM display mode

Synopsis

struct drm_display_mode * drm_mode_create_from_cmdline_mode (struct
drm_device * dev, struct drm_cmdline_mode * cmd);

Arguments

dev DRM device to create the new mode for

cmd input command line modeline

Returns

Pointer to converted mode on success, NULL on error.

Atomic Mode Setting Function Reference

DRM Internals

129

Name
drm_atomic_state_alloc — allocate atomic state

Synopsis

struct drm_atomic_state * drm_atomic_state_alloc (struct drm_device *
dev);

Arguments

dev DRM device

Description

This allocates an empty atomic state to track updates.

DRM Internals

130

Name
drm_atomic_state_clear — clear state object

Synopsis

void drm_atomic_state_clear (struct drm_atomic_state * state);

Arguments

state atomic state

Description

When the w/w mutex algorithm detects a deadlock we need to back off and drop all locks. So someone else
could sneak in and change the current modeset configuration. Which means that all the state assembled in
state is no longer an atomic update to the current state, but to some arbitrary earlier state. Which could
break assumptions the driver's ->atomic_check likely relies on.

Hence we must clear all cached state and completely start over, using this function.

DRM Internals

131

Name
drm_atomic_state_free — free all memory for an atomic state

Synopsis

void drm_atomic_state_free (struct drm_atomic_state * state);

Arguments

state atomic state to deallocate

Description

This frees all memory associated with an atomic state, including all the per-object state for planes, crtcs
and connectors.

DRM Internals

132

Name
drm_atomic_get_crtc_state — get crtc state

Synopsis

struct drm_crtc_state * drm_atomic_get_crtc_state (struct
drm_atomic_state * state, struct drm_crtc * crtc);

Arguments

state global atomic state object

crtc crtc to get state object for

Description

This function returns the crtc state for the given crtc, allocating it if needed. It will also grab the relevant
crtc lock to make sure that the state is consistent.

Returns

Either the allocated state or the error code encoded into the pointer. When the error is EDEADLK then
the w/w mutex code has detected a deadlock and the entire atomic sequence must be restarted. All other
errors are fatal.

DRM Internals

133

Name
drm_atomic_crtc_set_property — set property on CRTC

Synopsis

int drm_atomic_crtc_set_property (struct drm_crtc * crtc, struct
drm_crtc_state * state, struct drm_property * property, uint64_t val);

Arguments

crtc the drm CRTC to set a property on

state the state object to update with the new property value

property the property to set

val the new property value

Description

Use this instead of calling crtc->atomic_set_property directly. This function handles generic/core prop-
erties and calls out to driver's ->atomic_set_property for driver properties. To ensure consistent
behavior you must call this function rather than the driver hook directly.

RETURNS

Zero on success, error code on failure

DRM Internals

134

Name
drm_atomic_get_plane_state — get plane state

Synopsis

struct drm_plane_state * drm_atomic_get_plane_state (struct
drm_atomic_state * state, struct drm_plane * plane);

Arguments

state global atomic state object

plane plane to get state object for

Description

This function returns the plane state for the given plane, allocating it if needed. It will also grab the relevant
plane lock to make sure that the state is consistent.

Returns

Either the allocated state or the error code encoded into the pointer. When the error is EDEADLK then
the w/w mutex code has detected a deadlock and the entire atomic sequence must be restarted. All other
errors are fatal.

DRM Internals

135

Name
drm_atomic_plane_set_property — set property on plane

Synopsis

int drm_atomic_plane_set_property (struct drm_plane * plane, struct
drm_plane_state * state, struct drm_property * property, uint64_t val);

Arguments

plane the drm plane to set a property on

state the state object to update with the new property value

property the property to set

val the new property value

Description

Use this instead of calling plane->atomic_set_property directly. This function handles generic/core prop-
erties and calls out to driver's ->atomic_set_property for driver properties. To ensure consistent
behavior you must call this function rather than the driver hook directly.

RETURNS

Zero on success, error code on failure

DRM Internals

136

Name
drm_atomic_get_connector_state — get connector state

Synopsis

struct drm_connector_state * drm_atomic_get_connector_state (struct
drm_atomic_state * state, struct drm_connector * connector);

Arguments

state global atomic state object

connector connector to get state object for

Description

This function returns the connector state for the given connector, allocating it if needed. It will also grab
the relevant connector lock to make sure that the state is consistent.

Returns

Either the allocated state or the error code encoded into the pointer. When the error is EDEADLK then
the w/w mutex code has detected a deadlock and the entire atomic sequence must be restarted. All other
errors are fatal.

DRM Internals

137

Name
drm_atomic_connector_set_property — set property on connector.

Synopsis

int drm_atomic_connector_set_property (struct drm_connector * connec-
tor, struct drm_connector_state * state, struct drm_property * proper-
ty, uint64_t val);

Arguments

connector the drm connector to set a property on

state the state object to update with the new property value

property the property to set

val the new property value

Description

Use this instead of calling connector->atomic_set_property directly. This function handles generic/core
properties and calls out to driver's ->atomic_set_property for driver properties. To ensure consis-
tent behavior you must call this function rather than the driver hook directly.

RETURNS

Zero on success, error code on failure

DRM Internals

138

Name
drm_atomic_set_crtc_for_plane — set crtc for plane

Synopsis

int drm_atomic_set_crtc_for_plane (struct drm_plane_state *
plane_state, struct drm_crtc * crtc);

Arguments

plane_state the plane whose incoming state to update

crtc crtc to use for the plane

Description

Changing the assigned crtc for a plane requires us to grab the lock and state for the new crtc, as needed.
This function takes care of all these details besides updating the pointer in the state object itself.

Returns

0 on success or can fail with -EDEADLK or -ENOMEM. When the error is EDEADLK then the w/w mutex
code has detected a deadlock and the entire atomic sequence must be restarted. All other errors are fatal.

DRM Internals

139

Name
drm_atomic_set_fb_for_plane — set framebuffer for plane

Synopsis

void drm_atomic_set_fb_for_plane (struct drm_plane_state * plane_state,
struct drm_framebuffer * fb);

Arguments

plane_state atomic state object for the plane

fb fb to use for the plane

Description

Changing the assigned framebuffer for a plane requires us to grab a reference to the new fb and drop the
reference to the old fb, if there is one. This function takes care of all these details besides updating the
pointer in the state object itself.

DRM Internals

140

Name
drm_atomic_set_crtc_for_connector — set crtc for connector

Synopsis

int drm_atomic_set_crtc_for_connector (struct drm_connector_state *
conn_state, struct drm_crtc * crtc);

Arguments

conn_state atomic state object for the connector

crtc crtc to use for the connector

Description

Changing the assigned crtc for a connector requires us to grab the lock and state for the new crtc, as needed.
This function takes care of all these details besides updating the pointer in the state object itself.

Returns

0 on success or can fail with -EDEADLK or -ENOMEM. When the error is EDEADLK then the w/w mutex
code has detected a deadlock and the entire atomic sequence must be restarted. All other errors are fatal.

DRM Internals

141

Name
drm_atomic_add_affected_connectors — add connectors for crtc

Synopsis

int drm_atomic_add_affected_connectors (struct drm_atomic_state *
state, struct drm_crtc * crtc);

Arguments

state atomic state

crtc DRM crtc

Description

This function walks the current configuration and adds all connectors currently using crtc to the atomic
configuration state. Note that this function must acquire the connection mutex. This can potentially
cause unneeded seralization if the update is just for the planes on one crtc. Hence drivers and helpers
should only call this when really needed (e.g. when a full modeset needs to happen due to some change).

Returns

0 on success or can fail with -EDEADLK or -ENOMEM. When the error is EDEADLK then the w/w mutex
code has detected a deadlock and the entire atomic sequence must be restarted. All other errors are fatal.

DRM Internals

142

Name
drm_atomic_connectors_for_crtc — count number of connected outputs

Synopsis

int drm_atomic_connectors_for_crtc (struct drm_atomic_state * state,
struct drm_crtc * crtc);

Arguments

state atomic state

crtc DRM crtc

Description

This function counts all connectors which will be connected to crtc according to state. Useful to
recompute the enable state for crtc.

DRM Internals

143

Name
drm_atomic_legacy_backoff — locking backoff for legacy ioctls

Synopsis

void drm_atomic_legacy_backoff (struct drm_atomic_state * state);

Arguments

state atomic state

Description

This function should be used by legacy entry points which don't understand -EDEADLK semantics. For
simplicity this one will grab all modeset locks after the slowpath completed.

DRM Internals

144

Name
drm_atomic_check_only — check whether a given config would work

Synopsis

int drm_atomic_check_only (struct drm_atomic_state * state);

Arguments

state atomic configuration to check

Description

Note that this function can return -EDEADLK if the driver needed to acquire more locks but encountered
a deadlock. The caller must then do the usual w/w backoff dance and restart. All other errors are fatal.

Returns

0 on success, negative error code on failure.

DRM Internals

145

Name
drm_atomic_commit — commit configuration atomically

Synopsis

int drm_atomic_commit (struct drm_atomic_state * state);

Arguments

state atomic configuration to check

Description

Note that this function can return -EDEADLK if the driver needed to acquire more locks but encountered
a deadlock. The caller must then do the usual w/w backoff dance and restart. All other errors are fatal.

Also note that on successful execution ownership of state is transferred from the caller of this function
to the function itself. The caller must not free or in any other way access state. If the function fails then
the caller must clean up state itself.

Returns

0 on success, negative error code on failure.

DRM Internals

146

Name
drm_atomic_async_commit — atomicasync configuration commit

Synopsis

int drm_atomic_async_commit (struct drm_atomic_state * state);

Arguments

state atomic configuration to check

Description

Note that this function can return -EDEADLK if the driver needed to acquire more locks but encountered
a deadlock. The caller must then do the usual w/w backoff dance and restart. All other errors are fatal.

Also note that on successful execution ownership of state is transferred from the caller of this function
to the function itself. The caller must not free or in any other way access state. If the function fails then
the caller must clean up state itself.

Returns

0 on success, negative error code on failure.

Frame Buffer Creation
struct drm_framebuffer *(*fb_create)(struct drm_device *dev,
 struct drm_file *file_priv,
 struct drm_mode_fb_cmd2 *mode_cmd);

Frame buffers are abstract memory objects that provide a source of pixels to scanout to a CRTC. Applica-
tions explicitly request the creation of frame buffers through the DRM_IOCTL_MODE_ADDFB(2) ioctls
and receive an opaque handle that can be passed to the KMS CRTC control, plane configuration and page
flip functions.

Frame buffers rely on the underneath memory manager for low-level memory operations. When creating
a frame buffer applications pass a memory handle (or a list of memory handles for multi-planar formats)
through the drm_mode_fb_cmd2 argument. For drivers using GEM as their userspace buffer manage-
ment interface this would be a GEM handle. Drivers are however free to use their own backing storage
object handles, e.g. vmwgfx directly exposes special TTM handles to userspace and so expects TTM han-
dles in the create ioctl and not GEM handles.

Drivers must first validate the requested frame buffer parameters passed through the mode_cmd argument.
In particular this is where invalid sizes, pixel formats or pitches can be caught.

If the parameters are deemed valid, drivers then create, initialize and return an instance of struct
drm_framebuffer. If desired the instance can be embedded in a larger driver-specific structure.
Drivers must fill its width, height, pitches, offsets, depth, bits_per_pixel and
pixel_format fields from the values passed through the drm_mode_fb_cmd2 argument. They
should call the drm_helper_mode_fill_fb_struct helper function to do so.

The initialization of the new framebuffer instance is finalized with a call to drm_framebuffer_init
which takes a pointer to DRM frame buffer operations (struct drm_framebuffer_funcs). Note that this
function publishes the framebuffer and so from this point on it can be accessed concurrently from other

DRM Internals

147

threads. Hence it must be the last step in the driver's framebuffer initialization sequence. Frame buffer
operations are

• int (*create_handle)(struct drm_framebuffer *fb,
 struct drm_file *file_priv, unsigned int *handle);

Create a handle to the frame buffer underlying memory object. If the frame buffer uses a multi-plane
format, the handle will reference the memory object associated with the first plane.

Drivers call drm_gem_handle_create to create the handle.

• void (*destroy)(struct drm_framebuffer *framebuffer);

Destroy the frame buffer object and frees all associated resources. Drivers must call
drm_framebuffer_cleanup to free resources allocated by the DRM core for the frame buffer
object, and must make sure to unreference all memory objects associated with the frame buffer. Handles
created by the create_handle operation are released by the DRM core.

• int (*dirty)(struct drm_framebuffer *framebuffer,
 struct drm_file *file_priv, unsigned flags, unsigned color,
 struct drm_clip_rect *clips, unsigned num_clips);

This optional operation notifies the driver that a region of the frame buffer has changed in response to
a DRM_IOCTL_MODE_DIRTYFB ioctl call.

The lifetime of a drm framebuffer is controlled with a reference count, drivers can
grab additional references with drm_framebuffer_referenceand drop them again with
drm_framebuffer_unreference. For driver-private framebuffers for which the last reference
is never dropped (e.g. for the fbdev framebuffer when the struct drm_framebuffer is embedded in-
to the fbdev helper struct) drivers can manually clean up a framebuffer at module unload time with
drm_framebuffer_unregister_private.

Dumb Buffer Objects
The KMS API doesn't standardize backing storage object creation and leaves it to driver-specific ioctls.
Furthermore actually creating a buffer object even for GEM-based drivers is done through a driver-specific
ioctl - GEM only has a common userspace interface for sharing and destroying objects. While not an issue
for full-fledged graphics stacks that include device-specific userspace components (in libdrm for instance),
this limit makes DRM-based early boot graphics unnecessarily complex.

Dumb objects partly alleviate the problem by providing a standard API to create dumb buffers suitable for
scanout, which can then be used to create KMS frame buffers.

To support dumb objects drivers must implement the dumb_create, dumb_destroy and
dumb_map_offset operations.

• int (*dumb_create)(struct drm_file *file_priv, struct drm_device *dev,
 struct drm_mode_create_dumb *args);

The dumb_create operation creates a driver object (GEM or TTM handle) suitable for scanout based
on the width, height and depth from the struct drm_mode_create_dumb argument. It fills the argument's
handle, pitch and size fields with a handle for the newly created object and its line pitch and
size in bytes.

• int (*dumb_destroy)(struct drm_file *file_priv, struct drm_device *dev,
 uint32_t handle);

DRM Internals

148

The dumb_destroy operation destroys a dumb object created by dumb_create.

• int (*dumb_map_offset)(struct drm_file *file_priv, struct drm_device *dev,
 uint32_t handle, uint64_t *offset);

The dumb_map_offset operation associates an mmap fake offset with the object given by the handle
and returns it. Drivers must use the drm_gem_create_mmap_offset function to associate the fake
offset as described in the section called “GEM Objects Mapping”.

Note that dumb objects may not be used for gpu acceleration, as has been attempted on some ARM embed-
ded platforms. Such drivers really must have a hardware-specific ioctl to allocate suitable buffer objects.

Output Polling
void (*output_poll_changed)(struct drm_device *dev);

This operation notifies the driver that the status of one or more connectors has changed. Drivers that use
the fb helper can just call the drm_fb_helper_hotplug_event function to handle this operation.

Locking
Beside some lookup structures with their own locking (which is hidden behind the interface functions)
most of the modeset state is protected by the dev-<mode_config.lock mutex and additionally per-
crtc locks to allow cursor updates, pageflips and similar operations to occur concurrently with background
tasks like output detection. Operations which cross domains like a full modeset always grab all locks.
Drivers there need to protect resources shared between crtcs with additional locking. They also need to be
careful to always grab the relevant crtc locks if a modset functions touches crtc state, e.g. for load detection
(which does only grab the mode_config.lock to allow concurrent screen updates on live crtcs).

KMS Initialization and Cleanup
A KMS device is abstracted and exposed as a set of planes, CRTCs, encoders and connectors. KMS drivers
must thus create and initialize all those objects at load time after initializing mode setting.

CRTCs (struct drm_crtc)
A CRTC is an abstraction representing a part of the chip that contains a pointer to a scanout buffer. There-
fore, the number of CRTCs available determines how many independent scanout buffers can be active
at any given time. The CRTC structure contains several fields to support this: a pointer to some video
memory (abstracted as a frame buffer object), a display mode, and an (x, y) offset into the video memory
to support panning or configurations where one piece of video memory spans multiple CRTCs.

CRTC Initialization

A KMS device must create and register at least one struct drm_crtc instance. The instance is allocated and
zeroed by the driver, possibly as part of a larger structure, and registered with a call to drm_crtc_init
with a pointer to CRTC functions.

CRTC Operations

Set Configuration

int (*set_config)(struct drm_mode_set *set);

DRM Internals

149

Apply a new CRTC configuration to the device. The configuration specifies a CRTC, a frame buffer to
scan out from, a (x,y) position in the frame buffer, a display mode and an array of connectors to drive
with the CRTC if possible.

If the frame buffer specified in the configuration is NULL, the driver must detach all encoders connected
to the CRTC and all connectors attached to those encoders and disable them.

This operation is called with the mode config lock held.

Note

Note that the drm core has no notion of restoring the mode setting state after resume, since all
resume handling is in the full responsibility of the driver. The common mode setting helper library
though provides a helper which can be used for this: drm_helper_resume_force_mode.

Page Flipping

int (*page_flip)(struct drm_crtc *crtc, struct drm_framebuffer *fb,
 struct drm_pending_vblank_event *event);

Schedule a page flip to the given frame buffer for the CRTC. This operation is called with the mode config
mutex held.

Page flipping is a synchronization mechanism that replaces the frame buffer being scanned out by the
CRTC with a new frame buffer during vertical blanking, avoiding tearing. When an application requests a
page flip the DRM core verifies that the new frame buffer is large enough to be scanned out by the CRTC
in the currently configured mode and then calls the CRTC page_flip operation with a pointer to the
new frame buffer.

The page_flip operation schedules a page flip. Once any pending rendering targeting the new frame
buffer has completed, the CRTC will be reprogrammed to display that frame buffer after the next vertical
refresh. The operation must return immediately without waiting for rendering or page flip to complete and
must block any new rendering to the frame buffer until the page flip completes.

If a page flip can be successfully scheduled the driver must set the drm_crtc->fb field to the new
framebuffer pointed to by fb. This is important so that the reference counting on framebuffers stays bal-
anced.

If a page flip is already pending, the page_flip operation must return -EBUSY.

To synchronize page flip to vertical blanking the driver will likely need to enable vertical blanking inter-
rupts. It should call drm_vblank_get for that purpose, and call drm_vblank_put after the page
flip completes.

If the application has requested to be notified when page flip completes the page_flip operation will
be called with a non-NULL event argument pointing to a drm_pending_vblank_event instance. Upon
page flip completion the driver must call drm_send_vblank_event to fill in the event and send to
wake up any waiting processes. This can be performed with

 spin_lock_irqsave(&dev->event_lock, flags);
 ...
 drm_send_vblank_event(dev, pipe, event);
 spin_unlock_irqrestore(&dev->event_lock, flags);

DRM Internals

150

Note

FIXME: Could drivers that don't need to wait for rendering to complete just add the event to dev-
>vblank_event_list and let the DRM core handle everything, as for "normal" vertical
blanking events?

While waiting for the page flip to complete, the event->base.link list head can be used freely by
the driver to store the pending event in a driver-specific list.

If the file handle is closed before the event is signaled, drivers must take care to destroy the event in their
preclose operation (and, if needed, call drm_vblank_put).

Miscellaneous

• void (*set_property)(struct drm_crtc *crtc,
 struct drm_property *property, uint64_t value);

Set the value of the given CRTC property to value. See the section called “KMS Properties” for more
information about properties.

• void (*gamma_set)(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
 uint32_t start, uint32_t size);

Apply a gamma table to the device. The operation is optional.

• void (*destroy)(struct drm_crtc *crtc);

Destroy the CRTC when not needed anymore. See the section called “KMS Initialization and Cleanup”.

Planes (struct drm_plane)
A plane represents an image source that can be blended with or overlayed on top of a CRTC during the
scanout process. Planes are associated with a frame buffer to crop a portion of the image memory (source)
and optionally scale it to a destination size. The result is then blended with or overlayed on top of a CRTC.

The DRM core recognizes three types of planes:

• DRM_PLANE_TYPE_PRIMARY represents a "main" plane for a CRTC. Primary planes are the planes
operated upon by CRTC modesetting and flipping operations described in the section called “CRTC
Operations”.

• DRM_PLANE_TYPE_CURSOR represents a "cursor" plane for a CRTC. Cursor planes are the planes
operated upon by the DRM_IOCTL_MODE_CURSOR and DRM_IOCTL_MODE_CURSOR2 ioctls.

• DRM_PLANE_TYPE_OVERLAY represents all non-primary, non-cursor planes. Some drivers refer
to these types of planes as "sprites" internally.

For compatibility with legacy userspace, only overlay planes are made available to userspace by default.
Userspace clients may set the DRM_CLIENT_CAP_UNIVERSAL_PLANES client capability bit to in-
dicate that they wish to receive a universal plane list containing all plane types.

Plane Initialization

To create a plane, a KMS drivers allocates and zeroes an instances of struct drm_plane (possibly as part
of a larger structure) and registers it with a call to drm_universal_plane_init. The function takes

DRM Internals

151

a bitmask of the CRTCs that can be associated with the plane, a pointer to the plane functions, a list of
format supported formats, and the type of plane (primary, cursor, or overlay) being initialized.

Cursor and overlay planes are optional. All drivers should provide one primary plane per CRTC (although
this requirement may change in the future); drivers that do not wish to provide special handling for primary
planes may make use of the helper functions described in the section called “Plane Helper Reference” to
create and register a primary plane with standard capabilities.

Plane Operations

• int (*update_plane)(struct drm_plane *plane, struct drm_crtc *crtc,
 struct drm_framebuffer *fb, int crtc_x, int crtc_y,
 unsigned int crtc_w, unsigned int crtc_h,
 uint32_t src_x, uint32_t src_y,
 uint32_t src_w, uint32_t src_h);

Enable and configure the plane to use the given CRTC and frame buffer.

The source rectangle in frame buffer memory coordinates is given by the src_x, src_y, src_w and
src_h parameters (as 16.16 fixed point values). Devices that don't support subpixel plane coordinates
can ignore the fractional part.

The destination rectangle in CRTC coordinates is given by the crtc_x, crtc_y, crtc_w and
crtc_h parameters (as integer values). Devices scale the source rectangle to the destination rectangle.
If scaling is not supported, and the source rectangle size doesn't match the destination rectangle size,
the driver must return a -EINVAL error.

• int (*disable_plane)(struct drm_plane *plane);

Disable the plane. The DRM core calls this method in response to a DRM_IOCTL_MODE_SETPLANE
ioctl call with the frame buffer ID set to 0. Disabled planes must not be processed by the CRTC.

• void (*destroy)(struct drm_plane *plane);

Destroy the plane when not needed anymore. See the section called “KMS Initialization and Cleanup”.

Encoders (struct drm_encoder)
An encoder takes pixel data from a CRTC and converts it to a format suitable for any attached connectors.
On some devices, it may be possible to have a CRTC send data to more than one encoder. In that case, both
encoders would receive data from the same scanout buffer, resulting in a "cloned" display configuration
across the connectors attached to each encoder.

Encoder Initialization

As for CRTCs, a KMS driver must create, initialize and register at least one struct drm_encoder instance.
The instance is allocated and zeroed by the driver, possibly as part of a larger structure.

Drivers must initialize the struct drm_encoder possible_crtcs and possible_clones fields be-
fore registering the encoder. Both fields are bitmasks of respectively the CRTCs that the encoder can be
connected to, and sibling encoders candidate for cloning.

After being initialized, the encoder must be registered with a call to drm_encoder_init. The function
takes a pointer to the encoder functions and an encoder type. Supported types are

• DRM_MODE_ENCODER_DAC for VGA and analog on DVI-I/DVI-A

DRM Internals

152

• DRM_MODE_ENCODER_TMDS for DVI, HDMI and (embedded) DisplayPort

• DRM_MODE_ENCODER_LVDS for display panels

• DRM_MODE_ENCODER_TVDAC for TV output (Composite, S-Video, Component, SCART)

• DRM_MODE_ENCODER_VIRTUAL for virtual machine displays

Encoders must be attached to a CRTC to be used. DRM drivers leave encoders unattached at initialization
time. Applications (or the fbdev compatibility layer when implemented) are responsible for attaching the
encoders they want to use to a CRTC.

Encoder Operations

• void (*destroy)(struct drm_encoder *encoder);

Called to destroy the encoder when not needed anymore. See the section called “KMS Initialization
and Cleanup”.

• void (*set_property)(struct drm_plane *plane,
 struct drm_property *property, uint64_t value);

Set the value of the given plane property to value. See the section called “KMS Properties” for more
information about properties.

Connectors (struct drm_connector)
A connector is the final destination for pixel data on a device, and usually connects directly to an external
display device like a monitor or laptop panel. A connector can only be attached to one encoder at a time.
The connector is also the structure where information about the attached display is kept, so it contains
fields for display data, EDID data, DPMS & connection status, and information about modes supported
on the attached displays.

Connector Initialization

Finally a KMS driver must create, initialize, register and attach at least one struct drm_connector instance.
The instance is created as other KMS objects and initialized by setting the following fields.

interlace_allowed Whether the connector can handle interlaced modes.

doublescan_allowed Whether the connector can handle doublescan.

display_info Display information is filled from EDID information
when a display is detected. For non hot-pluggable dis-
plays such as flat panels in embedded systems, the dri-
ver should initialize the display_info.width_mm and
display_info.height_mm fields with the physical size of the
display.

polled Connector polling mode, a combination of

DRM_CONNECTOR_POLL_HPD The connector generates
hotplug events and doesn't
need to be periodically
polled. The CONNECT and

DRM Internals

153

DISCONNECT flags must
not be set together with the
HPD flag.

DRM_CONNECTOR_POLL_CONNECTPeriodically poll the con-
nector for connection.

DRM_CONNECTOR_POLL_DISCONNECTPeriodically poll the con-
nector for disconnection.

Set to 0 for connectors that don't support connection status discov-
ery.

The connector is then registered with a call to drm_connector_init with a pointer to the connector
functions and a connector type, and exposed through sysfs with a call to drm_connector_register.

Supported connector types are

• DRM_MODE_CONNECTOR_VGA

• DRM_MODE_CONNECTOR_DVII

• DRM_MODE_CONNECTOR_DVID

• DRM_MODE_CONNECTOR_DVIA

• DRM_MODE_CONNECTOR_Composite

• DRM_MODE_CONNECTOR_SVIDEO

• DRM_MODE_CONNECTOR_LVDS

• DRM_MODE_CONNECTOR_Component

• DRM_MODE_CONNECTOR_9PinDIN

• DRM_MODE_CONNECTOR_DisplayPort

• DRM_MODE_CONNECTOR_HDMIA

• DRM_MODE_CONNECTOR_HDMIB

• DRM_MODE_CONNECTOR_TV

• DRM_MODE_CONNECTOR_eDP

• DRM_MODE_CONNECTOR_VIRTUAL

Connectors must be attached to an encoder to be used. For devices that map connec-
tors to encoders 1:1, the connector should be attached at initialization time with a call to
drm_mode_connector_attach_encoder. The driver must also set the drm_connector encoder
field to point to the attached encoder.

Finally, drivers must initialize the connectors state change detection with a call to
drm_kms_helper_poll_init. If at least one connector is pollable but can't gen-
erate hotplug interrupts (indicated by the DRM_CONNECTOR_POLL_CONNECT and
DRM_CONNECTOR_POLL_DISCONNECT connector flags), a delayed work will automatically be
queued to periodically poll for changes. Connectors that can generate hotplug interrupts must be
marked with the DRM_CONNECTOR_POLL_HPD flag instead, and their interrupt handler must call

DRM Internals

154

drm_helper_hpd_irq_event. The function will queue a delayed work to check the state of all con-
nectors, but no periodic polling will be done.

Connector Operations

Note

Unless otherwise state, all operations are mandatory.

DPMS

void (*dpms)(struct drm_connector *connector, int mode);

The DPMS operation sets the power state of a connector. The mode argument is one of

• DRM_MODE_DPMS_ON

• DRM_MODE_DPMS_STANDBY

• DRM_MODE_DPMS_SUSPEND

• DRM_MODE_DPMS_OFF

In all but DPMS_ON mode the encoder to which the connector is attached should put the display in low-
power mode by driving its signals appropriately. If more than one connector is attached to the encoder care
should be taken not to change the power state of other displays as a side effect. Low-power mode should
be propagated to the encoders and CRTCs when all related connectors are put in low-power mode.

Modes

int (*fill_modes)(struct drm_connector *connector, uint32_t max_width,
 uint32_t max_height);

Fill the mode list with all supported modes for the connector. If the max_width and max_height
arguments are non-zero, the implementation must ignore all modes wider than max_width or higher
than max_height.

The connector must also fill in this operation its display_info width_mm and height_mm fields
with the connected display physical size in millimeters. The fields should be set to 0 if the value isn't
known or is not applicable (for instance for projector devices).

Connection Status

The connection status is updated through polling or hotplug events when supported (see polled). The
status value is reported to userspace through ioctls and must not be used inside the driver, as it only gets
initialized by a call to drm_mode_getconnector from userspace.

enum drm_connector_status (*detect)(struct drm_connector *connector,
 bool force);

Check to see if anything is attached to the connector. The force parameter is set to false whilst polling
or to true when checking the connector due to user request. force can be used by the driver to avoid
expensive, destructive operations during automated probing.

Return connector_status_connected if something is connected to the connector,
connector_status_disconnected if nothing is connected and connector_status_unknown if the connection
state isn't known.

DRM Internals

155

Drivers should only return connector_status_connected if the connection status has really been probed as
connected. Connectors that can't detect the connection status, or failed connection status probes, should
return connector_status_unknown.

Miscellaneous

• void (*set_property)(struct drm_connector *connector,
 struct drm_property *property, uint64_t value);

Set the value of the given connector property to value. See the section called “KMS Properties” for
more information about properties.

• void (*destroy)(struct drm_connector *connector);

Destroy the connector when not needed anymore. See the section called “KMS Initialization and
Cleanup”.

Cleanup
The DRM core manages its objects' lifetime. When an object is not needed anymore the core calls
its destroy function, which must clean up and free every resource allocated for the object. Every
drm_*_init call must be matched with a corresponding drm_*_cleanup call to cleanup CRTCs
(drm_crtc_cleanup), planes (drm_plane_cleanup), encoders (drm_encoder_cleanup)
and connectors (drm_connector_cleanup). Furthermore, connectors that have been added
to sysfs must be removed by a call to drm_connector_unregister before calling
drm_connector_cleanup.

Connectors state change detection must be cleanup up with a call to drm_kms_helper_poll_fini.

Output discovery and initialization example

void intel_crt_init(struct drm_device *dev)
{
 struct drm_connector *connector;
 struct intel_output *intel_output;

 intel_output = kzalloc(sizeof(struct intel_output), GFP_KERNEL);
 if (!intel_output)
 return;

 connector = &intel_output->base;
 drm_connector_init(dev, &intel_output->base,
 &intel_crt_connector_funcs, DRM_MODE_CONNECTOR_VGA);

 drm_encoder_init(dev, &intel_output->enc, &intel_crt_enc_funcs,
 DRM_MODE_ENCODER_DAC);

 drm_mode_connector_attach_encoder(&intel_output->base,
 &intel_output->enc);

 /* Set up the DDC bus. */
 intel_output->ddc_bus = intel_i2c_create(dev, GPIOA, "CRTDDC_A");
 if (!intel_output->ddc_bus) {

DRM Internals

156

 dev_printk(KERN_ERR, &dev->pdev->dev, "DDC bus registration "
 "failed.\n");
 return;
 }

 intel_output->type = INTEL_OUTPUT_ANALOG;
 connector->interlace_allowed = 0;
 connector->doublescan_allowed = 0;

 drm_encoder_helper_add(&intel_output->enc, &intel_crt_helper_funcs);
 drm_connector_helper_add(connector, &intel_crt_connector_helper_funcs);

 drm_connector_register(connector);
}

In the example above (taken from the i915 driver), a CRTC, connector and encoder combination is created.
A device-specific i2c bus is also created for fetching EDID data and performing monitor detection. Once
the process is complete, the new connector is registered with sysfs to make its properties available to
applications.

KMS API Functions

DRM Internals

157

Name
drm_get_connector_status_name — return a string for connector status

Synopsis

const char * drm_get_connector_status_name (enum drm_connector_status
status);

Arguments

status connector status to compute name of

Description

In contrast to the other drm_get_*_name functions this one here returns a const pointer and hence is thread-
safe.

DRM Internals

158

Name
drm_get_subpixel_order_name — return a string for a given subpixel enum

Synopsis

const char * drm_get_subpixel_order_name (enum subpixel_order order);

Arguments

order enum of subpixel_order

Description

Note you could abuse this and return something out of bounds, but that would be a caller error. No un-
scrubbed user data should make it here.

DRM Internals

159

Name
drm_get_format_name — return a string for drm fourcc format

Synopsis

const char * drm_get_format_name (uint32_t format);

Arguments

format format to compute name of

Description

Note that the buffer used by this function is globally shared and owned by the function itself.

FIXME

This isn't really multithreading safe.

DRM Internals

160

Name
drm_mode_object_find — look up a drm object with static lifetime

Synopsis

struct drm_mode_object * drm_mode_object_find (struct drm_device * dev,
uint32_t id, uint32_t type);

Arguments

dev drm device

id id of the mode object

type type of the mode object

Description

Note that framebuffers cannot be looked up with this functions - since those are reference counted, they
need special treatment. Even with DRM_MODE_OBJECT_ANY (although that will simply return NULL
rather than WARN_ON).

DRM Internals

161

Name
drm_framebuffer_init — initialize a framebuffer

Synopsis

int drm_framebuffer_init (struct drm_device * dev, struct
drm_framebuffer * fb, const struct drm_framebuffer_funcs * funcs);

Arguments

dev DRM device

fb framebuffer to be initialized

funcs ... with these functions

Description

Allocates an ID for the framebuffer's parent mode object, sets its mode functions & device file and adds
it to the master fd list.

IMPORTANT

This functions publishes the fb and makes it available for concurrent access by other users. Which means
by this point the fb _must_ be fully set up - since all the fb attributes are invariant over its lifetime, no
further locking but only correct reference counting is required.

Returns

Zero on success, error code on failure.

DRM Internals

162

Name
drm_framebuffer_lookup — look up a drm framebuffer and grab a reference

Synopsis

struct drm_framebuffer * drm_framebuffer_lookup (struct drm_device *
dev, uint32_t id);

Arguments

dev drm device

id id of the fb object

Description

If successful, this grabs an additional reference to the framebuffer - callers need to make sure to eventually
unreference the returned framebuffer again, using drm_framebuffer_unreference.

DRM Internals

163

Name
drm_framebuffer_unreference — unref a framebuffer

Synopsis

void drm_framebuffer_unreference (struct drm_framebuffer * fb);

Arguments

fb framebuffer to unref

Description

This functions decrements the fb's refcount and frees it if it drops to zero.

DRM Internals

164

Name
drm_framebuffer_reference — incr the fb refcnt

Synopsis

void drm_framebuffer_reference (struct drm_framebuffer * fb);

Arguments

fb framebuffer

Description

This functions increments the fb's refcount.

DRM Internals

165

Name
drm_framebuffer_unregister_private — unregister a private fb from the lookup idr

Synopsis

void drm_framebuffer_unregister_private (struct drm_framebuffer * fb);

Arguments

fb fb to unregister

Description

Drivers need to call this when cleaning up driver-private framebuffers, e.g. those used for fbdev. Note that
the caller must hold a reference of it's own, i.e. the object may not be destroyed through this call (since
it'll lead to a locking inversion).

DRM Internals

166

Name
drm_framebuffer_cleanup — remove a framebuffer object

Synopsis

void drm_framebuffer_cleanup (struct drm_framebuffer * fb);

Arguments

fb framebuffer to remove

Description

Cleanup framebuffer. This function is intended to be used from the drivers ->destroy callback. It can also
be used to clean up driver private framebuffers embedded into a larger structure.

Note that this function does not remove the fb from active usuage - if it is still used anywhere, hilarity
can ensue since userspace could call getfb on the id and get back -EINVAL. Obviously no concern at
driver unload time.

Also, the framebuffer will not be removed from the lookup idr - for user-created framebuffers this will
happen in in the rmfb ioctl. For driver-private objects (e.g. for fbdev) drivers need to explicitly call
drm_framebuffer_unregister_private.

DRM Internals

167

Name
drm_framebuffer_remove — remove and unreference a framebuffer object

Synopsis

void drm_framebuffer_remove (struct drm_framebuffer * fb);

Arguments

fb framebuffer to remove

Description

Scans all the CRTCs and planes in dev's mode_config. If they're using fb, removes it, setting it to NULL.
Then drops the reference to the passed-in framebuffer. Might take the modeset locks.

Note that this function optimizes the cleanup away if the caller holds the last reference to the framebuffer.
It is also guaranteed to not take the modeset locks in this case.

DRM Internals

168

Name
drm_crtc_init_with_planes — Initialise a new CRTC object with specified primary and cursor planes.

Synopsis

int drm_crtc_init_with_planes (struct drm_device * dev, struct drm_crtc
* crtc, struct drm_plane * primary, struct drm_plane * cursor, const
struct drm_crtc_funcs * funcs);

Arguments

dev DRM device

crtc CRTC object to init

primary Primary plane for CRTC

cursor Cursor plane for CRTC

funcs callbacks for the new CRTC

Description

Inits a new object created as base part of a driver crtc object.

Returns

Zero on success, error code on failure.

DRM Internals

169

Name
drm_crtc_cleanup — Clean up the core crtc usage

Synopsis

void drm_crtc_cleanup (struct drm_crtc * crtc);

Arguments

crtc CRTC to cleanup

Description

This function cleans up crtc and removes it from the DRM mode setting core. Note that the function
does *not* free the crtc structure itself, this is the responsibility of the caller.

DRM Internals

170

Name
drm_crtc_index — find the index of a registered CRTC

Synopsis

unsigned int drm_crtc_index (struct drm_crtc * crtc);

Arguments

crtc CRTC to find index for

Description

Given a registered CRTC, return the index of that CRTC within a DRM device's list of CRTCs.

DRM Internals

171

Name
drm_display_info_set_bus_formats — set the supported bus formats

Synopsis

int drm_display_info_set_bus_formats (struct drm_display_info * info,
const u32 * formats, unsigned int num_formats);

Arguments

info display info to store bus formats in

formats array containing the supported bus formats

num_formats the number of entries in the fmts array

Description

Store the supported bus formats in display info structure. See MEDIA_BUS_FMT_* definitions in in-
clude/uapi/linux/media-bus-format.h for a full list of available formats.

DRM Internals

172

Name
drm_connector_init — Init a preallocated connector

Synopsis

int drm_connector_init (struct drm_device * dev, struct drm_connector
* connector, const struct drm_connector_funcs * funcs, int
connector_type);

Arguments

dev DRM device

connector the connector to init

funcs callbacks for this connector

connector_type user visible type of the connector

Description

Initialises a preallocated connector. Connectors should be subclassed as part of driver connector objects.

Returns

Zero on success, error code on failure.

DRM Internals

173

Name
drm_connector_cleanup — cleans up an initialised connector

Synopsis

void drm_connector_cleanup (struct drm_connector * connector);

Arguments

connector connector to cleanup

Description

Cleans up the connector but doesn't free the object.

DRM Internals

174

Name
drm_connector_index — find the index of a registered connector

Synopsis

unsigned int drm_connector_index (struct drm_connector * connector);

Arguments

connector connector to find index for

Description

Given a registered connector, return the index of that connector within a DRM device's list of connectors.

DRM Internals

175

Name
drm_connector_register — register a connector

Synopsis

int drm_connector_register (struct drm_connector * connector);

Arguments

connector the connector to register

Description

Register userspace interfaces for a connector

Returns

Zero on success, error code on failure.

DRM Internals

176

Name
drm_connector_unregister — unregister a connector

Synopsis

void drm_connector_unregister (struct drm_connector * connector);

Arguments

connector the connector to unregister

Description

Unregister userspace interfaces for a connector

DRM Internals

177

Name
drm_connector_unplug_all — unregister connector userspace interfaces

Synopsis

void drm_connector_unplug_all (struct drm_device * dev);

Arguments

dev drm device

Description

This function unregisters all connector userspace interfaces in sysfs. Should be call when the device is
disconnected, e.g. from an usb driver's ->disconnect callback.

DRM Internals

178

Name
drm_encoder_init — Init a preallocated encoder

Synopsis

int drm_encoder_init (struct drm_device * dev, struct drm_encoder *
encoder, const struct drm_encoder_funcs * funcs, int encoder_type);

Arguments

dev drm device

encoder the encoder to init

funcs callbacks for this encoder

encoder_type user visible type of the encoder

Description

Initialises a preallocated encoder. Encoder should be subclassed as part of driver encoder objects.

Returns

Zero on success, error code on failure.

DRM Internals

179

Name
drm_encoder_cleanup — cleans up an initialised encoder

Synopsis

void drm_encoder_cleanup (struct drm_encoder * encoder);

Arguments

encoder encoder to cleanup

Description

Cleans up the encoder but doesn't free the object.

DRM Internals

180

Name
drm_universal_plane_init — Initialize a new universal plane object

Synopsis

int drm_universal_plane_init (struct drm_device * dev, struct drm_plane
* plane, unsigned long possible_crtcs, const struct drm_plane_funcs
* funcs, const uint32_t * formats, uint32_t format_count, enum
drm_plane_type type);

Arguments

dev DRM device

plane plane object to init

possible_crtcs bitmask of possible CRTCs

funcs callbacks for the new plane

formats array of supported formats (DRM_FORMAT_*)

format_count number of elements in formats

type type of plane (overlay, primary, cursor)

Description

Initializes a plane object of type type.

Returns

Zero on success, error code on failure.

DRM Internals

181

Name
drm_plane_init — Initialize a legacy plane

Synopsis

int drm_plane_init (struct drm_device * dev, struct drm_plane * plane,
unsigned long possible_crtcs, const struct drm_plane_funcs * funcs,
const uint32_t * formats, uint32_t format_count, bool is_primary);

Arguments

dev DRM device

plane plane object to init

possible_crtcs bitmask of possible CRTCs

funcs callbacks for the new plane

formats array of supported formats (DRM_FORMAT_*)

format_count number of elements in formats

is_primary plane type (primary vs overlay)

Description

Legacy API to initialize a DRM plane.

New drivers should call drm_universal_plane_init instead.

Returns

Zero on success, error code on failure.

DRM Internals

182

Name
drm_plane_cleanup — Clean up the core plane usage

Synopsis

void drm_plane_cleanup (struct drm_plane * plane);

Arguments

plane plane to cleanup

Description

This function cleans up plane and removes it from the DRM mode setting core. Note that the function
does *not* free the plane structure itself, this is the responsibility of the caller.

DRM Internals

183

Name
drm_plane_index — find the index of a registered plane

Synopsis

unsigned int drm_plane_index (struct drm_plane * plane);

Arguments

plane plane to find index for

Description

Given a registered plane, return the index of that CRTC within a DRM device's list of planes.

DRM Internals

184

Name
drm_plane_force_disable — Forcibly disable a plane

Synopsis

void drm_plane_force_disable (struct drm_plane * plane);

Arguments

plane plane to disable

Description

Forces the plane to be disabled.

Used when the plane's current framebuffer is destroyed, and when restoring fbdev mode.

DRM Internals

185

Name
drm_mode_create_dvi_i_properties — create DVI-I specific connector properties

Synopsis

int drm_mode_create_dvi_i_properties (struct drm_device * dev);

Arguments

dev DRM device

Description

Called by a driver the first time a DVI-I connector is made.

DRM Internals

186

Name
drm_mode_create_tv_properties — create TV specific connector properties

Synopsis

int drm_mode_create_tv_properties (struct drm_device * dev, unsigned
int num_modes, char * modes[]);

Arguments

dev DRM device

num_modes number of different TV formats (modes) supported

modes[] array of pointers to strings containing name of each format

Description

Called by a driver's TV initialization routine, this function creates the TV specific connector properties for
a given device. Caller is responsible for allocating a list of format names and passing them to this routine.

DRM Internals

187

Name
drm_mode_create_scaling_mode_property — create scaling mode property

Synopsis

int drm_mode_create_scaling_mode_property (struct drm_device * dev);

Arguments

dev DRM device

Description

Called by a driver the first time it's needed, must be attached to desired connectors.

DRM Internals

188

Name
drm_mode_create_aspect_ratio_property — create aspect ratio property

Synopsis

int drm_mode_create_aspect_ratio_property (struct drm_device * dev);

Arguments

dev DRM device

Description

Called by a driver the first time it's needed, must be attached to desired connectors.

Returns

Zero on success, negative errno on failure.

DRM Internals

189

Name
drm_mode_create_dirty_info_property — create dirty property

Synopsis

int drm_mode_create_dirty_info_property (struct drm_device * dev);

Arguments

dev DRM device

Description

Called by a driver the first time it's needed, must be attached to desired connectors.

DRM Internals

190

Name
drm_mode_create_suggested_offset_properties — create suggests offset properties

Synopsis

int drm_mode_create_suggested_offset_properties (struct drm_device *
dev);

Arguments

dev DRM device

Description

Create the the suggested x/y offset property for connectors.

DRM Internals

191

Name
drm_mode_set_config_internal — helper to call ->set_config

Synopsis

int drm_mode_set_config_internal (struct drm_mode_set * set);

Arguments

set modeset config to set

Description

This is a little helper to wrap internal calls to the ->set_config driver interface. The only thing it adds is
correct refcounting dance.

Returns

Zero on success, negative errno on failure.

DRM Internals

192

Name
drm_crtc_get_hv_timing — Fetches hdisplay/vdisplay for given mode

Synopsis

void drm_crtc_get_hv_timing (const struct drm_display_mode * mode, int
* hdisplay, int * vdisplay);

Arguments

mode mode to query

hdisplay hdisplay value to fill in

vdisplay vdisplay value to fill in

Description

The vdisplay value will be doubled if the specified mode is a stereo mode of the appropriate layout.

DRM Internals

193

Name
drm_crtc_check_viewport — Checks that a framebuffer is big enough for the CRTC viewport

Synopsis

int drm_crtc_check_viewport (const struct drm_crtc * crtc, int x, int
y, const struct drm_display_mode * mode, const struct drm_framebuffer
* fb);

Arguments

crtc CRTC that framebuffer will be displayed on

x x panning

y y panning

mode mode that framebuffer will be displayed under

fb framebuffer to check size of

DRM Internals

194

Name
drm_mode_legacy_fb_format — compute drm fourcc code from legacy description

Synopsis

uint32_t drm_mode_legacy_fb_format (uint32_t bpp, uint32_t depth);

Arguments

bpp bits per pixels

depth bit depth per pixel

Description

Computes a drm fourcc pixel format code for the given bpp/depth values. Useful in fbdev emulation
code, since that deals in those values.

DRM Internals

195

Name
drm_property_create — create a new property type

Synopsis

struct drm_property * drm_property_create (struct drm_device * dev, int
flags, const char * name, int num_values);

Arguments

dev drm device

flags flags specifying the property type

name name of the property

num_values number of pre-defined values

Description

This creates a new generic drm property which can then be attached to a drm object with
drm_object_attach_property. The returned property object must be freed with drm_property_destroy.

Note that the DRM core keeps a per-device list of properties and that, if drm_mode_config_cleanup
is called, it will destroy all properties created by the driver.

Returns

A pointer to the newly created property on success, NULL on failure.

DRM Internals

196

Name
drm_property_create_enum — create a new enumeration property type

Synopsis

struct drm_property * drm_property_create_enum (struct drm_device * dev,
int flags, const char * name, const struct drm_prop_enum_list * props,
int num_values);

Arguments

dev drm device

flags flags specifying the property type

name name of the property

props enumeration lists with property values

num_values number of pre-defined values

Description

This creates a new generic drm property which can then be attached to a drm object with
drm_object_attach_property. The returned property object must be freed with drm_property_destroy.

Userspace is only allowed to set one of the predefined values for enumeration properties.

Returns

A pointer to the newly created property on success, NULL on failure.

DRM Internals

197

Name
drm_property_create_bitmask — create a new bitmask property type

Synopsis

struct drm_property * drm_property_create_bitmask (struct drm_device *
dev, int flags, const char * name, const struct drm_prop_enum_list *
props, int num_props, uint64_t supported_bits);

Arguments

dev drm device

flags flags specifying the property type

name name of the property

props enumeration lists with property bitflags

num_props size of the props array

supported_bits bitmask of all supported enumeration values

Description

This creates a new bitmask drm property which can then be attached to a drm object with
drm_object_attach_property. The returned property object must be freed with drm_property_destroy.

Compared to plain enumeration properties userspace is allowed to set any or'ed together combination of
the predefined property bitflag values

Returns

A pointer to the newly created property on success, NULL on failure.

DRM Internals

198

Name
drm_property_create_range — create a new unsigned ranged property type

Synopsis

struct drm_property * drm_property_create_range (struct drm_device *
dev, int flags, const char * name, uint64_t min, uint64_t max);

Arguments

dev drm device

flags flags specifying the property type

name name of the property

min minimum value of the property

max maximum value of the property

Description

This creates a new generic drm property which can then be attached to a drm object with
drm_object_attach_property. The returned property object must be freed with drm_property_destroy.

Userspace is allowed to set any unsigned integer value in the (min, max) range inclusive.

Returns

A pointer to the newly created property on success, NULL on failure.

DRM Internals

199

Name
drm_property_create_signed_range — create a new signed ranged property type

Synopsis

struct drm_property * drm_property_create_signed_range (struct
drm_device * dev, int flags, const char * name, int64_t min, int64_t
max);

Arguments

dev drm device

flags flags specifying the property type

name name of the property

min minimum value of the property

max maximum value of the property

Description

This creates a new generic drm property which can then be attached to a drm object with
drm_object_attach_property. The returned property object must be freed with drm_property_destroy.

Userspace is allowed to set any signed integer value in the (min, max) range inclusive.

Returns

A pointer to the newly created property on success, NULL on failure.

DRM Internals

200

Name
drm_property_create_object — create a new object property type

Synopsis

struct drm_property * drm_property_create_object (struct drm_device *
dev, int flags, const char * name, uint32_t type);

Arguments

dev drm device

flags flags specifying the property type

name name of the property

type object type from DRM_MODE_OBJECT_* defines

Description

This creates a new generic drm property which can then be attached to a drm object with
drm_object_attach_property. The returned property object must be freed with drm_property_destroy.

Userspace is only allowed to set this to any property value of the given type. Only useful for atomic
properties, which is enforced.

Returns

A pointer to the newly created property on success, NULL on failure.

DRM Internals

201

Name
drm_property_create_bool — create a new boolean property type

Synopsis

struct drm_property * drm_property_create_bool (struct drm_device * dev,
int flags, const char * name);

Arguments

dev drm device

flags flags specifying the property type

name name of the property

Description

This creates a new generic drm property which can then be attached to a drm object with
drm_object_attach_property. The returned property object must be freed with drm_property_destroy.

This is implemented as a ranged property with only {0, 1} as valid values.

Returns

A pointer to the newly created property on success, NULL on failure.

DRM Internals

202

Name
drm_property_add_enum — add a possible value to an enumeration property

Synopsis

int drm_property_add_enum (struct drm_property * property, int index,
uint64_t value, const char * name);

Arguments

property enumeration property to change

index index of the new enumeration

value value of the new enumeration

name symbolic name of the new enumeration

Description

This functions adds enumerations to a property.

It's use is deprecated, drivers should use one of the more specific helpers to directly create the property
with all enumerations already attached.

Returns

Zero on success, error code on failure.

DRM Internals

203

Name
drm_property_destroy — destroy a drm property

Synopsis

void drm_property_destroy (struct drm_device * dev, struct drm_property
* property);

Arguments

dev drm device

property property to destry

Description

This function frees a property including any attached resources like enumeration values.

DRM Internals

204

Name
drm_object_attach_property — attach a property to a modeset object

Synopsis

void drm_object_attach_property (struct drm_mode_object * obj, struct
drm_property * property, uint64_t init_val);

Arguments

obj drm modeset object

property property to attach

init_val initial value of the property

Description

This attaches the given property to the modeset object with the given initial value. Currently this function
cannot fail since the properties are stored in a statically sized array.

DRM Internals

205

Name
drm_object_property_set_value — set the value of a property

Synopsis

int drm_object_property_set_value (struct drm_mode_object * obj, struct
drm_property * property, uint64_t val);

Arguments

obj drm mode object to set property value for

property property to set

val value the property should be set to

Description

This functions sets a given property on a given object. This function only changes the software state of the
property, it does not call into the driver's ->set_property callback.

Returns

Zero on success, error code on failure.

DRM Internals

206

Name
drm_object_property_get_value — retrieve the value of a property

Synopsis

int drm_object_property_get_value (struct drm_mode_object * obj, struct
drm_property * property, uint64_t * val);

Arguments

obj drm mode object to get property value from

property property to retrieve

val storage for the property value

Description

This function retrieves the softare state of the given property for the given property. Since there is no driver
callback to retrieve the current property value this might be out of sync with the hardware, depending upon
the driver and property.

Returns

Zero on success, error code on failure.

DRM Internals

207

Name
drm_mode_connector_set_path_property — set tile property on connector

Synopsis

int drm_mode_connector_set_path_property (struct drm_connector * con-
nector, const char * path);

Arguments

connector connector to set property on.

path path to use for property.

Description

This creates a property to expose to userspace to specify a connector path. This is mainly used for Display-
Port MST where connectors have a topology and we want to allow userspace to give them more mean-
ingful names.

Returns

Zero on success, negative errno on failure.

DRM Internals

208

Name
drm_mode_connector_set_tile_property — set tile property on connector

Synopsis

int drm_mode_connector_set_tile_property (struct drm_connector * con-
nector);

Arguments

connector connector to set property on.

Description

This looks up the tile information for a connector, and creates a property for userspace to parse if it exists.
The property is of the form of 8 integers using ':' as a separator.

Returns

Zero on success, errno on failure.

DRM Internals

209

Name
drm_mode_connector_update_edid_property — update the edid property of a connector

Synopsis

int drm_mode_connector_update_edid_property (struct drm_connector *
connector, const struct edid * edid);

Arguments

connector drm connector

edid new value of the edid property

Description

This function creates a new blob modeset object and assigns its id to the connector's edid property.

Returns

Zero on success, negative errno on failure.

DRM Internals

210

Name
drm_mode_plane_set_obj_prop — set the value of a property

Synopsis

int drm_mode_plane_set_obj_prop (struct drm_plane * plane, struct
drm_property * property, uint64_t value);

Arguments

plane drm plane object to set property value for

property property to set

value value the property should be set to

Description

This functions sets a given property on a given plane object. This function calls the driver's ->set_property
callback and changes the software state of the property if the callback succeeds.

Returns

Zero on success, error code on failure.

DRM Internals

211

Name
drm_mode_connector_attach_encoder — attach a connector to an encoder

Synopsis

int drm_mode_connector_attach_encoder (struct drm_connector * connec-
tor, struct drm_encoder * encoder);

Arguments

connector connector to attach

encoder encoder to attach connector to

Description

This function links up a connector to an encoder. Note that the routing restrictions between encoders and
crtcs are exposed to userspace through the possible_clones and possible_crtcs bitmasks.

Returns

Zero on success, negative errno on failure.

DRM Internals

212

Name
drm_mode_crtc_set_gamma_size — set the gamma table size

Synopsis

int drm_mode_crtc_set_gamma_size (struct drm_crtc * crtc, int
gamma_size);

Arguments

crtc CRTC to set the gamma table size for

gamma_size size of the gamma table

Description

Drivers which support gamma tables should set this to the supported gamma table size when initializing
the CRTC. Currently the drm core only supports a fixed gamma table size.

Returns

Zero on success, negative errno on failure.

DRM Internals

213

Name
drm_mode_config_reset — call ->reset callbacks

Synopsis

void drm_mode_config_reset (struct drm_device * dev);

Arguments

dev drm device

Description

This functions calls all the crtc's, encoder's and connector's ->reset callback. Drivers can use this in e.g.
their driver load or resume code to reset hardware and software state.

DRM Internals

214

Name
drm_fb_get_bpp_depth — get the bpp/depth values for format

Synopsis

void drm_fb_get_bpp_depth (uint32_t format, unsigned int * depth, int
* bpp);

Arguments

format pixel format (DRM_FORMAT_*)

depth storage for the depth value

bpp storage for the bpp value

Description

This only supports RGB formats here for compat with code that doesn't use pixel formats directly yet.

DRM Internals

215

Name
drm_format_num_planes — get the number of planes for format

Synopsis

int drm_format_num_planes (uint32_t format);

Arguments

format pixel format (DRM_FORMAT_*)

Returns

The number of planes used by the specified pixel format.

DRM Internals

216

Name
drm_format_plane_cpp — determine the bytes per pixel value

Synopsis

int drm_format_plane_cpp (uint32_t format, int plane);

Arguments

format pixel format (DRM_FORMAT_*)

plane plane index

Returns

The bytes per pixel value for the specified plane.

DRM Internals

217

Name
drm_format_horz_chroma_subsampling — get the horizontal chroma subsampling factor

Synopsis

int drm_format_horz_chroma_subsampling (uint32_t format);

Arguments

format pixel format (DRM_FORMAT_*)

Returns

The horizontal chroma subsampling factor for the specified pixel format.

DRM Internals

218

Name
drm_format_vert_chroma_subsampling — get the vertical chroma subsampling factor

Synopsis

int drm_format_vert_chroma_subsampling (uint32_t format);

Arguments

format pixel format (DRM_FORMAT_*)

Returns

The vertical chroma subsampling factor for the specified pixel format.

DRM Internals

219

Name
drm_rotation_simplify — Try to simplify the rotation

Synopsis

unsigned int drm_rotation_simplify (unsigned int rotation, unsigned int
supported_rotations);

Arguments

rotation Rotation to be simplified

supported_rotations Supported rotations

Description

Attempt to simplify the rotation to a form that is supported. Eg. if the hardware supports everything except
DRM_REFLECT_X

one could call this function like this

drm_rotation_simplify(rotation, BIT(DRM_ROTATE_0) | BIT(DRM_ROTATE_90) |
BIT(DRM_ROTATE_180) | BIT(DRM_ROTATE_270) | BIT(DRM_REFLECT_Y));

to eliminate the DRM_ROTATE_X flag. Depending on what kind of transforms the hardware supports,
this function may not be able to produce a supported transform, so the caller should check the result
afterwards.

DRM Internals

220

Name
drm_mode_config_init — initialize DRM mode_configuration structure

Synopsis

void drm_mode_config_init (struct drm_device * dev);

Arguments

dev DRM device

Description

Initialize dev's mode_config structure, used for tracking the graphics configuration of dev.

Since this initializes the modeset locks, no locking is possible. Which is no problem, since this should
happen single threaded at init time. It is the driver's problem to ensure this guarantee.

DRM Internals

221

Name
drm_mode_config_cleanup — free up DRM mode_config info

Synopsis

void drm_mode_config_cleanup (struct drm_device * dev);

Arguments

dev DRM device

Description

Free up all the connectors and CRTCs associated with this DRM device, then free up the framebuffers
and associated buffer objects.

Note that since this /should/ happen single-threaded at driver/device teardown time, no locking is required.
It's the driver's job to ensure that this guarantee actually holds true.

FIXME

cleanup any dangling user buffer objects too

DRM Internals

222

Name
drm_mode_get_tile_group — get a reference to an existing tile group

Synopsis

struct drm_tile_group * drm_mode_get_tile_group (struct drm_device *
dev, char topology[8]);

Arguments

dev DRM device

topology[8] 8-bytes unique per monitor.

Description

Use the unique bytes to get a reference to an existing tile group.

RETURNS

tile group or NULL if not found.

DRM Internals

223

Name
drm_mode_create_tile_group — create a tile group from a displayid description

Synopsis

struct drm_tile_group * drm_mode_create_tile_group (struct drm_device
* dev, char topology[8]);

Arguments

dev DRM device

topology[8] 8-bytes unique per monitor.

Description

Create a tile group for the unique monitor, and get a unique identifier for the tile group.

RETURNS

new tile group or error.

KMS Data Structures

DRM Internals

224

Name
struct drm_crtc_state — mutable CRTC state

Synopsis

struct drm_crtc_state {
 struct drm_crtc * crtc;
 bool enable;
 bool active;
 bool planes_changed:1;
 bool mode_changed:1;
 bool active_changed:1;
 u32 plane_mask;
 u32 last_vblank_count;
 struct drm_display_mode adjusted_mode;
 struct drm_display_mode mode;
 struct drm_pending_vblank_event * event;
 struct drm_atomic_state * state;
};

Members

crtc backpointer to the CRTC

enable whether the CRTC should be enabled, gates all other state

active whether the CRTC is actively displaying (used for DPMS)

planes_changed for use by helpers and drivers when computing state updates

mode_changed for use by helpers and drivers when computing state updates

active_changed for use by helpers and drivers when computing state updates

plane_mask bitmask of (1 << drm_plane_index(plane)) of attached planes

last_vblank_count for helpers and drivers to capture the vblank of the update to ensure frame-
buffer cleanup isn't done too early

adjusted_mode for use by helpers and drivers to compute adjusted mode timings

mode current mode timings

event optional pointer to a DRM event to signal upon completion of the state update

state backpointer to global drm_atomic_state

Description

Note that the distinction between enable and active is rather subtile: Flipping active while enable
is set without changing anything else may never return in a failure from the ->atomic_check callback.
Userspace assumes that a DPMS On will always succeed. In other words: enable controls resource
assignment, active controls the actual hardware state.

DRM Internals

225

Name
struct drm_crtc_funcs — control CRTCs for a given device

Synopsis

struct drm_crtc_funcs {
 void (* save) (struct drm_crtc *crtc);
 void (* restore) (struct drm_crtc *crtc);
 void (* reset) (struct drm_crtc *crtc);
 int (* cursor_set) (struct drm_crtc *crtc, struct drm_file *file_priv,uint32_t handle, uint32_t width, uint32_t height);
 int (* cursor_set2) (struct drm_crtc *crtc, struct drm_file *file_priv,uint32_t handle, uint32_t width, uint32_t height,int32_t hot_x, int32_t hot_y);
 int (* cursor_move) (struct drm_crtc *crtc, int x, int y);
 void (* gamma_set) (struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,uint32_t start, uint32_t size);
 void (* destroy) (struct drm_crtc *crtc);
 int (* set_config) (struct drm_mode_set *set);
 int (* page_flip) (struct drm_crtc *crtc,struct drm_framebuffer *fb,struct drm_pending_vblank_event *event,uint32_t flags);
 int (* set_property) (struct drm_crtc *crtc,struct drm_property *property, uint64_t val);
 struct drm_crtc_state *(* atomic_duplicate_state) (struct drm_crtc *crtc);
 void (* atomic_destroy_state) (struct drm_crtc *crtc,struct drm_crtc_state *state);
 int (* atomic_set_property) (struct drm_crtc *crtc,struct drm_crtc_state *state,struct drm_property *property,uint64_t val);
 int (* atomic_get_property) (struct drm_crtc *crtc,const struct drm_crtc_state *state,struct drm_property *property,uint64_t *val);
};

Members

save save CRTC state

restore restore CRTC state

reset reset CRTC after state has been invalidated (e.g. resume)

cursor_set setup the cursor

cursor_set2 setup the cursor with hotspot, superseeds cursor_set if set

cursor_move move the cursor

gamma_set specify color ramp for CRTC

destroy deinit and free object

set_config apply a new CRTC configuration

page_flip initiate a page flip

set_property called when a property is changed

atomic_duplicate_state duplicate the atomic state for this CRTC

atomic_destroy_state destroy an atomic state for this CRTC

atomic_set_property set a property on an atomic state for this CRTC (do not call directly,
use drm_atomic_crtc_set_property)

atomic_get_property get a property on an atomic state for this CRTC (do not call directly,
use drm_atomic_crtc_get_property)

DRM Internals

226

Description

The drm_crtc_funcs structure is the central CRTC management structure in the DRM. Each CRTC controls
one or more connectors (note that the name CRTC is simply historical, a CRTC may control LVDS, VGA,
DVI, TV out, etc. connectors, not just CRTs).

Each driver is responsible for filling out this structure at startup time, in addition to providing other mod-
esetting features, like i2c and DDC bus accessors.

DRM Internals

227

Name
struct drm_crtc — central CRTC control structure

Synopsis

struct drm_crtc {
 struct drm_device * dev;
 struct device_node * port;
 struct list_head head;
 struct drm_modeset_lock mutex;
 struct drm_mode_object base;
 struct drm_plane * primary;
 struct drm_plane * cursor;
 int cursor_x;
 int cursor_y;
 bool enabled;
 struct drm_display_mode mode;
 struct drm_display_mode hwmode;
 bool invert_dimensions;
 int x;
 int y;
 const struct drm_crtc_funcs * funcs;
 uint32_t gamma_size;
 uint16_t * gamma_store;
 int framedur_ns;
 int linedur_ns;
 int pixeldur_ns;
 const void * helper_private;
 struct drm_object_properties properties;
 struct drm_crtc_state * state;
 struct drm_modeset_acquire_ctx * acquire_ctx;
};

Members

dev parent DRM device

port OF node used by drm_of_find_possible_crtcs

head list management

mutex per-CRTC locking

base base KMS object for ID tracking etc.

primary primary plane for this CRTC

cursor cursor plane for this CRTC

cursor_x current x position of the cursor, used for universal cursor planes

cursor_y current y position of the cursor, used for universal cursor planes

enabled is this CRTC enabled?

DRM Internals

228

mode current mode timings

hwmode mode timings as programmed to hw regs

invert_dimensions for purposes of error checking crtc vs fb sizes, invert the width/height of the
crtc. This is used if the driver is performing 90 or 270 degree rotated scanout

x x position on screen

y y position on screen

funcs CRTC control functions

gamma_size size of gamma ramp

gamma_store gamma ramp values

framedur_ns precise frame timing

linedur_ns precise line timing

pixeldur_ns precise pixel timing

helper_private mid-layer private data

properties property tracking for this CRTC

state current atomic state for this CRTC

acquire_ctx per-CRTC implicit acquire context used by atomic drivers for legacy ioctls

Description

Each CRTC may have one or more connectors associated with it. This structure allows the CRTC to be
controlled.

DRM Internals

229

Name
struct drm_connector_state — mutable connector state

Synopsis

struct drm_connector_state {
 struct drm_connector * connector;
 struct drm_crtc * crtc;
 struct drm_encoder * best_encoder;
 struct drm_atomic_state * state;
};

Members

connector backpointer to the connector

crtc CRTC to connect connector to, NULL if disabled

best_encoder can be used by helpers and drivers to select the encoder

state backpointer to global drm_atomic_state

DRM Internals

230

Name
struct drm_connector_funcs — control connectors on a given device

Synopsis

struct drm_connector_funcs {
 void (* dpms) (struct drm_connector *connector, int mode);
 void (* save) (struct drm_connector *connector);
 void (* restore) (struct drm_connector *connector);
 void (* reset) (struct drm_connector *connector);
 enum drm_connector_status (* detect) (struct drm_connector *connector,bool force);
 int (* fill_modes) (struct drm_connector *connector, uint32_t max_width, uint32_t max_height);
 int (* set_property) (struct drm_connector *connector, struct drm_property *property,uint64_t val);
 void (* destroy) (struct drm_connector *connector);
 void (* force) (struct drm_connector *connector);
 struct drm_connector_state *(* atomic_duplicate_state) (struct drm_connector *connector);
 void (* atomic_destroy_state) (struct drm_connector *connector,struct drm_connector_state *state);
 int (* atomic_set_property) (struct drm_connector *connector,struct drm_connector_state *state,struct drm_property *property,uint64_t val);
 int (* atomic_get_property) (struct drm_connector *connector,const struct drm_connector_state *state,struct drm_property *property,uint64_t *val);
};

Members

dpms set power state

save save connector state

restore restore connector state

reset reset connector after state has been invalidated (e.g. resume)

detect is this connector active?

fill_modes fill mode list for this connector

set_property property for this connector may need an update

destroy make object go away

force notify the driver that the connector is forced on

atomic_duplicate_state duplicate the atomic state for this connector

atomic_destroy_state destroy an atomic state for this connector

atomic_set_property set a property on an atomic state for this connector (do not call directly,
use drm_atomic_connector_set_property)

atomic_get_property get a property on an atomic state for this connector (do not call directly,
use drm_atomic_connector_get_property)

Description

Each CRTC may have one or more connectors attached to it. The functions below allow the core DRM
code to control connectors, enumerate available modes, etc.

DRM Internals

231

Name
struct drm_encoder_funcs — encoder controls

Synopsis

struct drm_encoder_funcs {
 void (* reset) (struct drm_encoder *encoder);
 void (* destroy) (struct drm_encoder *encoder);
};

Members

reset reset state (e.g. at init or resume time)

destroy cleanup and free associated data

Description

Encoders sit between CRTCs and connectors.

DRM Internals

232

Name
struct drm_encoder — central DRM encoder structure

Synopsis

struct drm_encoder {
 struct drm_device * dev;
 struct list_head head;
 struct drm_mode_object base;
 char * name;
 int encoder_type;
 uint32_t possible_crtcs;
 uint32_t possible_clones;
 struct drm_crtc * crtc;
 struct drm_bridge * bridge;
 const struct drm_encoder_funcs * funcs;
 const void * helper_private;
};

Members

dev parent DRM device

head list management

base base KMS object

name encoder name

encoder_type one of the DRM_MODE_ENCODER_<foo> types in drm_mode.h

possible_crtcs bitmask of potential CRTC bindings

possible_clones bitmask of potential sibling encoders for cloning

crtc currently bound CRTC

bridge bridge associated to the encoder

funcs control functions

helper_private mid-layer private data

Description

CRTCs drive pixels to encoders, which convert them into signals appropriate for a given connector or set
of connectors.

DRM Internals

233

Name
struct drm_connector — central DRM connector control structure

Synopsis

struct drm_connector {
 struct drm_device * dev;
 struct device * kdev;
 struct device_attribute * attr;
 struct list_head head;
 struct drm_mode_object base;
 char * name;
 int connector_type;
 int connector_type_id;
 bool interlace_allowed;
 bool doublescan_allowed;
 bool stereo_allowed;
 struct list_head modes;
 enum drm_connector_status status;
 struct list_head probed_modes;
 struct drm_display_info display_info;
 const struct drm_connector_funcs * funcs;
 struct drm_property_blob * edid_blob_ptr;
 struct drm_object_properties properties;
 struct drm_property_blob * path_blob_ptr;
 uint8_t polled;
 int dpms;
 const void * helper_private;
 struct drm_cmdline_mode cmdline_mode;
 enum drm_connector_force force;
 bool override_edid;
 uint32_t encoder_ids[DRM_CONNECTOR_MAX_ENCODER];
 struct drm_encoder * encoder;
 uint8_t eld[MAX_ELD_BYTES];
 bool dvi_dual;
 int max_tmds_clock;
 bool latency_present[2];
 int video_latency[2];
 int audio_latency[2];
 int null_edid_counter;
 unsigned bad_edid_counter;
 struct dentry * debugfs_entry;
 struct drm_connector_state * state;
 bool has_tile;
 struct drm_tile_group * tile_group;
 bool tile_is_single_monitor;
 uint8_t num_h_tile;
 uint8_t num_v_tile;
 uint8_t tile_h_loc;
 uint8_t tile_v_loc;
 uint16_t tile_h_size;
 uint16_t tile_v_size;

DRM Internals

234

};

Members

dev parent DRM device

kdev kernel device for sysfs attributes

attr sysfs attributes

head list management

base base KMS object

name connector name

connector_type one of the DRM_MODE_CONNECTOR_<foo> types from
drm_mode.h

connector_type_id index into connector type enum

interlace_allowed can this connector handle interlaced modes?

doublescan_allowed can this connector handle doublescan?

stereo_allowed can this connector handle stereo modes?

modes modes available on this connector (from fill_modes + user)

status one of the drm_connector_status enums (connected, not, or un-
known)

probed_modes list of modes derived directly from the display

display_info information about attached display (e.g. from EDID)

funcs connector control functions

edid_blob_ptr DRM property containing EDID if present

properties property tracking for this connector

path_blob_ptr DRM blob property data for the DP MST path property

polled a DRM_CONNECTOR_POLL_<foo> value for core driven polling

dpms current dpms state

helper_private mid-layer private data

cmdline_mode mode line parsed from the kernel cmdline for this connector

force a DRM_FORCE_<foo> state for forced mode sets

override_edid has the EDID been overwritten through debugfs for testing?

encoder_ids[DRM_CONNECTOR_MAX_ENCODER]valid encoders for this connector

encoder encoder driving this connector, if any

DRM Internals

235

eld[MAX_ELD_BYTES] EDID-like data, if present

dvi_dual dual link DVI, if found

max_tmds_clock max clock rate, if found

latency_present[2] AV delay info from ELD, if found

video_latency[2] video latency info from ELD, if found

audio_latency[2] audio latency info from ELD, if found

null_edid_counter track sinks that give us all zeros for the EDID

bad_edid_counter track sinks that give us an EDID with invalid checksum

debugfs_entry debugfs directory for this connector

state current atomic state for this connector

has_tile is this connector connected to a tiled monitor

tile_group tile group for the connected monitor

tile_is_single_monitor whether the tile is one monitor housing

num_h_tile number of horizontal tiles in the tile group

num_v_tile number of vertical tiles in the tile group

tile_h_loc horizontal location of this tile

tile_v_loc vertical location of this tile

tile_h_size horizontal size of this tile.

tile_v_size vertical size of this tile.

Description

Each connector may be connected to one or more CRTCs, or may be clonable by another connector if
they can share a CRTC. Each connector also has a specific position in the broader display (referred to as
a 'screen' though it could span multiple monitors).

DRM Internals

236

Name
struct drm_plane_state — mutable plane state

Synopsis

struct drm_plane_state {
 struct drm_plane * plane;
 struct drm_crtc * crtc;
 struct drm_framebuffer * fb;
 struct fence * fence;
 int32_t crtc_x;
 int32_t crtc_y;
 uint32_t crtc_w;
 uint32_t crtc_h;
 uint32_t src_x;
 uint32_t src_y;
 uint32_t src_h;
 uint32_t src_w;
 struct drm_atomic_state * state;
};

Members

plane backpointer to the plane

crtc currently bound CRTC, NULL if disabled

fb currently bound framebuffer

fence optional fence to wait for before scanning out fb

crtc_x left position of visible portion of plane on crtc

crtc_y upper position of visible portion of plane on crtc

crtc_w width of visible portion of plane on crtc

crtc_h height of visible portion of plane on crtc

src_x left position of visible portion of plane within plane (in 16.16)

src_y upper position of visible portion of plane within plane (in 16.16)

src_h height of visible portion of plane (in 16.16)

src_w width of visible portion of plane (in 16.16)

state backpointer to global drm_atomic_state

DRM Internals

237

Name
struct drm_plane_funcs — driver plane control functions

Synopsis

struct drm_plane_funcs {
 int (* update_plane) (struct drm_plane *plane,struct drm_crtc *crtc, struct drm_framebuffer *fb,int crtc_x, int crtc_y,unsigned int crtc_w, unsigned int crtc_h,uint32_t src_x, uint32_t src_y,uint32_t src_w, uint32_t src_h);
 int (* disable_plane) (struct drm_plane *plane);
 void (* destroy) (struct drm_plane *plane);
 void (* reset) (struct drm_plane *plane);
 int (* set_property) (struct drm_plane *plane,struct drm_property *property, uint64_t val);
 struct drm_plane_state *(* atomic_duplicate_state) (struct drm_plane *plane);
 void (* atomic_destroy_state) (struct drm_plane *plane,struct drm_plane_state *state);
 int (* atomic_set_property) (struct drm_plane *plane,struct drm_plane_state *state,struct drm_property *property,uint64_t val);
 int (* atomic_get_property) (struct drm_plane *plane,const struct drm_plane_state *state,struct drm_property *property,uint64_t *val);
};

Members

update_plane update the plane configuration

disable_plane shut down the plane

destroy clean up plane resources

reset reset plane after state has been invalidated (e.g. resume)

set_property called when a property is changed

atomic_duplicate_state duplicate the atomic state for this plane

atomic_destroy_state destroy an atomic state for this plane

atomic_set_property set a property on an atomic state for this plane (do not call directly, use
drm_atomic_plane_set_property)

atomic_get_property get a property on an atomic state for this plane (do not call directly,
use drm_atomic_plane_get_property)

DRM Internals

238

Name
struct drm_plane — central DRM plane control structure

Synopsis

struct drm_plane {
 struct drm_device * dev;
 struct list_head head;
 struct drm_mode_object base;
 uint32_t possible_crtcs;
 uint32_t * format_types;
 uint32_t format_count;
 bool format_default;
 struct drm_crtc * crtc;
 struct drm_framebuffer * fb;
 struct drm_framebuffer * old_fb;
 const struct drm_plane_funcs * funcs;
 struct drm_object_properties properties;
 enum drm_plane_type type;
 struct drm_plane_state * state;
};

Members

dev DRM device this plane belongs to

head for list management

base base mode object

possible_crtcs pipes this plane can be bound to

format_types array of formats supported by this plane

format_count number of formats supported

format_default driver hasn't supplied supported formats for the plane

crtc currently bound CRTC

fb currently bound fb

old_fb Temporary tracking of the old fb while a modeset is ongoing. Used by
drm_mode_set_config_internal to implement correct refcounting.

funcs helper functions

properties property tracking for this plane

type type of plane (overlay, primary, cursor)

state current atomic state for this plane

DRM Internals

239

Name
struct drm_bridge_funcs — drm_bridge control functions

Synopsis

struct drm_bridge_funcs {
 int (* attach) (struct drm_bridge *bridge);
 bool (* mode_fixup) (struct drm_bridge *bridge,const struct drm_display_mode *mode,struct drm_display_mode *adjusted_mode);
 void (* disable) (struct drm_bridge *bridge);
 void (* post_disable) (struct drm_bridge *bridge);
 void (* mode_set) (struct drm_bridge *bridge,struct drm_display_mode *mode,struct drm_display_mode *adjusted_mode);
 void (* pre_enable) (struct drm_bridge *bridge);
 void (* enable) (struct drm_bridge *bridge);
};

Members

attach Called during drm_bridge_attach

mode_fixup Try to fixup (or reject entirely) proposed mode for this bridge

disable Called right before encoder prepare, disables the bridge

post_disable Called right after encoder prepare, for lockstepped disable

mode_set Set this mode to the bridge

pre_enable Called right before encoder commit, for lockstepped commit

enable Called right after encoder commit, enables the bridge

DRM Internals

240

Name
struct drm_bridge — central DRM bridge control structure

Synopsis

struct drm_bridge {
 struct drm_device * dev;
#ifdef CONFIG_OF
 struct device_node * of_node;
#endif
 struct list_head list;
 const struct drm_bridge_funcs * funcs;
 void * driver_private;
};

Members

dev DRM device this bridge belongs to

of_node device node pointer to the bridge

list to keep track of all added bridges

funcs control functions

driver_private pointer to the bridge driver's internal context

DRM Internals

241

Name
struct drm_atomic_state — the global state object for atomic updates

Synopsis

struct drm_atomic_state {
 struct drm_device * dev;
 bool allow_modeset:1;
 bool legacy_cursor_update:1;
 struct drm_plane ** planes;
 struct drm_plane_state ** plane_states;
 struct drm_crtc ** crtcs;
 struct drm_crtc_state ** crtc_states;
 int num_connector;
 struct drm_connector ** connectors;
 struct drm_connector_state ** connector_states;
 struct drm_modeset_acquire_ctx * acquire_ctx;
};

Members

dev parent DRM device

allow_modeset allow full modeset

legacy_cursor_update hint to enforce legacy cursor ioctl semantics

planes pointer to array of plane pointers

plane_states pointer to array of plane states pointers

crtcs pointer to array of CRTC pointers

crtc_states pointer to array of CRTC states pointers

num_connector size of the connectors and connector_states arrays

connectors pointer to array of connector pointers

connector_states pointer to array of connector states pointers

acquire_ctx acquire context for this atomic modeset state update

DRM Internals

242

Name
struct drm_mode_set — new values for a CRTC config change

Synopsis

struct drm_mode_set {
 struct drm_framebuffer * fb;
 struct drm_crtc * crtc;
 struct drm_display_mode * mode;
 uint32_t x;
 uint32_t y;
 struct drm_connector ** connectors;
 size_t num_connectors;
};

Members

fb framebuffer to use for new config

crtc CRTC whose configuration we're about to change

mode mode timings to use

x position of this CRTC relative to fb

y position of this CRTC relative to fb

connectors array of connectors to drive with this CRTC if possible

num_connectors size of connectors array

Description

Represents a single crtc the connectors that it drives with what mode and from which framebuffer it scans
out from.

This is used to set modes.

DRM Internals

243

Name
struct drm_mode_config_funcs — basic driver provided mode setting functions

Synopsis

struct drm_mode_config_funcs {
 struct drm_framebuffer *(* fb_create) (struct drm_device *dev,struct drm_file *file_priv,struct drm_mode_fb_cmd2 *mode_cmd);
 void (* output_poll_changed) (struct drm_device *dev);
 int (* atomic_check) (struct drm_device *dev,struct drm_atomic_state *a);
 int (* atomic_commit) (struct drm_device *dev,struct drm_atomic_state *a,bool async);
};

Members

fb_create create a new framebuffer object

output_poll_changed function to handle output configuration changes

atomic_check check whether a given atomic state update is possible

atomic_commit commit an atomic state update previously verified with atomic_check

Description

Some global (i.e. not per-CRTC, connector, etc) mode setting functions that involve drivers.

DRM Internals

244

Name
struct drm_mode_group — group of mode setting resources for potential sub-grouping

Synopsis

struct drm_mode_group {
 uint32_t num_crtcs;
 uint32_t num_encoders;
 uint32_t num_connectors;
 uint32_t * id_list;
};

Members

num_crtcs CRTC count

num_encoders encoder count

num_connectors connector count

id_list list of KMS object IDs in this group

Description

Currently this simply tracks the global mode setting state. But in the future it could allow groups of objects
to be set aside into independent control groups for use by different user level processes (e.g. two X servers
running simultaneously on different heads, each with their own mode configuration and freedom of mode
setting).

DRM Internals

245

Name
struct drm_mode_config — Mode configuration control structure

Synopsis

struct drm_mode_config {
 struct mutex mutex;
 struct drm_modeset_lock connection_mutex;
 struct drm_modeset_acquire_ctx * acquire_ctx;
 struct mutex idr_mutex;
 struct idr crtc_idr;
 struct mutex fb_lock;
 int num_fb;
 struct list_head fb_list;
 int num_connector;
 struct list_head connector_list;
 int num_encoder;
 struct list_head encoder_list;
 int num_overlay_plane;
 int num_total_plane;
 struct list_head plane_list;
 int num_crtc;
 struct list_head crtc_list;
 struct list_head property_list;
 int min_width;
 int min_height;
 int max_width;
 int max_height;
 const struct drm_mode_config_funcs * funcs;
 resource_size_t fb_base;
 bool poll_enabled;
 bool poll_running;
 struct delayed_work output_poll_work;
 struct list_head property_blob_list;
 uint32_t preferred_depth;
 uint32_t prefer_shadow;
 bool async_page_flip;
 uint32_t cursor_width;
 uint32_t cursor_height;
};

Members

mutex mutex protecting KMS related lists and structures

connection_mutex ww mutex protecting connector state and routing

acquire_ctx global implicit acquire context used by atomic drivers for legacy ioctls

idr_mutex mutex for KMS ID allocation and management

crtc_idr main KMS ID tracking object

fb_lock mutex to protect fb state and lists

DRM Internals

246

num_fb number of fbs available

fb_list list of framebuffers available

num_connector number of connectors on this device

connector_list list of connector objects

num_encoder number of encoders on this device

encoder_list list of encoder objects

num_overlay_plane number of overlay planes on this device

num_total_plane number of universal (i.e. with primary/curso) planes on this device

plane_list list of plane objects

num_crtc number of CRTCs on this device

crtc_list list of CRTC objects

property_list list of property objects

min_width minimum pixel width on this device

min_height minimum pixel height on this device

max_width maximum pixel width on this device

max_height maximum pixel height on this device

funcs core driver provided mode setting functions

fb_base base address of the framebuffer

poll_enabled track polling support for this device

poll_running track polling status for this device

output_poll_work delayed work for polling in process context

property_blob_list list of all the blob property objects

preferred_depth preferred RBG pixel depth, used by fb helpers

prefer_shadow hint to userspace to prefer shadow-fb rendering

async_page_flip does this device support async flips on the primary plane?

cursor_width hint to userspace for max cursor width

cursor_height hint to userspace for max cursor height

_property

core property tracking

DRM Internals

247

Description

Core mode resource tracking structure. All CRTC, encoders, and connectors enumerated by the driver are
added here, as are global properties. Some global restrictions are also here, e.g. dimension restrictions.

DRM Internals

248

Name
drm_for_each_plane_mask — iterate over planes specified by bitmask

Synopsis

drm_for_each_plane_mask (plane, dev, plane_mask);

Arguments

plane the loop cursor

dev the DRM device

plane_mask bitmask of plane indices

Description

Iterate over all planes specified by bitmask.

DRM Internals

249

Name
drm_crtc_mask — find the mask of a registered CRTC

Synopsis

uint32_t drm_crtc_mask (struct drm_crtc * crtc);

Arguments

crtc CRTC to find mask for

Description

Given a registered CRTC, return the mask bit of that CRTC for an encoder's possible_crtcs field.

DRM Internals

250

Name
drm_encoder_crtc_ok — can a given crtc drive a given encoder?

Synopsis

bool drm_encoder_crtc_ok (struct drm_encoder * encoder, struct drm_crtc
* crtc);

Arguments

encoder encoder to test

crtc crtc to test

Description

Return false if encoder can't be driven by crtc, true otherwise.

KMS Locking

As KMS moves toward more fine grained locking, and atomic ioctl where userspace can indirectly con-
trol locking order, it becomes necessary to use ww_mutex and acquire-contexts to avoid deadlocks. But
because the locking is more distributed around the driver code, we want a bit of extra utility/tracking out
of our acquire-ctx. This is provided by drm_modeset_lock / drm_modeset_acquire_ctx.

For basic principles of ww_mutex, see: Documentation/locking/ww-mutex-design.txt

The basic usage pattern is to:

drm_modeset_acquire_init(ctx) retry: foreach (lock in random_ordered_set_of_locks) { ret =
drm_modeset_lock(lock, ctx) if (ret == -EDEADLK) { drm_modeset_backoff(ctx); goto retry; } }

... do stuff ...

drm_modeset_drop_locks(ctx); drm_modeset_acquire_fini(ctx);

DRM Internals

251

Name
struct drm_modeset_acquire_ctx — locking context (see ww_acquire_ctx)

Synopsis

struct drm_modeset_acquire_ctx {
 struct ww_acquire_ctx ww_ctx;
 struct drm_modeset_lock * contended;
 struct list_head locked;
 bool trylock_only;
};

Members

ww_ctx base acquire ctx

contended used internally for -EDEADLK handling

locked list of held locks

trylock_only trylock mode used in atomic contexts/panic notifiers

Description

Each thread competing for a set of locks must use one acquire ctx. And if any lock fxn returns -EDEADLK,
it must backoff and retry.

DRM Internals

252

Name
drm_modeset_lock_init — initialize lock

Synopsis

void drm_modeset_lock_init (struct drm_modeset_lock * lock);

Arguments

lock lock to init

DRM Internals

253

Name
drm_modeset_lock_fini — cleanup lock

Synopsis

void drm_modeset_lock_fini (struct drm_modeset_lock * lock);

Arguments

lock lock to cleanup

DRM Internals

254

Name
drm_modeset_is_locked — equivalent to mutex_is_locked

Synopsis

bool drm_modeset_is_locked (struct drm_modeset_lock * lock);

Arguments

lock lock to check

DRM Internals

255

Name
__drm_modeset_lock_all — internal helper to grab all modeset locks

Synopsis

int __drm_modeset_lock_all (struct drm_device * dev, bool trylock);

Arguments

dev DRM device

trylock trylock mode for atomic contexts

Description

This is a special version of drm_modeset_lock_all which can also be used in atomic contexts. Then
trylock must be set to true.

Returns

0 on success or negative error code on failure.

DRM Internals

256

Name
drm_modeset_lock_all — take all modeset locks

Synopsis

void drm_modeset_lock_all (struct drm_device * dev);

Arguments

dev drm device

Description

This function takes all modeset locks, suitable where a more fine-grained scheme isn't (yet) implemented.
Locks must be dropped with drm_modeset_unlock_all.

DRM Internals

257

Name
drm_modeset_unlock_all — drop all modeset locks

Synopsis

void drm_modeset_unlock_all (struct drm_device * dev);

Arguments

dev device

Description

This function drop all modeset locks taken by drm_modeset_lock_all.

DRM Internals

258

Name
drm_modeset_lock_crtc — lock crtc with hidden acquire ctx for a plane update

Synopsis

void drm_modeset_lock_crtc (struct drm_crtc * crtc, struct drm_plane
* plane);

Arguments

crtc DRM CRTC

plane DRM plane to be updated on crtc

Description

This function locks the given crtc and plane (which should be either the primary or cursor plane) using
a hidden acquire context. This is necessary so that drivers internally using the atomic interfaces can grab
further locks with the lock acquire context.

Note that plane can be NULL, e.g. when the cursor support hasn't yet been converted to universal planes
yet.

DRM Internals

259

Name
drm_modeset_legacy_acquire_ctx — find acquire ctx for legacy ioctls

Synopsis

struct drm_modeset_acquire_ctx * drm_modeset_legacy_acquire_ctx (struct
drm_crtc * crtc);

Arguments

crtc drm crtc

Description

Legacy ioctl operations like cursor updates or page flips only have per-crtc locking, and store the acquire
ctx in the corresponding crtc. All other legacy operations take all locks and use a global acquire context.
This function grabs the right one.

DRM Internals

260

Name
drm_modeset_unlock_crtc — drop crtc lock

Synopsis

void drm_modeset_unlock_crtc (struct drm_crtc * crtc);

Arguments

crtc drm crtc

Description

This drops the crtc lock acquire with drm_modeset_lock_crtc and all other locks acquired through
the hidden context.

DRM Internals

261

Name
drm_warn_on_modeset_not_all_locked — check that all modeset locks are locked

Synopsis

void drm_warn_on_modeset_not_all_locked (struct drm_device * dev);

Arguments

dev device

Description

Useful as a debug assert.

DRM Internals

262

Name
drm_modeset_acquire_init — initialize acquire context

Synopsis

void drm_modeset_acquire_init (struct drm_modeset_acquire_ctx * ctx,
uint32_t flags);

Arguments

ctx the acquire context

flags for future

DRM Internals

263

Name
drm_modeset_acquire_fini — cleanup acquire context

Synopsis

void drm_modeset_acquire_fini (struct drm_modeset_acquire_ctx * ctx);

Arguments

ctx the acquire context

DRM Internals

264

Name
drm_modeset_drop_locks — drop all locks

Synopsis

void drm_modeset_drop_locks (struct drm_modeset_acquire_ctx * ctx);

Arguments

ctx the acquire context

Description

Drop all locks currently held against this acquire context.

DRM Internals

265

Name
drm_modeset_backoff — deadlock avoidance backoff

Synopsis

void drm_modeset_backoff (struct drm_modeset_acquire_ctx * ctx);

Arguments

ctx the acquire context

Description

If deadlock is detected (ie. drm_modeset_lock returns -EDEADLK), you must call this function to
drop all currently held locks and block until the contended lock becomes available.

DRM Internals

266

Name
drm_modeset_backoff_interruptible — deadlock avoidance backoff

Synopsis

int drm_modeset_backoff_interruptible (struct drm_modeset_acquire_ctx
* ctx);

Arguments

ctx the acquire context

Description

Interruptible version of drm_modeset_backoff

DRM Internals

267

Name
drm_modeset_lock — take modeset lock

Synopsis

int drm_modeset_lock (struct drm_modeset_lock * lock, struct
drm_modeset_acquire_ctx * ctx);

Arguments

lock lock to take

ctx acquire ctx

Description

If ctx is not NULL, then its ww acquire context is used and the lock will be tracked by the context and
can be released by calling drm_modeset_drop_locks. If -EDEADLK is returned, this means a dead-
lock scenario has been detected and it is an error to attempt to take any more locks without first calling
drm_modeset_backoff.

DRM Internals

268

Name
drm_modeset_lock_interruptible — take modeset lock

Synopsis

int drm_modeset_lock_interruptible (struct drm_modeset_lock * lock,
struct drm_modeset_acquire_ctx * ctx);

Arguments

lock lock to take

ctx acquire ctx

Description

Interruptible version of drm_modeset_lock

DRM Internals

269

Name
drm_modeset_unlock — drop modeset lock

Synopsis

void drm_modeset_unlock (struct drm_modeset_lock * lock);

Arguments

lock lock to release

Mode Setting Helper Functions
The plane, CRTC, encoder and connector functions provided by the drivers implement the DRM API.
They're called by the DRM core and ioctl handlers to handle device state changes and configuration request.
As implementing those functions often requires logic not specific to drivers, mid-layer helper functions
are available to avoid duplicating boilerplate code.

The DRM core contains one mid-layer implementation. The mid-layer provides implementations of sev-
eral plane, CRTC, encoder and connector functions (called from the top of the mid-layer) that pre-process
requests and call lower-level functions provided by the driver (at the bottom of the mid-layer). For in-
stance, the drm_crtc_helper_set_config function can be used to fill the struct drm_crtc_funcs
set_config field. When called, it will split the set_config operation in smaller, simpler operations
and call the driver to handle them.

To use the mid-layer, drivers call drm_crtc_helper_add, drm_encoder_helper_add and
drm_connector_helper_add functions to install their mid-layer bottom operations handlers, and
fill the drm_crtc_funcs, drm_encoder_funcs and drm_connector_funcs structures with pointers to the mid-
layer top API functions. Installing the mid-layer bottom operation handlers is best done right after regis-
tering the corresponding KMS object.

The mid-layer is not split between CRTC, encoder and connector operations. To use it, a driver must
provide bottom functions for all of the three KMS entities.

Helper Functions
• int drm_crtc_helper_set_config(struct drm_mode_set *set);

The drm_crtc_helper_set_config helper function is a CRTC set_config implementation.
It first tries to locate the best encoder for each connector by calling the connector best_encoder
helper operation.

After locating the appropriate encoders, the helper function will call the mode_fixup encoder and
CRTC helper operations to adjust the requested mode, or reject it completely in which case an error will
be returned to the application. If the new configuration after mode adjustment is identical to the current
configuration the helper function will return without performing any other operation.

If the adjusted mode is identical to the current mode but changes to the frame buffer need to be applied,
the drm_crtc_helper_set_config function will call the CRTC mode_set_base helper op-
eration. If the adjusted mode differs from the current mode, or if the mode_set_base helper opera-
tion is not provided, the helper function performs a full mode set sequence by calling the prepare,
mode_set and commit CRTC and encoder helper operations, in that order.

• void drm_helper_connector_dpms(struct drm_connector *connector, int mode);

DRM Internals

270

The drm_helper_connector_dpms helper function is a connector dpms implementation that
tracks power state of connectors. To use the function, drivers must provide dpms helper operations for
CRTCs and encoders to apply the DPMS state to the device.

The mid-layer doesn't track the power state of CRTCs and encoders. The dpms helper operations can
thus be called with a mode identical to the currently active mode.

• int drm_helper_probe_single_connector_modes(struct drm_connector *connector,
 uint32_t maxX, uint32_t maxY);

The drm_helper_probe_single_connector_modes helper function is a connector
fill_modes implementation that updates the connection status for the connector and then retrieves
a list of modes by calling the connector get_modes helper operation.

If the helper operation returns no mode, and if the connector status is connector_status_connected,
standard VESA DMT modes up to 1024x768 are automatically added to the modes list by a call to
drm_add_modes_noedid.

The function then filters out modes larger than max_width and max_height if specified. It finally
calls the optional connector mode_valid helper operation for each mode in the probed list to check
whether the mode is valid for the connector.

CRTC Helper Operations
• bool (*mode_fixup)(struct drm_crtc *crtc,
 const struct drm_display_mode *mode,
 struct drm_display_mode *adjusted_mode);

Let CRTCs adjust the requested mode or reject it completely. This operation returns true if the mode is
accepted (possibly after being adjusted) or false if it is rejected.

The mode_fixup operation should reject the mode if it can't reasonably use it. The definition of
"reasonable" is currently fuzzy in this context. One possible behaviour would be to set the adjusted
mode to the panel timings when a fixed-mode panel is used with hardware capable of scaling. Another
behaviour would be to accept any input mode and adjust it to the closest mode supported by the hardware
(FIXME: This needs to be clarified).

• int (*mode_set_base)(struct drm_crtc *crtc, int x, int y,
 struct drm_framebuffer *old_fb)

Move the CRTC on the current frame buffer (stored in crtc->fb) to position (x,y). Any of the frame
buffer, x position or y position may have been modified.

This helper operation is optional. If not provided, the drm_crtc_helper_set_config function
will fall back to the mode_set helper operation.

Note

FIXME: Why are x and y passed as arguments, as they can be accessed through crtc->x
and crtc->y?

• void (*prepare)(struct drm_crtc *crtc);

Prepare the CRTC for mode setting. This operation is called after validating the requested mode. Drivers
use it to perform device-specific operations required before setting the new mode.

DRM Internals

271

• int (*mode_set)(struct drm_crtc *crtc, struct drm_display_mode *mode,
 struct drm_display_mode *adjusted_mode, int x, int y,
 struct drm_framebuffer *old_fb);

Set a new mode, position and frame buffer. Depending on the device requirements, the mode can be
stored internally by the driver and applied in the commit operation, or programmed to the hardware
immediately.

The mode_set operation returns 0 on success or a negative error code if an error occurs.

• void (*commit)(struct drm_crtc *crtc);

Commit a mode. This operation is called after setting the new mode. Upon return the device must use
the new mode and be fully operational.

Encoder Helper Operations
• bool (*mode_fixup)(struct drm_encoder *encoder,
 const struct drm_display_mode *mode,
 struct drm_display_mode *adjusted_mode);

Let encoders adjust the requested mode or reject it completely. This operation returns true if the mode
is accepted (possibly after being adjusted) or false if it is rejected. See the mode_fixup CRTC helper
operation for an explanation of the allowed adjustments.

• void (*prepare)(struct drm_encoder *encoder);

Prepare the encoder for mode setting. This operation is called after validating the requested mode. Dri-
vers use it to perform device-specific operations required before setting the new mode.

• void (*mode_set)(struct drm_encoder *encoder,
 struct drm_display_mode *mode,
 struct drm_display_mode *adjusted_mode);

Set a new mode. Depending on the device requirements, the mode can be stored internally by the driver
and applied in the commit operation, or programmed to the hardware immediately.

• void (*commit)(struct drm_encoder *encoder);

Commit a mode. This operation is called after setting the new mode. Upon return the device must use
the new mode and be fully operational.

Connector Helper Operations
• struct drm_encoder *(*best_encoder)(struct drm_connector *connector);

Return a pointer to the best encoder for the connecter. Device that map connectors to encoders 1:1
simply return the pointer to the associated encoder. This operation is mandatory.

• int (*get_modes)(struct drm_connector *connector);

Fill the connector's probed_modes list by parsing EDID data with drm_add_edid_modes,
adding standard VESA DMT modes with drm_add_modes_noedid, or calling
drm_mode_probed_add directly for every supported mode and return the number of modes it has
detected. This operation is mandatory.

DRM Internals

272

Note that the caller function will automatically add standard VESA DMT modes up to
1024x768 if the get_modes helper operation returns no mode and if the connector status is
connector_status_connected. There is no need to call drm_add_edid_modes manually in that case.

When adding modes manually the driver creates each mode with a call to drm_mode_create and
must fill the following fields.

• __u32 type;

Mode type bitmask, a combination of

DRM_MODE_TYPE_BUILTIN not used?

DRM_MODE_TYPE_CLOCK_C not used?

DRM_MODE_TYPE_CRTC_C not used?

DRM_MODE_TYPE_PREFERRED
- The preferred mode for the con-
nector

not used?

DRM_MODE_TYPE_DEFAULT not used?

DRM_MODE_TYPE_USERDEF not used?

DRM_MODE_TYPE_DRIVER The mode has been created by the driver (as opposed to to
user-created modes).

Drivers must set the DRM_MODE_TYPE_DRIVER bit for all modes they create, and set the
DRM_MODE_TYPE_PREFERRED bit for the preferred mode.

• __u32 clock;

Pixel clock frequency in kHz unit

• __u16 hdisplay, hsync_start, hsync_end, htotal;
 __u16 vdisplay, vsync_start, vsync_end, vtotal;

Horizontal and vertical timing information

 Active Front Sync Back
 Region Porch Porch
 <-----------------------><----------------><-------------><-------------->

 //////////////////////|
 ////////////////////// |
 ////////////////////// |..................

 <----- [hv]display ----->
 <------------- [hv]sync_start ------------>
 <--------------------- [hv]sync_end --------------------->
 <-------------------------------- [hv]total ----------------------------->

• __u16 hskew;

DRM Internals

273

 __u16 vscan;

Unknown

• __u32 flags;

Mode flags, a combination of

DRM_MODE_FLAG_PHSYNC Horizontal sync is active high

DRM_MODE_FLAG_NHSYNC Horizontal sync is active low

DRM_MODE_FLAG_PVSYNC Vertical sync is active high

DRM_MODE_FLAG_NVSYNC Vertical sync is active low

DRM_MODE_FLAG_INTERLACEMode is interlaced

DRM_MODE_FLAG_DBLSCAN Mode uses doublescan

DRM_MODE_FLAG_CSYNC Mode uses composite sync

DRM_MODE_FLAG_PCSYNC Composite sync is active high

DRM_MODE_FLAG_NCSYNC Composite sync is active low

DRM_MODE_FLAG_HSKEW hskew provided (not used?)

DRM_MODE_FLAG_BCAST not used?

DRM_MODE_FLAG_PIXMUX not used?

DRM_MODE_FLAG_DBLCLK not used?

DRM_MODE_FLAG_CLKDIV2 ?

Note that modes marked with the INTERLACE or DBLSCAN flags will be fil-
tered out by drm_helper_probe_single_connector_modes if the connector's
interlace_allowed or doublescan_allowed field is set to 0.

• char name[DRM_DISPLAY_MODE_LEN];

Mode name. The driver must call drm_mode_set_name to fill the mode name from hdisplay,
vdisplay and interlace flag after filling the corresponding fields.

The vrefresh value is computed by drm_helper_probe_single_connector_modes.

When parsing EDID data, drm_add_edid_modes fills the connector display_info width_mm
and height_mm fields. When creating modes manually the get_modes helper operation must set
the display_info width_mm and height_mm fields if they haven't been set already (for instance
at initialization time when a fixed-size panel is attached to the connector). The mode width_mm and
height_mm fields are only used internally during EDID parsing and should not be set when creating
modes manually.

• int (*mode_valid)(struct drm_connector *connector,
 struct drm_display_mode *mode);

DRM Internals

274

Verify whether a mode is valid for the connector. Return MODE_OK for supported modes and one of
the enum drm_mode_status values (MODE_*) for unsupported modes. This operation is optional.

As the mode rejection reason is currently not used beside for immediately removing the unsupported
mode, an implementation can return MODE_BAD regardless of the exact reason why the mode is not
valid.

Note

Note that the mode_valid helper operation is only called for modes detected by the device,
and not for modes set by the user through the CRTC set_config operation.

Atomic Modeset Helper Functions Reference

Overview

This helper library provides implementations of check and commit functions on top of the CRTC modeset
helper callbacks and the plane helper callbacks. It also provides convenience implementations for the
atomic state handling callbacks for drivers which don't need to subclass the drm core structures to add
their own additional internal state.

This library also provides default implementations for the check callback in drm_atomic_helper_check
and for the commit callback with drm_atomic_helper_commit. But the individual stages and callbacks are
expose to allow drivers to mix and match and e.g. use the plane helpers only together with a driver private
modeset implementation.

This library also provides implementations for all the legacy driver interfaces on top
of the atomic interface. See drm_atomic_helper_set_config, drm_atomic_helper_disable_plane,
drm_atomic_helper_disable_plane and the various functions to implement set_property callbacks. New
drivers must not implement these functions themselves but must use the provided helpers.

Implementing Asynchronous Atomic Commit

For now the atomic helpers don't support async commit directly. If there is real need it could be added
though, using the dma-buf fence infrastructure for generic synchronization with outstanding rendering.

For now drivers have to implement async commit themselves, with the following sequence being the
recommended one:

1. Run drm_atomic_helper_prepare_planes first. This is the only function which commit needs
to call which can fail, so we want to run it first and synchronously.

2. Synchronize with any outstanding asynchronous commit worker threads which might be affected the
new state update. This can be done by either cancelling or flushing the work items, depending upon whether
the driver can deal with cancelled updates. Note that it is important to ensure that the framebuffer cleanup
is still done when cancelling.

For sufficient parallelism it is recommended to have a work item per crtc (for updates which don't touch
global state) and a global one. Then we only need to synchronize with the crtc work items for changed
crtcs and the global work item, which allows nice concurrent updates on disjoint sets of crtcs.

3. The software state is updated synchronously with drm_atomic_helper_swap_state. Doing this under the
protection of all modeset locks means concurrent callers never see inconsistent state. And doing this while

DRM Internals

275

it's guaranteed that no relevant async worker runs means that async workers do not need grab any locks.
Actually they must not grab locks, for otherwise the work flushing will deadlock.

4. Schedule a work item to do all subsequent steps, using the split-out commit helpers: a) pre-plane commit
b) plane commit c) post-plane commit and then cleaning up the framebuffers after the old framebuffer is
no longer being displayed.

Atomic State Reset and Initialization

Both the drm core and the atomic helpers assume that there is always the full and correct atomic software
state for all connectors, CRTCs and planes available. Which is a bit a problem on driver load and also
after system suspend. One way to solve this is to have a hardware state read-out infrastructure which
reconstructs the full software state (e.g. the i915 driver).

The simpler solution is to just reset the software state to everything off, which is easiest to do by calling
drm_mode_config_reset. To facilitate this the atomic helpers provide default reset implementations
for all hooks.

DRM Internals

276

Name
drm_atomic_crtc_for_each_plane — iterate over planes currently attached to CRTC

Synopsis

drm_atomic_crtc_for_each_plane (plane, crtc);

Arguments

plane the loop cursor

crtc the crtc whose planes are iterated

Description

This iterates over the current state, useful (for example) when applying atomic state after it has been
checked and swapped. To iterate over the planes which *will* be attached (for ->atomic_check) see
drm_crtc_for_each_pending_plane

DRM Internals

277

Name
drm_atomic_crtc_state_for_each_plane — iterate over attached planes in new state

Synopsis

drm_atomic_crtc_state_for_each_plane (plane, crtc_state);

Arguments

plane the loop cursor

crtc_state the incoming crtc-state

Description

Similar to drm_crtc_for_each_plane, but iterates the planes that will be attached if the specified
state is applied. Useful during (for example) ->atomic_check operations, to validate the incoming state

DRM Internals

278

Name
drm_atomic_helper_check_modeset — validate state object for modeset changes

Synopsis

int drm_atomic_helper_check_modeset (struct drm_device * dev, struct
drm_atomic_state * state);

Arguments

dev DRM device

state the driver state object

Description

Check the state object to see if the requested state is physically possible. This does all the crtc and connector
related computations for an atomic update. It computes and updates crtc_state->mode_changed, adds any
additional connectors needed for full modesets and calls down into ->mode_fixup functions of the driver
backend.

IMPORTANT

Drivers which update ->mode_changed (e.g. in their ->atomic_check hooks if a plane update can't be done
without a full modeset) _must_ call this function afterwards after that change. It is permitted to call this
function multiple times for the same update, e.g. when the ->atomic_check functions depend upon the
adjusted dotclock for fifo space allocation and watermark computation.

RETURNS Zero for success or -errno

DRM Internals

279

Name
drm_atomic_helper_check_planes — validate state object for planes changes

Synopsis

int drm_atomic_helper_check_planes (struct drm_device * dev, struct
drm_atomic_state * state);

Arguments

dev DRM device

state the driver state object

Description

Check the state object to see if the requested state is physically possible. This does all the plane update
related checks using by calling into the ->atomic_check hooks provided by the driver.

RETURNS Zero for success or -errno

DRM Internals

280

Name
drm_atomic_helper_check — validate state object

Synopsis

int drm_atomic_helper_check (struct drm_device * dev, struct
drm_atomic_state * state);

Arguments

dev DRM device

state the driver state object

Description

Check the state object to see if the requested state is physically possible. Only crtcs and planes have check
callbacks, so for any additional (global) checking that a driver needs it can simply wrap that around this
function. Drivers without such needs can directly use this as their ->atomic_check callback.

This just wraps the two parts of the state checking for planes and modeset

state in the default order

First it calls drm_atomic_helper_check_modeset and then
drm_atomic_helper_check_planes. The assumption is that the ->atomic_check functions de-
pend upon an updated adjusted_mode.clock to e.g. properly compute watermarks.

RETURNS Zero for success or -errno

DRM Internals

281

Name
drm_atomic_helper_commit_modeset_disables — modeset commit to disable outputs

Synopsis

void drm_atomic_helper_commit_modeset_disables (struct drm_device *
dev, struct drm_atomic_state * old_state);

Arguments

dev DRM device

old_state atomic state object with old state structures

Description

This function shuts down all the outputs that need to be shut down and prepares them (if required) with
the new mode.

For compatability with legacy crtc helpers this should be called before
drm_atomic_helper_commit_planes, which is what the default commit function does. But dri-
vers with different needs can group the modeset commits together and do the plane commits at the end.
This is useful for drivers doing runtime PM since planes updates then only happen when the CRTC is
actually enabled.

DRM Internals

282

Name
drm_atomic_helper_commit_modeset_enables — modeset commit to enable outputs

Synopsis

void drm_atomic_helper_commit_modeset_enables (struct drm_device * dev,
struct drm_atomic_state * old_state);

Arguments

dev DRM device

old_state atomic state object with old state structures

Description

This function enables all the outputs with the new configuration which had to be turned off for the update.

For compatability with legacy crtc helpers this should be called after
drm_atomic_helper_commit_planes, which is what the default commit function does. But dri-
vers with different needs can group the modeset commits together and do the plane commits at the end.
This is useful for drivers doing runtime PM since planes updates then only happen when the CRTC is
actually enabled.

DRM Internals

283

Name
drm_atomic_helper_wait_for_vblanks — wait for vblank on crtcs

Synopsis

void drm_atomic_helper_wait_for_vblanks (struct drm_device * dev, struct
drm_atomic_state * old_state);

Arguments

dev DRM device

old_state atomic state object with old state structures

Description

Helper to, after atomic commit, wait for vblanks on all effected crtcs (ie. before cleaning up old frame-
buffers using drm_atomic_helper_cleanup_planes). It will only wait on crtcs where the frame-
buffers have actually changed to optimize for the legacy cursor and plane update use-case.

DRM Internals

284

Name
drm_atomic_helper_commit — commit validated state object

Synopsis

int drm_atomic_helper_commit (struct drm_device * dev, struct
drm_atomic_state * state, bool async);

Arguments

dev DRM device

state the driver state object

async asynchronous commit

Description

This function commits a with drm_atomic_helper_check pre-validated state object. This can still
fail when e.g. the framebuffer reservation fails. For now this doesn't implement asynchronous commits.

RETURNS Zero for success or -errno.

DRM Internals

285

Name
drm_atomic_helper_prepare_planes — prepare plane resources before commit

Synopsis

int drm_atomic_helper_prepare_planes (struct drm_device * dev, struct
drm_atomic_state * state);

Arguments

dev DRM device

state atomic state object with new state structures

Description

This function prepares plane state, specifically framebuffers, for the new configuration. If any failure is
encountered this function will call ->cleanup_fb on any already successfully prepared framebuffer.

Returns

0 on success, negative error code on failure.

DRM Internals

286

Name
drm_atomic_helper_commit_planes — commit plane state

Synopsis

void drm_atomic_helper_commit_planes (struct drm_device * dev, struct
drm_atomic_state * old_state);

Arguments

dev DRM device

old_state atomic state object with old state structures

Description

This function commits the new plane state using the plane and atomic helper functions for planes and crtcs.
It assumes that the atomic state has already been pushed into the relevant object state pointers, since this
step can no longer fail.

It still requires the global state object old_state to know which planes and crtcs need to be updated
though.

DRM Internals

287

Name
drm_atomic_helper_cleanup_planes — cleanup plane resources after commit

Synopsis

void drm_atomic_helper_cleanup_planes (struct drm_device * dev, struct
drm_atomic_state * old_state);

Arguments

dev DRM device

old_state atomic state object with old state structures

Description

This function cleans up plane state, specifically framebuffers, from the old configuration. Hence the old
configuration must be perserved in old_state to be able to call this function.

This function must also be called on the new state when the atomic update fails at any point after calling
drm_atomic_helper_prepare_planes.

DRM Internals

288

Name
drm_atomic_helper_swap_state — store atomic state into current sw state

Synopsis

void drm_atomic_helper_swap_state (struct drm_device * dev, struct
drm_atomic_state * state);

Arguments

dev DRM device

state atomic state

Description

This function stores the atomic state into the current state pointers in all driver objects. It should be called
after all failing steps have been done and succeeded, but before the actual hardware state is committed.

For cleanup and error recovery the current state for all changed objects will be swaped into state.

With that sequence it fits perfectly into the plane prepare/cleanup sequence:

1. Call drm_atomic_helper_prepare_planes with the staged atomic state.

2. Do any other steps that might fail.

3. Put the staged state into the current state pointers with this function.

4. Actually commit the hardware state.

5. Call drm_atomic_helper_cleanup_planes with state, which since step 3 contains the old state. Also
do any other cleanup required with that state.

DRM Internals

289

Name
drm_atomic_helper_update_plane — Helper for primary plane update using atomic

Synopsis

int drm_atomic_helper_update_plane (struct drm_plane * plane, struct
drm_crtc * crtc, struct drm_framebuffer * fb, int crtc_x, int crtc_y,
unsigned int crtc_w, unsigned int crtc_h, uint32_t src_x, uint32_t
src_y, uint32_t src_w, uint32_t src_h);

Arguments

plane plane object to update

crtc owning CRTC of owning plane

fb framebuffer to flip onto plane

crtc_x x offset of primary plane on crtc

crtc_y y offset of primary plane on crtc

crtc_w width of primary plane rectangle on crtc

crtc_h height of primary plane rectangle on crtc

src_x x offset of fb for panning

src_y y offset of fb for panning

src_w width of source rectangle in fb

src_h height of source rectangle in fb

Description

Provides a default plane update handler using the atomic driver interface.

RETURNS

Zero on success, error code on failure

DRM Internals

290

Name
drm_atomic_helper_disable_plane — Helper for primary plane disable using * atomic

Synopsis

int drm_atomic_helper_disable_plane (struct drm_plane * plane);

Arguments

plane plane to disable

Description

Provides a default plane disable handler using the atomic driver interface.

RETURNS

Zero on success, error code on failure

DRM Internals

291

Name
drm_atomic_helper_set_config — set a new config from userspace

Synopsis

int drm_atomic_helper_set_config (struct drm_mode_set * set);

Arguments

set mode set configuration

Description

Provides a default crtc set_config handler using the atomic driver interface.

Returns

Returns 0 on success, negative errno numbers on failure.

DRM Internals

292

Name
drm_atomic_helper_crtc_set_property — helper for crtc properties

Synopsis

int drm_atomic_helper_crtc_set_property (struct drm_crtc * crtc, struct
drm_property * property, uint64_t val);

Arguments

crtc DRM crtc

property DRM property

val value of property

Description

Provides a default crtc set_property handler using the atomic driver interface.

RETURNS

Zero on success, error code on failure

DRM Internals

293

Name
drm_atomic_helper_plane_set_property — helper for plane properties

Synopsis

int drm_atomic_helper_plane_set_property (struct drm_plane * plane,
struct drm_property * property, uint64_t val);

Arguments

plane DRM plane

property DRM property

val value of property

Description

Provides a default plane set_property handler using the atomic driver interface.

RETURNS

Zero on success, error code on failure

DRM Internals

294

Name
drm_atomic_helper_connector_set_property — helper for connector properties

Synopsis

int drm_atomic_helper_connector_set_property (struct drm_connector *
connector, struct drm_property * property, uint64_t val);

Arguments

connector DRM connector

property DRM property

val value of property

Description

Provides a default connector set_property handler using the atomic driver interface.

RETURNS

Zero on success, error code on failure

DRM Internals

295

Name
drm_atomic_helper_page_flip — execute a legacy page flip

Synopsis

int drm_atomic_helper_page_flip (struct drm_crtc * crtc, struct
drm_framebuffer * fb, struct drm_pending_vblank_event * event, uint32_t
flags);

Arguments

crtc DRM crtc

fb DRM framebuffer

event optional DRM event to signal upon completion

flags flip flags for non-vblank sync'ed updates

Description

Provides a default page flip implementation using the atomic driver interface.

Note that for now so called async page flips (i.e. updates which are not synchronized to vblank) are not
supported, since the atomic interfaces have no provisions for this yet.

Returns

Returns 0 on success, negative errno numbers on failure.

DRM Internals

296

Name
drm_atomic_helper_connector_dpms — connector dpms helper implementation

Synopsis

void drm_atomic_helper_connector_dpms (struct drm_connector * connec-
tor, int mode);

Arguments

connector affected connector

mode DPMS mode

Description

This is the main helper function provided by the atomic helper framework for implementing the legacy
DPMS connector interface. It computes the new desired ->active state for the corresponding CRTC (if the
connector is enabled) and updates it.

DRM Internals

297

Name
drm_atomic_helper_crtc_reset — default ->reset hook for CRTCs

Synopsis

void drm_atomic_helper_crtc_reset (struct drm_crtc * crtc);

Arguments

crtc drm CRTC

Description

Resets the atomic state for crtc by freeing the state pointer (which might be NULL, e.g. at driver load
time) and allocating a new empty state object.

DRM Internals

298

Name
__drm_atomic_helper_crtc_duplicate_state — copy atomic CRTC state

Synopsis

void __drm_atomic_helper_crtc_duplicate_state (struct drm_crtc * crtc,
struct drm_crtc_state * state);

Arguments

crtc CRTC object

state atomic CRTC state

Description

Copies atomic state from a CRTC's current state and resets inferred values. This is useful for drivers that
subclass the CRTC state.

DRM Internals

299

Name
drm_atomic_helper_crtc_duplicate_state — default state duplicate hook

Synopsis

struct drm_crtc_state * drm_atomic_helper_crtc_duplicate_state (struct
drm_crtc * crtc);

Arguments

crtc drm CRTC

Description

Default CRTC state duplicate hook for drivers which don't have their own subclassed CRTC state structure.

DRM Internals

300

Name
__drm_atomic_helper_crtc_destroy_state — release CRTC state

Synopsis

void __drm_atomic_helper_crtc_destroy_state (struct drm_crtc * crtc,
struct drm_crtc_state * state);

Arguments

crtc CRTC object

state CRTC state object to release

Description

Releases all resources stored in the CRTC state without actually freeing the memory of the CRTC state.
This is useful for drivers that subclass the CRTC state.

DRM Internals

301

Name
drm_atomic_helper_crtc_destroy_state — default state destroy hook

Synopsis

void drm_atomic_helper_crtc_destroy_state (struct drm_crtc * crtc,
struct drm_crtc_state * state);

Arguments

crtc drm CRTC

state CRTC state object to release

Description

Default CRTC state destroy hook for drivers which don't have their own subclassed CRTC state structure.

DRM Internals

302

Name
drm_atomic_helper_plane_reset — default ->reset hook for planes

Synopsis

void drm_atomic_helper_plane_reset (struct drm_plane * plane);

Arguments

plane drm plane

Description

Resets the atomic state for plane by freeing the state pointer (which might be NULL, e.g. at driver load
time) and allocating a new empty state object.

DRM Internals

303

Name
__drm_atomic_helper_plane_duplicate_state — copy atomic plane state

Synopsis

void __drm_atomic_helper_plane_duplicate_state (struct drm_plane *
plane, struct drm_plane_state * state);

Arguments

plane plane object

state atomic plane state

Description

Copies atomic state from a plane's current state. This is useful for drivers that subclass the plane state.

DRM Internals

304

Name
drm_atomic_helper_plane_duplicate_state — default state duplicate hook

Synopsis

struct drm_plane_state * drm_atomic_helper_plane_duplicate_state
(struct drm_plane * plane);

Arguments

plane drm plane

Description

Default plane state duplicate hook for drivers which don't have their own subclassed plane state structure.

DRM Internals

305

Name
__drm_atomic_helper_plane_destroy_state — release plane state

Synopsis

void __drm_atomic_helper_plane_destroy_state (struct drm_plane * plane,
struct drm_plane_state * state);

Arguments

plane plane object

state plane state object to release

Description

Releases all resources stored in the plane state without actually freeing the memory of the plane state. This
is useful for drivers that subclass the plane state.

DRM Internals

306

Name
drm_atomic_helper_plane_destroy_state — default state destroy hook

Synopsis

void drm_atomic_helper_plane_destroy_state (struct drm_plane * plane,
struct drm_plane_state * state);

Arguments

plane drm plane

state plane state object to release

Description

Default plane state destroy hook for drivers which don't have their own subclassed plane state structure.

DRM Internals

307

Name
drm_atomic_helper_connector_reset — default ->reset hook for connectors

Synopsis

void drm_atomic_helper_connector_reset (struct drm_connector * connec-
tor);

Arguments

connector drm connector

Description

Resets the atomic state for connector by freeing the state pointer (which might be NULL, e.g. at driver
load time) and allocating a new empty state object.

DRM Internals

308

Name
__drm_atomic_helper_connector_duplicate_state — copy atomic connector state

Synopsis

void __drm_atomic_helper_connector_duplicate_state (struct
drm_connector * connector, struct drm_connector_state * state);

Arguments

connector connector object

state atomic connector state

Description

Copies atomic state from a connector's current state. This is useful for drivers that subclass the connector
state.

DRM Internals

309

Name
drm_atomic_helper_connector_duplicate_state — default state duplicate hook

Synopsis

struct drm_connector_state *
drm_atomic_helper_connector_duplicate_state (struct drm_connector *
connector);

Arguments

connector drm connector

Description

Default connector state duplicate hook for drivers which don't have their own subclassed connector state
structure.

DRM Internals

310

Name
__drm_atomic_helper_connector_destroy_state — release connector state

Synopsis

void __drm_atomic_helper_connector_destroy_state (struct drm_connector
* connector, struct drm_connector_state * state);

Arguments

connector connector object

state connector state object to release

Description

Releases all resources stored in the connector state without actually freeing the memory of the connector
state. This is useful for drivers that subclass the connector state.

DRM Internals

311

Name
drm_atomic_helper_connector_destroy_state — default state destroy hook

Synopsis

void drm_atomic_helper_connector_destroy_state (struct drm_connector *
connector, struct drm_connector_state * state);

Arguments

connector drm connector

state connector state object to release

Description

Default connector state destroy hook for drivers which don't have their own subclassed connector state
structure.

Modeset Helper Functions Reference

DRM Internals

312

Name
struct drm_crtc_helper_funcs — helper operations for CRTCs

Synopsis

struct drm_crtc_helper_funcs {
 void (* dpms) (struct drm_crtc *crtc, int mode);
 void (* prepare) (struct drm_crtc *crtc);
 void (* commit) (struct drm_crtc *crtc);
 bool (* mode_fixup) (struct drm_crtc *crtc,const struct drm_display_mode *mode,struct drm_display_mode *adjusted_mode);
 int (* mode_set) (struct drm_crtc *crtc, struct drm_display_mode *mode,struct drm_display_mode *adjusted_mode, int x, int y,struct drm_framebuffer *old_fb);
 void (* mode_set_nofb) (struct drm_crtc *crtc);
 int (* mode_set_base) (struct drm_crtc *crtc, int x, int y,struct drm_framebuffer *old_fb);
 int (* mode_set_base_atomic) (struct drm_crtc *crtc,struct drm_framebuffer *fb, int x, int y,enum mode_set_atomic);
 void (* load_lut) (struct drm_crtc *crtc);
 void (* disable) (struct drm_crtc *crtc);
 void (* enable) (struct drm_crtc *crtc);
 int (* atomic_check) (struct drm_crtc *crtc,struct drm_crtc_state *state);
 void (* atomic_begin) (struct drm_crtc *crtc);
 void (* atomic_flush) (struct drm_crtc *crtc);
};

Members

dpms set power state

prepare prepare the CRTC, called before mode_set

commit commit changes to CRTC, called after mode_set

mode_fixup try to fixup proposed mode for this CRTC

mode_set set this mode

mode_set_nofb set mode only (no scanout buffer attached)

mode_set_base update the scanout buffer

mode_set_base_atomic non-blocking mode set (used for kgdb support)

load_lut load color palette

disable disable CRTC when no longer in use

enable enable CRTC

atomic_check check for validity of an atomic state

atomic_begin begin atomic update

atomic_flush flush atomic update

Description

The helper operations are called by the mid-layer CRTC helper.

DRM Internals

313

Note that with atomic helpers dpms, prepare and commit hooks are deprecated. Used enable and
disable instead exclusively.

With legacy crtc helpers there's a big semantic difference between disable

and the other hooks

disable also needs to release any resources acquired in mode_set (like shared PLLs).

DRM Internals

314

Name
struct drm_encoder_helper_funcs — helper operations for encoders

Synopsis

struct drm_encoder_helper_funcs {
 void (* dpms) (struct drm_encoder *encoder, int mode);
 void (* save) (struct drm_encoder *encoder);
 void (* restore) (struct drm_encoder *encoder);
 bool (* mode_fixup) (struct drm_encoder *encoder,const struct drm_display_mode *mode,struct drm_display_mode *adjusted_mode);
 void (* prepare) (struct drm_encoder *encoder);
 void (* commit) (struct drm_encoder *encoder);
 void (* mode_set) (struct drm_encoder *encoder,struct drm_display_mode *mode,struct drm_display_mode *adjusted_mode);
 struct drm_crtc *(* get_crtc) (struct drm_encoder *encoder);
 enum drm_connector_status (* detect) (struct drm_encoder *encoder,struct drm_connector *connector);
 void (* disable) (struct drm_encoder *encoder);
 void (* enable) (struct drm_encoder *encoder);
 int (* atomic_check) (struct drm_encoder *encoder,struct drm_crtc_state *crtc_state,struct drm_connector_state *conn_state);
};

Members

dpms set power state

save save connector state

restore restore connector state

mode_fixup try to fixup proposed mode for this connector

prepare part of the disable sequence, called before the CRTC modeset

commit called after the CRTC modeset

mode_set set this mode, optional for atomic helpers

get_crtc return CRTC that the encoder is currently attached to

detect connection status detection

disable disable encoder when not in use (overrides DPMS off)

enable enable encoder

atomic_check check for validity of an atomic update

Description

The helper operations are called by the mid-layer CRTC helper.

Note that with atomic helpers dpms, prepare and commit hooks are deprecated. Used enable and
disable instead exclusively.

With legacy crtc helpers there's a big semantic difference between disable

DRM Internals

315

and the other hooks

disable also needs to release any resources acquired in mode_set (like shared PLLs).

DRM Internals

316

Name
struct drm_connector_helper_funcs — helper operations for connectors

Synopsis

struct drm_connector_helper_funcs {
 int (* get_modes) (struct drm_connector *connector);
 enum drm_mode_status (* mode_valid) (struct drm_connector *connector,struct drm_display_mode *mode);
 struct drm_encoder *(* best_encoder) (struct drm_connector *connector);
};

Members

get_modes get mode list for this connector

mode_valid is this mode valid on the given connector? (optional)

best_encoder return the preferred encoder for this connector

Description

The helper operations are called by the mid-layer CRTC helper.

DRM Internals

317

Name
drm_helper_move_panel_connectors_to_head — move panels to the front in the connector list

Synopsis

void drm_helper_move_panel_connectors_to_head (struct drm_device *
dev);

Arguments

dev drm device to operate on

Description

Some userspace presumes that the first connected connector is the main display, where it's supposed to
display e.g. the login screen. For laptops, this should be the main panel. Use this function to sort all (eDP/
LVDS) panels to the front of the connector list, instead of painstakingly trying to initialize them in the
right order.

DRM Internals

318

Name
drm_helper_encoder_in_use — check if a given encoder is in use

Synopsis

bool drm_helper_encoder_in_use (struct drm_encoder * encoder);

Arguments

encoder encoder to check

Description

Checks whether encoder is with the current mode setting output configuration in use by any connector.
This doesn't mean that it is actually enabled since the DPMS state is tracked separately.

Returns

True if encoder is used, false otherwise.

DRM Internals

319

Name
drm_helper_crtc_in_use — check if a given CRTC is in a mode_config

Synopsis

bool drm_helper_crtc_in_use (struct drm_crtc * crtc);

Arguments

crtc CRTC to check

Description

Checks whether crtc is with the current mode setting output configuration in use by any connector. This
doesn't mean that it is actually enabled since the DPMS state is tracked separately.

Returns

True if crtc is used, false otherwise.

DRM Internals

320

Name
drm_helper_disable_unused_functions — disable unused objects

Synopsis

void drm_helper_disable_unused_functions (struct drm_device * dev);

Arguments

dev DRM device

Description

This function walks through the entire mode setting configuration of dev. It will remove any crtc links
of unused encoders and encoder links of disconnected connectors. Then it will disable all unused en-
coders and crtcs either by calling their disable callback if available or by calling their dpms callback with
DRM_MODE_DPMS_OFF.

DRM Internals

321

Name
drm_crtc_helper_set_mode — internal helper to set a mode

Synopsis

bool drm_crtc_helper_set_mode (struct drm_crtc * crtc, struct
drm_display_mode * mode, int x, int y, struct drm_framebuffer * old_fb);

Arguments

crtc CRTC to program

mode mode to use

x horizontal offset into the surface

y vertical offset into the surface

old_fb old framebuffer, for cleanup

Description

Try to set mode on crtc. Give crtc and its associated connectors a chance to fixup or reject the mode
prior to trying to set it. This is an internal helper that drivers could e.g. use to update properties that require
the entire output pipe to be disabled and re-enabled in a new configuration. For example for changing
whether audio is enabled on a hdmi link or for changing panel fitter or dither attributes. It is also called by
the drm_crtc_helper_set_config helper function to drive the mode setting sequence.

Returns

True if the mode was set successfully, false otherwise.

DRM Internals

322

Name
drm_crtc_helper_set_config — set a new config from userspace

Synopsis

int drm_crtc_helper_set_config (struct drm_mode_set * set);

Arguments

set mode set configuration

Description

Setup a new configuration, provided by the upper layers (either an ioctl call from userspace or internally
e.g. from the fbdev support code) in set, and enable it. This is the main helper functions for drivers that
implement kernel mode setting with the crtc helper functions and the assorted ->prepare, ->modeset
and ->commit helper callbacks.

Returns

Returns 0 on success, negative errno numbers on failure.

DRM Internals

323

Name
drm_helper_connector_dpms — connector dpms helper implementation

Synopsis

void drm_helper_connector_dpms (struct drm_connector * connector, int
mode);

Arguments

connector affected connector

mode DPMS mode

Description

This is the main helper function provided by the crtc helper framework for implementing the DPMS con-
nector attribute. It computes the new desired DPMS state for all encoders and crtcs in the output mesh and
calls the ->dpms callback provided by the driver appropriately.

DRM Internals

324

Name
drm_helper_mode_fill_fb_struct — fill out framebuffer metadata

Synopsis

void drm_helper_mode_fill_fb_struct (struct drm_framebuffer * fb, struct
drm_mode_fb_cmd2 * mode_cmd);

Arguments

fb drm_framebuffer object to fill out

mode_cmd metadata from the userspace fb creation request

Description

This helper can be used in a drivers fb_create callback to pre-fill the fb's metadata fields.

DRM Internals

325

Name
drm_helper_resume_force_mode — force-restore mode setting configuration

Synopsis

void drm_helper_resume_force_mode (struct drm_device * dev);

Arguments

dev drm_device which should be restored

Description

Drivers which use the mode setting helpers can use this function to force-restore the mode setting config-
uration e.g. on resume or when something else might have trampled over the hw state (like some overzeal-
ous old BIOSen tended to do).

This helper doesn't provide a error return value since restoring the old config should never fail due to
resource allocation issues since the driver has successfully set the restored configuration already. Hence
this should boil down to the equivalent of a few dpms on calls, which also don't provide an error code.

Drivers where simply restoring an old configuration again might fail (e.g. due to slight differences in
allocating shared resources when the configuration is restored in a different order than when userspace set
it up) need to use their own restore logic.

DRM Internals

326

Name
drm_helper_crtc_mode_set — mode_set implementation for atomic plane helpers

Synopsis

int drm_helper_crtc_mode_set (struct drm_crtc * crtc, struct
drm_display_mode * mode, struct drm_display_mode * adjusted_mode, int
x, int y, struct drm_framebuffer * old_fb);

Arguments

crtc DRM CRTC

mode DRM display mode which userspace requested

adjusted_mode DRM display mode adjusted by ->mode_fixup callbacks

x x offset of the CRTC scanout area on the underlying framebuffer

y y offset of the CRTC scanout area on the underlying framebuffer

old_fb previous framebuffer

Description

This function implements a callback useable as the ->mode_set callback required by the crtc helpers.
Besides the atomic plane helper functions for the primary plane the driver must also provide the -
>mode_set_nofb callback to set up the crtc.

This is a transitional helper useful for converting drivers to the atomic interfaces.

DRM Internals

327

Name
drm_helper_crtc_mode_set_base — mode_set_base implementation for atomic plane helpers

Synopsis

int drm_helper_crtc_mode_set_base (struct drm_crtc * crtc, int x, int
y, struct drm_framebuffer * old_fb);

Arguments

crtc DRM CRTC

x x offset of the CRTC scanout area on the underlying framebuffer

y y offset of the CRTC scanout area on the underlying framebuffer

old_fb previous framebuffer

Description

This function implements a callback useable as the ->mode_set_base used required by the crtc helpers.
The driver must provide the atomic plane helper functions for the primary plane.

This is a transitional helper useful for converting drivers to the atomic interfaces.

The CRTC modeset helper library provides a default set_config implementation in
drm_crtc_helper_set_config. Plus a few other convenience functions using the same
callbacks which drivers can use to e.g. restore the modeset configuration on resume with
drm_helper_resume_force_mode.

The driver callbacks are mostly compatible with the atomic modeset helpers, except for the handling of
the primary plane: Atomic helpers require that the primary plane is implemented as a real standalone plane
and not directly tied to the CRTC state. For easier transition this library provides functions to implement
the old semantics required by the CRTC helpers using the new plane and atomic helper callbacks.

Drivers are strongly urged to convert to the atomic helpers (by way of first converting to the plane helpers).
New drivers must not use these functions but need to implement the atomic interface instead, potentially
using the atomic helpers for that.

Output Probing Helper Functions Reference

This library provides some helper code for output probing. It provides an implementation of the core
connector->fill_modes interface with drm_helper_probe_single_connector_modes.

It also provides support for polling connectors with a work item and for generic hotplug interrupt handling
where the driver doesn't or cannot keep track of a per-connector hpd interrupt.

This helper library can be used independently of the modeset helper library. Drivers can also overwrite
different parts e.g. use their own hotplug handling code to avoid probing unrelated outputs.

DRM Internals

328

Name
drm_helper_probe_single_connector_modes — get complete set of display modes

Synopsis

int drm_helper_probe_single_connector_modes (struct drm_connector *
connector, uint32_t maxX, uint32_t maxY);

Arguments

connector connector to probe

maxX max width for modes

maxY max height for modes

Description

Based on the helper callbacks implemented by connector try to detect all valid modes. Modes will
first be added to the connector's probed_modes list, then culled (based on validity and the maxX, maxY
parameters) and put into the normal modes list.

Intended to be use as a generic implementation of the ->fill_modes connector vfunc for drivers
that use the crtc helpers for output mode filtering and detection.

Returns

The number of modes found on connector.

DRM Internals

329

Name
drm_helper_probe_single_connector_modes_nomerge — get complete set of display modes

Synopsis

int drm_helper_probe_single_connector_modes_nomerge (struct
drm_connector * connector, uint32_t maxX, uint32_t maxY);

Arguments

connector connector to probe

maxX max width for modes

maxY max height for modes

Description

This operates like drm_hehlper_probe_single_connector_modes except it replaces the mode bits instead
of merging them for preferred modes.

DRM Internals

330

Name
drm_kms_helper_hotplug_event — fire off KMS hotplug events

Synopsis

void drm_kms_helper_hotplug_event (struct drm_device * dev);

Arguments

dev drm_device whose connector state changed

Description

This function fires off the uevent for userspace and also calls the output_poll_changed function, which
is most commonly used to inform the fbdev emulation code and allow it to update the fbcon output con-
figuration.

Drivers should call this from their hotplug handling code when a change is detected. Note that this function
does not do any output detection of its own, like drm_helper_hpd_irq_event does - this is assumed
to be done by the driver already.

This function must be called from process context with no mode setting locks held.

DRM Internals

331

Name
drm_kms_helper_poll_disable — disable output polling

Synopsis

void drm_kms_helper_poll_disable (struct drm_device * dev);

Arguments

dev drm_device

Description

This function disables the output polling work.

Drivers can call this helper from their device suspend implementation. It is not an error to call this even
when output polling isn't enabled or arlready disabled.

DRM Internals

332

Name
drm_kms_helper_poll_enable — re-enable output polling.

Synopsis

void drm_kms_helper_poll_enable (struct drm_device * dev);

Arguments

dev drm_device

Description

This function re-enables the output polling work.

Drivers can call this helper from their device resume implementation. It is an error to call this when the
output polling support has not yet been set up.

DRM Internals

333

Name
drm_kms_helper_poll_init — initialize and enable output polling

Synopsis

void drm_kms_helper_poll_init (struct drm_device * dev);

Arguments

dev drm_device

Description

This function intializes and then also enables output polling support for dev. Drivers which do not have
reliable hotplug support in hardware can use this helper infrastructure to regularly poll such connectors
for changes in their connection state.

Drivers can control which connectors are polled by setting the DRM_CONNECTOR_POLL_CONNECT
and DRM_CONNECTOR_POLL_DISCONNECT flags. On connectors where probing live outputs can
result in visual distortion drivers should not set the DRM_CONNECTOR_POLL_DISCONNECT flag to
avoid this. Connectors which have no flag or only DRM_CONNECTOR_POLL_HPD set are completely
ignored by the polling logic.

Note that a connector can be both polled and probed from the hotplug handler, in case the hotplug interrupt
is known to be unreliable.

DRM Internals

334

Name
drm_kms_helper_poll_fini — disable output polling and clean it up

Synopsis

void drm_kms_helper_poll_fini (struct drm_device * dev);

Arguments

dev drm_device

DRM Internals

335

Name
drm_helper_hpd_irq_event — hotplug processing

Synopsis

bool drm_helper_hpd_irq_event (struct drm_device * dev);

Arguments

dev drm_device

Description

Drivers can use this helper function to run a detect cycle on all connectors which have the
DRM_CONNECTOR_POLL_HPD flag set in their polled member. All other connectors are ignored,
which is useful to avoid reprobing fixed panels.

This helper function is useful for drivers which can't or don't track hotplug interrupts for each connector.

Drivers which support hotplug interrupts for each connector individually and which have a more fine-
grained detect logic should bypass this code and directly call drm_kms_helper_hotplug_event
in case the connector state changed.

This function must be called from process context with no mode setting locks held.

Note that a connector can be both polled and probed from the hotplug handler, in case the hotplug interrupt
is known to be unreliable.

fbdev Helper Functions Reference

The fb helper functions are useful to provide an fbdev on top of a drm kernel mode setting driver. They
can be used mostly independently from the crtc helper functions used by many drivers to implement the
kernel mode setting interfaces.

Initialization is done as a four-step process with drm_fb_helper_prepare,
drm_fb_helper_init, drm_fb_helper_single_add_all_connectors and
drm_fb_helper_initial_config. Drivers with fancier requirements than the default behaviour
can override the third step with their own code. Teardown is done with drm_fb_helper_fini.

At runtime drivers should restore the fbdev console by calling
drm_fb_helper_restore_fbdev_mode from their ->lastclose callback. They should al-
so notify the fb helper code from updates to the output configuration by calling
drm_fb_helper_hotplug_event. For easier integration with the output polling code in
drm_crtc_helper.c the modeset code provides a ->output_poll_changed callback.

All other functions exported by the fb helper library can be used to implement the fbdev driver interface
by the driver.

It is possible, though perhaps somewhat tricky, to implement race-free hotplug detection using
the fbdev helpers. The drm_fb_helper_prepare helper must be called first to initialize the
minimum required to make hotplug detection work. Drivers also need to make sure to prop-
erly set up the dev->mode_config.funcs member. After calling drm_kms_helper_poll_init
it is safe to enable interrupts and start processing hotplug events. At the same time, dri-
vers should initialize all modeset objects such as CRTCs, encoders and connectors. To fin-

DRM Internals

336

ish up the fbdev helper initialization, the drm_fb_helper_init function is called. To
probe for all attached displays and set up an initial configuration using the detected hard-
ware, drivers should call drm_fb_helper_single_add_all_connectors followed by
drm_fb_helper_initial_config.

DRM Internals

337

Name
drm_fb_helper_single_add_all_connectors — add all connectors to fbdev emulation helper

Synopsis

int drm_fb_helper_single_add_all_connectors (struct drm_fb_helper *
fb_helper);

Arguments

fb_helper fbdev initialized with drm_fb_helper_init

Description

This functions adds all the available connectors for use with the given fb_helper. This is a separate step
to allow drivers to freely assign connectors to the fbdev, e.g. if some are reserved for special purposes or
not adequate to be used for the fbcon.

Since this is part of the initial setup before the fbdev is published, no locking is required.

DRM Internals

338

Name
drm_fb_helper_debug_enter — implementation for ->fb_debug_enter

Synopsis

int drm_fb_helper_debug_enter (struct fb_info * info);

Arguments

info fbdev registered by the helper

DRM Internals

339

Name
drm_fb_helper_debug_leave — implementation for ->fb_debug_leave

Synopsis

int drm_fb_helper_debug_leave (struct fb_info * info);

Arguments

info fbdev registered by the helper

DRM Internals

340

Name
drm_fb_helper_restore_fbdev_mode_unlocked — restore fbdev configuration

Synopsis

bool drm_fb_helper_restore_fbdev_mode_unlocked (struct drm_fb_helper *
fb_helper);

Arguments

fb_helper fbcon to restore

Description

This should be called from driver's drm ->lastclose callback when implementing an fbcon on top of kms
using this helper. This ensures that the user isn't greeted with a black screen when e.g. X dies.

DRM Internals

341

Name
drm_fb_helper_blank — implementation for ->fb_blank

Synopsis

int drm_fb_helper_blank (int blank, struct fb_info * info);

Arguments

blank desired blanking state

info fbdev registered by the helper

DRM Internals

342

Name
drm_fb_helper_prepare — setup a drm_fb_helper structure

Synopsis

void drm_fb_helper_prepare (struct drm_device * dev, struct
drm_fb_helper * helper, const struct drm_fb_helper_funcs * funcs);

Arguments

dev DRM device

helper driver-allocated fbdev helper structure to set up

funcs pointer to structure of functions associate with this helper

Description

Sets up the bare minimum to make the framebuffer helper usable. This is useful to implement race-free
initialization of the polling helpers.

DRM Internals

343

Name
drm_fb_helper_init — initialize a drm_fb_helper structure

Synopsis

int drm_fb_helper_init (struct drm_device * dev, struct drm_fb_helper
* fb_helper, int crtc_count, int max_conn_count);

Arguments

dev drm device

fb_helper driver-allocated fbdev helper structure to initialize

crtc_count maximum number of crtcs to support in this fbdev emulation

max_conn_count max connector count

Description

This allocates the structures for the fbdev helper with the given limits. Note that this won't yet
touch the hardware (through the driver interfaces) nor register the fbdev. This is only done in
drm_fb_helper_initial_config to allow driver writes more control over the exact init sequence.

Drivers must call drm_fb_helper_prepare before calling this function.

RETURNS

Zero if everything went ok, nonzero otherwise.

DRM Internals

344

Name
drm_fb_helper_setcmap — implementation for ->fb_setcmap

Synopsis

int drm_fb_helper_setcmap (struct fb_cmap * cmap, struct fb_info * info);

Arguments

cmap cmap to set

info fbdev registered by the helper

DRM Internals

345

Name
drm_fb_helper_check_var — implementation for ->fb_check_var

Synopsis

int drm_fb_helper_check_var (struct fb_var_screeninfo * var, struct
fb_info * info);

Arguments

var screeninfo to check

info fbdev registered by the helper

DRM Internals

346

Name
drm_fb_helper_set_par — implementation for ->fb_set_par

Synopsis

int drm_fb_helper_set_par (struct fb_info * info);

Arguments

info fbdev registered by the helper

Description

This will let fbcon do the mode init and is called at initialization time by the fbdev core when registering
the driver, and later on through the hotplug callback.

DRM Internals

347

Name
drm_fb_helper_pan_display — implementation for ->fb_pan_display

Synopsis

int drm_fb_helper_pan_display (struct fb_var_screeninfo * var, struct
fb_info * info);

Arguments

var updated screen information

info fbdev registered by the helper

DRM Internals

348

Name
drm_fb_helper_fill_fix — initializes fixed fbdev information

Synopsis

void drm_fb_helper_fill_fix (struct fb_info * info, uint32_t pitch,
uint32_t depth);

Arguments

info fbdev registered by the helper

pitch desired pitch

depth desired depth

Description

Helper to fill in the fixed fbdev information useful for a non-accelerated fbdev emulations. Drivers which
support acceleration methods which impose additional constraints need to set up their own limits.

Drivers should call this (or their equivalent setup code) from their ->fb_probe callback.

DRM Internals

349

Name
drm_fb_helper_fill_var — initalizes variable fbdev information

Synopsis

void drm_fb_helper_fill_var (struct fb_info * info, struct drm_fb_helper
* fb_helper, uint32_t fb_width, uint32_t fb_height);

Arguments

info fbdev instance to set up

fb_helper fb helper instance to use as template

fb_width desired fb width

fb_height desired fb height

Description

Sets up the variable fbdev metainformation from the given fb helper instance and the drm framebuffer
allocated in fb_helper->fb.

Drivers should call this (or their equivalent setup code) from their ->fb_probe callback after having allo-
cated the fbdev backing storage framebuffer.

DRM Internals

350

Name
drm_fb_helper_initial_config — setup a sane initial connector configuration

Synopsis

int drm_fb_helper_initial_config (struct drm_fb_helper * fb_helper, int
bpp_sel);

Arguments

fb_helper fb_helper device struct

bpp_sel bpp value to use for the framebuffer configuration

Description

Scans the CRTCs and connectors and tries to put together an initial setup. At the moment, this is a cloned
configuration across all heads with a new framebuffer object as the backing store.

Note that this also registers the fbdev and so allows userspace to call into the driver through the fbdev
interfaces.

This function will call down into the ->fb_probe callback to let the driver allocate and initialize the fb-
dev info structure and the drm framebuffer used to back the fbdev. drm_fb_helper_fill_var and
drm_fb_helper_fill_fix are provided as helpers to setup simple default values for the fbdev info
structure.

RETURNS

Zero if everything went ok, nonzero otherwise.

DRM Internals

351

Name
drm_fb_helper_hotplug_event — respond to a hotplug notification by probing all the outputs attached to
the fb

Synopsis

int drm_fb_helper_hotplug_event (struct drm_fb_helper * fb_helper);

Arguments

fb_helper the drm_fb_helper

Description

Scan the connectors attached to the fb_helper and try to put together a setup after *notification of a change
in output configuration.

Called at runtime, takes the mode config locks to be able to check/change the modeset configuration. Must
be run from process context (which usually means either the output polling work or a work item launched
from the driver's hotplug interrupt).

Note that drivers may call this even before calling drm_fb_helper_initial_config but only aftert
drm_fb_helper_init. This allows for a race-free fbcon setup and will make sure that the fbdev emulation
will not miss any hotplug events.

RETURNS

0 on success and a non-zero error code otherwise.

DRM Internals

352

Name
struct drm_fb_helper_surface_size — describes fbdev size and scanout surface size

Synopsis

struct drm_fb_helper_surface_size {
 u32 fb_width;
 u32 fb_height;
 u32 surface_width;
 u32 surface_height;
 u32 surface_bpp;
 u32 surface_depth;
};

Members

fb_width fbdev width

fb_height fbdev height

surface_width scanout buffer width

surface_height scanout buffer height

surface_bpp scanout buffer bpp

surface_depth scanout buffer depth

Description

Note that the scanout surface width/height may be larger than the fbdev width/height. In case of multiple
displays, the scanout surface is sized according to the largest width/height (so it is large enough for all
CRTCs to scanout). But the fbdev width/height is sized to the minimum width/ height of all the displays.
This ensures that fbcon fits on the smallest of the attached displays.

So what is passed to drm_fb_helper_fill_var should be fb_width/fb_height, rather than the sur-
face size.

DRM Internals

353

Name
struct drm_fb_helper_funcs — driver callbacks for the fbdev emulation library

Synopsis

struct drm_fb_helper_funcs {
 void (* gamma_set) (struct drm_crtc *crtc, u16 red, u16 green,u16 blue, int regno);
 void (* gamma_get) (struct drm_crtc *crtc, u16 *red, u16 *green,u16 *blue, int regno);
 int (* fb_probe) (struct drm_fb_helper *helper,struct drm_fb_helper_surface_size *sizes);
 bool (* initial_config) (struct drm_fb_helper *fb_helper,struct drm_fb_helper_crtc **crtcs,struct drm_display_mode **modes,struct drm_fb_offset *offsets,bool *enabled, int width, int height);
};

Members

gamma_set Set the given gamma lut register on the given crtc.

gamma_get Read the given gamma lut register on the given crtc, used to save the current lut
when force-restoring the fbdev for e.g. kdbg.

fb_probe Driver callback to allocate and initialize the fbdev info structure. Furthermore it
also needs to allocate the drm framebuffer used to back the fbdev.

initial_config Setup an initial fbdev display configuration

Description

Driver callbacks used by the fbdev emulation helper library.

Display Port Helper Functions Reference

These functions contain some common logic and helpers at various abstraction levels to deal with Display
Port sink devices and related things like DP aux channel transfers, EDID reading over DP aux channels,
decoding certain DPCD blocks, ...

The DisplayPort AUX channel is an abstraction to allow generic, driver- independent access to AUX
functionality. Drivers can take advantage of this by filling in the fields of the drm_dp_aux structure.

Transactions are described using a hardware-independent drm_dp_aux_msg structure, which is passed
into a driver's .transfer implementation. Both native and I2C-over-AUX transactions are supported.

DRM Internals

354

Name
struct drm_dp_aux_msg — DisplayPort AUX channel transaction

Synopsis

struct drm_dp_aux_msg {
 unsigned int address;
 u8 request;
 u8 reply;
 void * buffer;
 size_t size;
};

Members

address address of the (first) register to access

request contains the type of transaction (see DP_AUX_* macros)

reply upon completion, contains the reply type of the transaction

buffer pointer to a transmission or reception buffer

size size of buffer

DRM Internals

355

Name
struct drm_dp_aux — DisplayPort AUX channel

Synopsis

struct drm_dp_aux {
 const char * name;
 struct i2c_adapter ddc;
 struct device * dev;
 struct mutex hw_mutex;
 ssize_t (* transfer) (struct drm_dp_aux *aux,struct drm_dp_aux_msg *msg);
};

Members

name user-visible name of this AUX channel and the I2C-over-AUX adapter

ddc I2C adapter that can be used for I2C-over-AUX communication

dev pointer to struct device that is the parent for this AUX channel

hw_mutex internal mutex used for locking transfers

transfer transfers a message representing a single AUX transaction

Description

The .dev field should be set to a pointer to the device that implements the AUX channel.

The .name field may be used to specify the name of the I2C adapter. If set to NULL, dev_name of .dev
will be used.

Drivers provide a hardware-specific implementation of how transactions are executed via the .transfer
function. A pointer to a drm_dp_aux_msg structure describing the transaction is passed into this function.
Upon success, the implementation should return the number of payload bytes that were transferred, or a
negative error-code on failure. Helpers propagate errors from the .transfer function, with the exception
of the -EBUSY error, which causes a transaction to be retried. On a short, helpers will return -EPROTO
to make it simpler to check for failure.

An AUX channel can also be used to transport I2C messages to a sink. A typical application
of that is to access an EDID that's present in the sink device. The .transfer function can al-
so be used to execute such transactions. The drm_dp_aux_register_i2c_bus function reg-
isters an I2C adapter that can be passed to drm_probe_ddc. Upon removal, drivers should call
drm_dp_aux_unregister_i2c_bus to remove the I2C adapter. The I2C adapter uses long trans-
fers by default; if a partial response is received, the adapter will drop down to the size given by the partial
response for this transaction only.

Note that the aux helper code assumes that the .transfer function only modifies the reply field of the
drm_dp_aux_msg structure. The retry logic and i2c helpers assume this is the case.

DRM Internals

356

Name
drm_dp_dpcd_readb — read a single byte from the DPCD

Synopsis

ssize_t drm_dp_dpcd_readb (struct drm_dp_aux * aux, unsigned int offset,
u8 * valuep);

Arguments

aux DisplayPort AUX channel

offset address of the register to read

valuep location where the value of the register will be stored

Description

Returns the number of bytes transferred (1) on success, or a negative error code on failure.

DRM Internals

357

Name
drm_dp_dpcd_writeb — write a single byte to the DPCD

Synopsis

ssize_t drm_dp_dpcd_writeb (struct drm_dp_aux * aux, unsigned int off-
set, u8 value);

Arguments

aux DisplayPort AUX channel

offset address of the register to write

value value to write to the register

Description

Returns the number of bytes transferred (1) on success, or a negative error code on failure.

DRM Internals

358

Name
drm_dp_dpcd_read — read a series of bytes from the DPCD

Synopsis

ssize_t drm_dp_dpcd_read (struct drm_dp_aux * aux, unsigned int offset,
void * buffer, size_t size);

Arguments

aux DisplayPort AUX channel

offset address of the (first) register to read

buffer buffer to store the register values

size number of bytes in buffer

Description

Returns the number of bytes transferred on success, or a negative error code on failure. -EIO is returned if
the request was NAKed by the sink or if the retry count was exceeded. If not all bytes were transferred, this
function returns -EPROTO. Errors from the underlying AUX channel transfer function, with the exception
of -EBUSY (which causes the transaction to be retried), are propagated to the caller.

DRM Internals

359

Name
drm_dp_dpcd_write — write a series of bytes to the DPCD

Synopsis

ssize_t drm_dp_dpcd_write (struct drm_dp_aux * aux, unsigned int offset,
void * buffer, size_t size);

Arguments

aux DisplayPort AUX channel

offset address of the (first) register to write

buffer buffer containing the values to write

size number of bytes in buffer

Description

Returns the number of bytes transferred on success, or a negative error code on failure. -EIO is returned if
the request was NAKed by the sink or if the retry count was exceeded. If not all bytes were transferred, this
function returns -EPROTO. Errors from the underlying AUX channel transfer function, with the exception
of -EBUSY (which causes the transaction to be retried), are propagated to the caller.

DRM Internals

360

Name
drm_dp_dpcd_read_link_status — read DPCD link status (bytes 0x202-0x207)

Synopsis

int drm_dp_dpcd_read_link_status (struct drm_dp_aux * aux, u8
status[DP_LINK_STATUS_SIZE]);

Arguments

aux DisplayPort AUX channel

status[DP_LINK_STATUS_SIZE]buffer to store the link status in (must be at least 6 bytes)

Description

Returns the number of bytes transferred on success or a negative error code on failure.

DRM Internals

361

Name
drm_dp_link_probe — probe a DisplayPort link for capabilities

Synopsis

int drm_dp_link_probe (struct drm_dp_aux * aux, struct drm_dp_link *
link);

Arguments

aux DisplayPort AUX channel

link pointer to structure in which to return link capabilities

Description

The structure filled in by this function can usually be passed directly into drm_dp_link_power_up
and drm_dp_link_configure to power up and configure the link based on the link's capabilities.

Returns 0 on success or a negative error code on failure.

DRM Internals

362

Name
drm_dp_link_power_up — power up a DisplayPort link

Synopsis

int drm_dp_link_power_up (struct drm_dp_aux * aux, struct drm_dp_link
* link);

Arguments

aux DisplayPort AUX channel

link pointer to a structure containing the link configuration

Description

Returns 0 on success or a negative error code on failure.

DRM Internals

363

Name
drm_dp_link_power_down — power down a DisplayPort link

Synopsis

int drm_dp_link_power_down (struct drm_dp_aux * aux, struct drm_dp_link
* link);

Arguments

aux DisplayPort AUX channel

link pointer to a structure containing the link configuration

Description

Returns 0 on success or a negative error code on failure.

DRM Internals

364

Name
drm_dp_link_configure — configure a DisplayPort link

Synopsis

int drm_dp_link_configure (struct drm_dp_aux * aux, struct drm_dp_link
* link);

Arguments

aux DisplayPort AUX channel

link pointer to a structure containing the link configuration

Description

Returns 0 on success or a negative error code on failure.

DRM Internals

365

Name
drm_dp_aux_register — initialise and register aux channel

Synopsis

int drm_dp_aux_register (struct drm_dp_aux * aux);

Arguments

aux DisplayPort AUX channel

Description

Returns 0 on success or a negative error code on failure.

DRM Internals

366

Name
drm_dp_aux_unregister — unregister an AUX adapter

Synopsis

void drm_dp_aux_unregister (struct drm_dp_aux * aux);

Arguments

aux DisplayPort AUX channel

Display Port MST Helper Functions Reference

These functions contain parts of the DisplayPort 1.2a MultiStream Transport protocol. The helpers contain
a topology manager and bandwidth manager. The helpers encapsulate the sending and received of sideband
msgs.

DRM Internals

367

Name
struct drm_dp_vcpi — Virtual Channel Payload Identifier

Synopsis

struct drm_dp_vcpi {
 int vcpi;
 int pbn;
 int aligned_pbn;
 int num_slots;
};

Members

vcpi Virtual channel ID.

pbn Payload Bandwidth Number for this channel

aligned_pbn PBN aligned with slot size

num_slots number of slots for this PBN

DRM Internals

368

Name
struct drm_dp_mst_port — MST port

Synopsis

struct drm_dp_mst_port {
 struct kref kref;
 u8 port_num;
 bool input;
 bool mcs;
 bool ddps;
 u8 pdt;
 bool ldps;
 u8 dpcd_rev;
 u8 num_sdp_streams;
 u8 num_sdp_stream_sinks;
 uint16_t available_pbn;
 struct list_head next;
 struct drm_dp_mst_branch * mstb;
 struct drm_dp_aux aux;
 struct drm_dp_mst_branch * parent;
 struct drm_dp_vcpi vcpi;
 struct drm_connector * connector;
 struct drm_dp_mst_topology_mgr * mgr;
};

Members

kref reference count for this port.

port_num port number

input if this port is an input port.

mcs message capability status - DP 1.2 spec.

ddps DisplayPort Device Plug Status - DP 1.2

pdt Peer Device Type

ldps Legacy Device Plug Status

dpcd_rev DPCD revision of device on this port

num_sdp_streams Number of simultaneous streams

num_sdp_stream_sinks Number of stream sinks

available_pbn Available bandwidth for this port.

next link to next port on this branch device

mstb branch device attach below this port

aux i2c aux transport to talk to device connected to this port.

DRM Internals

369

parent branch device parent of this port

vcpi Virtual Channel Payload info for this port.

connector DRM connector this port is connected to.

mgr topology manager this port lives under.

Description

This structure represents an MST port endpoint on a device somewhere in the MST topology.

DRM Internals

370

Name
struct drm_dp_mst_branch — MST branch device.

Synopsis

struct drm_dp_mst_branch {
 struct kref kref;
 u8 rad[8];
 u8 lct;
 int num_ports;
 int msg_slots;
 struct list_head ports;
 struct drm_dp_mst_port * port_parent;
 struct drm_dp_mst_topology_mgr * mgr;
 struct drm_dp_sideband_msg_tx * tx_slots[2];
 int last_seqno;
 bool link_address_sent;
#ifndef __GENKSYMS__
 u8 guid[16];
#endif
};

Members

kref reference count for this port.

rad[8] Relative Address to talk to this branch device.

lct Link count total to talk to this branch device.

num_ports number of ports on the branch.

msg_slots one bit per transmitted msg slot.

ports linked list of ports on this branch.

port_parent pointer to the port parent, NULL if toplevel.

mgr topology manager for this branch device.

tx_slots[2] transmission slots for this device.

last_seqno last sequence number used to talk to this.

link_address_sent if a link address message has been sent to this device yet.

guid[16] guid for DP 1.2 branch device. port under this branch can be identified by
port #.

Description

This structure represents an MST branch device, there is one primary branch device at the root, along with
any other branches connected to downstream port of parent branches.

DRM Internals

371

Name
struct drm_dp_mst_topology_mgr — DisplayPort MST manager

Synopsis

struct drm_dp_mst_topology_mgr {
 struct device * dev;
 struct drm_dp_mst_topology_cbs * cbs;
 struct drm_dp_aux * aux;
 int max_payloads;
 int conn_base_id;
 struct drm_dp_sideband_msg_rx down_rep_recv;
 struct drm_dp_sideband_msg_rx up_req_recv;
 struct mutex lock;
 bool mst_state;
 struct drm_dp_mst_branch * mst_primary;
 u8 dpcd[DP_RECEIVER_CAP_SIZE];
 int pbn_div;
};

Members

dev device pointer for adding i2c devices etc.

cbs callbacks for connector addition and destruction.
max_dpcd_transaction_bytes - maximum number of
bytes to read/write in one go.

aux aux channel for the DP connector.

max_payloads maximum number of payloads the GPU can generate.

conn_base_id DRM connector ID this mgr is connected to.

down_rep_recv msg receiver state for down replies.

up_req_recv msg receiver state for up requests.

lock protects mst state, primary, dpcd.

mst_state if this manager is enabled for an MST capable port.

mst_primary pointer to the primary branch device.

dpcd[DP_RECEIVER_CAP_SIZE] cache of DPCD for primary port.

pbn_div PBN to slots divisor.

Description

This struct represents the toplevel displayport MST topology manager. There should be one instance of
this for every MST capable DP connector on the GPU.

DRM Internals

372

Name
drm_dp_update_payload_part1 — Execute payload update part 1

Synopsis

int drm_dp_update_payload_part1 (struct drm_dp_mst_topology_mgr * mgr);

Arguments

mgr manager to use.

Description

This iterates over all proposed virtual channels, and tries to allocate space in the link for them. For 0-
>slots transitions, this step just writes the VCPI to the MST device. For slots->0 transitions, this writes
the updated VCPIs and removes the remote VC payloads.

after calling this the driver should generate ACT and payload packets.

DRM Internals

373

Name
drm_dp_update_payload_part2 — Execute payload update part 2

Synopsis

int drm_dp_update_payload_part2 (struct drm_dp_mst_topology_mgr * mgr);

Arguments

mgr manager to use.

Description

This iterates over all proposed virtual channels, and tries to allocate space in the link for them. For 0-
>slots transitions, this step writes the remote VC payload commands. For slots->0 this just resets some
internal state.

DRM Internals

374

Name
drm_dp_mst_topology_mgr_set_mst — Set the MST state for a topology manager

Synopsis

int drm_dp_mst_topology_mgr_set_mst (struct drm_dp_mst_topology_mgr *
mgr, bool mst_state);

Arguments

mgr manager to set state for

mst_state true to enable MST on this connector - false to disable.

Description

This is called by the driver when it detects an MST capable device plugged into a DP MST capable port,
or when a DP MST capable device is unplugged.

DRM Internals

375

Name
drm_dp_mst_topology_mgr_suspend — suspend the MST manager

Synopsis

void drm_dp_mst_topology_mgr_suspend (struct drm_dp_mst_topology_mgr *
mgr);

Arguments

mgr manager to suspend

Description

This function tells the MST device that we can't handle UP messages anymore. This should stop it from
sending any since we are suspended.

DRM Internals

376

Name
drm_dp_mst_topology_mgr_resume — resume the MST manager

Synopsis

int drm_dp_mst_topology_mgr_resume (struct drm_dp_mst_topology_mgr *
mgr);

Arguments

mgr manager to resume

Description

This will fetch DPCD and see if the device is still there, if it is, it will rewrite the MSTM control bits,
and return.

if the device fails this returns -1, and the driver should do a full MST reprobe, in case we were undocked.

DRM Internals

377

Name
drm_dp_mst_hpd_irq — MST hotplug IRQ notify

Synopsis

int drm_dp_mst_hpd_irq (struct drm_dp_mst_topology_mgr * mgr, u8 * esi,
bool * handled);

Arguments

mgr manager to notify irq for.

esi 4 bytes from SINK_COUNT_ESI

handled whether the hpd interrupt was consumed or not

Description

This should be called from the driver when it detects a short IRQ, along with the value of the
DEVICE_SERVICE_IRQ_VECTOR_ESI0. The topology manager will process the sideband messages
received as a result of this.

DRM Internals

378

Name
drm_dp_mst_detect_port — get connection status for an MST port

Synopsis

enum drm_connector_status drm_dp_mst_detect_port (struct drm_connector
* connector, struct drm_dp_mst_topology_mgr * mgr, struct
drm_dp_mst_port * port);

Arguments

connector -- undescribed --

mgr manager for this port

port unverified pointer to a port

Description

This returns the current connection state for a port. It validates the port pointer still exists so the caller
doesn't require a reference

DRM Internals

379

Name
drm_dp_mst_get_edid — get EDID for an MST port

Synopsis

struct edid * drm_dp_mst_get_edid (struct drm_connector * connector,
struct drm_dp_mst_topology_mgr * mgr, struct drm_dp_mst_port * port);

Arguments

connector toplevel connector to get EDID for

mgr manager for this port

port unverified pointer to a port.

Description

This returns an EDID for the port connected to a connector, It validates the pointer still exists so the caller
doesn't require a reference.

DRM Internals

380

Name
drm_dp_find_vcpi_slots — find slots for this PBN value

Synopsis

int drm_dp_find_vcpi_slots (struct drm_dp_mst_topology_mgr * mgr, int
pbn);

Arguments

mgr manager to use

pbn payload bandwidth to convert into slots.

DRM Internals

381

Name
drm_dp_mst_allocate_vcpi — Allocate a virtual channel

Synopsis

bool drm_dp_mst_allocate_vcpi (struct drm_dp_mst_topology_mgr * mgr,
struct drm_dp_mst_port * port, int pbn, int * slots);

Arguments

mgr manager for this port

port port to allocate a virtual channel for.

pbn payload bandwidth number to request

slots returned number of slots for this PBN.

DRM Internals

382

Name
drm_dp_mst_reset_vcpi_slots — Reset number of slots to 0 for VCPI

Synopsis

void drm_dp_mst_reset_vcpi_slots (struct drm_dp_mst_topology_mgr * mgr,
struct drm_dp_mst_port * port);

Arguments

mgr manager for this port

port unverified pointer to a port.

Description

This just resets the number of slots for the ports VCPI for later programming.

DRM Internals

383

Name
drm_dp_mst_deallocate_vcpi — deallocate a VCPI

Synopsis

void drm_dp_mst_deallocate_vcpi (struct drm_dp_mst_topology_mgr * mgr,
struct drm_dp_mst_port * port);

Arguments

mgr manager for this port

port unverified port to deallocate vcpi for

DRM Internals

384

Name
drm_dp_check_act_status — Check ACT handled status.

Synopsis

int drm_dp_check_act_status (struct drm_dp_mst_topology_mgr * mgr);

Arguments

mgr manager to use

Description

Check the payload status bits in the DPCD for ACT handled completion.

DRM Internals

385

Name
drm_dp_calc_pbn_mode — Calculate the PBN for a mode.

Synopsis

int drm_dp_calc_pbn_mode (int clock, int bpp);

Arguments

clock dot clock for the mode

bpp bpp for the mode.

Description

This uses the formula in the spec to calculate the PBN value for a mode.

DRM Internals

386

Name
drm_dp_mst_dump_topology —

Synopsis

void drm_dp_mst_dump_topology (struct seq_file * m, struct
drm_dp_mst_topology_mgr * mgr);

Arguments

m seq_file to dump output to

mgr manager to dump current topology for.

Description

helper to dump MST topology to a seq file for debugfs.

DRM Internals

387

Name
drm_dp_mst_topology_mgr_init — initialise a topology manager

Synopsis

int drm_dp_mst_topology_mgr_init (struct drm_dp_mst_topology_mgr *
mgr, struct device * dev, struct drm_dp_aux * aux, int
max_dpcd_transaction_bytes, int max_payloads, int conn_base_id);

Arguments

mgr manager struct to initialise

dev device providing this structure - for i2c addition.

aux DP helper aux channel to talk to this device

max_dpcd_transaction_byteshw specific DPCD transaction limit

max_payloads maximum number of payloads this GPU can source

conn_base_id the connector object ID the MST device is connected to.

Description

Return 0 for success, or negative error code on failure

DRM Internals

388

Name
drm_dp_mst_topology_mgr_destroy — destroy topology manager.

Synopsis

void drm_dp_mst_topology_mgr_destroy (struct drm_dp_mst_topology_mgr *
mgr);

Arguments

mgr manager to destroy

MIPI DSI Helper Functions Reference

These functions contain some common logic and helpers to deal with MIPI DSI peripherals.

Helpers are provided for a number of standard MIPI DSI command as well as a subset of the MIPI DCS
command set.

DRM Internals

389

Name
struct mipi_dsi_msg — read/write DSI buffer

Synopsis

struct mipi_dsi_msg {
 u8 channel;
 u8 type;
 u16 flags;
 size_t tx_len;
 const void * tx_buf;
 size_t rx_len;
 void * rx_buf;
};

Members

channel virtual channel id

type payload data type

flags flags controlling this message transmission

tx_len length of tx_buf

tx_buf data to be written

rx_len length of rx_buf

rx_buf data to be read, or NULL

DRM Internals

390

Name
struct mipi_dsi_packet — represents a MIPI DSI packet in protocol format

Synopsis

struct mipi_dsi_packet {
 size_t size;
 u8 header[4];
 size_t payload_length;
 const u8 * payload;
};

Members

size size (in bytes) of the packet

header[4] the four bytes that make up the header (Data ID, Word Count or Packet Data, and
ECC)

payload_length number of bytes in the payload

payload a pointer to a buffer containing the payload, if any

DRM Internals

391

Name
struct mipi_dsi_host_ops — DSI bus operations

Synopsis

struct mipi_dsi_host_ops {
 int (* attach) (struct mipi_dsi_host *host,struct mipi_dsi_device *dsi);
 int (* detach) (struct mipi_dsi_host *host,struct mipi_dsi_device *dsi);
 ssize_t (* transfer) (struct mipi_dsi_host *host,const struct mipi_dsi_msg *msg);
};

Members

attach attach DSI device to DSI host

detach detach DSI device from DSI host

transfer transmit a DSI packet

Description

DSI packets transmitted by .transfer are passed in as mipi_dsi_msg structures. This structure contains
information about the type of packet being transmitted as well as the transmit and receive buffers. When an
error is encountered during transmission, this function will return a negative error code. On success it shall
return the number of bytes transmitted for write packets or the number of bytes received for read packets.

Note that typically DSI packet transmission is atomic, so the .transfer function will seldomly return
anything other than the number of bytes contained in the transmit buffer on success.

DRM Internals

392

Name
struct mipi_dsi_host — DSI host device

Synopsis

struct mipi_dsi_host {
 struct device * dev;
 const struct mipi_dsi_host_ops * ops;
};

Members

dev driver model device node for this DSI host

ops DSI host operations

DRM Internals

393

Name
struct mipi_dsi_device — DSI peripheral device

Synopsis

struct mipi_dsi_device {
 struct mipi_dsi_host * host;
 struct device dev;
 unsigned int channel;
 unsigned int lanes;
 enum mipi_dsi_pixel_format format;
 unsigned long mode_flags;
};

Members

host DSI host for this peripheral

dev driver model device node for this peripheral

channel virtual channel assigned to the peripheral

lanes number of active data lanes

format pixel format for video mode

mode_flags DSI operation mode related flags

DRM Internals

394

Name
enum mipi_dsi_dcs_tear_mode — Tearing Effect Output Line mode

Synopsis

enum mipi_dsi_dcs_tear_mode {
 MIPI_DSI_DCS_TEAR_MODE_VBLANK,
 MIPI_DSI_DCS_TEAR_MODE_VHBLANK
};

Constants

MIPI_DSI_DCS_TEAR_MODE_VBLANKthe TE output line consists of V-Blanking information only

MIPI_DSI_DCS_TEAR_MODE_VHBLANKthe TE output line consists of both V-Blanking and H-Blanking in-
formation

DRM Internals

395

Name
struct mipi_dsi_driver — DSI driver

Synopsis

struct mipi_dsi_driver {
 struct device_driver driver;
 int(* probe) (struct mipi_dsi_device *dsi);
 int(* remove) (struct mipi_dsi_device *dsi);
 void (* shutdown) (struct mipi_dsi_device *dsi);
};

Members

driver device driver model driver

probe callback for device binding

remove callback for device unbinding

shutdown called at shutdown time to quiesce the device

DRM Internals

396

Name
of_find_mipi_dsi_device_by_node — find the MIPI DSI device matching a device tree node

Synopsis

struct mipi_dsi_device * of_find_mipi_dsi_device_by_node (struct
device_node * np);

Arguments

np device tree node

Return

A pointer to the MIPI DSI device corresponding to np or NULL if no such device exists (or has not been
registered yet).

DRM Internals

397

Name
mipi_dsi_attach — attach a DSI device to its DSI host

Synopsis

int mipi_dsi_attach (struct mipi_dsi_device * dsi);

Arguments

dsi DSI peripheral

DRM Internals

398

Name
mipi_dsi_detach — detach a DSI device from its DSI host

Synopsis

int mipi_dsi_detach (struct mipi_dsi_device * dsi);

Arguments

dsi DSI peripheral

DRM Internals

399

Name
mipi_dsi_packet_format_is_short — check if a packet is of the short format

Synopsis

bool mipi_dsi_packet_format_is_short (u8 type);

Arguments

type MIPI DSI data type of the packet

Return

true if the packet for the given data type is a short packet, false otherwise.

DRM Internals

400

Name
mipi_dsi_packet_format_is_long — check if a packet is of the long format

Synopsis

bool mipi_dsi_packet_format_is_long (u8 type);

Arguments

type MIPI DSI data type of the packet

Return

true if the packet for the given data type is a long packet, false otherwise.

DRM Internals

401

Name
mipi_dsi_create_packet — create a packet from a message according to the DSI protocol

Synopsis

int mipi_dsi_create_packet (struct mipi_dsi_packet * packet, const
struct mipi_dsi_msg * msg);

Arguments

packet pointer to a DSI packet structure

msg message to translate into a packet

Return

0 on success or a negative error code on failure.

DRM Internals

402

Name
mipi_dsi_generic_write — transmit data using a generic write packet

Synopsis

ssize_t mipi_dsi_generic_write (struct mipi_dsi_device * dsi, const void
* payload, size_t size);

Arguments

dsi DSI peripheral device

payload buffer containing the payload

size size of payload buffer

Description

This function will automatically choose the right data type depending on the payload length.

Return

The number of bytes transmitted on success or a negative error code on failure.

DRM Internals

403

Name
mipi_dsi_generic_read — receive data using a generic read packet

Synopsis

ssize_t mipi_dsi_generic_read (struct mipi_dsi_device * dsi, const void
* params, size_t num_params, void * data, size_t size);

Arguments

dsi DSI peripheral device

params buffer containing the request parameters

num_params number of request parameters

data buffer in which to return the received data

size size of receive buffer

Description

This function will automatically choose the right data type depending on the number of parameters passed
in.

Return

The number of bytes successfully read or a negative error code on failure.

DRM Internals

404

Name
mipi_dsi_dcs_write_buffer — transmit a DCS command with payload

Synopsis

ssize_t mipi_dsi_dcs_write_buffer (struct mipi_dsi_device * dsi, const
void * data, size_t len);

Arguments

dsi DSI peripheral device

data buffer containing data to be transmitted

len size of transmission buffer

Description

This function will automatically choose the right data type depending on the command payload length.

Return

The number of bytes successfully transmitted or a negative error code on failure.

DRM Internals

405

Name
mipi_dsi_dcs_write — send DCS write command

Synopsis

ssize_t mipi_dsi_dcs_write (struct mipi_dsi_device * dsi, u8 cmd, const
void * data, size_t len);

Arguments

dsi DSI peripheral device

cmd DCS command

data buffer containing the command payload

len command payload length

Description

This function will automatically choose the right data type depending on the command payload length.

Return

The number of bytes successfully transmitted or a negative error code on failure.

DRM Internals

406

Name
mipi_dsi_dcs_read — send DCS read request command

Synopsis

ssize_t mipi_dsi_dcs_read (struct mipi_dsi_device * dsi, u8 cmd, void
* data, size_t len);

Arguments

dsi DSI peripheral device

cmd DCS command

data buffer in which to receive data

len size of receive buffer

Return

The number of bytes read or a negative error code on failure.

DRM Internals

407

Name
mipi_dsi_dcs_nop — send DCS nop packet

Synopsis

int mipi_dsi_dcs_nop (struct mipi_dsi_device * dsi);

Arguments

dsi DSI peripheral device

Return

0 on success or a negative error code on failure.

DRM Internals

408

Name
mipi_dsi_dcs_soft_reset — perform a software reset of the display module

Synopsis

int mipi_dsi_dcs_soft_reset (struct mipi_dsi_device * dsi);

Arguments

dsi DSI peripheral device

Return

0 on success or a negative error code on failure.

DRM Internals

409

Name
mipi_dsi_dcs_get_power_mode — query the display module's current power mode

Synopsis

int mipi_dsi_dcs_get_power_mode (struct mipi_dsi_device * dsi, u8 *
mode);

Arguments

dsi DSI peripheral device

mode return location for the current power mode

Return

0 on success or a negative error code on failure.

DRM Internals

410

Name
mipi_dsi_dcs_get_pixel_format — gets the pixel format for the RGB image data used by the interface

Synopsis

int mipi_dsi_dcs_get_pixel_format (struct mipi_dsi_device * dsi, u8 *
format);

Arguments

dsi DSI peripheral device

format return location for the pixel format

Return

0 on success or a negative error code on failure.

DRM Internals

411

Name
mipi_dsi_dcs_enter_sleep_mode — disable all unnecessary blocks inside the display module except in-
terface communication

Synopsis

int mipi_dsi_dcs_enter_sleep_mode (struct mipi_dsi_device * dsi);

Arguments

dsi DSI peripheral device

Return

0 on success or a negative error code on failure.

DRM Internals

412

Name
mipi_dsi_dcs_exit_sleep_mode — enable all blocks inside the display module

Synopsis

int mipi_dsi_dcs_exit_sleep_mode (struct mipi_dsi_device * dsi);

Arguments

dsi DSI peripheral device

Return

0 on success or a negative error code on failure.

DRM Internals

413

Name
mipi_dsi_dcs_set_display_off — stop displaying the image data on the display device

Synopsis

int mipi_dsi_dcs_set_display_off (struct mipi_dsi_device * dsi);

Arguments

dsi DSI peripheral device

Return

0 on success or a negative error code on failure.

DRM Internals

414

Name
mipi_dsi_dcs_set_display_on — start displaying the image data on the display device

Synopsis

int mipi_dsi_dcs_set_display_on (struct mipi_dsi_device * dsi);

Arguments

dsi DSI peripheral device

Return

0 on success or a negative error code on failure

DRM Internals

415

Name
mipi_dsi_dcs_set_column_address — define the column extent of the frame memory accessed by the host
processor

Synopsis

int mipi_dsi_dcs_set_column_address (struct mipi_dsi_device * dsi, u16
start, u16 end);

Arguments

dsi DSI peripheral device

start first column of frame memory

end last column of frame memory

Return

0 on success or a negative error code on failure.

DRM Internals

416

Name
mipi_dsi_dcs_set_page_address — define the page extent of the frame memory accessed by the host
processor

Synopsis

int mipi_dsi_dcs_set_page_address (struct mipi_dsi_device * dsi, u16
start, u16 end);

Arguments

dsi DSI peripheral device

start first page of frame memory

end last page of frame memory

Return

0 on success or a negative error code on failure.

DRM Internals

417

Name
mipi_dsi_dcs_set_tear_off — turn off the display module's Tearing Effect output signal on the TE signal
line

Synopsis

int mipi_dsi_dcs_set_tear_off (struct mipi_dsi_device * dsi);

Arguments

dsi DSI peripheral device

Return

0 on success or a negative error code on failure

DRM Internals

418

Name
mipi_dsi_dcs_set_tear_on — turn on the display module's Tearing Effect output signal on the TE signal
line.

Synopsis

int mipi_dsi_dcs_set_tear_on (struct mipi_dsi_device * dsi, enum
mipi_dsi_dcs_tear_mode mode);

Arguments

dsi DSI peripheral device

mode the Tearing Effect Output Line mode

Return

0 on success or a negative error code on failure

DRM Internals

419

Name
mipi_dsi_dcs_set_pixel_format — sets the pixel format for the RGB image data used by the interface

Synopsis

int mipi_dsi_dcs_set_pixel_format (struct mipi_dsi_device * dsi, u8
format);

Arguments

dsi DSI peripheral device

format pixel format

Return

0 on success or a negative error code on failure.

DRM Internals

420

Name
mipi_dsi_driver_register_full — register a driver for DSI devices

Synopsis

int mipi_dsi_driver_register_full (struct mipi_dsi_driver * drv, struct
module * owner);

Arguments

drv DSI driver structure

owner owner module

Return

0 on success or a negative error code on failure.

DRM Internals

421

Name
mipi_dsi_driver_unregister — unregister a driver for DSI devices

Synopsis

void mipi_dsi_driver_unregister (struct mipi_dsi_driver * drv);

Arguments

drv DSI driver structure

Return

0 on success or a negative error code on failure.

EDID Helper Functions Reference

DRM Internals

422

Name
drm_edid_header_is_valid — sanity check the header of the base EDID block

Synopsis

int drm_edid_header_is_valid (const u8 * raw_edid);

Arguments

raw_edid pointer to raw base EDID block

Description

Sanity check the header of the base EDID block.

Return

8 if the header is perfect, down to 0 if it's totally wrong.

DRM Internals

423

Name
drm_edid_block_valid — Sanity check the EDID block (base or extension)

Synopsis

bool drm_edid_block_valid (u8 * raw_edid, int block, bool
print_bad_edid);

Arguments

raw_edid pointer to raw EDID block

block type of block to validate (0 for base, extension otherwise)

print_bad_edid if true, dump bad EDID blocks to the console

Description

Validate a base or extension EDID block and optionally dump bad blocks to the console.

Return

True if the block is valid, false otherwise.

DRM Internals

424

Name
drm_edid_is_valid — sanity check EDID data

Synopsis

bool drm_edid_is_valid (struct edid * edid);

Arguments

edid EDID data

Description

Sanity-check an entire EDID record (including extensions)

Return

True if the EDID data is valid, false otherwise.

DRM Internals

425

Name
drm_do_get_edid — get EDID data using a custom EDID block read function

Synopsis

struct edid * drm_do_get_edid (struct drm_connector * connector, int
(*get_edid_block) (void *data, u8 *buf, unsigned int block, size_t len),
void * data);

Arguments

connector connector we're probing

get_edid_block EDID block read function

data private data passed to the block read function

Description

When the I2C adapter connected to the DDC bus is hidden behind a device that exposes a different interface
to read EDID blocks this function can be used to get EDID data using a custom block read function.

As in the general case the DDC bus is accessible by the kernel at the I2C level, drivers must make all
reasonable efforts to expose it as an I2C adapter and use drm_get_edid instead of abusing this function.

Return

Pointer to valid EDID or NULL if we couldn't find any.

DRM Internals

426

Name
drm_probe_ddc — probe DDC presence

Synopsis

bool drm_probe_ddc (struct i2c_adapter * adapter);

Arguments

adapter I2C adapter to probe

Return

True on success, false on failure.

DRM Internals

427

Name
drm_get_edid — get EDID data, if available

Synopsis

struct edid * drm_get_edid (struct drm_connector * connector, struct
i2c_adapter * adapter);

Arguments

connector connector we're probing

adapter I2C adapter to use for DDC

Description

Poke the given I2C channel to grab EDID data if possible. If found, attach it to the connector.

Return

Pointer to valid EDID or NULL if we couldn't find any.

DRM Internals

428

Name
drm_edid_duplicate — duplicate an EDID and the extensions

Synopsis

struct edid * drm_edid_duplicate (const struct edid * edid);

Arguments

edid EDID to duplicate

Return

Pointer to duplicated EDID or NULL on allocation failure.

DRM Internals

429

Name
drm_match_cea_mode — look for a CEA mode matching given mode

Synopsis

u8 drm_match_cea_mode (const struct drm_display_mode * to_match);

Arguments

to_match display mode

Return

The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861 mode.

DRM Internals

430

Name
drm_get_cea_aspect_ratio — get the picture aspect ratio corresponding to the input VIC from the CEA
mode list

Synopsis

enum hdmi_picture_aspect drm_get_cea_aspect_ratio (const u8
video_code);

Arguments

video_code ID given to each of the CEA modes

Description

Returns picture aspect ratio

DRM Internals

431

Name
drm_edid_to_eld — build ELD from EDID

Synopsis

void drm_edid_to_eld (struct drm_connector * connector, struct edid *
edid);

Arguments

connector connector corresponding to the HDMI/DP sink

edid EDID to parse

Description

Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The Conn_Type, HDCP and Port_ID
ELD fields are left for the graphics driver to fill in.

DRM Internals

432

Name
drm_edid_to_sad — extracts SADs from EDID

Synopsis

int drm_edid_to_sad (struct edid * edid, struct cea_sad ** sads);

Arguments

edid EDID to parse

sads pointer that will be set to the extracted SADs

Description

Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.

Note

The returned pointer needs to be freed using kfree.

Return

The number of found SADs or negative number on error.

DRM Internals

433

Name
drm_edid_to_speaker_allocation — extracts Speaker Allocation Data Blocks from EDID

Synopsis

int drm_edid_to_speaker_allocation (struct edid * edid, u8 ** sadb);

Arguments

edid EDID to parse

sadb pointer to the speaker block

Description

Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.

Note

The returned pointer needs to be freed using kfree.

Return

The number of found Speaker Allocation Blocks or negative number on error.

DRM Internals

434

Name
drm_av_sync_delay — compute the HDMI/DP sink audio-video sync delay

Synopsis

int drm_av_sync_delay (struct drm_connector * connector, struct
drm_display_mode * mode);

Arguments

connector connector associated with the HDMI/DP sink

mode the display mode

Return

The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if the sink doesn't support audio or video.

DRM Internals

435

Name
drm_select_eld — select one ELD from multiple HDMI/DP sinks

Synopsis

struct drm_connector * drm_select_eld (struct drm_encoder * encoder,
struct drm_display_mode * mode);

Arguments

encoder the encoder just changed display mode

mode the adjusted display mode

Description

It's possible for one encoder to be associated with multiple HDMI/DP sinks. The policy is now hard coded
to simply use the first HDMI/DP sink's ELD.

Return

The connector associated with the first HDMI/DP sink that has ELD attached to it.

DRM Internals

436

Name
drm_detect_hdmi_monitor — detect whether monitor is HDMI

Synopsis

bool drm_detect_hdmi_monitor (struct edid * edid);

Arguments

edid monitor EDID information

Description

Parse the CEA extension according to CEA-861-B.

Return

True if the monitor is HDMI, false if not or unknown.

DRM Internals

437

Name
drm_detect_monitor_audio — check monitor audio capability

Synopsis

bool drm_detect_monitor_audio (struct edid * edid);

Arguments

edid EDID block to scan

Description

Monitor should have CEA extension block. If monitor has 'basic audio', but no CEA audio blocks, it's
'basic audio' only. If there is any audio extension block and supported audio format, assume at least 'basic
audio' support, even if 'basic audio' is not defined in EDID.

Return

True if the monitor supports audio, false otherwise.

DRM Internals

438

Name
drm_rgb_quant_range_selectable — is RGB quantization range selectable?

Synopsis

bool drm_rgb_quant_range_selectable (struct edid * edid);

Arguments

edid EDID block to scan

Description

Check whether the monitor reports the RGB quantization range selection as supported. The AVI infoframe
can then be used to inform the monitor which quantization range (full or limited) is used.

Return

True if the RGB quantization range is selectable, false otherwise.

DRM Internals

439

Name
drm_add_edid_modes — add modes from EDID data, if available

Synopsis

int drm_add_edid_modes (struct drm_connector * connector, struct edid
* edid);

Arguments

connector connector we're probing

edid EDID data

Description

Add the specified modes to the connector's mode list.

Return

The number of modes added or 0 if we couldn't find any.

DRM Internals

440

Name
drm_add_modes_noedid — add modes for the connectors without EDID

Synopsis

int drm_add_modes_noedid (struct drm_connector * connector, int hdis-
play, int vdisplay);

Arguments

connector connector we're probing

hdisplay the horizontal display limit

vdisplay the vertical display limit

Description

Add the specified modes to the connector's mode list. Only when the hdisplay/vdisplay is not beyond the
given limit, it will be added.

Return

The number of modes added or 0 if we couldn't find any.

DRM Internals

441

Name
drm_set_preferred_mode — Sets the preferred mode of a connector

Synopsis

void drm_set_preferred_mode (struct drm_connector * connector, int
hpref, int vpref);

Arguments

connector connector whose mode list should be processed

hpref horizontal resolution of preferred mode

vpref vertical resolution of preferred mode

Description

Marks a mode as preferred if it matches the resolution specified by hpref and vpref.

DRM Internals

442

Name
drm_hdmi_avi_infoframe_from_display_mode — fill an HDMI AVI infoframe with data from a DRM
display mode

Synopsis

int drm_hdmi_avi_infoframe_from_display_mode (struct hdmi_avi_infoframe
* frame, const struct drm_display_mode * mode);

Arguments

frame HDMI AVI infoframe

mode DRM display mode

Return

0 on success or a negative error code on failure.

DRM Internals

443

Name
drm_hdmi_vendor_infoframe_from_display_mode — fill an HDMI infoframe with data from a DRM
display mode

Synopsis

int drm_hdmi_vendor_infoframe_from_display_mode (struct
hdmi_vendor_infoframe * frame, const struct drm_display_mode * mode);

Arguments

frame HDMI vendor infoframe

mode DRM display mode

Description

Note that there's is a need to send HDMI vendor infoframes only when using a 4k or stereoscopic 3D
mode. So when giving any other mode as input this function will return -EINVAL, error that can be safely
ignored.

Return

0 on success or a negative error code on failure.

Rectangle Utilities Reference

Utility functions to help manage rectangular areas for clipping, scaling, etc. calculations.

DRM Internals

444

Name
struct drm_rect — two dimensional rectangle

Synopsis

struct drm_rect {
 int x1;
 int y1;
 int x2;
 int y2;
};

Members

x1 horizontal starting coordinate (inclusive)

y1 vertical starting coordinate (inclusive)

x2 horizontal ending coordinate (exclusive)

y2 vertical ending coordinate (exclusive)

DRM Internals

445

Name
drm_rect_adjust_size — adjust the size of the rectangle

Synopsis

void drm_rect_adjust_size (struct drm_rect * r, int dw, int dh);

Arguments

r rectangle to be adjusted

dw horizontal adjustment

dh vertical adjustment

Description

Change the size of rectangle r by dw in the horizontal direction, and by dh in the vertical direction, while
keeping the center of r stationary.

Positive dw and dh increase the size, negative values decrease it.

DRM Internals

446

Name
drm_rect_translate — translate the rectangle

Synopsis

void drm_rect_translate (struct drm_rect * r, int dx, int dy);

Arguments

r rectangle to be tranlated

dx horizontal translation

dy vertical translation

Description

Move rectangle r by dx in the horizontal direction, and by dy in the vertical direction.

DRM Internals

447

Name
drm_rect_downscale — downscale a rectangle

Synopsis

void drm_rect_downscale (struct drm_rect * r, int horz, int vert);

Arguments

r rectangle to be downscaled

horz horizontal downscale factor

vert vertical downscale factor

Description

Divide the coordinates of rectangle r by horz and vert.

DRM Internals

448

Name
drm_rect_width — determine the rectangle width

Synopsis

int drm_rect_width (const struct drm_rect * r);

Arguments

r rectangle whose width is returned

RETURNS

The width of the rectangle.

DRM Internals

449

Name
drm_rect_height — determine the rectangle height

Synopsis

int drm_rect_height (const struct drm_rect * r);

Arguments

r rectangle whose height is returned

RETURNS

The height of the rectangle.

DRM Internals

450

Name
drm_rect_visible — determine if the the rectangle is visible

Synopsis

bool drm_rect_visible (const struct drm_rect * r);

Arguments

r rectangle whose visibility is returned

RETURNS

true if the rectangle is visible, false otherwise.

DRM Internals

451

Name
drm_rect_equals — determine if two rectangles are equal

Synopsis

bool drm_rect_equals (const struct drm_rect * r1, const struct drm_rect
* r2);

Arguments

r1 first rectangle

r2 second rectangle

RETURNS

true if the rectangles are equal, false otherwise.

DRM Internals

452

Name
drm_rect_intersect — intersect two rectangles

Synopsis

bool drm_rect_intersect (struct drm_rect * r1, const struct drm_rect
* r2);

Arguments

r1 first rectangle

r2 second rectangle

Description

Calculate the intersection of rectangles r1 and r2. r1 will be overwritten with the intersection.

RETURNS

true if rectangle r1 is still visible after the operation, false otherwise.

DRM Internals

453

Name
drm_rect_clip_scaled — perform a scaled clip operation

Synopsis

bool drm_rect_clip_scaled (struct drm_rect * src, struct drm_rect * dst,
const struct drm_rect * clip, int hscale, int vscale);

Arguments

src source window rectangle

dst destination window rectangle

clip clip rectangle

hscale horizontal scaling factor

vscale vertical scaling factor

Description

Clip rectangle dst by rectangle clip. Clip rectangle src by the same amounts multiplied by hscale
and vscale.

RETURNS

true if rectangle dst is still visible after being clipped, false otherwise

DRM Internals

454

Name
drm_rect_calc_hscale — calculate the horizontal scaling factor

Synopsis

int drm_rect_calc_hscale (const struct drm_rect * src, const struct
drm_rect * dst, int min_hscale, int max_hscale);

Arguments

src source window rectangle

dst destination window rectangle

min_hscale minimum allowed horizontal scaling factor

max_hscale maximum allowed horizontal scaling factor

Description

Calculate the horizontal scaling factor as (src width) / (dst width).

RETURNS

The horizontal scaling factor, or errno of out of limits.

DRM Internals

455

Name
drm_rect_calc_vscale — calculate the vertical scaling factor

Synopsis

int drm_rect_calc_vscale (const struct drm_rect * src, const struct
drm_rect * dst, int min_vscale, int max_vscale);

Arguments

src source window rectangle

dst destination window rectangle

min_vscale minimum allowed vertical scaling factor

max_vscale maximum allowed vertical scaling factor

Description

Calculate the vertical scaling factor as (src height) / (dst height).

RETURNS

The vertical scaling factor, or errno of out of limits.

DRM Internals

456

Name
drm_rect_calc_hscale_relaxed — calculate the horizontal scaling factor

Synopsis

int drm_rect_calc_hscale_relaxed (struct drm_rect * src, struct drm_rect
* dst, int min_hscale, int max_hscale);

Arguments

src source window rectangle

dst destination window rectangle

min_hscale minimum allowed horizontal scaling factor

max_hscale maximum allowed horizontal scaling factor

Description

Calculate the horizontal scaling factor as (src width) / (dst width).

If the calculated scaling factor is below min_vscale, decrease the height of rectangle dst to compen-
sate.

If the calculated scaling factor is above max_vscale, decrease the height of rectangle src to compen-
sate.

RETURNS

The horizontal scaling factor.

DRM Internals

457

Name
drm_rect_calc_vscale_relaxed — calculate the vertical scaling factor

Synopsis

int drm_rect_calc_vscale_relaxed (struct drm_rect * src, struct drm_rect
* dst, int min_vscale, int max_vscale);

Arguments

src source window rectangle

dst destination window rectangle

min_vscale minimum allowed vertical scaling factor

max_vscale maximum allowed vertical scaling factor

Description

Calculate the vertical scaling factor as (src height) / (dst height).

If the calculated scaling factor is below min_vscale, decrease the height of rectangle dst to compen-
sate.

If the calculated scaling factor is above max_vscale, decrease the height of rectangle src to compen-
sate.

RETURNS

The vertical scaling factor.

DRM Internals

458

Name
drm_rect_debug_print — print the rectangle information

Synopsis

void drm_rect_debug_print (const struct drm_rect * r, bool fixed_point);

Arguments

r rectangle to print

fixed_point rectangle is in 16.16 fixed point format

DRM Internals

459

Name
drm_rect_rotate — Rotate the rectangle

Synopsis

void drm_rect_rotate (struct drm_rect * r, int width, int height, un-
signed int rotation);

Arguments

r rectangle to be rotated

width Width of the coordinate space

height Height of the coordinate space

rotation Transformation to be applied

Description

Apply rotation to the coordinates of rectangle r.

width and height combined with rotation define the location of the new origin.

width correcsponds to the horizontal and height to the vertical axis of the untransformed coordinate
space.

DRM Internals

460

Name
drm_rect_rotate_inv — Inverse rotate the rectangle

Synopsis

void drm_rect_rotate_inv (struct drm_rect * r, int width, int height,
unsigned int rotation);

Arguments

r rectangle to be rotated

width Width of the coordinate space

height Height of the coordinate space

rotation Transformation whose inverse is to be applied

Description

Apply the inverse of rotation to the coordinates of rectangle r.

width and height combined with rotation define the location of the new origin.

width correcsponds to the horizontal and height to the vertical axis of the original untransformed
coordinate space, so that you never have to flip them when doing a rotatation and its inverse. That is, if
you do:

drm_rotate(r, width, height, rotation); drm_rotate_inv(r, width, height, rotation);

you will always get back the original rectangle.

Flip-work Helper Reference

Util to queue up work to run from work-queue context after flip/vblank. Typically this can be used to
defer unref of framebuffer's, cursor bo's, etc until after vblank. The APIs are all thread-safe. Moreover,
drm_flip_work_queue_task and drm_flip_work_queue can be called in atomic context.

DRM Internals

461

Name
struct drm_flip_task — flip work task

Synopsis

struct drm_flip_task {
 struct list_head node;
 void * data;
};

Members

node list entry element

data data to pass to work->func

DRM Internals

462

Name
struct drm_flip_work — flip work queue

Synopsis

struct drm_flip_work {
 const char * name;
 drm_flip_func_t func;
 struct work_struct worker;
 struct list_head queued;
 struct list_head commited;
 spinlock_t lock;
};

Members

name debug name

func callback fxn called for each committed item

worker worker which calls func

queued queued tasks

commited commited tasks

lock lock to access queued and commited lists

DRM Internals

463

Name
drm_flip_work_allocate_task — allocate a flip-work task

Synopsis

struct drm_flip_task * drm_flip_work_allocate_task (void * data, gfp_t
flags);

Arguments

data data associated to the task

flags allocator flags

Description

Allocate a drm_flip_task object and attach private data to it.

DRM Internals

464

Name
drm_flip_work_queue_task — queue a specific task

Synopsis

void drm_flip_work_queue_task (struct drm_flip_work * work, struct
drm_flip_task * task);

Arguments

work the flip-work

task the task to handle

Description

Queues task, that will later be run (passed back to drm_flip_func_t func) on a work queue after
drm_flip_work_commit is called.

DRM Internals

465

Name
drm_flip_work_queue — queue work

Synopsis

void drm_flip_work_queue (struct drm_flip_work * work, void * val);

Arguments

work the flip-work

val the value to queue

Description

Queues work, that will later be run (passed back to drm_flip_func_t func) on a work queue after
drm_flip_work_commit is called.

DRM Internals

466

Name
drm_flip_work_commit — commit queued work

Synopsis

void drm_flip_work_commit (struct drm_flip_work * work, struct
workqueue_struct * wq);

Arguments

work the flip-work

wq the work-queue to run the queued work on

Description

Trigger work previously queued by drm_flip_work_queue to run on a workqueue. The typical usage
would be to queue work (via drm_flip_work_queue) at any point (from vblank irq and/or prior), and
then from vblank irq commit the queued work.

DRM Internals

467

Name
drm_flip_work_init — initialize flip-work

Synopsis

void drm_flip_work_init (struct drm_flip_work * work, const char * name,
drm_flip_func_t func);

Arguments

work the flip-work to initialize

name debug name

func the callback work function

Description

Initializes/allocates resources for the flip-work

DRM Internals

468

Name
drm_flip_work_cleanup — cleans up flip-work

Synopsis

void drm_flip_work_cleanup (struct drm_flip_work * work);

Arguments

work the flip-work to cleanup

Description

Destroy resources allocated for the flip-work

HDMI Infoframes Helper Reference
Strictly speaking this is not a DRM helper library but generally useable by any driver interfacing with
HDMI outputs like v4l or alsa drivers. But it nicely fits into the overall topic of mode setting helper libraries
and hence is also included here.

DRM Internals

469

Name
union hdmi_infoframe — overall union of all abstract infoframe representations

Synopsis

union hdmi_infoframe {
 struct hdmi_any_infoframe any;
 struct hdmi_avi_infoframe avi;
 struct hdmi_spd_infoframe spd;
 union hdmi_vendor_any_infoframe vendor;
 struct hdmi_audio_infoframe audio;
};

Members

any generic infoframe

avi avi infoframe

spd spd infoframe

vendor union of all vendor infoframes

audio audio infoframe

Description

This is used by the generic pack function. This works since all infoframes have the same header which
also indicates which type of infoframe should be packed.

DRM Internals

470

Name
hdmi_avi_infoframe_init — initialize an HDMI AVI infoframe

Synopsis

int hdmi_avi_infoframe_init (struct hdmi_avi_infoframe * frame);

Arguments

frame HDMI AVI infoframe

Description

Returns 0 on success or a negative error code on failure.

DRM Internals

471

Name
hdmi_avi_infoframe_pack — write HDMI AVI infoframe to binary buffer

Synopsis

ssize_t hdmi_avi_infoframe_pack (struct hdmi_avi_infoframe * frame, void
* buffer, size_t size);

Arguments

frame HDMI AVI infoframe

buffer destination buffer

size size of buffer

Description

Packs the information contained in the frame structure into a binary representation that can be written
into the corresponding controller registers. Also computes the checksum as required by section 5.3.5 of
the HDMI 1.4 specification.

Returns the number of bytes packed into the binary buffer or a negative error code on failure.

DRM Internals

472

Name
hdmi_spd_infoframe_init — initialize an HDMI SPD infoframe

Synopsis

int hdmi_spd_infoframe_init (struct hdmi_spd_infoframe * frame, const
char * vendor, const char * product);

Arguments

frame HDMI SPD infoframe

vendor vendor string

product product string

Description

Returns 0 on success or a negative error code on failure.

DRM Internals

473

Name
hdmi_spd_infoframe_pack — write HDMI SPD infoframe to binary buffer

Synopsis

ssize_t hdmi_spd_infoframe_pack (struct hdmi_spd_infoframe * frame, void
* buffer, size_t size);

Arguments

frame HDMI SPD infoframe

buffer destination buffer

size size of buffer

Description

Packs the information contained in the frame structure into a binary representation that can be written
into the corresponding controller registers. Also computes the checksum as required by section 5.3.5 of
the HDMI 1.4 specification.

Returns the number of bytes packed into the binary buffer or a negative error code on failure.

DRM Internals

474

Name
hdmi_audio_infoframe_init — initialize an HDMI audio infoframe

Synopsis

int hdmi_audio_infoframe_init (struct hdmi_audio_infoframe * frame);

Arguments

frame HDMI audio infoframe

Description

Returns 0 on success or a negative error code on failure.

DRM Internals

475

Name
hdmi_audio_infoframe_pack — write HDMI audio infoframe to binary buffer

Synopsis

ssize_t hdmi_audio_infoframe_pack (struct hdmi_audio_infoframe * frame,
void * buffer, size_t size);

Arguments

frame HDMI audio infoframe

buffer destination buffer

size size of buffer

Description

Packs the information contained in the frame structure into a binary representation that can be written
into the corresponding controller registers. Also computes the checksum as required by section 5.3.5 of
the HDMI 1.4 specification.

Returns the number of bytes packed into the binary buffer or a negative error code on failure.

DRM Internals

476

Name
hdmi_vendor_infoframe_init — initialize an HDMI vendor infoframe

Synopsis

int hdmi_vendor_infoframe_init (struct hdmi_vendor_infoframe * frame);

Arguments

frame HDMI vendor infoframe

Description

Returns 0 on success or a negative error code on failure.

DRM Internals

477

Name
hdmi_vendor_infoframe_pack — write a HDMI vendor infoframe to binary buffer

Synopsis

ssize_t hdmi_vendor_infoframe_pack (struct hdmi_vendor_infoframe *
frame, void * buffer, size_t size);

Arguments

frame HDMI infoframe

buffer destination buffer

size size of buffer

Description

Packs the information contained in the frame structure into a binary representation that can be written
into the corresponding controller registers. Also computes the checksum as required by section 5.3.5 of
the HDMI 1.4 specification.

Returns the number of bytes packed into the binary buffer or a negative error code on failure.

DRM Internals

478

Name
hdmi_infoframe_pack — write a HDMI infoframe to binary buffer

Synopsis

ssize_t hdmi_infoframe_pack (union hdmi_infoframe * frame, void *
buffer, size_t size);

Arguments

frame HDMI infoframe

buffer destination buffer

size size of buffer

Description

Packs the information contained in the frame structure into a binary representation that can be written
into the corresponding controller registers. Also computes the checksum as required by section 5.3.5 of
the HDMI 1.4 specification.

Returns the number of bytes packed into the binary buffer or a negative error code on failure.

DRM Internals

479

Name
hdmi_infoframe_log — log info of HDMI infoframe

Synopsis

void hdmi_infoframe_log (const char * level, struct device * dev, union
hdmi_infoframe * frame);

Arguments

level logging level

dev device

frame HDMI infoframe

DRM Internals

480

Name
hdmi_infoframe_unpack — unpack binary buffer to a HDMI infoframe

Synopsis

int hdmi_infoframe_unpack (union hdmi_infoframe * frame, void * buffer);

Arguments

frame HDMI infoframe

buffer source buffer

Description

Unpacks the information contained in binary buffer buffer into a structured frame of a HDMI in-
foframe. Also verifies the checksum as required by section 5.3.5 of the HDMI 1.4 specification.

Returns 0 on success or a negative error code on failure.

Plane Helper Reference

DRM Internals

481

Name
drm_plane_helper_check_update — Check plane update for validity

Synopsis

int drm_plane_helper_check_update (struct drm_plane * plane, struct
drm_crtc * crtc, struct drm_framebuffer * fb, struct drm_rect * src,
struct drm_rect * dest, const struct drm_rect * clip, int min_scale, int
max_scale, bool can_position, bool can_update_disabled, bool * visible);

Arguments

plane plane object to update

crtc owning CRTC of owning plane

fb framebuffer to flip onto plane

src source coordinates in 16.16 fixed point

dest integer destination coordinates

clip integer clipping coordinates

min_scale minimum src:dest scaling factor in 16.16 fixed point

max_scale maximum src:dest scaling factor in 16.16 fixed point

can_position is it legal to position the plane such that it doesn't cover the entire crtc? This
will generally only be false for primary planes.

can_update_disabled can the plane be updated while the crtc is disabled?

visible output parameter indicating whether plane is still visible after clipping

Description

Checks that a desired plane update is valid. Drivers that provide their own plane handling rather than
helper-provided implementations may still wish to call this function to avoid duplication of error checking
code.

RETURNS

Zero if update appears valid, error code on failure

DRM Internals

482

Name
drm_primary_helper_update — Helper for primary plane update

Synopsis

int drm_primary_helper_update (struct drm_plane * plane, struct drm_crtc
* crtc, struct drm_framebuffer * fb, int crtc_x, int crtc_y, unsigned int
crtc_w, unsigned int crtc_h, uint32_t src_x, uint32_t src_y, uint32_t
src_w, uint32_t src_h);

Arguments

plane plane object to update

crtc owning CRTC of owning plane

fb framebuffer to flip onto plane

crtc_x x offset of primary plane on crtc

crtc_y y offset of primary plane on crtc

crtc_w width of primary plane rectangle on crtc

crtc_h height of primary plane rectangle on crtc

src_x x offset of fb for panning

src_y y offset of fb for panning

src_w width of source rectangle in fb

src_h height of source rectangle in fb

Description

Provides a default plane update handler for primary planes. This is handler is called in response to a
userspace SetPlane operation on the plane with a non-NULL framebuffer. We call the driver's modeset
handler to update the framebuffer.

SetPlane on a primary plane of a disabled CRTC is not supported, and will return an error.

Note that we make some assumptions about hardware limitations that may not be true for all hardware --
1) Primary plane cannot be repositioned. 2) Primary plane cannot be scaled. 3) Primary plane must cover
the entire CRTC. 4) Subpixel positioning is not supported. Drivers for hardware that don't have these
restrictions can provide their own implementation rather than using this helper.

RETURNS

Zero on success, error code on failure

DRM Internals

483

Name
drm_primary_helper_disable — Helper for primary plane disable

Synopsis

int drm_primary_helper_disable (struct drm_plane * plane);

Arguments

plane plane to disable

Description

Provides a default plane disable handler for primary planes. This is handler is called in response to a
userspace SetPlane operation on the plane with a NULL framebuffer parameter. It unconditionally fails the
disable call with -EINVAL the only way to disable the primary plane without driver support is to disable
the entier CRTC. Which does not match the plane ->disable hook.

Note that some hardware may be able to disable the primary plane without disabling the whole CRTC.
Drivers for such hardware should provide their own disable handler that disables just the primary plane
(and they'll likely need to provide their own update handler as well to properly re-enable a disabled primary
plane).

RETURNS

Unconditionally returns -EINVAL.

DRM Internals

484

Name
drm_primary_helper_destroy — Helper for primary plane destruction

Synopsis

void drm_primary_helper_destroy (struct drm_plane * plane);

Arguments

plane plane to destroy

Description

Provides a default plane destroy handler for primary planes. This handler is called during CRTC destruc-
tion. We disable the primary plane, remove it from the DRM plane list, and deallocate the plane structure.

DRM Internals

485

Name
drm_crtc_init — Legacy CRTC initialization function

Synopsis

int drm_crtc_init (struct drm_device * dev, struct drm_crtc * crtc,
const struct drm_crtc_funcs * funcs);

Arguments

dev DRM device

crtc CRTC object to init

funcs callbacks for the new CRTC

Description

Initialize a CRTC object with a default helper-provided primary plane and no cursor plane.

Returns

Zero on success, error code on failure.

DRM Internals

486

Name
drm_plane_helper_update — Transitional helper for plane update

Synopsis

int drm_plane_helper_update (struct drm_plane * plane, struct drm_crtc *
crtc, struct drm_framebuffer * fb, int crtc_x, int crtc_y, unsigned int
crtc_w, unsigned int crtc_h, uint32_t src_x, uint32_t src_y, uint32_t
src_w, uint32_t src_h);

Arguments

plane plane object to update

crtc owning CRTC of owning plane

fb framebuffer to flip onto plane

crtc_x x offset of primary plane on crtc

crtc_y y offset of primary plane on crtc

crtc_w width of primary plane rectangle on crtc

crtc_h height of primary plane rectangle on crtc

src_x x offset of fb for panning

src_y y offset of fb for panning

src_w width of source rectangle in fb

src_h height of source rectangle in fb

Description

Provides a default plane update handler using the atomic plane update functions. It is fully left to the driver
to check plane constraints and handle corner-cases like a fully occluded or otherwise invisible plane.

This is useful for piecewise transitioning of a driver to the atomic helpers.

RETURNS

Zero on success, error code on failure

DRM Internals

487

Name
drm_plane_helper_disable — Transitional helper for plane disable

Synopsis

int drm_plane_helper_disable (struct drm_plane * plane);

Arguments

plane plane to disable

Description

Provides a default plane disable handler using the atomic plane update functions. It is fully left to the driver
to check plane constraints and handle corner-cases like a fully occluded or otherwise invisible plane.

This is useful for piecewise transitioning of a driver to the atomic helpers.

RETURNS

Zero on success, error code on failure

This helper library has two parts. The first part has support to implement primary plane support on top of
the normal CRTC configuration interface. Since the legacy ->set_config interface ties the primary plane
together with the CRTC state this does not allow userspace to disable the primary plane itself. To avoid
too much duplicated code use drm_plane_helper_check_update which can be used to enforce
the same restrictions as primary planes had thus. The default primary plane only expose XRBG8888 and
ARGB8888 as valid pixel formats for the attached framebuffer.

Drivers are highly recommended to implement proper support for primary planes, and newly merged
drivers must not rely upon these transitional helpers.

The second part also implements transitional helpers which allow drivers to gradually switch to the atomic
helper infrastructure for plane updates. Once that switch is complete drivers shouldn't use these any longer,
instead using the proper legacy implementations for update and disable plane hooks provided by the atomic
helpers.

Again drivers are strongly urged to switch to the new interfaces.

Tile group

Tile groups are used to represent tiled monitors with a unique integer identifier. Tiled monitors using
DisplayID v1.3 have a unique 8-byte handle, we store this in a tile group, so we have a common identifier
for all tiles in a monitor group.

KMS Properties
Drivers may need to expose additional parameters to applications than those described in the previous
sections. KMS supports attaching properties to CRTCs, connectors and planes and offers a userspace API
to list, get and set the property values.

Properties are identified by a name that uniquely defines the property purpose, and store an associated
value. For all property types except blob properties the value is a 64-bit unsigned integer.

DRM Internals

488

KMS differentiates between properties and property instances. Drivers first create properties and then
create and associate individual instances of those properties to objects. A property can be instantiated
multiple times and associated with different objects. Values are stored in property instances, and all other
property information are stored in the property and shared between all instances of the property.

Every property is created with a type that influences how the KMS core handles the property. Supported
property types are

DRM_MODE_PROP_RANGE Range properties report their minimum and maximum admissible val-
ues. The KMS core verifies that values set by application fit in that
range.

DRM_MODE_PROP_ENUM Enumerated properties take a numerical value that ranges from 0 to the
number of enumerated values defined by the property minus one, and
associate a free-formed string name to each value. Applications can re-
trieve the list of defined value-name pairs and use the numerical value
to get and set property instance values.

DRM_MODE_PROP_BITMASKBitmask properties are enumeration properties that additionally restrict
all enumerated values to the 0..63 range. Bitmask property instance val-
ues combine one or more of the enumerated bits defined by the property.

DRM_MODE_PROP_BLOB Blob properties store a binary blob without any format restriction. The
binary blobs are created as KMS standalone objects, and blob property
instance values store the ID of their associated blob object.

Blob properties are only used for the connector EDID property and can-
not be created by drivers.

To create a property drivers call one of the following functions depending on the property type. All property
creation functions take property flags and name, as well as type-specific arguments.

• struct drm_property *drm_property_create_range(struct drm_device *dev, int flags,
 const char *name,
 uint64_t min, uint64_t max);

Create a range property with the given minimum and maximum values.

• struct drm_property *drm_property_create_enum(struct drm_device *dev, int flags,
 const char *name,
 const struct drm_prop_enum_list *props,
 int num_values);

Create an enumerated property. The props argument points to an array of num_values value-name
pairs.

• struct drm_property *drm_property_create_bitmask(struct drm_device *dev,
 int flags, const char *name,
 const struct drm_prop_enum_list *props,
 int num_values);

Create a bitmask property. The props argument points to an array of num_values value-name pairs.

Properties can additionally be created as immutable, in which case they will be read-only for ap-
plications but can be modified by the driver. To create an immutable property drivers must set the
DRM_MODE_PROP_IMMUTABLE flag at property creation time.

DRM Internals

489

When no array of value-name pairs is readily available at property creation time for enumerated or range
properties, drivers can create the property using the drm_property_create function and manually
add enumeration value-name pairs by calling the drm_property_add_enum function. Care must be
taken to properly specify the property type through the flags argument.

After creating properties drivers can attach property instances to CRTC, connector and plane objects by
calling the drm_object_attach_property. The function takes a pointer to the target object, a point-
er to the previously created property and an initial instance value.

Existing KMS Properties
The following table gives description of drm properties exposed by various modules/drivers.

Table 2.1.

Owner Mod-
ule/Drivers

Group Property
Name

Type Property Val-
ues

Object at-
tached

Descrip-
tion/Restric-
tions

“EDID” BLOB | IM-
MUTABLE

0 Connector Contains id of
edid blob ptr
object.

“DPMS” ENUM { “On”,
“Standby”,
“Suspend”,
“Off” }

Connector Contains DP-
MS operation
mode value.

“PATH” BLOB | IM-
MUTABLE

0 Connector Contains
topology path
to a connec-
tor.

“TILE” BLOB | IM-
MUTABLE

0 Connector Contains
tiling infor-
mation for a
connector.

Connector

“CRTC_ID” OBJECT DRM_MODE_OBJECT_CRTCConnector CRTC that
connector is
attached to
(atomic)

“type” ENUM | IM-
MUTABLE

{ "Over-
lay", "Pri-
mary", "Cur-
sor" }

Plane Plane type

“SRC_X” RANGE Min=0,
Max=UINT_MAX

Plane Scanout
source x co-
ordinate in
16.16 fixed
point (atom-
ic)

DRM

Plane

“SRC_Y” RANGE Min=0,
Max=UINT_MAX

Plane Scanout
source y co-
ordinate in
16.16 fixed

DRM Internals

490

point (atom-
ic)

“SRC_W” RANGE Min=0,
Max=UINT_MAX

Plane Scanout
source width
in 16.16 fixed
point (atom-
ic)

“SRC_H” RANGE Min=0,
Max=UINT_MAX

Plane Scanout
source height
in 16.16 fixed
point (atom-
ic)

“CRTC_X” SIGNED_RANGEMin=INT_MIN,
Max=INT_MAX

Plane Scanout
CRTC (desti-
nation) x co-
ordinate
(atomic)

“CRTC_Y” SIGNED_RANGEMin=INT_MIN,
Max=INT_MAX

Plane Scanout
CRTC (desti-
nation) y co-
ordinate
(atomic)

“CRTC_W” RANGE Min=0,
Max=UINT_MAX

Plane Scanout
CRTC (desti-
nation) width
(atomic)

“CRTC_H” RANGE Min=0,
Max=UINT_MAX

Plane Scanout
CRTC (desti-
nation) height
(atomic)

“FB_ID” OBJECT DRM_MODE_OBJECT_FBPlane Scanout
framebuffer
(atomic)

“CRTC_ID” OBJECT DRM_MODE_OBJECT_CRTCPlane CRTC that
plane is at-
tached to
(atomic)

“subconnec-
tor”

ENUM { “Un-
known”,
“DVI-D”,
“DVI-A” }

Connector TBDDVI-I

“select sub-
connector”

ENUM { “Automat-
ic”, “DVI-
D”, “DVI-
A” }

Connector TBD

TV “subconnec-
tor”

ENUM { "Un-
known",
"Composite",
"SVIDEO",

Connector TBD

DRM Internals

491

"Compo-
nent",
"SCART" }

“select sub-
connector”

ENUM { "Automat-
ic", "Com-
posite",
"SVIDEO",
"Compo-
nent",
"SCART" }

Connector TBD

“mode” ENUM { "NTSC_M",
"NTSC_J",
"NTSC_443",
"PAL_B" }
etc.

Connector TBD

“left margin” RANGE Min=0,
Max=100

Connector TBD

“right mar-
gin”

RANGE Min=0,
Max=100

Connector TBD

“top margin” RANGE Min=0,
Max=100

Connector TBD

“bottom mar-
gin”

RANGE Min=0,
Max=100

Connector TBD

“brightness” RANGE Min=0,
Max=100

Connector TBD

“contrast” RANGE Min=0,
Max=100

Connector TBD

“flicker re-
duction”

RANGE Min=0,
Max=100

Connector TBD

“overscan” RANGE Min=0,
Max=100

Connector TBD

“saturation” RANGE Min=0,
Max=100

Connector TBD

“hue” RANGE Min=0,
Max=100

Connector TBD

“suggested
X”

RANGE Min=0,
Max=0xffffffff

Connector property to
suggest an X
offset for a
connector

Virtual GPU

“suggested
Y”

RANGE Min=0,
Max=0xffffffff

Connector property to
suggest an Y
offset for a
connector

Optional “scaling
mode”

ENUM { "None",
"Full", "Cen-
ter", "Full as-
pect" }

Connector TBD

DRM Internals

492

"aspect ratio" ENUM { "None",
"4:3",
"16:9" }

Connector DRM prop-
erty to set
aspect ra-
tio from user
space app.
This enum is
made generic
to allow ad-
dition of cus-
tom aspect ra-
tios.

“dirty” ENUM | IM-
MUTABLE

{ "Off",
"On", "Anno-
tate" }

Connector TBD

"Broadcast
RGB"

ENUM { "Automat-
ic", "Full",
"Limited
16:235" }

Connector TBDGeneric

“audio” ENUM { "force-dvi",
"off", "auto",
"on" }

Connector TBD

Plane “rotation” BITMASK { 0, "ro-
tate-0" },
{ 2, "ro-
tate-180" }

Plane TBD

“mode” ENUM { "NTSC_M",
"NTSC_J",
"NTSC_443",
"PAL_B" }
etc.

Connector TBD

"left_margin" RANGE Min=0, Max=
SDVO de-
pendent

Connector TBD

"right_margin"RANGE Min=0, Max=
SDVO de-
pendent

Connector TBD

"top_margin" RANGE Min=0, Max=
SDVO de-
pendent

Connector TBD

"bottom_margin"RANGE Min=0, Max=
SDVO de-
pendent

Connector TBD

“hpos” RANGE Min=0, Max=
SDVO de-
pendent

Connector TBD

i915

SDVO-TV

“vpos” RANGE Min=0, Max=
SDVO de-
pendent

Connector TBD

DRM Internals

493

“contrast” RANGE Min=0, Max=
SDVO de-
pendent

Connector TBD

“saturation” RANGE Min=0, Max=
SDVO de-
pendent

Connector TBD

“hue” RANGE Min=0, Max=
SDVO de-
pendent

Connector TBD

“sharpness” RANGE Min=0, Max=
SDVO de-
pendent

Connector TBD

“flicker_filter”RANGE Min=0, Max=
SDVO de-
pendent

Connector TBD

“flicker_filter_adaptive”RANGE Min=0, Max=
SDVO de-
pendent

Connector TBD

“flicker_filter_2d”RANGE Min=0, Max=
SDVO de-
pendent

Connector TBD

“tv_chroma_filter”RANGE Min=0, Max=
SDVO de-
pendent

Connector TBD

“tv_luma_filter”RANGE Min=0, Max=
SDVO de-
pendent

Connector TBD

“dot_crawl” RANGE Min=0,
Max=1

Connector TBD

SDVO-TV/
LVDS

“brightness” RANGE Min=0, Max=
SDVO de-
pendent

Connector TBD

"Broadcast
RGB"

ENUM { “Full”,
“Limited
16:235” }

Connector TBDCDV
gma-500

Generic

"Broadcast
RGB"

ENUM { “off”, “au-
to”, “on” }

Connector TBD

Generic “backlight” RANGE Min=0,
Max=100

Connector TBD

“mode” ENUM { "NTSC_M",
"NTSC_J",
"NTSC_443",
"PAL_B" }
etc.

Connector TBD

Poulsbo

SDVO-TV

"left_margin" RANGE Min=0, Max=
SDVO de-
pendent

Connector TBD

DRM Internals

494

"right_margin"RANGE Min=0, Max=
SDVO de-
pendent

Connector TBD

"top_margin" RANGE Min=0, Max=
SDVO de-
pendent

Connector TBD

"bottom_margin"RANGE Min=0, Max=
SDVO de-
pendent

Connector TBD

“hpos” RANGE Min=0, Max=
SDVO de-
pendent

Connector TBD

“vpos” RANGE Min=0, Max=
SDVO de-
pendent

Connector TBD

“contrast” RANGE Min=0, Max=
SDVO de-
pendent

Connector TBD

“saturation” RANGE Min=0, Max=
SDVO de-
pendent

Connector TBD

“hue” RANGE Min=0, Max=
SDVO de-
pendent

Connector TBD

“sharpness” RANGE Min=0, Max=
SDVO de-
pendent

Connector TBD

“flicker_filter”RANGE Min=0, Max=
SDVO de-
pendent

Connector TBD

“flicker_filter_adaptive”RANGE Min=0, Max=
SDVO de-
pendent

Connector TBD

“flicker_filter_2d”RANGE Min=0, Max=
SDVO de-
pendent

Connector TBD

“tv_chroma_filter”RANGE Min=0, Max=
SDVO de-
pendent

Connector TBD

“tv_luma_filter”RANGE Min=0, Max=
SDVO de-
pendent

Connector TBD

“dot_crawl” RANGE Min=0,
Max=1

Connector TBD

SDVO-TV/
LVDS

“brightness” RANGE Min=0, Max=
SDVO de-
pendent

Connector TBD

DRM Internals

495

"CSC_YUV" ENUM { "Auto" ,
"CCIR601",
"CCIR709" }

CRTC TBDCRTC

"CSC_RGB" ENUM { "Auto",
"Computer
system",
"Studio" }

CRTC TBD

"colorkey" RANGE Min=0,
Max=0xffffff

Plane TBD

"colorkey_min"RANGE Min=0,
Max=0xffffff

Plane TBD

"colorkey_max"RANGE Min=0,
Max=0xffffff

Plane TBD

"colorkey_val"RANGE Min=0,
Max=0xffffff

Plane TBD

"colorkey_alpha"RANGE Min=0,
Max=0xffffff

Plane TBD

"colorkey_mode"ENUM { "disabled",
"Y compo-
nent", "U
component" ,
"V compo-
nent",
"RGB", “R
component",
"G compo-
nent", "B
component" }

Plane TBD

"brightness" RANGE Min=0,
Max=256 +
255

Plane TBD

"contrast" RANGE Min=0,
Max=0x7fff

Plane TBD

armada

Overlay

"saturation" RANGE Min=0,
Max=0x7fff

Plane TBD

CRTC “mode” ENUM { "normal",
"blank" }

CRTC TBDexynos

Overlay “zpos” RANGE Min=0,
Max=MAX_PLANE-1

Plane TBD

Generic “scale” RANGE Min=0,
Max=2

Connector TBDi2c/
ch7006_drv

TV “mode” ENUM { "PAL",
"PAL-
M","PAL-
N"}, ”PAL-
Nc" ,
"PAL-60",

Connector TBD

DRM Internals

496

"NTSC-M",
"NTSC-J" }

"colorkey" RANGE Min=0,
Max=0x01ffffff

Plane TBD

“contrast” RANGE Min=0,
Max=8192-1

Plane TBD

“brightness” RANGE Min=0,
Max=1024

Plane TBD

“hue” RANGE Min=0,
Max=359

Plane TBD

“saturation” RANGE Min=0,
Max=8192-1

Plane TBD

NV10 Over-
lay

“iturbt_709” RANGE Min=0,
Max=1

Plane TBD

“colorkey” RANGE Min=0,
Max=0x01ffffff

Plane TBDNv04 Over-
lay

“brightness” RANGE Min=0,
Max=1024

Plane TBD

“dithering
mode”

ENUM { "auto",
"off", "on" }

Connector TBD

“dithering
depth”

ENUM { "auto",
"off", "on",
"static 2x2",
"dynamic
2x2", "tem-
poral" }

Connector TBD

“underscan” ENUM { "auto",
"6 bpc", "8
bpc" }

Connector TBD

“underscan
hborder”

RANGE Min=0,
Max=128

Connector TBD

“underscan
vborder”

RANGE Min=0,
Max=128

Connector TBD

“vibrant hue” RANGE Min=0,
Max=180

Connector TBD

nouveau

Display

“color vi-
brance”

RANGE Min=0,
Max=200

Connector TBD

omap Generic “rotation” BITMASK { 0, "ro-
tate-0" }, { 1,
"rotate-90" },
{ 2, "ro-
tate-180" },
{ 3, "ro-
tate-270" },
{ 4, "re-
flect-x" }, { 5,
"reflect-y" }

CRTC, Plane TBD

DRM Internals

497

“zorder” RANGE Min=0,
Max=3

CRTC, Plane TBD

qxl Generic “hotplug_mode_update"RANGE Min=0,
Max=1

Connector TBD

DVI-I “coherent” RANGE Min=0,
Max=1

Connector TBD

DAC enable
load detect

“load detec-
tion”

RANGE Min=0,
Max=1

Connector TBD

TV Standard "tv standard" ENUM { "ntsc",
"pal", "pal-
m", "pal-60",
"ntsc-j" ,
"scart-pal",
"pal-cn", "se-
cam" }

Connector TBD

legacy
TMDS PLL
detect

"tmds_pll" ENUM { "driver",
"bios" }

- TBD

"underscan" ENUM { "off", "on",
"auto" }

Connector TBD

"underscan
hborder"

RANGE Min=0,
Max=128

Connector TBD

Underscan

"underscan
vborder"

RANGE Min=0,
Max=128

Connector TBD

Audio “audio” ENUM { "off", "on",
"auto" }

Connector TBD

radeon

FMT Dither-
ing

“dither” ENUM { "off", "on" } Connector TBD

"alpha" RANGE Min=0,
Max=255

Plane TBD

"colorkey" RANGE Min=0,
Max=0x01ffffff

Plane TBD

rcar-du Generic

"zpos" RANGE Min=1,
Max=7

Plane TBD

Vertical Blanking
Vertical blanking plays a major role in graphics rendering. To achieve tear-free display, users must syn-
chronize page flips and/or rendering to vertical blanking. The DRM API offers ioctls to perform page flips
synchronized to vertical blanking and wait for vertical blanking.

The DRM core handles most of the vertical blanking management logic, which involves filtering out
spurious interrupts, keeping race-free blanking counters, coping with counter wrap-around and resets and
keeping use counts. It relies on the driver to generate vertical blanking interrupts and optionally provide a
hardware vertical blanking counter. Drivers must implement the following operations.

• int (*enable_vblank) (struct drm_device *dev, int crtc);
void (*disable_vblank) (struct drm_device *dev, int crtc);

DRM Internals

498

Enable or disable vertical blanking interrupts for the given CRTC.

• u32 (*get_vblank_counter) (struct drm_device *dev, int crtc);

Retrieve the value of the vertical blanking counter for the given CRTC. If the hardware maintains a verti-
cal blanking counter its value should be returned. Otherwise drivers can use the drm_vblank_count
helper function to handle this operation.

Drivers must initialize the vertical blanking handling core with a call to drm_vblank_init in their
load operation. The function will set the struct drm_device vblank_disable_allowed field to 0.
This will keep vertical blanking interrupts enabled permanently until the first mode set operation, where
vblank_disable_allowed is set to 1. The reason behind this is not clear. Drivers can set the field
to 1 after calling drm_vblank_init to make vertical blanking interrupts dynamically managed
from the beginning.

Vertical blanking interrupts can be enabled by the DRM core or by drivers themselves (for instance to
handle page flipping operations). The DRM core maintains a vertical blanking use count to ensure that
the interrupts are not disabled while a user still needs them. To increment the use count, drivers call
drm_vblank_get. Upon return vertical blanking interrupts are guaranteed to be enabled.

To decrement the use count drivers call drm_vblank_put. Only when the use count drops to zero will
the DRM core disable the vertical blanking interrupts after a delay by scheduling a timer. The delay is
accessible through the vblankoffdelay module parameter or the drm_vblank_offdelay global vari-
able and expressed in milliseconds. Its default value is 5000 ms. Zero means never disable, and a neg-
ative value means disable immediately. Drivers may override the behaviour by setting the drm_device
vblank_disable_immediate flag, which when set causes vblank interrupts to be disabled immedi-
ately regardless of the drm_vblank_offdelay value. The flag should only be set if there's a properly work-
ing hardware vblank counter present.

When a vertical blanking interrupt occurs drivers only need to call the drm_handle_vblank function
to account for the interrupt.

Resources allocated by drm_vblank_init must be freed with a call to drm_vblank_cleanup in
the driver unload operation handler.

Vertical Blanking and Interrupt Handling Functions Ref-
erence

DRM Internals

499

Name
drm_vblank_cleanup — cleanup vblank support

Synopsis

void drm_vblank_cleanup (struct drm_device * dev);

Arguments

dev DRM device

Description

This function cleans up any resources allocated in drm_vblank_init.

DRM Internals

500

Name
drm_vblank_init — initialize vblank support

Synopsis

int drm_vblank_init (struct drm_device * dev, int num_crtcs);

Arguments

dev drm_device

num_crtcs number of crtcs supported by dev

Description

This function initializes vblank support for num_crtcs display pipelines.

Returns

Zero on success or a negative error code on failure.

DRM Internals

501

Name
drm_irq_install — install IRQ handler

Synopsis

int drm_irq_install (struct drm_device * dev, int irq);

Arguments

dev DRM device

irq IRQ number to install the handler for

Description

Initializes the IRQ related data. Installs the handler, calling the driver irq_preinstall and
irq_postinstall functions before and after the installation.

This is the simplified helper interface provided for drivers with no special needs. Drivers which need to
install interrupt handlers for multiple interrupts must instead set drm_device->irq_enabled to signal the
DRM core that vblank interrupts are available.

Returns

Zero on success or a negative error code on failure.

DRM Internals

502

Name
drm_irq_uninstall — uninstall the IRQ handler

Synopsis

int drm_irq_uninstall (struct drm_device * dev);

Arguments

dev DRM device

Description

Calls the driver's irq_uninstall function and unregisters the IRQ handler. This should only be called
by drivers which used drm_irq_install to set up their interrupt handler. Other drivers must only
reset drm_device->irq_enabled to false.

Note that for kernel modesetting drivers it is a bug if this function fails. The sanity checks are only to catch
buggy user modesetting drivers which call the same function through an ioctl.

Returns

Zero on success or a negative error code on failure.

DRM Internals

503

Name
drm_calc_timestamping_constants — calculate vblank timestamp constants

Synopsis

void drm_calc_timestamping_constants (struct drm_crtc * crtc, const
struct drm_display_mode * mode);

Arguments

crtc drm_crtc whose timestamp constants should be updated.

mode display mode containing the scanout timings

Description

Calculate and store various constants which are later needed by vblank and swap-completion timestamp-
ing, e.g, by drm_calc_vbltimestamp_from_scanoutpos. They are derived from CRTC's true
scanout timing, so they take things like panel scaling or other adjustments into account.

DRM Internals

504

Name
drm_calc_vbltimestamp_from_scanoutpos — precise vblank timestamp helper

Synopsis

int drm_calc_vbltimestamp_from_scanoutpos (struct drm_device * dev, int
crtc, int * max_error, struct timeval * vblank_time, unsigned flags,
const struct drm_crtc * refcrtc, const struct drm_display_mode * mode);

Arguments

dev DRM device

crtc Which CRTC's vblank timestamp to retrieve

max_error Desired maximum allowable error in timestamps (nanosecs) On return contains true
maximum error of timestamp

vblank_time Pointer to struct timeval which should receive the timestamp

flags Flags to pass to driver: 0 = Default, DRM_CALLED_FROM_VBLIRQ = If function
is called from vbl IRQ handler

refcrtc CRTC which defines scanout timing

mode mode which defines the scanout timings

Description

Implements calculation of exact vblank timestamps from given drm_display_mode timings and current
video scanout position of a CRTC. This can be called from within get_vblank_timestamp imple-
mentation of a kms driver to implement the actual timestamping.

Should return timestamps conforming to the OML_sync_control OpenML extension specification. The
timestamp corresponds to the end of the vblank interval, aka start of scanout of topmost-leftmost display
pixel in the following video frame.

Requires support for optional dev->driver->get_scanout_position in kms driver, plus a bit of setup
code to provide a drm_display_mode that corresponds to the true scanout timing.

The current implementation only handles standard video modes. It returns as no operation if a doublescan
or interlaced video mode is active. Higher level code is expected to handle this.

Returns

Negative value on error, failure or if not supported in current

video mode

-EINVAL - Invalid CRTC. -EAGAIN - Temporary unavailable, e.g., called before initial modeset. -
ENOTSUPP - Function not supported in current display mode. -EIO - Failed, e.g., due to failed scanout
position query.

Returns or'ed positive status flags on success:

DRM Internals

505

DRM_VBLANKTIME_SCANOUTPOS_METHOD - Signal this method used for timestamping.
DRM_VBLANKTIME_INVBL - Timestamp taken while scanout was in vblank interval.

DRM Internals

506

Name
drm_vblank_count — retrieve “cooked” vblank counter value

Synopsis

u32 drm_vblank_count (struct drm_device * dev, int crtc);

Arguments

dev DRM device

crtc which counter to retrieve

Description

Fetches the “cooked” vblank count value that represents the number of vblank events since the system was
booted, including lost events due to modesetting activity.

This is the legacy version of drm_crtc_vblank_count.

Returns

The software vblank counter.

DRM Internals

507

Name
drm_crtc_vblank_count — retrieve “cooked” vblank counter value

Synopsis

u32 drm_crtc_vblank_count (struct drm_crtc * crtc);

Arguments

crtc which counter to retrieve

Description

Fetches the “cooked” vblank count value that represents the number of vblank events since the system was
booted, including lost events due to modesetting activity.

This is the native KMS version of drm_vblank_count.

Returns

The software vblank counter.

DRM Internals

508

Name
drm_vblank_count_and_time — retrieve “cooked” vblank counter value and the system timestamp corre-
sponding to that vblank counter value.

Synopsis

u32 drm_vblank_count_and_time (struct drm_device * dev, int crtc, struct
timeval * vblanktime);

Arguments

dev DRM device

crtc which counter to retrieve

vblanktime Pointer to struct timeval to receive the vblank timestamp.

Description

Fetches the “cooked” vblank count value that represents the number of vblank events since the system was
booted, including lost events due to modesetting activity. Returns corresponding system timestamp of the
time of the vblank interval that corresponds to the current vblank counter value.

DRM Internals

509

Name
drm_send_vblank_event — helper to send vblank event after pageflip

Synopsis

void drm_send_vblank_event (struct drm_device * dev, int crtc, struct
drm_pending_vblank_event * e);

Arguments

dev DRM device

crtc CRTC in question

e the event to send

Description

Updates sequence # and timestamp on event, and sends it to userspace. Caller must hold event lock.

This is the legacy version of drm_crtc_send_vblank_event.

DRM Internals

510

Name
drm_crtc_send_vblank_event — helper to send vblank event after pageflip

Synopsis

void drm_crtc_send_vblank_event (struct drm_crtc * crtc, struct
drm_pending_vblank_event * e);

Arguments

crtc the source CRTC of the vblank event

e the event to send

Description

Updates sequence # and timestamp on event, and sends it to userspace. Caller must hold event lock.

This is the native KMS version of drm_send_vblank_event.

DRM Internals

511

Name
drm_vblank_get — get a reference count on vblank events

Synopsis

int drm_vblank_get (struct drm_device * dev, int crtc);

Arguments

dev DRM device

crtc which CRTC to own

Description

Acquire a reference count on vblank events to avoid having them disabled while in use.

This is the legacy version of drm_crtc_vblank_get.

Returns

Zero on success, nonzero on failure.

DRM Internals

512

Name
drm_crtc_vblank_get — get a reference count on vblank events

Synopsis

int drm_crtc_vblank_get (struct drm_crtc * crtc);

Arguments

crtc which CRTC to own

Description

Acquire a reference count on vblank events to avoid having them disabled while in use.

This is the native kms version of drm_vblank_get.

Returns

Zero on success, nonzero on failure.

DRM Internals

513

Name
drm_vblank_put — give up ownership of vblank events

Synopsis

void drm_vblank_put (struct drm_device * dev, int crtc);

Arguments

dev DRM device

crtc which counter to give up

Description

Release ownership of a given vblank counter, turning off interrupts if possible. Disable interrupts after
drm_vblank_offdelay milliseconds.

This is the legacy version of drm_crtc_vblank_put.

DRM Internals

514

Name
drm_crtc_vblank_put — give up ownership of vblank events

Synopsis

void drm_crtc_vblank_put (struct drm_crtc * crtc);

Arguments

crtc which counter to give up

Description

Release ownership of a given vblank counter, turning off interrupts if possible. Disable interrupts after
drm_vblank_offdelay milliseconds.

This is the native kms version of drm_vblank_put.

DRM Internals

515

Name
drm_wait_one_vblank — wait for one vblank

Synopsis

void drm_wait_one_vblank (struct drm_device * dev, int crtc);

Arguments

dev DRM device

crtc crtc index

Description

This waits for one vblank to pass on crtc, using the irq driver interfaces. It is a failure to call this when
the vblank irq for crtc is disabled, e.g. due to lack of driver support or because the crtc is off.

DRM Internals

516

Name
drm_crtc_wait_one_vblank — wait for one vblank

Synopsis

void drm_crtc_wait_one_vblank (struct drm_crtc * crtc);

Arguments

crtc DRM crtc

Description

This waits for one vblank to pass on crtc, using the irq driver interfaces. It is a failure to call this when
the vblank irq for crtc is disabled, e.g. due to lack of driver support or because the crtc is off.

DRM Internals

517

Name
drm_vblank_off — disable vblank events on a CRTC

Synopsis

void drm_vblank_off (struct drm_device * dev, int crtc);

Arguments

dev DRM device

crtc CRTC in question

Description

Drivers can use this function to shut down the vblank interrupt handling when disabling a crtc. This func-
tion ensures that the latest vblank frame count is stored so that drm_vblank_on can restore it again.

Drivers must use this function when the hardware vblank counter can get reset, e.g. when suspending.

This is the legacy version of drm_crtc_vblank_off.

DRM Internals

518

Name
drm_crtc_vblank_off — disable vblank events on a CRTC

Synopsis

void drm_crtc_vblank_off (struct drm_crtc * crtc);

Arguments

crtc CRTC in question

Description

Drivers can use this function to shut down the vblank interrupt handling when disabling a crtc. This func-
tion ensures that the latest vblank frame count is stored so that drm_vblank_on can restore it again.

Drivers must use this function when the hardware vblank counter can get reset, e.g. when suspending.

This is the native kms version of drm_vblank_off.

DRM Internals

519

Name
drm_crtc_vblank_reset — reset vblank state to off on a CRTC

Synopsis

void drm_crtc_vblank_reset (struct drm_crtc * drm_crtc);

Arguments

drm_crtc -- undescribed --

Description

Drivers can use this function to reset the vblank state to off at load time. Drivers should use this together
with the drm_crtc_vblank_off and drm_crtc_vblank_on functions. The difference compared
to drm_crtc_vblank_off is that this function doesn't save the vblank counter and hence doesn't need
to call any driver hooks.

DRM Internals

520

Name
drm_vblank_on — enable vblank events on a CRTC

Synopsis

void drm_vblank_on (struct drm_device * dev, int crtc);

Arguments

dev DRM device

crtc CRTC in question

Description

This functions restores the vblank interrupt state captured with drm_vblank_off again. Note that calls
to drm_vblank_on and drm_vblank_off can be unbalanced and so can also be unconditionally
called in driver load code to reflect the current hardware state of the crtc.

This is the legacy version of drm_crtc_vblank_on.

DRM Internals

521

Name
drm_crtc_vblank_on — enable vblank events on a CRTC

Synopsis

void drm_crtc_vblank_on (struct drm_crtc * crtc);

Arguments

crtc CRTC in question

Description

This functions restores the vblank interrupt state captured with drm_vblank_off again. Note that calls
to drm_vblank_on and drm_vblank_off can be unbalanced and so can also be unconditionally
called in driver load code to reflect the current hardware state of the crtc.

This is the native kms version of drm_vblank_on.

DRM Internals

522

Name
drm_vblank_pre_modeset — account for vblanks across mode sets

Synopsis

void drm_vblank_pre_modeset (struct drm_device * dev, int crtc);

Arguments

dev DRM device

crtc CRTC in question

Description

Account for vblank events across mode setting events, which will likely reset the hardware frame counter.

This is done by grabbing a temporary vblank reference to ensure that the vblank interrupt keeps running
across the modeset sequence. With this the software-side vblank frame counting will ensure that there are
no jumps or discontinuities.

Unfortunately this approach is racy and also doesn't work when the vblank interrupt stops running,
e.g. across system suspend resume. It is therefore highly recommended that drivers use the newer
drm_vblank_off and drm_vblank_on instead. drm_vblank_pre_modeset only works cor-
rectly when using “cooked” software vblank frame counters and not relying on any hardware counters.

Drivers must call drm_vblank_post_modeset when re-enabling the same crtc again.

DRM Internals

523

Name
drm_vblank_post_modeset — undo drm_vblank_pre_modeset changes

Synopsis

void drm_vblank_post_modeset (struct drm_device * dev, int crtc);

Arguments

dev DRM device

crtc CRTC in question

Description

This function again drops the temporary vblank reference acquired in drm_vblank_pre_modeset.

DRM Internals

524

Name
drm_handle_vblank — handle a vblank event

Synopsis

bool drm_handle_vblank (struct drm_device * dev, int crtc);

Arguments

dev DRM device

crtc where this event occurred

Description

Drivers should call this routine in their vblank interrupt handlers to update the vblank counter and send
any signals that may be pending.

This is the legacy version of drm_crtc_handle_vblank.

DRM Internals

525

Name
drm_crtc_handle_vblank — handle a vblank event

Synopsis

bool drm_crtc_handle_vblank (struct drm_crtc * crtc);

Arguments

crtc where this event occurred

Description

Drivers should call this routine in their vblank interrupt handlers to update the vblank counter and send
any signals that may be pending.

This is the native KMS version of drm_handle_vblank.

Returns

True if the event was successfully handled, false on failure.

DRM Internals

526

Name
drm_crtc_vblank_waitqueue — get vblank waitqueue for the CRTC

Synopsis

wait_queue_head_t * drm_crtc_vblank_waitqueue (struct drm_crtc * crtc);

Arguments

crtc which CRTC's vblank waitqueue to retrieve

Description

This function returns a pointer to the vblank waitqueue for the CRTC. Drivers can use this to implement
vblank waits using wait_event & co.

Open/Close, File Operations and IOCTLs

Open and Close
int (*firstopen) (struct drm_device *);
void (*lastclose) (struct drm_device *);
int (*open) (struct drm_device *, struct drm_file *);
void (*preclose) (struct drm_device *, struct drm_file *);
void (*postclose) (struct drm_device *, struct drm_file *);

Open and close handlers. None of those methods are mandatory.

The firstopen method is called by the DRM core for legacy UMS (User Mode Setting) drivers only
when an application opens a device that has no other opened file handle. UMS drivers can implement it
to acquire device resources. KMS drivers can't use the method and must acquire resources in the load
method instead.

Similarly the lastclose method is called when the last application holding a file handle opened on the
device closes it, for both UMS and KMS drivers. Additionally, the method is also called at module unload
time or, for hot-pluggable devices, when the device is unplugged. The firstopen and lastclose
calls can thus be unbalanced.

The open method is called every time the device is opened by an application. Drivers can allocate per-
file private data in this method and store them in the struct drm_file driver_priv field. Note that the
open method is called before firstopen.

The close operation is split into preclose and postclose methods. Drivers must stop and cleanup all
per-file operations in the preclose method. For instance pending vertical blanking and page flip events
must be cancelled. No per-file operation is allowed on the file handle after returning from the preclose
method.

Finally the postclose method is called as the last step of the close operation, right before calling the
lastclose method if no other open file handle exists for the device. Drivers that have allocated per-file
private data in the open method should free it here.

The lastclose method should restore CRTC and plane properties to default value, so that a subsequent
open of the device will not inherit state from the previous user. It can also be used to execute delayed
power switching state changes, e.g. in conjunction with the vga-switcheroo infrastructure. Beyond that

DRM Internals

527

KMS drivers should not do any further cleanup. Only legacy UMS drivers might need to clean up device
state so that the vga console or an independent fbdev driver could take over.

File Operations
const struct file_operations *fops

File operations for the DRM device node.

Drivers must define the file operations structure that forms the DRM userspace API entry point, even
though most of those operations are implemented in the DRM core. The open, release and ioctl
operations are handled by

 .owner = THIS_MODULE,
 .open = drm_open,
 .release = drm_release,
 .unlocked_ioctl = drm_ioctl,
 #ifdef CONFIG_COMPAT
 .compat_ioctl = drm_compat_ioctl,
 #endif

Drivers that implement private ioctls that requires 32/64bit compatibility support must provide their own
compat_ioctl handler that processes private ioctls and calls drm_compat_ioctl for core ioctls.

The read and poll operations provide support for reading DRM events and polling them. They are
implemented by

 .poll = drm_poll,
 .read = drm_read,
 .llseek = no_llseek,

The memory mapping implementation varies depending on how the driver manages memory. Pre-GEM
drivers will use drm_mmap, while GEM-aware drivers will use drm_gem_mmap. See the section called
“The Graphics Execution Manager (GEM)”.

 .mmap = drm_gem_mmap,

No other file operation is supported by the DRM API.

IOCTLs
struct drm_ioctl_desc *ioctls;
int num_ioctls;

Driver-specific ioctls descriptors table.

Driver-specific ioctls numbers start at DRM_COMMAND_BASE. The ioctls descriptors table is indexed
by the ioctl number offset from the base value. Drivers can use the DRM_IOCTL_DEF_DRV() macro
to initialize the table entries.

DRM Internals

528

DRM_IOCTL_DEF_DRV(ioctl, func, flags)

ioctl is the ioctl name. Drivers must define the DRM_##ioctl and DRM_IOCTL_##ioctl macros to the
ioctl number offset from DRM_COMMAND_BASE and the ioctl number respectively. The first macro
is private to the device while the second must be exposed to userspace in a public header.

func is a pointer to the ioctl handler function compatible with the drm_ioctl_t type.

typedef int drm_ioctl_t(struct drm_device *dev, void *data,
 struct drm_file *file_priv);

flags is a bitmask combination of the following values. It restricts how the ioctl is allowed to be called.

• DRM_AUTH - Only authenticated callers allowed

• DRM_MASTER - The ioctl can only be called on the master file handle

• DRM_ROOT_ONLY - Only callers with the SYSADMIN capability allowed

• DRM_CONTROL_ALLOW - The ioctl can only be called on a control device

• DRM_UNLOCKED - The ioctl handler will be called without locking the DRM global mutex

Legacy Support Code
The section very briefly covers some of the old legacy support code which is only used by old DRM drivers
which have done a so-called shadow-attach to the underlying device instead of registering as a real driver.
This also includes some of the old generic buffer management and command submission code. Do not use
any of this in new and modern drivers.

Legacy Suspend/Resume
The DRM core provides some suspend/resume code, but drivers wanting full suspend/resume support
should provide save() and restore() functions. These are called at suspend, hibernate, or resume time, and
should perform any state save or restore required by your device across suspend or hibernate states.

int (*suspend) (struct drm_device *, pm_message_t state);
 int (*resume) (struct drm_device *);

Those are legacy suspend and resume methods which only work with the legacy shadow-attach driver
registration functions. New driver should use the power management interface provided by their bus type
(usually through the struct device_driver dev_pm_ops) and set these methods to NULL.

Legacy DMA Services
This should cover how DMA mapping etc. is supported by the core. These functions are deprecated and
should not be used.

529

Chapter 3. Userland interfaces
The DRM core exports several interfaces to applications, generally intended to be used through corre-
sponding libdrm wrapper functions. In addition, drivers export device-specific interfaces for use by user-
space drivers & device-aware applications through ioctls and sysfs files.

External interfaces include: memory mapping, context management, DMA operations, AGP management,
vblank control, fence management, memory management, and output management.

Cover generic ioctls and sysfs layout here. We only need high-level info, since man pages should cover
the rest.

Render nodes
DRM core provides multiple character-devices for user-space to use. Depending on which device is
opened, user-space can perform a different set of operations (mainly ioctls). The primary node is always
created and called card<num>. Additionally, a currently unused control node, called controlD<num> is
also created. The primary node provides all legacy operations and historically was the only interface used
by userspace. With KMS, the control node was introduced. However, the planned KMS control interface
has never been written and so the control node stays unused to date.

With the increased use of offscreen renderers and GPGPU applications, clients no longer require running
compositors or graphics servers to make use of a GPU. But the DRM API required unprivileged clients to
authenticate to a DRM-Master prior to getting GPU access. To avoid this step and to grant clients GPU
access without authenticating, render nodes were introduced. Render nodes solely serve render clients, that
is, no modesetting or privileged ioctls can be issued on render nodes. Only non-global rendering commands
are allowed. If a driver supports render nodes, it must advertise it via the DRIVER_RENDER DRM driver
capability. If not supported, the primary node must be used for render clients together with the legacy
drmAuth authentication procedure.

If a driver advertises render node support, DRM core will create a separate render node called
renderD<num>. There will be one render node per device. No ioctls except PRIME-related ioctls will be
allowed on this node. Especially GEM_OPEN will be explicitly prohibited. Render nodes are designed
to avoid the buffer-leaks, which occur if clients guess the flink names or mmap offsets on the legacy in-
terface. Additionally to this basic interface, drivers must mark their driver-dependent render-only ioctls
as DRM_RENDER_ALLOW so render clients can use them. Driver authors must be careful not to allow
any privileged ioctls on render nodes.

With render nodes, user-space can now control access to the render node via basic file-system ac-
cess-modes. A running graphics server which authenticates clients on the privileged primary/legacy node
is no longer required. Instead, a client can open the render node and is immediately granted GPU access.
Communication between clients (or servers) is done via PRIME. FLINK from render node to legacy node
is not supported. New clients must not use the insecure FLINK interface.

Besides dropping all modeset/global ioctls, render nodes also drop the DRM-Master concept. There is
no reason to associate render clients with a DRM-Master as they are independent of any graphics server.
Besides, they must work without any running master, anyway. Drivers must be able to run without a master
object if they support render nodes. If, on the other hand, a driver requires shared state between clients
which is visible to user-space and accessible beyond open-file boundaries, they cannot support render
nodes.

VBlank event handling
The DRM core exposes two vertical blank related ioctls:

Userland interfaces

530

DRM_IOCTL_WAIT_VBLANKThis takes a struct drm_wait_vblank structure as its argument, and it is
used to block or request a signal when a specified vblank event occurs.

DRM_IOCTL_MODESET_CTL This was only used for user-mode-settind drivers around modesetting
changes to allow the kernel to update the vblank interrupt after mode
setting, since on many devices the vertical blank counter is reset to 0
at some point during modeset. Modern drivers should not call this any
more since with kernel mode setting it is a no-op.

Part II. DRM Drivers
This second part of the DRM Developer's Guide documents driver code, implementation details and also all the dri-
ver-specific userspace interfaces. Especially since all hardware-acceleration interfaces to userspace are driver specific
for efficiency and other reasons these interfaces can be rather substantial. Hence every driver has its own chapter.

532

Table of Contents
4. drm/i915 Intel GFX Driver .. 533

Core Driver Infrastructure ... 533
Runtime Power Management ... 533
Interrupt Handling .. 549
Intel GVT-g Guest Support(vGPU) ... 554

Display Hardware Handling ... 557
Mode Setting Infrastructure ... 557
Frontbuffer Tracking .. 557
Display FIFO Underrun Reporting .. 566
Plane Configuration .. 571
Atomic Plane Helpers ... 571
Output Probing .. 576
High Definition Audio .. 576
Panel Self Refresh PSR (PSR/SRD) .. 581
Frame Buffer Compression (FBC) .. 586
Display Refresh Rate Switching (DRRS) ... 590
DPIO ... 596

Memory Management and Command Submission .. 597
Batchbuffer Parsing .. 597
Batchbuffer Pools .. 603
Logical Rings, Logical Ring Contexts and Execlists ... 606
Global GTT views ... 616
Buffer Object Eviction .. 620
Buffer Object Memory Shrinking ... 623

Tracing ... 626
i915_ppgtt_create and i915_ppgtt_release ... 626
i915_context_create and i915_context_free .. 626
switch_mm .. 626

533

Chapter 4. drm/i915 Intel GFX Driver
The drm/i915 driver supports all (with the exception of some very early models) integrated GFX chipsets
with both Intel display and rendering blocks. This excludes a set of SoC platforms with an SGX rendering
unit, those have basic support through the gma500 drm driver.

Core Driver Infrastructure
This section covers core driver infrastructure used by both the display and the GEM parts of the driver.

Runtime Power Management

The i915 driver supports dynamic enabling and disabling of entire hardware blocks at runtime. This is
especially important on the display side where software is supposed to control many power gates manually
on recent hardware, since on the GT side a lot of the power management is done by the hardware. But
even there some manual control at the device level is required.

Since i915 supports a diverse set of platforms with a unified codebase and hardware engineers just love
to shuffle functionality around between power domains there's a sizeable amount of indirection required.
This file provides generic functions to the driver for grabbing and releasing references for abstract power
domains. It then maps those to the actual power wells present for a given platform.

drm/i915 Intel GFX Driver

534

Name
__intel_display_power_is_enabled — unlocked check for a power domain

Synopsis

bool __intel_display_power_is_enabled (struct drm_i915_private *
dev_priv, enum intel_display_power_domain domain);

Arguments

dev_priv i915 device instance

domain power domain to check

Description

This is the unlocked version of intel_display_power_is_enabled and should only be used from
error capture and recovery code where deadlocks are possible.

Returns

True when the power domain is enabled, false otherwise.

drm/i915 Intel GFX Driver

535

Name
intel_display_power_is_enabled — check for a power domain

Synopsis

bool intel_display_power_is_enabled (struct drm_i915_private *
dev_priv, enum intel_display_power_domain domain);

Arguments

dev_priv i915 device instance

domain power domain to check

Description

This function can be used to check the hw power domain state. It is mostly used in hardware state readout
functions. Everywhere else code should rely upon explicit power domain reference counting to ensure that
the hardware block is powered up before accessing it.

Callers must hold the relevant modesetting locks to ensure that concurrent threads can't disable the power
well while the caller tries to read a few registers.

Returns

True when the power domain is enabled, false otherwise.

drm/i915 Intel GFX Driver

536

Name
intel_display_set_init_power — set the initial power domain state

Synopsis

void intel_display_set_init_power (struct drm_i915_private * dev_priv,
bool enable);

Arguments

dev_priv i915 device instance

enable whether to enable or disable the initial power domain state

Description

For simplicity our driver load/unload and system suspend/resume code assumes that all power domains
are always enabled. This functions controls the state of this little hack. While the initial power domain
state is enabled runtime pm is effectively disabled.

drm/i915 Intel GFX Driver

537

Name
intel_display_power_get — grab a power domain reference

Synopsis

void intel_display_power_get (struct drm_i915_private * dev_priv, enum
intel_display_power_domain domain);

Arguments

dev_priv i915 device instance

domain power domain to reference

Description

This function grabs a power domain reference for domain and ensures that the power domain and all
its parents are powered up. Therefore users should only grab a reference to the innermost power domain
they need.

Any power domain reference obtained by this function must have a symmetric call to
intel_display_power_put to release the reference again.

drm/i915 Intel GFX Driver

538

Name
intel_display_power_put — release a power domain reference

Synopsis

void intel_display_power_put (struct drm_i915_private * dev_priv, enum
intel_display_power_domain domain);

Arguments

dev_priv i915 device instance

domain power domain to reference

Description

This function drops the power domain reference obtained by intel_display_power_get and might
power down the corresponding hardware block right away if this is the last reference.

drm/i915 Intel GFX Driver

539

Name
intel_power_domains_init — initializes the power domain structures

Synopsis

int intel_power_domains_init (struct drm_i915_private * dev_priv);

Arguments

dev_priv i915 device instance

Description

Initializes the power domain structures for dev_priv depending upon the supported platform.

drm/i915 Intel GFX Driver

540

Name
intel_power_domains_fini — finalizes the power domain structures

Synopsis

void intel_power_domains_fini (struct drm_i915_private * dev_priv);

Arguments

dev_priv i915 device instance

Description

Finalizes the power domain structures for dev_priv depending upon the supported platform. This func-
tion also disables runtime pm and ensures that the device stays powered up so that the driver can be re-
loaded.

drm/i915 Intel GFX Driver

541

Name
intel_power_domains_init_hw — initialize hardware power domain state

Synopsis

void intel_power_domains_init_hw (struct drm_i915_private * dev_priv);

Arguments

dev_priv i915 device instance

Description

This function initializes the hardware power domain state and enables all power domains using
intel_display_set_init_power.

drm/i915 Intel GFX Driver

542

Name
intel_aux_display_runtime_get — grab an auxiliary power domain reference

Synopsis

void intel_aux_display_runtime_get (struct drm_i915_private *
dev_priv);

Arguments

dev_priv i915 device instance

Description

This function grabs a power domain reference for the auxiliary power domain (for access to the GMBUS
and DP AUX blocks) and ensures that it and all its parents are powered up. Therefore users should only
grab a reference to the innermost power domain they need.

Any power domain reference obtained by this function must have a symmetric call to
intel_aux_display_runtime_put to release the reference again.

drm/i915 Intel GFX Driver

543

Name
intel_aux_display_runtime_put — release an auxiliary power domain reference

Synopsis

void intel_aux_display_runtime_put (struct drm_i915_private *
dev_priv);

Arguments

dev_priv i915 device instance

Description

This function drops the auxiliary power domain reference obtained by
intel_aux_display_runtime_get and might power down the corresponding hardware block
right away if this is the last reference.

drm/i915 Intel GFX Driver

544

Name
intel_runtime_pm_get — grab a runtime pm reference

Synopsis

void intel_runtime_pm_get (struct drm_i915_private * dev_priv);

Arguments

dev_priv i915 device instance

Description

This function grabs a device-level runtime pm reference (mostly used for GEM code to ensure the GTT
or GT is on) and ensures that it is powered up.

Any runtime pm reference obtained by this function must have a symmetric call to
intel_runtime_pm_put to release the reference again.

drm/i915 Intel GFX Driver

545

Name
intel_runtime_pm_get_noresume — grab a runtime pm reference

Synopsis

void intel_runtime_pm_get_noresume (struct drm_i915_private *
dev_priv);

Arguments

dev_priv i915 device instance

Description

This function grabs a device-level runtime pm reference (mostly used for GEM code to ensure the GTT
or GT is on).

It will _not_ power up the device but instead only check that it's powered on. Therefore it is only valid to
call this functions from contexts where the device is known to be powered up and where trying to power it
up would result in hilarity and deadlocks. That pretty much means only the system suspend/resume code
where this is used to grab runtime pm references for delayed setup down in work items.

Any runtime pm reference obtained by this function must have a symmetric call to
intel_runtime_pm_put to release the reference again.

drm/i915 Intel GFX Driver

546

Name
intel_runtime_pm_put — release a runtime pm reference

Synopsis

void intel_runtime_pm_put (struct drm_i915_private * dev_priv);

Arguments

dev_priv i915 device instance

Description

This function drops the device-level runtime pm reference obtained by intel_runtime_pm_get and
might power down the corresponding hardware block right away if this is the last reference.

drm/i915 Intel GFX Driver

547

Name
intel_runtime_pm_enable — enable runtime pm

Synopsis

void intel_runtime_pm_enable (struct drm_i915_private * dev_priv);

Arguments

dev_priv i915 device instance

Description

This function enables runtime pm at the end of the driver load sequence.

Note that this function does currently not enable runtime pm for the subordinate display power domains.
That is only done on the first modeset using intel_display_set_init_power.

drm/i915 Intel GFX Driver

548

Name
intel_uncore_forcewake_get — grab forcewake domain references

Synopsis

void intel_uncore_forcewake_get (struct drm_i915_private * dev_priv,
enum forcewake_domains fw_domains);

Arguments

dev_priv i915 device instance

fw_domains forcewake domains to get reference on

Description

This function can be used get GT's forcewake domain references. Normal register access will handle the
forcewake domains automatically. However if some sequence requires the GT to not power down a partic-
ular forcewake domains this function should be called at the beginning of the sequence. And subsequently
the reference should be dropped by symmetric call to intel_unforce_forcewake_put. Usually
caller wants all the domains to be kept awake so the fw_domains would be then FORCEWAKE_ALL.

drm/i915 Intel GFX Driver

549

Name
intel_uncore_forcewake_put — release a forcewake domain reference

Synopsis

void intel_uncore_forcewake_put (struct drm_i915_private * dev_priv,
enum forcewake_domains fw_domains);

Arguments

dev_priv i915 device instance

fw_domains forcewake domains to put references

Description

This function drops the device-level forcewakes for specified domains obtained by
intel_uncore_forcewake_get.

Interrupt Handling

These functions provide the basic support for enabling and disabling the interrupt handling support. There's
a lot more functionality in i915_irq.c and related files, but that will be described in separate chapters.

drm/i915 Intel GFX Driver

550

Name
intel_irq_init — initializes irq support

Synopsis

void intel_irq_init (struct drm_i915_private * dev_priv);

Arguments

dev_priv i915 device instance

Description

This function initializes all the irq support including work items, timers and all the vtables. It does not
setup the interrupt itself though.

drm/i915 Intel GFX Driver

551

Name
intel_hpd_init — initializes and enables hpd support

Synopsis

void intel_hpd_init (struct drm_i915_private * dev_priv);

Arguments

dev_priv i915 device instance

Description

This function enables the hotplug support. It requires that interrupts have already been enabled with
intel_irq_init_hw. From this point on hotplug and poll request can run concurrently to other code,
so locking rules must be obeyed.

This is a separate step from interrupt enabling to simplify the locking rules in the driver load and resume
code.

drm/i915 Intel GFX Driver

552

Name
/usr/src/linux-4.1.27-24//drivers/gpu/drm/i915/i915_irq.c — Document generation inconsistency

Oops

Warning

The template for this document tried to insert the structured comment from the file /usr/src/
linux-4.1.27-24//drivers/gpu/drm/i915/i915_irq.c at this point, but none
was found. This dummy section is inserted to allow generation to continue.

drm/i915 Intel GFX Driver

553

Name
intel_runtime_pm_disable_interrupts — runtime interrupt disabling

Synopsis

void intel_runtime_pm_disable_interrupts (struct drm_i915_private *
dev_priv);

Arguments

dev_priv i915 device instance

Description

This function is used to disable interrupts at runtime, both in the runtime pm and the system suspend/resume
code.

drm/i915 Intel GFX Driver

554

Name
intel_runtime_pm_enable_interrupts — runtime interrupt enabling

Synopsis

void intel_runtime_pm_enable_interrupts (struct drm_i915_private *
dev_priv);

Arguments

dev_priv i915 device instance

Description

This function is used to enable interrupts at runtime, both in the runtime pm and the system suspend/resume
code.

Intel GVT-g Guest Support(vGPU)

Intel GVT-g is a graphics virtualization technology which shares the GPU among multiple virtual machines
on a time-sharing basis. Each virtual machine is presented a virtual GPU (vGPU), which has equivalent
features as the underlying physical GPU (pGPU), so i915 driver can run seamlessly in a virtual machine.
This file provides vGPU specific optimizations when running in a virtual machine, to reduce the complex-
ity of vGPU emulation and to improve the overall performance.

A primary function introduced here is so-called “address space ballooning” technique. Intel GVT-g par-
titions global graphics memory among multiple VMs, so each VM can directly access a portion of the
memory without hypervisor's intervention, e.g. filling textures or queuing commands. However with the
partitioning an unmodified i915 driver would assume a smaller graphics memory starting from address
ZERO, then requires vGPU emulation module to translate the graphics address between 'guest view' and
'host view', for all registers and command opcodes which contain a graphics memory address. To reduce the
complexity, Intel GVT-g introduces “address space ballooning”, by telling the exact partitioning knowl-
edge to each guest i915 driver, which then reserves and prevents non-allocated portions from allocation.
Thus vGPU emulation module only needs to scan and validate graphics addresses without complexity of
address translation.

drm/i915 Intel GFX Driver

555

Name
i915_check_vgpu — detect virtual GPU

Synopsis

void i915_check_vgpu (struct drm_device * dev);

Arguments

dev drm device *

Description

This function is called at the initialization stage, to detect whether running on a vGPU.

drm/i915 Intel GFX Driver

556

Name
intel_vgt_deballoon — deballoon reserved graphics address trunks

Synopsis

void intel_vgt_deballoon (void);

Arguments

void no arguments

Description

This function is called to deallocate the ballooned-out graphic memory, when driver is unloaded or when
ballooning fails.

drm/i915 Intel GFX Driver

557

Name
intel_vgt_balloon — balloon out reserved graphics address trunks

Synopsis

int intel_vgt_balloon (struct drm_device * dev);

Arguments

dev drm device

Description

This function is called at the initialization stage, to balloon out the graphic address space allocated to
other vGPUs, by marking these spaces as reserved. The ballooning related knowledge(starting address
and size of the mappable/unmappable graphic memory) is described in the vgt_if structure in a reserved
mmio range.

To give an example, the drawing below depicts one typical scenario after ballooning. Here the vGPU1
has 2 pieces of graphic address spaces ballooned out each for the mappable and the non-mappable part.
From the vGPU1 point of view, the total size is the same as the physical one, with the start address of its
graphic space being zero. Yet there are some portions ballooned out(the shadow part, which are marked
as reserved by drm allocator). From the host point of view, the graphic address space is partitioned by
multiple vGPUs in different VMs.

vGPU1 view Host view 0 ------> +-----------+ +-----------+ ^ |///////////| | vGPU3 | | |///////////| +-----------+
| |///////////| | vGPU2 | | +-----------+ +-----------+ mappable GM | available | ==> | vGPU1 | | +-----------+
+-----------+ | |///////////| | | v |///////////| | Host | +=======+===========+ +===========+ ^ |///////////| |
vGPU3 | | |///////////| +-----------+ | |///////////| | vGPU2 | | +-----------+ +-----------+ unmappable GM | available
| ==> | vGPU1 | | +-----------+ +-----------+ | |///////////| | | | |///////////| | Host | v |///////////| | | total GM size ------
> +-----------+ +-----------+

Returns

zero on success, non-zero if configuration invalid or ballooning failed

Display Hardware Handling
This section covers everything related to the display hardware including the mode setting infrastructure,
plane, sprite and cursor handling and display, output probing and related topics.

Mode Setting Infrastructure
The i915 driver is thus far the only DRM driver which doesn't use the common DRM helper code to
implement mode setting sequences. Thus it has its own tailor-made infrastructure for executing a display
configuration change.

Frontbuffer Tracking

Many features require us to track changes to the currently active frontbuffer, especially rendering targeted
at the frontbuffer.

drm/i915 Intel GFX Driver

558

To be able to do so GEM tracks frontbuffers using a bitmask for all possible frontbuffer slots through
i915_gem_track_fb. The function in this file are then called when the contents of the frontbuffer
are invalidated, when frontbuffer rendering has stopped again to flush out all the changes and when the
frontbuffer is exchanged with a flip. Subsystems interested in frontbuffer changes (e.g. PSR, FBC, DRRS)
should directly put their callbacks into the relevant places and filter for the frontbuffer slots that they are
interested int.

On a high level there are two types of powersaving features. The first one work like a special cache (FBC
and PSR) and are interested when they should stop caching and when to restart caching. This is done by
placing callbacks into the invalidate and the flush functions: At invalidate the caching must be stopped and
at flush time it can be restarted. And maybe they need to know when the frontbuffer changes (e.g. when
the hw doesn't initiate an invalidate and flush on its own) which can be achieved with placing callbacks
into the flip functions.

The other type of display power saving feature only cares about busyness (e.g. DRRS). In that case all
three (invalidate, flush and flip) indicate busyness. There is no direct way to detect idleness. Instead an
idle timer work delayed work should be started from the flush and flip functions and cancelled as soon
as busyness is detected.

Note that there's also an older frontbuffer activity tracking scheme which just tracks general activity. This
is done by the various mark_busy and mark_idle functions. For display power management features using
these functions is deprecated and should be avoided.

drm/i915 Intel GFX Driver

559

Name
intel_mark_fb_busy — mark given planes as busy

Synopsis

void intel_mark_fb_busy (struct drm_device * dev, unsigned
frontbuffer_bits, struct intel_engine_cs * ring);

Arguments

dev DRM device

frontbuffer_bits bits for the affected planes

ring optional ring for asynchronous commands

Description

This function gets called every time the screen contents change. It can be used to keep e.g. the update rate
at the nominal refresh rate with DRRS.

drm/i915 Intel GFX Driver

560

Name
intel_fb_obj_invalidate — invalidate frontbuffer object

Synopsis

void intel_fb_obj_invalidate (struct drm_i915_gem_object * obj, struct
intel_engine_cs * ring, enum fb_op_origin origin);

Arguments

obj GEM object to invalidate

ring set for asynchronous rendering

origin which operation caused the invalidation

Description

This function gets called every time rendering on the given object starts and frontbuffer caching (fbc,
low refresh rate for DRRS, panel self refresh) must be invalidated. If ring is non-NULL any subsequent
invalidation will be delayed until the rendering completes or a flip on this frontbuffer plane is scheduled.

drm/i915 Intel GFX Driver

561

Name
intel_frontbuffer_flush — flush frontbuffer

Synopsis

void intel_frontbuffer_flush (struct drm_device * dev, unsigned
frontbuffer_bits);

Arguments

dev DRM device

frontbuffer_bits frontbuffer plane tracking bits

Description

This function gets called every time rendering on the given planes has completed and frontbuffer caching
can be started again. Flushes will get delayed if they're blocked by some outstanding asynchronous ren-
dering.

Can be called without any locks held.

drm/i915 Intel GFX Driver

562

Name
intel_fb_obj_flush — flush frontbuffer object

Synopsis

void intel_fb_obj_flush (struct drm_i915_gem_object * obj, bool retire);

Arguments

obj GEM object to flush

retire set when retiring asynchronous rendering

Description

This function gets called every time rendering on the given object has completed and frontbuffer caching
can be started again. If retire is true then any delayed flushes will be unblocked.

drm/i915 Intel GFX Driver

563

Name
intel_frontbuffer_flip_prepare — prepare asynchronous frontbuffer flip

Synopsis

void intel_frontbuffer_flip_prepare (struct drm_device * dev, unsigned
frontbuffer_bits);

Arguments

dev DRM device

frontbuffer_bits frontbuffer plane tracking bits

Description

This function gets called after scheduling a flip on obj. The actual frontbuffer flushing will be delayed
until completion is signalled with intel_frontbuffer_flip_complete. If an invalidate happens in between
this flush will be cancelled.

Can be called without any locks held.

drm/i915 Intel GFX Driver

564

Name
intel_frontbuffer_flip_complete — complete asynchronous frontbuffer flip

Synopsis

void intel_frontbuffer_flip_complete (struct drm_device * dev, unsigned
frontbuffer_bits);

Arguments

dev DRM device

frontbuffer_bits frontbuffer plane tracking bits

Description

This function gets called after the flip has been latched and will complete on the next vblank. It will execute
the flush if it hasn't been cancelled yet.

Can be called without any locks held.

drm/i915 Intel GFX Driver

565

Name
intel_frontbuffer_flip — synchronous frontbuffer flip

Synopsis

void intel_frontbuffer_flip (struct drm_device * dev, unsigned
frontbuffer_bits);

Arguments

dev DRM device

frontbuffer_bits frontbuffer plane tracking bits

Description

This function gets called after scheduling a flip on obj. This is for synchronous plane updates which will
happen on the next vblank and which will not get delayed by pending gpu rendering.

Can be called without any locks held.

drm/i915 Intel GFX Driver

566

Name
i915_gem_track_fb — update frontbuffer tracking

Synopsis

void i915_gem_track_fb (struct drm_i915_gem_object * old, struct
drm_i915_gem_object * new, unsigned frontbuffer_bits);

Arguments

old -- undescribed --

new -- undescribed --

frontbuffer_bits -- undescribed --

old

current GEM buffer for the frontbuffer slots

new

new GEM buffer for the frontbuffer slots

frontbuffer_bits

bitmask of frontbuffer slots

This updates the frontbuffer tracking bits frontbuffer_bits by clearing them from old and setting
them in new. Both old and new can be NULL.

Display FIFO Underrun Reporting

The i915 driver checks for display fifo underruns using the interrupt signals provided by the hardware.
This is enabled by default and fairly useful to debug display issues, especially watermark settings.

If an underrun is detected this is logged into dmesg. To avoid flooding logs and occupying the cpu underrun
interrupts are disabled after the first occurrence until the next modeset on a given pipe.

Note that underrun detection on gmch platforms is a bit more ugly since there is no interrupt (despite
that the signalling bit is in the PIPESTAT pipe interrupt register). Also on some other platforms underrun
interrupts are shared, which means that if we detect an underrun we need to disable underrun reporting
on all pipes.

The code also supports underrun detection on the PCH transcoder.

drm/i915 Intel GFX Driver

567

Name
i9xx_check_fifo_underruns — check for fifo underruns

Synopsis

void i9xx_check_fifo_underruns (struct drm_i915_private * dev_priv);

Arguments

dev_priv i915 device instance

Description

This function checks for fifo underruns on GMCH platforms. This needs to be done manually on modeset
to make sure that we catch all underruns since they do not generate an interrupt by themselves on these
platforms.

drm/i915 Intel GFX Driver

568

Name
intel_set_cpu_fifo_underrun_reporting — set cpu fifo underrrun reporting state

Synopsis

bool intel_set_cpu_fifo_underrun_reporting (struct drm_i915_private *
dev_priv, enum pipe pipe, bool enable);

Arguments

dev_priv i915 device instance

pipe (CPU) pipe to set state for

enable whether underruns should be reported or not

Description

This function sets the fifo underrun state for pipe. It is used in the modeset code to avoid false positives
since on many platforms underruns are expected when disabling or enabling the pipe.

Notice that on some platforms disabling underrun reports for one pipe disables for all due to shared inter-
rupts. Actual reporting is still per-pipe though.

Returns the previous state of underrun reporting.

drm/i915 Intel GFX Driver

569

Name
intel_set_pch_fifo_underrun_reporting — set PCH fifo underrun reporting state

Synopsis

bool intel_set_pch_fifo_underrun_reporting (struct drm_i915_private *
dev_priv, enum transcoder pch_transcoder, bool enable);

Arguments

dev_priv i915 device instance

pch_transcoder the PCH transcoder (same as pipe on IVB and older)

enable whether underruns should be reported or not

Description

This function makes us disable or enable PCH fifo underruns for a specific PCH transcoder. Notice that
on some PCHs (e.g. CPT/PPT), disabling FIFO underrun reporting for one transcoder may also disable all
the other PCH error interruts for the other transcoders, due to the fact that there's just one interrupt mask/
enable bit for all the transcoders.

Returns the previous state of underrun reporting.

drm/i915 Intel GFX Driver

570

Name
intel_cpu_fifo_underrun_irq_handler — handle CPU fifo underrun interrupt

Synopsis

void intel_cpu_fifo_underrun_irq_handler (struct drm_i915_private *
dev_priv, enum pipe pipe);

Arguments

dev_priv i915 device instance

pipe (CPU) pipe to set state for

Description

This handles a CPU fifo underrun interrupt, generating an underrun warning into dmesg if underrun re-
porting is enabled and then disables the underrun interrupt to avoid an irq storm.

drm/i915 Intel GFX Driver

571

Name
intel_pch_fifo_underrun_irq_handler — handle PCH fifo underrun interrupt

Synopsis

void intel_pch_fifo_underrun_irq_handler (struct drm_i915_private *
dev_priv, enum transcoder pch_transcoder);

Arguments

dev_priv i915 device instance

pch_transcoder the PCH transcoder (same as pipe on IVB and older)

Description

This handles a PCH fifo underrun interrupt, generating an underrun warning into dmesg if underrun re-
porting is enabled and then disables the underrun interrupt to avoid an irq storm.

Plane Configuration
This section covers plane configuration and composition with the primary plane, sprites, cursors and over-
lays. This includes the infrastructure to do atomic vsync'ed updates of all this state and also tightly coupled
topics like watermark setup and computation, framebuffer compression and panel self refresh.

Atomic Plane Helpers

The functions here are used by the atomic plane helper functions to implement legacy plane updates (i.e.,
drm_plane->update_plane and drm_plane->disable_plane). This allows plane updates to use the
atomic state infrastructure and perform plane updates as separate prepare/check/commit/cleanup steps.

drm/i915 Intel GFX Driver

572

Name
intel_create_plane_state — create plane state object

Synopsis

struct intel_plane_state * intel_create_plane_state (struct drm_plane
* plane);

Arguments

plane drm plane

Description

Allocates a fresh plane state for the given plane and sets some of the state values to sensible initial values.

Returns

A newly allocated plane state, or NULL on failure

drm/i915 Intel GFX Driver

573

Name
intel_plane_duplicate_state — duplicate plane state

Synopsis

struct drm_plane_state * intel_plane_duplicate_state (struct drm_plane
* plane);

Arguments

plane drm plane

Description

Allocates and returns a copy of the plane state (both common and Intel-specific) for the specified plane.

Returns

The newly allocated plane state, or NULL on failure.

drm/i915 Intel GFX Driver

574

Name
intel_plane_destroy_state — destroy plane state

Synopsis

void intel_plane_destroy_state (struct drm_plane * plane, struct
drm_plane_state * state);

Arguments

plane drm plane

state state object to destroy

Description

Destroys the plane state (both common and Intel-specific) for the specified plane.

drm/i915 Intel GFX Driver

575

Name
intel_plane_atomic_get_property — fetch plane property value

Synopsis

int intel_plane_atomic_get_property (struct drm_plane * plane, const
struct drm_plane_state * state, struct drm_property * property, uint64_t
* val);

Arguments

plane plane to fetch property for

state state containing the property value

property property to look up

val pointer to write property value into

Description

The DRM core does not store shadow copies of properties for atomic-capable drivers. This entrypoint is
used to fetch the current value of a driver-specific plane property.

drm/i915 Intel GFX Driver

576

Name
intel_plane_atomic_set_property — set plane property value

Synopsis

int intel_plane_atomic_set_property (struct drm_plane * plane, struct
drm_plane_state * state, struct drm_property * property, uint64_t val);

Arguments

plane plane to set property for

state state to update property value in

property property to set

val value to set property to

Description

Writes the specified property value for a plane into the provided atomic state object.

Returns 0 on success, -EINVAL on unrecognized properties

Output Probing
This section covers output probing and related infrastructure like the hotplug interrupt storm detection
and mitigation code. Note that the i915 driver still uses most of the common DRM helper code for output
probing, so those sections fully apply.

High Definition Audio

The graphics and audio drivers together support High Definition Audio over HDMI and Display Port. The
audio programming sequences are divided into audio codec and controller enable and disable sequences.
The graphics driver handles the audio codec sequences, while the audio driver handles the audio controller
sequences.

The disable sequences must be performed before disabling the transcoder or port. The enable sequences
may only be performed after enabling the transcoder and port, and after completed link training.

The codec and controller sequences could be done either parallel or serial, but generally the ELDV/PD
change in the codec sequence indicates to the audio driver that the controller sequence should start. Indeed,
most of the co-operation between the graphics and audio drivers is handled via audio related registers.
(The notable exception is the power management, not covered here.)

drm/i915 Intel GFX Driver

577

Name
intel_audio_codec_enable — Enable the audio codec for HD audio

Synopsis

void intel_audio_codec_enable (struct intel_encoder * intel_encoder);

Arguments

intel_encoder encoder on which to enable audio

Description

The enable sequences may only be performed after enabling the transcoder and port, and after completed
link training.

drm/i915 Intel GFX Driver

578

Name
intel_audio_codec_disable — Disable the audio codec for HD audio

Synopsis

void intel_audio_codec_disable (struct intel_encoder * encoder);

Arguments

encoder encoder on which to disable audio

Description

The disable sequences must be performed before disabling the transcoder or port.

drm/i915 Intel GFX Driver

579

Name
intel_init_audio — Set up chip specific audio functions

Synopsis

void intel_init_audio (struct drm_device * dev);

Arguments

dev drm device

drm/i915 Intel GFX Driver

580

Name
i915_audio_component_init — initialize and register the audio component

Synopsis

void i915_audio_component_init (struct drm_i915_private * dev_priv);

Arguments

dev_priv i915 device instance

Description

This will register with the component framework a child component which will bind dynamically to the
snd_hda_intel driver's corresponding master component when the latter is registered. During binding the
child initializes an instance of struct i915_audio_component which it receives from the master. The master
can then start to use the interface defined by this struct. Each side can break the binding at any point by
deregistering its own component after which each side's component unbind callback is called.

We ignore any error during registration and continue with reduced functionality (i.e. without HDMI audio).

drm/i915 Intel GFX Driver

581

Name
i915_audio_component_cleanup — deregister the audio component

Synopsis

void i915_audio_component_cleanup (struct drm_i915_private * dev_priv);

Arguments

dev_priv i915 device instance

Description

Deregisters the audio component, breaking any existing binding to the corresponding snd_hda_intel
driver's master component.

Panel Self Refresh PSR (PSR/SRD)

Since Haswell Display controller supports Panel Self-Refresh on display panels witch have a remote frame
buffer (RFB) implemented according to PSR spec in eDP1.3. PSR feature allows the display to go to lower
standby states when system is idle but display is on as it eliminates display refresh request to DDR memory
completely as long as the frame buffer for that display is unchanged.

Panel Self Refresh must be supported by both Hardware (source) and Panel (sink).

PSR saves power by caching the framebuffer in the panel RFB, which allows us to power down the link
and memory controller. For DSI panels the same idea is called “manual mode”.

The implementation uses the hardware-based PSR support which automatically enters/exits self-refresh
mode. The hardware takes care of sending the required DP aux message and could even retrain the link
(that part isn't enabled yet though). The hardware also keeps track of any frontbuffer changes to know
when to exit self-refresh mode again. Unfortunately that part doesn't work too well, hence why the i915
PSR support uses the software frontbuffer tracking to make sure it doesn't miss a screen update. For this
integration intel_psr_invalidate and intel_psr_flush get called by the frontbuffer tracking
code. Note that because of locking issues the self-refresh re-enable code is done from a work queue, which
must be correctly synchronized/cancelled when shutting down the pipe."

drm/i915 Intel GFX Driver

582

Name
intel_psr_enable — Enable PSR

Synopsis

void intel_psr_enable (struct intel_dp * intel_dp);

Arguments

intel_dp Intel DP

Description

This function can only be called after the pipe is fully trained and enabled.

drm/i915 Intel GFX Driver

583

Name
intel_psr_disable — Disable PSR

Synopsis

void intel_psr_disable (struct intel_dp * intel_dp);

Arguments

intel_dp Intel DP

Description

This function needs to be called before disabling pipe.

drm/i915 Intel GFX Driver

584

Name
intel_psr_invalidate — Invalidade PSR

Synopsis

void intel_psr_invalidate (struct drm_device * dev, unsigned
frontbuffer_bits);

Arguments

dev DRM device

frontbuffer_bits frontbuffer plane tracking bits

Description

Since the hardware frontbuffer tracking has gaps we need to integrate with the software frontbuffer track-
ing. This function gets called every time frontbuffer rendering starts and a buffer gets dirtied. PSR must
be disabled if the frontbuffer mask contains a buffer relevant to PSR.

Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."

drm/i915 Intel GFX Driver

585

Name
intel_psr_flush — Flush PSR

Synopsis

void intel_psr_flush (struct drm_device * dev, unsigned
frontbuffer_bits);

Arguments

dev DRM device

frontbuffer_bits frontbuffer plane tracking bits

Description

Since the hardware frontbuffer tracking has gaps we need to integrate with the software frontbuffer track-
ing. This function gets called every time frontbuffer rendering has completed and flushed out to memory.
PSR can be enabled again if no other frontbuffer relevant to PSR is dirty.

Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.

drm/i915 Intel GFX Driver

586

Name
intel_psr_init — Init basic PSR work and mutex.

Synopsis

void intel_psr_init (struct drm_device * dev);

Arguments

dev DRM device

Description

This function is called only once at driver load to initialize basic PSR stuff.

Frame Buffer Compression (FBC)

FBC tries to save memory bandwidth (and so power consumption) by compressing the amount of memory
used by the display. It is total transparent to user space and completely handled in the kernel.

The benefits of FBC are mostly visible with solid backgrounds and variation-less patterns. It comes from
keeping the memory footprint small and having fewer memory pages opened and accessed for refreshing
the display.

i915 is responsible to reserve stolen memory for FBC and configure its offset on proper registers. The
hardware takes care of all compress/decompress. However there are many known cases where we have to
forcibly disable it to allow proper screen updates.

drm/i915 Intel GFX Driver

587

Name
intel_fbc_enabled — Is FBC enabled?

Synopsis

bool intel_fbc_enabled (struct drm_device * dev);

Arguments

dev the drm_device

Description

This function is used to verify the current state of FBC.

FIXME

This should be tracked in the plane config eventually instead of queried at runtime for most callers.

drm/i915 Intel GFX Driver

588

Name
intel_fbc_disable — disable FBC

Synopsis

void intel_fbc_disable (struct drm_device * dev);

Arguments

dev the drm_device

Description

This function disables FBC.

drm/i915 Intel GFX Driver

589

Name
intel_fbc_update — enable/disable FBC as needed

Synopsis

void intel_fbc_update (struct drm_device * dev);

Arguments

dev the drm_device

Description

Set up the framebuffer compression hardware at mode set time. We

enable it if possible

- plane A only (on pre-965) - no pixel mulitply/line duplication - no alpha buffer discard - no dual wide
- framebuffer <= max_hdisplay in width, max_vdisplay in height

We can't assume that any compression will take place (worst case), so the compressed buffer has to be the
same size as the uncompressed one. It also must reside (along with the line length buffer) in stolen memory.

We need to enable/disable FBC on a global basis.

drm/i915 Intel GFX Driver

590

Name
intel_fbc_init — Initialize FBC

Synopsis

void intel_fbc_init (struct drm_i915_private * dev_priv);

Arguments

dev_priv the i915 device

Description

This function might be called during PM init process.

Display Refresh Rate Switching (DRRS)

Display Refresh Rate Switching (DRRS) is a power conservation feature which enables swtching between
low and high refresh rates, dynamically, based on the usage scenario. This feature is applicable for internal
panels.

Indication that the panel supports DRRS is given by the panel EDID, which would list multiple refresh
rates for one resolution.

DRRS is of 2 types - static and seamless. Static DRRS involves changing refresh rate (RR) by doing a full
modeset (may appear as a blink on screen) and is used in dock-undock scenario. Seamless DRRS involves
changing RR without any visual effect to the user and can be used during normal system usage. This is
done by programming certain registers.

Support for static/seamless DRRS may be indicated in the VBT based on inputs from the panel spec.

DRRS saves power by switching to low RR based on usage scenarios.

eDP DRRS:- The implementation is based on frontbuffer tracking implementation. When there is a dis-
turbance on the screen triggered by user activity or a periodic system activity, DRRS is disabled (RR is
changed to high RR). When there is no movement on screen, after a timeout of 1 second, a switch to
low RR is made. For integration with frontbuffer tracking code, intel_edp_drrs_invalidate and
intel_edp_drrs_flush are called.

DRRS can be further extended to support other internal panels and also the scenario of video playback
wherein RR is set based on the rate requested by userspace.

drm/i915 Intel GFX Driver

591

Name
intel_dp_set_drrs_state — program registers for RR switch to take effect

Synopsis

void intel_dp_set_drrs_state (struct drm_device * dev, int
refresh_rate);

Arguments

dev DRM device

refresh_rate RR to be programmed

Description

This function gets called when refresh rate (RR) has to be changed from one frequency to another. Switches
can be between high and low RR supported by the panel or to any other RR based on media playback (in
this case, RR value needs to be passed from user space).

The caller of this function needs to take a lock on dev_priv->drrs.

drm/i915 Intel GFX Driver

592

Name
intel_edp_drrs_enable — init drrs struct if supported

Synopsis

void intel_edp_drrs_enable (struct intel_dp * intel_dp);

Arguments

intel_dp DP struct

Description

Initializes frontbuffer_bits and drrs.dp

drm/i915 Intel GFX Driver

593

Name
intel_edp_drrs_disable — Disable DRRS

Synopsis

void intel_edp_drrs_disable (struct intel_dp * intel_dp);

Arguments

intel_dp DP struct

drm/i915 Intel GFX Driver

594

Name
intel_edp_drrs_invalidate — Invalidate DRRS

Synopsis

void intel_edp_drrs_invalidate (struct drm_device * dev, unsigned
frontbuffer_bits);

Arguments

dev DRM device

frontbuffer_bits frontbuffer plane tracking bits

Description

When there is a disturbance on screen (due to cursor movement/time update etc), DRRS needs to be
invalidated, i.e. need to switch to high RR.

Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.

drm/i915 Intel GFX Driver

595

Name
intel_edp_drrs_flush — Flush DRRS

Synopsis

void intel_edp_drrs_flush (struct drm_device * dev, unsigned
frontbuffer_bits);

Arguments

dev DRM device

frontbuffer_bits frontbuffer plane tracking bits

Description

When there is no movement on screen, DRRS work can be scheduled. This DRRS work is responsible for
setting relevant registers after a timeout of 1 second.

Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.

drm/i915 Intel GFX Driver

596

Name
intel_dp_drrs_init — Init basic DRRS work and mutex.

Synopsis

struct drm_display_mode * intel_dp_drrs_init (struct intel_connector *
intel_connector, struct drm_display_mode * fixed_mode);

Arguments

intel_connector eDP connector

fixed_mode preferred mode of panel

Description

This function is called only once at driver load to initialize basic DRRS stuff.

Returns

Downclock mode if panel supports it, else return NULL. DRRS support is determined by the presence of
downclock mode (apart from VBT setting).

DPIO

VLV and CHV have slightly peculiar display PHYs for driving DP/HDMI ports. DPIO is the name given
to such a display PHY. These PHYs don't follow the standard programming model using direct MMIO
registers, and instead their registers must be accessed trough IOSF sideband. VLV has one such PHY for
driving ports B and C, and CHV adds another PHY for driving port D. Each PHY responds to specific
IOSF-SB port.

Each display PHY is made up of one or two channels. Each channel houses a common lane part which
contains the PLL and other common logic. CH0 common lane also contains the IOSF-SB logic for the
Common Register Interface (CRI) ie. the DPIO registers. CRI clock must be running when any DPIO
registers are accessed.

In addition to having their own registers, the PHYs are also controlled through some dedicated signals from
the display controller. These include PLL reference clock enable, PLL enable, and CRI clock selection,
for example.

Eeach channel also has two splines (also called data lanes), and each spline is made up of one Physical
Access Coding Sub-Layer (PCS) block and two TX lanes. So each channel has two PCS blocks and four
TX lanes. The TX lanes are used as DP lanes or TMDS data/clock pairs depending on the output type.

Additionally the PHY also contains an AUX lane with AUX blocks for each channel. This is used for DP
AUX communication, but this fact isn't really relevant for the driver since AUX is controlled from the
display controller side. No DPIO registers need to be accessed during AUX communication,

Generally the common lane corresponds to the pipe and the spline (PCS/TX) corresponds to the port.

For dual channel PHY (VLV/CHV):

pipe A == CMN/PLL/REF CH0

pipe B == CMN/PLL/REF CH1

drm/i915 Intel GFX Driver

597

port B == PCS/TX CH0

port C == PCS/TX CH1

This is especially important when we cross the streams ie. drive port B with pipe B, or port C with pipe A.

For single channel PHY (CHV):

pipe C == CMN/PLL/REF CH0

port D == PCS/TX CH0

Note: digital port B is DDI0, digital port C is DDI1, digital port D is DDI2

Table 4.1. Dual channel PHY (VLV/CHV)

CH0 CH1

CMN/PLL/REF CMN/PLL/REF

PCS01 PCS23 PCS01 PCS23

TX0 TX1 TX2 TX3 TX0 TX1 TX2 TX3

DDI0 DDI1

Table 4.2. Single channel PHY (CHV)

CH0

CMN/PLL/REF

PCS01 PCS23

TX0 TX1 TX2 TX3

DDI2

Memory Management and Command Submis-
sion

This sections covers all things related to the GEM implementation in the i915 driver.

Batchbuffer Parsing

Motivation: Certain OpenGL features (e.g. transform feedback, performance monitoring) require user-
space code to submit batches containing commands such as MI_LOAD_REGISTER_IMM to access var-
ious registers. Unfortunately, some generations of the hardware will noop these commands in “unsecure”
batches (which includes all userspace batches submitted via i915) even though the commands may be safe
and represent the intended programming model of the device.

The software command parser is similar in operation to the command parsing done in hardware for unse-
cure batches. However, the software parser allows some operations that would be noop'd by hardware, if
the parser determines the operation is safe, and submits the batch as “secure” to prevent hardware parsing.

Threats: At a high level, the hardware (and software) checks attempt to prevent granting userspace undue
privileges. There are three categories of privilege.

drm/i915 Intel GFX Driver

598

First, commands which are explicitly defined as privileged or which should only be used by the kernel dri-
ver. The parser generally rejects such commands, though it may allow some from the drm master process.

Second, commands which access registers. To support correct/enhanced userspace functionality, particu-
larly certain OpenGL extensions, the parser provides a whitelist of registers which userspace may safely
access (for both normal and drm master processes).

Third, commands which access privileged memory (i.e. GGTT, HWS page, etc). The parser always rejects
such commands.

The majority of the problematic commands fall in the MI_* range, with only a few specific commands on
each ring (e.g. PIPE_CONTROL and MI_FLUSH_DW).

Implementation: Each ring maintains tables of commands and registers which the parser uses in scanning
batch buffers submitted to that ring.

Since the set of commands that the parser must check for is significantly smaller than the number of
commands supported, the parser tables contain only those commands required by the parser. This generally
works because command opcode ranges have standard command length encodings. So for commands
that the parser does not need to check, it can easily skip them. This is implemented via a per-ring length
decoding vfunc.

Unfortunately, there are a number of commands that do not follow the standard length encoding for their
opcode range, primarily amongst the MI_* commands. To handle this, the parser provides a way to define
explicit “skip” entries in the per-ring command tables.

Other command table entries map fairly directly to high level categories mentioned above: rejected, mas-
ter-only, register whitelist. The parser implements a number of checks, including the privileged memory
checks, via a general bitmasking mechanism.

drm/i915 Intel GFX Driver

599

Name
i915_cmd_parser_init_ring — set cmd parser related fields for a ringbuffer

Synopsis

int i915_cmd_parser_init_ring (struct intel_engine_cs * ring);

Arguments

ring the ringbuffer to initialize

Description

Optionally initializes fields related to batch buffer command parsing in the struct intel_engine_cs based
on whether the platform requires software command parsing.

Return

non-zero if initialization fails

drm/i915 Intel GFX Driver

600

Name
i915_cmd_parser_fini_ring — clean up cmd parser related fields

Synopsis

void i915_cmd_parser_fini_ring (struct intel_engine_cs * ring);

Arguments

ring the ringbuffer to clean up

Description

Releases any resources related to command parsing that may have been initialized for the specified ring.

drm/i915 Intel GFX Driver

601

Name
i915_needs_cmd_parser — should a given ring use software command parsing?

Synopsis

bool i915_needs_cmd_parser (struct intel_engine_cs * ring);

Arguments

ring the ring in question

Description

Only certain platforms require software batch buffer command parsing, and only when enabled via module
parameter.

Return

true if the ring requires software command parsing

drm/i915 Intel GFX Driver

602

Name
i915_parse_cmds — parse a submitted batch buffer for privilege violations

Synopsis

int i915_parse_cmds (struct intel_engine_cs * ring, struct
drm_i915_gem_object * batch_obj, struct drm_i915_gem_object *
shadow_batch_obj, u32 batch_start_offset, u32 batch_len, bool
is_master);

Arguments

ring the ring on which the batch is to execute

batch_obj the batch buffer in question

shadow_batch_obj copy of the batch buffer in question

batch_start_offset byte offset in the batch at which execution starts

batch_len length of the commands in batch_obj

is_master is the submitting process the drm master?

Description

Parses the specified batch buffer looking for privilege violations as described in the overview.

Return

non-zero if the parser finds violations or otherwise fails; -EACCES if the batch appears legal but should
use hardware parsing

drm/i915 Intel GFX Driver

603

Name
i915_cmd_parser_get_version — get the cmd parser version number

Synopsis

int i915_cmd_parser_get_version (void);

Arguments

void no arguments

Description

The cmd parser maintains a simple increasing integer version number suitable for passing to userspace
clients to determine what operations are permitted.

Return

the current version number of the cmd parser

Batchbuffer Pools

In order to submit batch buffers as 'secure', the software command parser must ensure that a batch buffer
cannot be modified after parsing. It does this by copying the user provided batch buffer contents to a kernel
owned buffer from which the hardware will actually execute, and by carefully managing the address space
bindings for such buffers.

The batch pool framework provides a mechanism for the driver to manage a set of scratch buffers to use
for this purpose. The framework can be extended to support other uses cases should they arise.

drm/i915 Intel GFX Driver

604

Name
i915_gem_batch_pool_init — initialize a batch buffer pool

Synopsis

void i915_gem_batch_pool_init (struct drm_device * dev, struct
i915_gem_batch_pool * pool);

Arguments

dev the drm device

pool the batch buffer pool

drm/i915 Intel GFX Driver

605

Name
i915_gem_batch_pool_fini — clean up a batch buffer pool

Synopsis

void i915_gem_batch_pool_fini (struct i915_gem_batch_pool * pool);

Arguments

pool the pool to clean up

Note

Callers must hold the struct_mutex.

drm/i915 Intel GFX Driver

606

Name
i915_gem_batch_pool_get — select a buffer from the pool

Synopsis

struct drm_i915_gem_object * i915_gem_batch_pool_get (struct
i915_gem_batch_pool * pool, size_t size);

Arguments

pool the batch buffer pool

size the minimum desired size of the returned buffer

Description

Finds or allocates a batch buffer in the pool with at least the requested size. The caller is responsible for
any domain, active/inactive, or purgeability management for the returned buffer.

Note

Callers must hold the struct_mutex

Return

the selected batch buffer object

Logical Rings, Logical Ring Contexts and Execlists

Motivation: GEN8 brings an expansion of the HW contexts: “Logical Ring Contexts”. These expanded
contexts enable a number of new abilities, especially “Execlists” (also implemented in this file).

One of the main differences with the legacy HW contexts is that logical ring contexts incorporate many
more things to the context's state, like PDPs or ringbuffer control registers:

The reason why PDPs are included in the context is straightforward: as PPGTTs (per-process GTTs) are
actually per-context, having the PDPs contained there mean you don't need to do a ppgtt->switch_mm
yourself, instead, the GPU will do it for you on the context switch.

But, what about the ringbuffer control registers (head, tail, etc..)? shouldn't we just need a set of those per
engine command streamer? This is where the name “Logical Rings” starts to make sense: by virtualizing
the rings, the engine cs shifts to a new “ring buffer” with every context switch. When you want to submit
a workload to the GPU you: A) choose your context, B) find its appropriate virtualized ring, C) write
commands to it and then, finally, D) tell the GPU to switch to that context.

Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch to a contexts is via a
context execution list, ergo “Execlists”.

LRC implementation: Regarding the creation of contexts, we have:

- One global default context. - One local default context for each opened fd. - One local extra context for
each context create ioctl call.

Now that ringbuffers belong per-context (and not per-engine, like before) and that contexts are uniquely
tied to a given engine (and not reusable, like before) we need:

drm/i915 Intel GFX Driver

607

- One ringbuffer per-engine inside each context. - One backing object per-engine inside each context.

The global default context starts its life with these new objects fully allocated and populated. The local
default context for each opened fd is more complex, because we don't know at creation time which engine
is going to use them. To handle this, we have implemented a deferred creation of LR contexts:

The local context starts its life as a hollow or blank holder, that only gets populated for a given engine
once we receive an execbuffer. If later on we receive another execbuffer ioctl for the same context but a
different engine, we allocate/populate a new ringbuffer and context backing object and so on.

Finally, regarding local contexts created using the ioctl call: as they are only allowed with the render ring,
we can allocate & populate them right away (no need to defer anything, at least for now).

Execlists implementation: Execlists are the new method by which, on gen8+ hardware, workloads are sub-
mitted for execution (as opposed to the legacy, ringbuffer-based, method). This method works as follows:

When a request is committed, its commands (the BB start and any leading or trailing commands, like the
seqno breadcrumbs) are placed in the ringbuffer for the appropriate context. The tail pointer in the hardware
context is not updated at this time, but instead, kept by the driver in the ringbuffer structure. A structure
representing this request is added to a request queue for the appropriate engine: this structure contains a
copy of the context's tail after the request was written to the ring buffer and a pointer to the context itself.

If the engine's request queue was empty before the request was added, the queue is processed immediately.
Otherwise the queue will be processed during a context switch interrupt. In any case, elements on the
queue will get sent (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a globally unique
20-bits submission ID.

When execution of a request completes, the GPU updates the context status buffer with a context complete
event and generates a context switch interrupt. During the interrupt handling, the driver examines the
events in the buffer: for each context complete event, if the announced ID matches that on the head of the
request queue, then that request is retired and removed from the queue.

After processing, if any requests were retired and the queue is not empty then a new execution list can be
submitted. The two requests at the front of the queue are next to be submitted but since a context may not
occur twice in an execution list, if subsequent requests have the same ID as the first then the two requests
must be combined. This is done simply by discarding requests at the head of the queue until either only one
requests is left (in which case we use a NULL second context) or the first two requests have unique IDs.

By always executing the first two requests in the queue the driver ensures that the GPU is kept as busy as
possible. In the case where a single context completes but a second context is still executing, the request
for this second context will be at the head of the queue when we remove the first one. This request will then
be resubmitted along with a new request for a different context, which will cause the hardware to continue
executing the second request and queue the new request (the GPU detects the condition of a context getting
preempted with the same context and optimizes the context switch flow by not doing preemption, but just
sampling the new tail pointer).

drm/i915 Intel GFX Driver

608

Name
intel_sanitize_enable_execlists — sanitize i915.enable_execlists

Synopsis

int intel_sanitize_enable_execlists (struct drm_device * dev, int
enable_execlists);

Arguments

dev DRM device.

enable_execlists value of i915.enable_execlists module parameter.

Description

Only certain platforms support Execlists (the prerequisites being support for Logical Ring Contexts and
Aliasing PPGTT or better).

Return

1 if Execlists is supported and has to be enabled.

drm/i915 Intel GFX Driver

609

Name
intel_execlists_ctx_id — get the Execlists Context ID

Synopsis

u32 intel_execlists_ctx_id (struct drm_i915_gem_object * ctx_obj);

Arguments

ctx_obj Logical Ring Context backing object.

Description

Do not confuse with ctx->id! Unfortunately we have a name overload

here

the old context ID we pass to userspace as a handler so that they can refer to a context, and the new context
ID we pass to the ELSP so that the GPU can inform us of the context status via interrupts.

Return

20-bits globally unique context ID.

drm/i915 Intel GFX Driver

610

Name
intel_lrc_irq_handler — handle Context Switch interrupts

Synopsis

void intel_lrc_irq_handler (struct intel_engine_cs * ring);

Arguments

ring Engine Command Streamer to handle.

Description

Check the unread Context Status Buffers and manage the submission of new contexts to the ELSP accord-
ingly.

drm/i915 Intel GFX Driver

611

Name
intel_execlists_submission — submit a batchbuffer for execution, Execlists style

Synopsis

int intel_execlists_submission (struct drm_device * dev, struct drm_file
* file, struct intel_engine_cs * ring, struct intel_context * ctx,
struct drm_i915_gem_execbuffer2 * args, struct list_head * vmas, struct
drm_i915_gem_object * batch_obj, u64 exec_start, u32 dispatch_flags);

Arguments

dev DRM device.

file DRM file.

ring Engine Command Streamer to submit to.

ctx Context to employ for this submission.

args execbuffer call arguments.

vmas list of vmas.

batch_obj the batchbuffer to submit.

exec_start batchbuffer start virtual address pointer.

dispatch_flags translated execbuffer call flags.

Description

This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts away the submission details
of the execbuffer ioctl call.

Return

non-zero if the submission fails.

drm/i915 Intel GFX Driver

612

Name
intel_logical_ring_begin — prepare the logical ringbuffer to accept some commands

Synopsis

int intel_logical_ring_begin (struct intel_ringbuffer * ringbuf, struct
intel_context * ctx, int num_dwords);

Arguments

ringbuf Logical ringbuffer.

ctx -- undescribed --

num_dwords number of DWORDs that we plan to write to the ringbuffer.

Description

The ringbuffer might not be ready to accept the commands right away (maybe it needs to be wrapped, or
wait a bit for the tail to be updated). This function takes care of that and also preallocates a request (every
workload submission is still mediated through requests, same as it did with legacy ringbuffer submission).

Return

non-zero if the ringbuffer is not ready to be written to.

drm/i915 Intel GFX Driver

613

Name
intel_logical_ring_cleanup — deallocate the Engine Command Streamer

Synopsis

void intel_logical_ring_cleanup (struct intel_engine_cs * ring);

Arguments

ring Engine Command Streamer.

drm/i915 Intel GFX Driver

614

Name
intel_logical_rings_init — allocate, populate and init the Engine Command Streamers

Synopsis

int intel_logical_rings_init (struct drm_device * dev);

Arguments

dev DRM device.

Description

This function inits the engines for an Execlists submission style (the equivalent in the legacy ringbuffer
submission world would be i915_gem_init_rings). It does it only for those engines that are present in the
hardware.

Return

non-zero if the initialization failed.

drm/i915 Intel GFX Driver

615

Name
intel_lr_context_free — free the LRC specific bits of a context

Synopsis

void intel_lr_context_free (struct intel_context * ctx);

Arguments

ctx the LR context to free.

The real context freeing is done in i915_gem_context_free

this only

takes care of the bits that are LRC related

the per-engine backing objects and the logical ringbuffer.

drm/i915 Intel GFX Driver

616

Name
intel_lr_context_deferred_create — create the LRC specific bits of a context

Synopsis

int intel_lr_context_deferred_create (struct intel_context * ctx, struct
intel_engine_cs * ring);

Arguments

ctx LR context to create.

ring engine to be used with the context.

Description

This function can be called more than once, with different engines, if we plan to use the context with them.
The context backing objects and the ringbuffers (specially the ringbuffer backing objects) suck a lot of
memory up, and that's why

the creation is a deferred call

it's better to make sure first that we need to use a given ring with the context.

Return

non-zero on error.

Global GTT views

Background and previous state

Historically objects could exists (be bound) in global GTT space only as singular instances with a view
representing all of the object's backing pages in a linear fashion. This view will be called a normal view.

To support multiple views of the same object, where the number of mapped pages is not equal to the
backing store, or where the layout of the pages is not linear, concept of a GGTT view was added.

One example of an alternative view is a stereo display driven by a single image. In this case we would
have a framebuffer looking like this (2x2 pages):

12 34

Above would represent a normal GGTT view as normally mapped for GPU or CPU rendering. In contrast,
fed to the display engine would be an alternative view which could look something like this:

1212 3434

In this example both the size and layout of pages in the alternative view is different from the normal view.

Implementation and usage

GGTT views are implemented using VMAs and are distinguished via enum i915_ggtt_view_type and
struct i915_ggtt_view.

drm/i915 Intel GFX Driver

617

A new flavour of core GEM functions which work with GGTT bound objects were added with the _ggtt_
infix, and sometimes with _view postfix to avoid renaming in large amounts of code. They take the struct
i915_ggtt_view parameter encapsulating all metadata required to implement a view.

As a helper for callers which are only interested in the normal view, globally const i915_ggtt_view_normal
singleton instance exists. All old core GEM API functions, the ones not taking the view parameter, are
operating on, or with the normal GGTT view.

Code wanting to add or use a new GGTT view needs to:

1. Add a new enum with a suitable name. 2. Extend the metadata in the i915_ggtt_view structure if required.
3. Add support to i915_get_vma_pages.

New views are required to build a scatter-gather table from within the i915_get_vma_pages function. This
table is stored in the vma.ggtt_view and exists for the lifetime of an VMA.

Core API is designed to have copy semantics which means that passed in struct i915_ggtt_view does not
need to be persistent (left around after calling the core API functions).

drm/i915 Intel GFX Driver

618

Name
i915_dma_map_single — Create a dma mapping for a page table/dir/etc.

Synopsis

i915_dma_map_single (px, dev);

Arguments

px Page table/dir/etc to get a DMA map for

dev drm device

Description

Page table allocations are unified across all gens. They always require a single 4k allocation, as well as a
DMA mapping. If we keep the structs symmetric here, the simple macro covers us for every page table type.

Return

0 if success.

drm/i915 Intel GFX Driver

619

Name
alloc_pt_range — Allocate a multiple page tables

Synopsis

int alloc_pt_range (struct i915_page_directory_entry * pd, uint16_t pde,
size_t count, struct drm_device * dev);

Arguments

pd The page directory which will have at least count entries available to point to the allocated
page tables.

pde First page directory entry for which we are allocating.

count Number of pages to allocate.

dev DRM device.

Description

Allocates multiple page table pages and sets the appropriate entries in the page table structure within the
page directory. Function cleans up after itself on any failures.

Return

0 if allocation succeeded.

drm/i915 Intel GFX Driver

620

Name
i915_vma_bind — Sets up PTEs for an VMA in it's corresponding address space.

Synopsis

int i915_vma_bind (struct i915_vma * vma, enum i915_cache_level
cache_level, u32 flags);

Arguments

vma VMA to map

cache_level mapping cache level

flags flags like global or local mapping

Description

DMA addresses are taken from the scatter-gather table of this object (or of this VMA in case of non-
default GGTT views) and PTE entries set up. Note that DMA addresses are also the only part of the SG
table we care about.

Buffer Object Eviction
This section documents the interface functions for evicting buffer objects to make space available in the
virtual gpu address spaces. Note that this is mostly orthogonal to shrinking buffer objects caches, which has
the goal to make main memory (shared with the gpu through the unified memory architecture) available.

drm/i915 Intel GFX Driver

621

Name
i915_gem_evict_something — Evict vmas to make room for binding a new one

Synopsis

int i915_gem_evict_something (struct drm_device * dev, struct
i915_address_space * vm, int min_size, unsigned alignment, unsigned
cache_level, unsigned long start, unsigned long end, unsigned flags);

Arguments

dev drm_device

vm address space to evict from

min_size size of the desired free space

alignment alignment constraint of the desired free space

cache_level cache_level for the desired space

start start (inclusive) of the range from which to evict objects

end end (exclusive) of the range from which to evict objects

flags additional flags to control the eviction algorithm

Description

This function will try to evict vmas until a free space satisfying the requirements is found. Callers must
check first whether any such hole exists already before calling this function.

This function is used by the object/vma binding code.

Since this function is only used to free up virtual address space it only ignores pinned vmas, and not object
where the backing storage itself is pinned. Hence obj->pages_pin_count does not protect against eviction.

To clarify

This is for freeing up virtual address space, not for freeing memory in e.g. the shrinker.

drm/i915 Intel GFX Driver

622

Name
i915_gem_evict_vm — Evict all idle vmas from a vm

Synopsis

int i915_gem_evict_vm (struct i915_address_space * vm, bool do_idle);

Arguments

vm Address space to cleanse

do_idle Boolean directing whether to idle first.

Description

This function evicts all idles vmas from a vm. If all unpinned vmas should be evicted the do_idle needs
to be set to true.

This is used by the execbuf code as a last-ditch effort to defragment the address space.

To clarify

This is for freeing up virtual address space, not for freeing memory in e.g. the shrinker.

drm/i915 Intel GFX Driver

623

Name
i915_gem_evict_everything — Try to evict all objects

Synopsis

int i915_gem_evict_everything (struct drm_device * dev);

Arguments

dev Device to evict objects for

Description

This functions tries to evict all gem objects from all address spaces. Used by the shrinker as a last-ditch
effort and for suspend, before releasing the backing storage of all unbound objects.

Buffer Object Memory Shrinking
This section documents the interface function for shrinking memory usage of buffer object caches. Shrink-
ing is used to make main memory available. Note that this is mostly orthogonal to evicting buffer objects,
which has the goal to make space in gpu virtual address spaces.

drm/i915 Intel GFX Driver

624

Name
i915_gem_shrink — Shrink buffer object caches

Synopsis

unsigned long i915_gem_shrink (struct drm_i915_private * dev_priv, long
target, unsigned flags);

Arguments

dev_priv i915 device

target amount of memory to make available, in pages

flags control flags for selecting cache types

Description

This function is the main interface to the shrinker. It will try to release up to target pages of main
memory backing storage from buffer objects. Selection of the specific caches can be done with flags.
This is e.g. useful when purgeable objects should be removed from caches preferentially.

Note that it's not guaranteed that released amount is actually available as free system memory - the pages
might still be in-used to due to other reasons (like cpu mmaps) or the mm core has reused them before
we could grab them. Therefore code that needs to explicitly shrink buffer objects caches (e.g. to avoid
deadlocks in memory reclaim) must fall back to i915_gem_shrink_all.

Also note that any kind of pinning (both per-vma address space pins and backing storage pins at the buffer
object level) result in the shrinker code having to skip the object.

Returns

The number of pages of backing storage actually released.

drm/i915 Intel GFX Driver

625

Name
i915_gem_shrink_all — Shrink buffer object caches completely

Synopsis

unsigned long i915_gem_shrink_all (struct drm_i915_private * dev_priv);

Arguments

dev_priv i915 device

Description

This is a simple wraper around i915_gem_shrink to aggressively shrink all caches completely. It also
first waits for and retires all outstanding requests to also be able to release backing storage for active
objects.

This should only be used in code to intentionally quiescent the gpu or as a last-ditch effort when memory
seems to have run out.

Returns

The number of pages of backing storage actually released.

drm/i915 Intel GFX Driver

626

Name
i915_gem_shrinker_init — Initialize i915 shrinker

Synopsis

void i915_gem_shrinker_init (struct drm_i915_private * dev_priv);

Arguments

dev_priv i915 device

Description

This function registers and sets up the i915 shrinker and OOM handler.

Tracing
This sections covers all things related to the tracepoints implemented in the i915 driver.

i915_ppgtt_create and i915_ppgtt_release

With full ppgtt enabled each process using drm will allocate at least one translation table. With these
traces it is possible to keep track of the allocation and of the lifetime of the tables; this can be used during
testing/debug to verify that we are not leaking ppgtts. These traces identify the ppgtt through the vm
pointer, which is also printed by the i915_vma_bind and i915_vma_unbind tracepoints.

i915_context_create and i915_context_free

These tracepoints are used to track creation and deletion of contexts. If full ppgtt is enabled, they also print
the address of the vm assigned to the context.

switch_mm

This tracepoint allows tracking of the mm switch, which is an important point in the lifetime of the vm in
the legacy submission path. This tracepoint is called only if full ppgtt is enabled.

	Linux DRM Developer's Guide
	Table of Contents
	Part I. DRM Core
	Chapter 1. Introduction
	Chapter 2. DRM Internals
	Driver Initialization
	Driver Information
	Driver Features
	Major, Minor and Patchlevel
	Name, Description and Date

	Device Registration
	drm_pci_alloc
	drm_pci_free
	drm_get_pci_dev
	drm_pci_init
	drm_pci_exit
	drm_platform_init
	drm_put_dev
	drm_dev_alloc
	drm_dev_ref
	drm_dev_unref
	drm_dev_register
	drm_dev_unregister
	drm_dev_set_unique

	Driver Load
	Driver Private Data
	IRQ Registration
	Managed IRQ Registration
	Manual IRQ Registration

	Memory Manager Initialization
	Miscellaneous Device Configuration

	Memory management
	The Translation Table Manager (TTM)
	TTM initialization

	The Graphics Execution Manager (GEM)
	GEM Initialization
	GEM Objects Creation
	GEM Objects Lifetime
	GEM Objects Naming
	GEM Objects Mapping
	Memory Coherency
	Command Execution
	GEM Function Reference
	drm_gem_object_init
	drm_gem_private_object_init
	drm_gem_handle_delete
	drm_gem_dumb_destroy
	drm_gem_handle_create
	drm_gem_free_mmap_offset
	drm_gem_create_mmap_offset_size
	drm_gem_create_mmap_offset
	drm_gem_get_pages
	drm_gem_put_pages
	drm_gem_object_free
	drm_gem_mmap_obj
	drm_gem_mmap

	VMA Offset Manager
	drm_vma_offset_manager_init
	drm_vma_offset_manager_destroy
	drm_vma_offset_lookup
	drm_vma_offset_lookup_locked
	drm_vma_offset_add
	drm_vma_offset_remove
	drm_vma_node_allow
	drm_vma_node_revoke
	drm_vma_node_is_allowed
	drm_vma_offset_exact_lookup
	drm_vma_offset_lock_lookup
	drm_vma_offset_unlock_lookup
	drm_vma_node_reset
	drm_vma_node_start
	drm_vma_node_size
	drm_vma_node_has_offset
	drm_vma_node_offset_addr
	drm_vma_node_unmap
	drm_vma_node_verify_access

	PRIME Buffer Sharing
	Overview and Driver Interface
	PRIME Helper Functions

	PRIME Function References
	drm_gem_dmabuf_release
	drm_gem_prime_export
	drm_gem_prime_handle_to_fd
	drm_gem_prime_import
	drm_gem_prime_fd_to_handle
	drm_prime_pages_to_sg
	drm_prime_sg_to_page_addr_arrays
	drm_prime_gem_destroy

	DRM MM Range Allocator
	Overview
	LRU Scan/Eviction Support

	DRM MM Range Allocator Function References
	drm_mm_reserve_node
	drm_mm_insert_node_generic
	drm_mm_insert_node_in_range_generic
	drm_mm_remove_node
	drm_mm_replace_node
	drm_mm_init_scan
	drm_mm_init_scan_with_range
	drm_mm_scan_add_block
	drm_mm_scan_remove_block
	drm_mm_clean
	drm_mm_init
	drm_mm_takedown
	drm_mm_debug_table
	drm_mm_dump_table
	drm_mm_node_allocated
	drm_mm_initialized
	drm_mm_hole_node_start
	drm_mm_hole_node_end
	drm_mm_for_each_node
	drm_mm_for_each_hole
	drm_mm_insert_node
	drm_mm_insert_node_in_range

	CMA Helper Functions Reference
	drm_gem_cma_create
	drm_gem_cma_free_object
	drm_gem_cma_dumb_create_internal
	drm_gem_cma_dumb_create
	drm_gem_cma_dumb_map_offset
	drm_gem_cma_mmap
	drm_gem_cma_describe
	drm_gem_cma_prime_get_sg_table
	drm_gem_cma_prime_import_sg_table
	drm_gem_cma_prime_mmap
	drm_gem_cma_prime_vmap
	drm_gem_cma_prime_vunmap
	struct drm_gem_cma_object

	Mode Setting
	Display Modes Function Reference
	drm_mode_is_stereo
	drm_mode_debug_printmodeline
	drm_mode_create
	drm_mode_destroy
	drm_mode_probed_add
	drm_cvt_mode
	drm_gtf_mode_complex
	drm_gtf_mode
	drm_display_mode_from_videomode
	drm_display_mode_to_videomode
	of_get_drm_display_mode
	drm_mode_set_name
	drm_mode_vrefresh
	drm_mode_set_crtcinfo
	drm_mode_copy
	drm_mode_duplicate
	drm_mode_equal
	drm_mode_equal_no_clocks_no_stereo
	drm_mode_validate_basic
	drm_mode_validate_size
	drm_mode_prune_invalid
	drm_mode_sort
	drm_mode_connector_list_update
	drm_mode_parse_command_line_for_connector
	drm_mode_create_from_cmdline_mode

	Atomic Mode Setting Function Reference
	drm_atomic_state_alloc
	drm_atomic_state_clear
	drm_atomic_state_free
	drm_atomic_get_crtc_state
	drm_atomic_crtc_set_property
	drm_atomic_get_plane_state
	drm_atomic_plane_set_property
	drm_atomic_get_connector_state
	drm_atomic_connector_set_property
	drm_atomic_set_crtc_for_plane
	drm_atomic_set_fb_for_plane
	drm_atomic_set_crtc_for_connector
	drm_atomic_add_affected_connectors
	drm_atomic_connectors_for_crtc
	drm_atomic_legacy_backoff
	drm_atomic_check_only
	drm_atomic_commit
	drm_atomic_async_commit

	Frame Buffer Creation
	Dumb Buffer Objects
	Output Polling
	Locking

	KMS Initialization and Cleanup
	CRTCs (struct drm_crtc)
	CRTC Initialization
	CRTC Operations
	Set Configuration
	Page Flipping
	Miscellaneous

	Planes (struct drm_plane)
	Plane Initialization
	Plane Operations

	Encoders (struct drm_encoder)
	Encoder Initialization
	Encoder Operations

	Connectors (struct drm_connector)
	Connector Initialization
	Connector Operations
	DPMS
	Modes
	Connection Status
	Miscellaneous

	Cleanup
	Output discovery and initialization example
	KMS API Functions
	drm_get_connector_status_name
	drm_get_subpixel_order_name
	drm_get_format_name
	drm_mode_object_find
	drm_framebuffer_init
	drm_framebuffer_lookup
	drm_framebuffer_unreference
	drm_framebuffer_reference
	drm_framebuffer_unregister_private
	drm_framebuffer_cleanup
	drm_framebuffer_remove
	drm_crtc_init_with_planes
	drm_crtc_cleanup
	drm_crtc_index
	drm_display_info_set_bus_formats
	drm_connector_init
	drm_connector_cleanup
	drm_connector_index
	drm_connector_register
	drm_connector_unregister
	drm_connector_unplug_all
	drm_encoder_init
	drm_encoder_cleanup
	drm_universal_plane_init
	drm_plane_init
	drm_plane_cleanup
	drm_plane_index
	drm_plane_force_disable
	drm_mode_create_dvi_i_properties
	drm_mode_create_tv_properties
	drm_mode_create_scaling_mode_property
	drm_mode_create_aspect_ratio_property
	drm_mode_create_dirty_info_property
	drm_mode_create_suggested_offset_properties
	drm_mode_set_config_internal
	drm_crtc_get_hv_timing
	drm_crtc_check_viewport
	drm_mode_legacy_fb_format
	drm_property_create
	drm_property_create_enum
	drm_property_create_bitmask
	drm_property_create_range
	drm_property_create_signed_range
	drm_property_create_object
	drm_property_create_bool
	drm_property_add_enum
	drm_property_destroy
	drm_object_attach_property
	drm_object_property_set_value
	drm_object_property_get_value
	drm_mode_connector_set_path_property
	drm_mode_connector_set_tile_property
	drm_mode_connector_update_edid_property
	drm_mode_plane_set_obj_prop
	drm_mode_connector_attach_encoder
	drm_mode_crtc_set_gamma_size
	drm_mode_config_reset
	drm_fb_get_bpp_depth
	drm_format_num_planes
	drm_format_plane_cpp
	drm_format_horz_chroma_subsampling
	drm_format_vert_chroma_subsampling
	drm_rotation_simplify
	drm_mode_config_init
	drm_mode_config_cleanup
	drm_mode_get_tile_group
	drm_mode_create_tile_group

	KMS Data Structures
	struct drm_crtc_state
	struct drm_crtc_funcs
	struct drm_crtc
	struct drm_connector_state
	struct drm_connector_funcs
	struct drm_encoder_funcs
	struct drm_encoder
	struct drm_connector
	struct drm_plane_state
	struct drm_plane_funcs
	struct drm_plane
	struct drm_bridge_funcs
	struct drm_bridge
	struct drm_atomic_state
	struct drm_mode_set
	struct drm_mode_config_funcs
	struct drm_mode_group
	struct drm_mode_config
	drm_for_each_plane_mask
	drm_crtc_mask
	drm_encoder_crtc_ok

	KMS Locking
	struct drm_modeset_acquire_ctx
	drm_modeset_lock_init
	drm_modeset_lock_fini
	drm_modeset_is_locked
	__drm_modeset_lock_all
	drm_modeset_lock_all
	drm_modeset_unlock_all
	drm_modeset_lock_crtc
	drm_modeset_legacy_acquire_ctx
	drm_modeset_unlock_crtc
	drm_warn_on_modeset_not_all_locked
	drm_modeset_acquire_init
	drm_modeset_acquire_fini
	drm_modeset_drop_locks
	drm_modeset_backoff
	drm_modeset_backoff_interruptible
	drm_modeset_lock
	drm_modeset_lock_interruptible
	drm_modeset_unlock

	Mode Setting Helper Functions
	Helper Functions
	CRTC Helper Operations
	Encoder Helper Operations
	Connector Helper Operations
	Atomic Modeset Helper Functions Reference
	Overview
	Implementing Asynchronous Atomic Commit
	Atomic State Reset and Initialization
	drm_atomic_crtc_for_each_plane
	drm_atomic_crtc_state_for_each_plane
	drm_atomic_helper_check_modeset
	drm_atomic_helper_check_planes
	drm_atomic_helper_check
	drm_atomic_helper_commit_modeset_disables
	drm_atomic_helper_commit_modeset_enables
	drm_atomic_helper_wait_for_vblanks
	drm_atomic_helper_commit
	drm_atomic_helper_prepare_planes
	drm_atomic_helper_commit_planes
	drm_atomic_helper_cleanup_planes
	drm_atomic_helper_swap_state
	drm_atomic_helper_update_plane
	drm_atomic_helper_disable_plane
	drm_atomic_helper_set_config
	drm_atomic_helper_crtc_set_property
	drm_atomic_helper_plane_set_property
	drm_atomic_helper_connector_set_property
	drm_atomic_helper_page_flip
	drm_atomic_helper_connector_dpms
	drm_atomic_helper_crtc_reset
	__drm_atomic_helper_crtc_duplicate_state
	drm_atomic_helper_crtc_duplicate_state
	__drm_atomic_helper_crtc_destroy_state
	drm_atomic_helper_crtc_destroy_state
	drm_atomic_helper_plane_reset
	__drm_atomic_helper_plane_duplicate_state
	drm_atomic_helper_plane_duplicate_state
	__drm_atomic_helper_plane_destroy_state
	drm_atomic_helper_plane_destroy_state
	drm_atomic_helper_connector_reset
	__drm_atomic_helper_connector_duplicate_state
	drm_atomic_helper_connector_duplicate_state
	__drm_atomic_helper_connector_destroy_state
	drm_atomic_helper_connector_destroy_state

	Modeset Helper Functions Reference
	struct drm_crtc_helper_funcs
	struct drm_encoder_helper_funcs
	struct drm_connector_helper_funcs
	drm_helper_move_panel_connectors_to_head
	drm_helper_encoder_in_use
	drm_helper_crtc_in_use
	drm_helper_disable_unused_functions
	drm_crtc_helper_set_mode
	drm_crtc_helper_set_config
	drm_helper_connector_dpms
	drm_helper_mode_fill_fb_struct
	drm_helper_resume_force_mode
	drm_helper_crtc_mode_set
	drm_helper_crtc_mode_set_base

	Output Probing Helper Functions Reference
	drm_helper_probe_single_connector_modes
	drm_helper_probe_single_connector_modes_nomerge
	drm_kms_helper_hotplug_event
	drm_kms_helper_poll_disable
	drm_kms_helper_poll_enable
	drm_kms_helper_poll_init
	drm_kms_helper_poll_fini
	drm_helper_hpd_irq_event

	fbdev Helper Functions Reference
	drm_fb_helper_single_add_all_connectors
	drm_fb_helper_debug_enter
	drm_fb_helper_debug_leave
	drm_fb_helper_restore_fbdev_mode_unlocked
	drm_fb_helper_blank
	drm_fb_helper_prepare
	drm_fb_helper_init
	drm_fb_helper_setcmap
	drm_fb_helper_check_var
	drm_fb_helper_set_par
	drm_fb_helper_pan_display
	drm_fb_helper_fill_fix
	drm_fb_helper_fill_var
	drm_fb_helper_initial_config
	drm_fb_helper_hotplug_event
	struct drm_fb_helper_surface_size
	struct drm_fb_helper_funcs

	Display Port Helper Functions Reference
	struct drm_dp_aux_msg
	struct drm_dp_aux
	drm_dp_dpcd_readb
	drm_dp_dpcd_writeb
	drm_dp_dpcd_read
	drm_dp_dpcd_write
	drm_dp_dpcd_read_link_status
	drm_dp_link_probe
	drm_dp_link_power_up
	drm_dp_link_power_down
	drm_dp_link_configure
	drm_dp_aux_register
	drm_dp_aux_unregister

	Display Port MST Helper Functions Reference
	struct drm_dp_vcpi
	struct drm_dp_mst_port
	struct drm_dp_mst_branch
	struct drm_dp_mst_topology_mgr
	drm_dp_update_payload_part1
	drm_dp_update_payload_part2
	drm_dp_mst_topology_mgr_set_mst
	drm_dp_mst_topology_mgr_suspend
	drm_dp_mst_topology_mgr_resume
	drm_dp_mst_hpd_irq
	drm_dp_mst_detect_port
	drm_dp_mst_get_edid
	drm_dp_find_vcpi_slots
	drm_dp_mst_allocate_vcpi
	drm_dp_mst_reset_vcpi_slots
	drm_dp_mst_deallocate_vcpi
	drm_dp_check_act_status
	drm_dp_calc_pbn_mode
	drm_dp_mst_dump_topology
	drm_dp_mst_topology_mgr_init
	drm_dp_mst_topology_mgr_destroy

	MIPI DSI Helper Functions Reference
	struct mipi_dsi_msg
	struct mipi_dsi_packet
	struct mipi_dsi_host_ops
	struct mipi_dsi_host
	struct mipi_dsi_device
	enum mipi_dsi_dcs_tear_mode
	struct mipi_dsi_driver
	of_find_mipi_dsi_device_by_node
	mipi_dsi_attach
	mipi_dsi_detach
	mipi_dsi_packet_format_is_short
	mipi_dsi_packet_format_is_long
	mipi_dsi_create_packet
	mipi_dsi_generic_write
	mipi_dsi_generic_read
	mipi_dsi_dcs_write_buffer
	mipi_dsi_dcs_write
	mipi_dsi_dcs_read
	mipi_dsi_dcs_nop
	mipi_dsi_dcs_soft_reset
	mipi_dsi_dcs_get_power_mode
	mipi_dsi_dcs_get_pixel_format
	mipi_dsi_dcs_enter_sleep_mode
	mipi_dsi_dcs_exit_sleep_mode
	mipi_dsi_dcs_set_display_off
	mipi_dsi_dcs_set_display_on
	mipi_dsi_dcs_set_column_address
	mipi_dsi_dcs_set_page_address
	mipi_dsi_dcs_set_tear_off
	mipi_dsi_dcs_set_tear_on
	mipi_dsi_dcs_set_pixel_format
	mipi_dsi_driver_register_full
	mipi_dsi_driver_unregister

	EDID Helper Functions Reference
	drm_edid_header_is_valid
	drm_edid_block_valid
	drm_edid_is_valid
	drm_do_get_edid
	drm_probe_ddc
	drm_get_edid
	drm_edid_duplicate
	drm_match_cea_mode
	drm_get_cea_aspect_ratio
	drm_edid_to_eld
	drm_edid_to_sad
	drm_edid_to_speaker_allocation
	drm_av_sync_delay
	drm_select_eld
	drm_detect_hdmi_monitor
	drm_detect_monitor_audio
	drm_rgb_quant_range_selectable
	drm_add_edid_modes
	drm_add_modes_noedid
	drm_set_preferred_mode
	drm_hdmi_avi_infoframe_from_display_mode
	drm_hdmi_vendor_infoframe_from_display_mode

	Rectangle Utilities Reference
	struct drm_rect
	drm_rect_adjust_size
	drm_rect_translate
	drm_rect_downscale
	drm_rect_width
	drm_rect_height
	drm_rect_visible
	drm_rect_equals
	drm_rect_intersect
	drm_rect_clip_scaled
	drm_rect_calc_hscale
	drm_rect_calc_vscale
	drm_rect_calc_hscale_relaxed
	drm_rect_calc_vscale_relaxed
	drm_rect_debug_print
	drm_rect_rotate
	drm_rect_rotate_inv

	Flip-work Helper Reference
	struct drm_flip_task
	struct drm_flip_work
	drm_flip_work_allocate_task
	drm_flip_work_queue_task
	drm_flip_work_queue
	drm_flip_work_commit
	drm_flip_work_init
	drm_flip_work_cleanup

	HDMI Infoframes Helper Reference
	union hdmi_infoframe
	hdmi_avi_infoframe_init
	hdmi_avi_infoframe_pack
	hdmi_spd_infoframe_init
	hdmi_spd_infoframe_pack
	hdmi_audio_infoframe_init
	hdmi_audio_infoframe_pack
	hdmi_vendor_infoframe_init
	hdmi_vendor_infoframe_pack
	hdmi_infoframe_pack
	hdmi_infoframe_log
	hdmi_infoframe_unpack

	Plane Helper Reference
	drm_plane_helper_check_update
	drm_primary_helper_update
	drm_primary_helper_disable
	drm_primary_helper_destroy
	drm_crtc_init
	drm_plane_helper_update
	drm_plane_helper_disable

	Tile group

	KMS Properties
	Existing KMS Properties

	Vertical Blanking
	Vertical Blanking and Interrupt Handling Functions Reference
	drm_vblank_cleanup
	drm_vblank_init
	drm_irq_install
	drm_irq_uninstall
	drm_calc_timestamping_constants
	drm_calc_vbltimestamp_from_scanoutpos
	drm_vblank_count
	drm_crtc_vblank_count
	drm_vblank_count_and_time
	drm_send_vblank_event
	drm_crtc_send_vblank_event
	drm_vblank_get
	drm_crtc_vblank_get
	drm_vblank_put
	drm_crtc_vblank_put
	drm_wait_one_vblank
	drm_crtc_wait_one_vblank
	drm_vblank_off
	drm_crtc_vblank_off
	drm_crtc_vblank_reset
	drm_vblank_on
	drm_crtc_vblank_on
	drm_vblank_pre_modeset
	drm_vblank_post_modeset
	drm_handle_vblank
	drm_crtc_handle_vblank
	drm_crtc_vblank_waitqueue

	Open/Close, File Operations and IOCTLs
	Open and Close
	File Operations
	IOCTLs

	Legacy Support Code
	Legacy Suspend/Resume
	Legacy DMA Services

	Chapter 3. Userland interfaces
	Render nodes
	VBlank event handling

	Part II. DRM Drivers
	Chapter 4. drm/i915 Intel GFX Driver
	Core Driver Infrastructure
	Runtime Power Management
	__intel_display_power_is_enabled
	intel_display_power_is_enabled
	intel_display_set_init_power
	intel_display_power_get
	intel_display_power_put
	intel_power_domains_init
	intel_power_domains_fini
	intel_power_domains_init_hw
	intel_aux_display_runtime_get
	intel_aux_display_runtime_put
	intel_runtime_pm_get
	intel_runtime_pm_get_noresume
	intel_runtime_pm_put
	intel_runtime_pm_enable
	intel_uncore_forcewake_get
	intel_uncore_forcewake_put

	Interrupt Handling
	intel_irq_init
	intel_hpd_init
	/usr/src/linux-4.1.27-24//drivers/gpu/drm/i915/i915_irq.c
	intel_runtime_pm_disable_interrupts
	intel_runtime_pm_enable_interrupts

	Intel GVT-g Guest Support(vGPU)
	i915_check_vgpu
	intel_vgt_deballoon
	intel_vgt_balloon

	Display Hardware Handling
	Mode Setting Infrastructure
	Frontbuffer Tracking
	intel_mark_fb_busy
	intel_fb_obj_invalidate
	intel_frontbuffer_flush
	intel_fb_obj_flush
	intel_frontbuffer_flip_prepare
	intel_frontbuffer_flip_complete
	intel_frontbuffer_flip
	i915_gem_track_fb

	Display FIFO Underrun Reporting
	i9xx_check_fifo_underruns
	intel_set_cpu_fifo_underrun_reporting
	intel_set_pch_fifo_underrun_reporting
	intel_cpu_fifo_underrun_irq_handler
	intel_pch_fifo_underrun_irq_handler

	Plane Configuration
	Atomic Plane Helpers
	intel_create_plane_state
	intel_plane_duplicate_state
	intel_plane_destroy_state
	intel_plane_atomic_get_property
	intel_plane_atomic_set_property

	Output Probing
	High Definition Audio
	intel_audio_codec_enable
	intel_audio_codec_disable
	intel_init_audio
	i915_audio_component_init
	i915_audio_component_cleanup

	Panel Self Refresh PSR (PSR/SRD)
	intel_psr_enable
	intel_psr_disable
	intel_psr_invalidate
	intel_psr_flush
	intel_psr_init

	Frame Buffer Compression (FBC)
	intel_fbc_enabled
	intel_fbc_disable
	intel_fbc_update
	intel_fbc_init

	Display Refresh Rate Switching (DRRS)
	intel_dp_set_drrs_state
	intel_edp_drrs_enable
	intel_edp_drrs_disable
	intel_edp_drrs_invalidate
	intel_edp_drrs_flush
	intel_dp_drrs_init

	DPIO

	Memory Management and Command Submission
	Batchbuffer Parsing
	i915_cmd_parser_init_ring
	i915_cmd_parser_fini_ring
	i915_needs_cmd_parser
	i915_parse_cmds
	i915_cmd_parser_get_version

	Batchbuffer Pools
	i915_gem_batch_pool_init
	i915_gem_batch_pool_fini
	i915_gem_batch_pool_get

	Logical Rings, Logical Ring Contexts and Execlists
	intel_sanitize_enable_execlists
	intel_execlists_ctx_id
	intel_lrc_irq_handler
	intel_execlists_submission
	intel_logical_ring_begin
	intel_logical_ring_cleanup
	intel_logical_rings_init
	intel_lr_context_free
	intel_lr_context_deferred_create

	Global GTT views
	i915_dma_map_single
	alloc_pt_range
	i915_vma_bind

	Buffer Object Eviction
	i915_gem_evict_something
	i915_gem_evict_vm
	i915_gem_evict_everything

	Buffer Object Memory Shrinking
	i915_gem_shrink
	i915_gem_shrink_all
	i915_gem_shrinker_init

	Tracing
	i915_ppgtt_create and i915_ppgtt_release
	i915_context_create and i915_context_free
	switch_mm

