
Linux Networking and
Network Devices APIs

Linux Networking and Network Devices APIs
This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the file COPYING in the source distribution of Linux.

iii

Table of Contents
1. Linux Networking ... 1

Networking Base Types ... 1
Socket Buffer Functions ... 3
Socket Filter ... 167
Generic Network Statistics .. 171
SUN RPC subsystem .. 187
WiMAX ... 262

2. Network device support ... 283
Driver Support .. 283
PHY Support .. 436

1

Chapter 1. Linux Networking
Networking Base Types

Linux Networking

2

Name
enum sock_type — Socket types

Synopsis

enum sock_type {
 SOCK_STREAM,
 SOCK_DGRAM,
 SOCK_RAW,
 SOCK_RDM,
 SOCK_SEQPACKET,
 SOCK_DCCP,
 SOCK_PACKET
};

Constants

SOCK_STREAM stream (connection) socket

SOCK_DGRAM datagram (conn.less) socket

SOCK_RAW raw socket

SOCK_RDM reliably-delivered message

SOCK_SEQPACKET sequential packet socket

SOCK_DCCP Datagram Congestion Control Protocol socket

SOCK_PACKET linux specific way of getting packets at the dev level. For writing rarp and other
similar things on the user level.

Description

When adding some new socket type please grep ARCH_HAS_SOCKET_TYPE include/asm-* /socket.h,
at least MIPS overrides this enum for binary compat reasons.

Linux Networking

3

Name
struct socket — general BSD socket

Synopsis

struct socket {
 socket_state state;
 short type;
 unsigned long flags;
 struct socket_wq __rcu * wq;
 struct file * file;
 struct sock * sk;
 const struct proto_ops * ops;
};

Members

state socket state (SS_CONNECTED, etc)

type socket type (SOCK_STREAM, etc)

flags socket flags (SOCK_ASYNC_NOSPACE, etc)

wq wait queue for several uses

file File back pointer for gc

sk internal networking protocol agnostic socket representation

ops protocol specific socket operations

Socket Buffer Functions

Linux Networking

4

Name
struct skb_shared_hwtstamps — hardware time stamps

Synopsis

struct skb_shared_hwtstamps {
 ktime_t hwtstamp;
};

Members

hwtstamp hardware time stamp transformed into duration since arbitrary point in time

Description

Software time stamps generated by ktime_get_real are stored in skb->tstamp.

hwtstamps can only be compared against other hwtstamps from the same device.

This structure is attached to packets as part of the skb_shared_info. Use skb_hwtstamps to get a pointer.

Linux Networking

5

Name
struct skb_mstamp — multi resolution time stamps

Synopsis

struct skb_mstamp {
 union {unnamed_union};
};

Members

{unnamed_union} anonymous

Linux Networking

6

Name
skb_mstamp_get — get current timestamp

Synopsis

void skb_mstamp_get (struct skb_mstamp * cl);

Arguments

cl place to store timestamps

Linux Networking

7

Name
skb_mstamp_us_delta — compute the difference in usec between two skb_mstamp

Synopsis

u32 skb_mstamp_us_delta (const struct skb_mstamp * t1, const struct
skb_mstamp * t0);

Arguments

t1 pointer to newest sample

t0 pointer to oldest sample

Linux Networking

8

Name
struct sk_buff — socket buffer

Synopsis

struct sk_buff {
 union {unnamed_union};
 __u16 inner_transport_header;
 __u16 inner_network_header;
 __u16 inner_mac_header;
 __be16 protocol;
 __u16 transport_header;
 __u16 network_header;
 __u16 mac_header;
 sk_buff_data_t tail;
 sk_buff_data_t end;
 unsigned char * head;
 unsigned char * data;
 unsigned int truesize;
 atomic_t users;
};

Members

{unnamed_union} anonymous

inner_transport_header Inner transport layer header (encapsulation)

inner_network_header Network layer header (encapsulation)

inner_mac_header Link layer header (encapsulation)

protocol Packet protocol from driver

transport_header Transport layer header

network_header Network layer header

mac_header Link layer header

tail Tail pointer

end End pointer

head Head of buffer

data Data head pointer

truesize Buffer size

users User count - see {datagram,tcp}.c

Linux Networking

9

Name
skb_dst — returns skb dst_entry

Synopsis

struct dst_entry * skb_dst (const struct sk_buff * skb);

Arguments

skb buffer

Description

Returns skb dst_entry, regardless of reference taken or not.

Linux Networking

10

Name
skb_dst_set — sets skb dst

Synopsis

void skb_dst_set (struct sk_buff * skb, struct dst_entry * dst);

Arguments

skb buffer

dst dst entry

Description

Sets skb dst, assuming a reference was taken on dst and should be released by skb_dst_drop

Linux Networking

11

Name
skb_dst_set_noref — sets skb dst, hopefully, without taking reference

Synopsis

void skb_dst_set_noref (struct sk_buff * skb, struct dst_entry * dst);

Arguments

skb buffer

dst dst entry

Description

Sets skb dst, assuming a reference was not taken on dst. If dst entry is cached, we do not take reference
and dst_release will be avoided by refdst_drop. If dst entry is not cached, we take reference, so that last
dst_release can destroy the dst immediately.

Linux Networking

12

Name
skb_dst_is_noref — Test if skb dst isn't refcounted

Synopsis

bool skb_dst_is_noref (const struct sk_buff * skb);

Arguments

skb buffer

Linux Networking

13

Name
skb_fclone_busy — check if fclone is busy

Synopsis

bool skb_fclone_busy (const struct sock * sk, const struct sk_buff *
skb);

Arguments

sk -- undescribed --

skb buffer

Description

Returns true is skb is a fast clone, and its clone is not freed. Some drivers call skb_orphan in their
ndo_start_xmit, so we also check that this didnt happen.

Linux Networking

14

Name
skb_queue_empty — check if a queue is empty

Synopsis

int skb_queue_empty (const struct sk_buff_head * list);

Arguments

list queue head

Description

Returns true if the queue is empty, false otherwise.

Linux Networking

15

Name
skb_queue_is_last — check if skb is the last entry in the queue

Synopsis

bool skb_queue_is_last (const struct sk_buff_head * list, const struct
sk_buff * skb);

Arguments

list queue head

skb buffer

Description

Returns true if skb is the last buffer on the list.

Linux Networking

16

Name
skb_queue_is_first — check if skb is the first entry in the queue

Synopsis

bool skb_queue_is_first (const struct sk_buff_head * list, const struct
sk_buff * skb);

Arguments

list queue head

skb buffer

Description

Returns true if skb is the first buffer on the list.

Linux Networking

17

Name
skb_queue_next — return the next packet in the queue

Synopsis

struct sk_buff * skb_queue_next (const struct sk_buff_head * list, const
struct sk_buff * skb);

Arguments

list queue head

skb current buffer

Description

Return the next packet in list after skb. It is only valid to call this if skb_queue_is_last evaluates
to false.

Linux Networking

18

Name
skb_queue_prev — return the prev packet in the queue

Synopsis

struct sk_buff * skb_queue_prev (const struct sk_buff_head * list, const
struct sk_buff * skb);

Arguments

list queue head

skb current buffer

Description

Return the prev packet in list before skb. It is only valid to call this if skb_queue_is_first
evaluates to false.

Linux Networking

19

Name
skb_get — reference buffer

Synopsis

struct sk_buff * skb_get (struct sk_buff * skb);

Arguments

skb buffer to reference

Description

Makes another reference to a socket buffer and returns a pointer to the buffer.

Linux Networking

20

Name
skb_cloned — is the buffer a clone

Synopsis

int skb_cloned (const struct sk_buff * skb);

Arguments

skb buffer to check

Description

Returns true if the buffer was generated with skb_clone and is one of multiple shared copies of the
buffer. Cloned buffers are shared data so must not be written to under normal circumstances.

Linux Networking

21

Name
skb_header_cloned — is the header a clone

Synopsis

int skb_header_cloned (const struct sk_buff * skb);

Arguments

skb buffer to check

Description

Returns true if modifying the header part of the buffer requires the data to be copied.

Linux Networking

22

Name
skb_header_release — release reference to header

Synopsis

void skb_header_release (struct sk_buff * skb);

Arguments

skb buffer to operate on

Description

Drop a reference to the header part of the buffer. This is done by acquiring a payload reference. You must
not read from the header part of skb->data after this.

Note

Check if you can use __skb_header_release instead.

Linux Networking

23

Name
__skb_header_release — release reference to header

Synopsis

void __skb_header_release (struct sk_buff * skb);

Arguments

skb buffer to operate on

Description

Variant of skb_header_release assuming skb is private to caller. We can avoid one atomic opera-
tion.

Linux Networking

24

Name
skb_shared — is the buffer shared

Synopsis

int skb_shared (const struct sk_buff * skb);

Arguments

skb buffer to check

Description

Returns true if more than one person has a reference to this buffer.

Linux Networking

25

Name
skb_share_check — check if buffer is shared and if so clone it

Synopsis

struct sk_buff * skb_share_check (struct sk_buff * skb, gfp_t pri);

Arguments

skb buffer to check

pri priority for memory allocation

Description

If the buffer is shared the buffer is cloned and the old copy drops a reference. A new clone with a single
reference is returned. If the buffer is not shared the original buffer is returned. When being called from
interrupt status or with spinlocks held pri must be GFP_ATOMIC.

NULL is returned on a memory allocation failure.

Linux Networking

26

Name
skb_unshare — make a copy of a shared buffer

Synopsis

struct sk_buff * skb_unshare (struct sk_buff * skb, gfp_t pri);

Arguments

skb buffer to check

pri priority for memory allocation

Description

If the socket buffer is a clone then this function creates a new copy of the data, drops a reference count on
the old copy and returns the new copy with the reference count at 1. If the buffer is not a clone the original
buffer is returned. When called with a spinlock held or from interrupt state pri must be GFP_ATOMIC

NULL is returned on a memory allocation failure.

Linux Networking

27

Name
skb_peek — peek at the head of an sk_buff_head

Synopsis

struct sk_buff * skb_peek (const struct sk_buff_head * list_);

Arguments

list_ list to peek at

Description

Peek an sk_buff. Unlike most other operations you _MUST_ be careful with this one. A peek leaves the
buffer on the list and someone else may run off with it. You must hold the appropriate locks or have a
private queue to do this.

Returns NULL for an empty list or a pointer to the head element. The reference count is not incremented
and the reference is therefore volatile. Use with caution.

Linux Networking

28

Name
skb_peek_next — peek skb following the given one from a queue

Synopsis

struct sk_buff * skb_peek_next (struct sk_buff * skb, const struct
sk_buff_head * list_);

Arguments

skb skb to start from

list_ list to peek at

Description

Returns NULL when the end of the list is met or a pointer to the next element. The reference count is not
incremented and the reference is therefore volatile. Use with caution.

Linux Networking

29

Name
skb_peek_tail — peek at the tail of an sk_buff_head

Synopsis

struct sk_buff * skb_peek_tail (const struct sk_buff_head * list_);

Arguments

list_ list to peek at

Description

Peek an sk_buff. Unlike most other operations you _MUST_ be careful with this one. A peek leaves the
buffer on the list and someone else may run off with it. You must hold the appropriate locks or have a
private queue to do this.

Returns NULL for an empty list or a pointer to the tail element. The reference count is not incremented
and the reference is therefore volatile. Use with caution.

Linux Networking

30

Name
skb_queue_len — get queue length

Synopsis

__u32 skb_queue_len (const struct sk_buff_head * list_);

Arguments

list_ list to measure

Description

Return the length of an sk_buff queue.

Linux Networking

31

Name
__skb_queue_head_init — initialize non-spinlock portions of sk_buff_head

Synopsis

void __skb_queue_head_init (struct sk_buff_head * list);

Arguments

list queue to initialize

Description

This initializes only the list and queue length aspects of an sk_buff_head object. This allows to initialize
the list aspects of an sk_buff_head without reinitializing things like the spinlock. It can also be used for
on-stack sk_buff_head objects where the spinlock is known to not be used.

Linux Networking

32

Name
skb_queue_splice — join two skb lists, this is designed for stacks

Synopsis

void skb_queue_splice (const struct sk_buff_head * list, struct
sk_buff_head * head);

Arguments

list the new list to add

head the place to add it in the first list

Linux Networking

33

Name
skb_queue_splice_init — join two skb lists and reinitialise the emptied list

Synopsis

void skb_queue_splice_init (struct sk_buff_head * list, struct
sk_buff_head * head);

Arguments

list the new list to add

head the place to add it in the first list

Description

The list at list is reinitialised

Linux Networking

34

Name
skb_queue_splice_tail — join two skb lists, each list being a queue

Synopsis

void skb_queue_splice_tail (const struct sk_buff_head * list, struct
sk_buff_head * head);

Arguments

list the new list to add

head the place to add it in the first list

Linux Networking

35

Name
skb_queue_splice_tail_init — join two skb lists and reinitialise the emptied list

Synopsis

void skb_queue_splice_tail_init (struct sk_buff_head * list, struct
sk_buff_head * head);

Arguments

list the new list to add

head the place to add it in the first list

Description

Each of the lists is a queue. The list at list is reinitialised

Linux Networking

36

Name
__skb_queue_after — queue a buffer at the list head

Synopsis

void __skb_queue_after (struct sk_buff_head * list, struct sk_buff *
prev, struct sk_buff * newsk);

Arguments

list list to use

prev place after this buffer

newsk buffer to queue

Description

Queue a buffer int the middle of a list. This function takes no locks and you must therefore hold required
locks before calling it.

A buffer cannot be placed on two lists at the same time.

Linux Networking

37

Name
__skb_fill_page_desc — initialise a paged fragment in an skb

Synopsis

void __skb_fill_page_desc (struct sk_buff * skb, int i, struct page *
page, int off, int size);

Arguments

skb buffer containing fragment to be initialised

i paged fragment index to initialise

page the page to use for this fragment

off the offset to the data with page

size the length of the data

Description

Initialises the i'th fragment of skb to point to size bytes at offset off within page.

Does not take any additional reference on the fragment.

Linux Networking

38

Name
skb_fill_page_desc — initialise a paged fragment in an skb

Synopsis

void skb_fill_page_desc (struct sk_buff * skb, int i, struct page *
page, int off, int size);

Arguments

skb buffer containing fragment to be initialised

i paged fragment index to initialise

page the page to use for this fragment

off the offset to the data with page

size the length of the data

Description

As per __skb_fill_page_desc -- initialises the i'th fragment of skb to point to size bytes at offset
off within page. In addition updates skb such that i is the last fragment.

Does not take any additional reference on the fragment.

Linux Networking

39

Name
skb_headroom — bytes at buffer head

Synopsis

unsigned int skb_headroom (const struct sk_buff * skb);

Arguments

skb buffer to check

Description

Return the number of bytes of free space at the head of an sk_buff.

Linux Networking

40

Name
skb_tailroom — bytes at buffer end

Synopsis

int skb_tailroom (const struct sk_buff * skb);

Arguments

skb buffer to check

Description

Return the number of bytes of free space at the tail of an sk_buff

Linux Networking

41

Name
skb_availroom — bytes at buffer end

Synopsis

int skb_availroom (const struct sk_buff * skb);

Arguments

skb buffer to check

Description

Return the number of bytes of free space at the tail of an sk_buff allocated by sk_stream_alloc

Linux Networking

42

Name
skb_reserve — adjust headroom

Synopsis

void skb_reserve (struct sk_buff * skb, int len);

Arguments

skb buffer to alter

len bytes to move

Description

Increase the headroom of an empty sk_buff by reducing the tail room. This is only allowed for an empty
buffer.

Linux Networking

43

Name
pskb_trim_unique — remove end from a paged unique (not cloned) buffer

Synopsis

void pskb_trim_unique (struct sk_buff * skb, unsigned int len);

Arguments

skb buffer to alter

len new length

Description

This is identical to pskb_trim except that the caller knows that the skb is not cloned so we should never
get an error due to out- of-memory.

Linux Networking

44

Name
skb_orphan — orphan a buffer

Synopsis

void skb_orphan (struct sk_buff * skb);

Arguments

skb buffer to orphan

Description

If a buffer currently has an owner then we call the owner's destructor function and make the skb unowned.
The buffer continues to exist but is no longer charged to its former owner.

Linux Networking

45

Name
skb_orphan_frags — orphan the frags contained in a buffer

Synopsis

int skb_orphan_frags (struct sk_buff * skb, gfp_t gfp_mask);

Arguments

skb buffer to orphan frags from

gfp_mask allocation mask for replacement pages

Description

For each frag in the SKB which needs a destructor (i.e. has an owner) create a copy of that frag and release
the original page by calling the destructor.

Linux Networking

46

Name
netdev_alloc_skb — allocate an skbuff for rx on a specific device

Synopsis

struct sk_buff * netdev_alloc_skb (struct net_device * dev, unsigned
int length);

Arguments

dev network device to receive on

length length to allocate

Description

Allocate a new sk_buff and assign it a usage count of one. The buffer has unspecified headroom built in.
Users should allocate the headroom they think they need without accounting for the built in space. The
built in space is used for optimisations.

NULL is returned if there is no free memory. Although this function allocates memory it can be called
from an interrupt.

Linux Networking

47

Name
__dev_alloc_pages — allocate page for network Rx

Synopsis

struct page * __dev_alloc_pages (gfp_t gfp_mask, unsigned int order);

Arguments

gfp_mask allocation priority. Set __GFP_NOMEMALLOC if not for network Rx

order size of the allocation

Description

Allocate a new page.

NULL is returned if there is no free memory.

Linux Networking

48

Name
__dev_alloc_page — allocate a page for network Rx

Synopsis

struct page * __dev_alloc_page (gfp_t gfp_mask);

Arguments

gfp_mask allocation priority. Set __GFP_NOMEMALLOC if not for network Rx

Description

Allocate a new page.

NULL is returned if there is no free memory.

Linux Networking

49

Name
skb_propagate_pfmemalloc — Propagate pfmemalloc if skb is allocated after RX page

Synopsis

void skb_propagate_pfmemalloc (struct page * page, struct sk_buff *
skb);

Arguments

page The page that was allocated from skb_alloc_page

skb The skb that may need pfmemalloc set

Linux Networking

50

Name
skb_frag_page — retrieve the page referred to by a paged fragment

Synopsis

struct page * skb_frag_page (const skb_frag_t * frag);

Arguments

frag the paged fragment

Description

Returns the struct page associated with frag.

Linux Networking

51

Name
__skb_frag_ref — take an addition reference on a paged fragment.

Synopsis

void __skb_frag_ref (skb_frag_t * frag);

Arguments

frag the paged fragment

Description

Takes an additional reference on the paged fragment frag.

Linux Networking

52

Name
skb_frag_ref — take an addition reference on a paged fragment of an skb.

Synopsis

void skb_frag_ref (struct sk_buff * skb, int f);

Arguments

skb the buffer

f the fragment offset.

Description

Takes an additional reference on the f'th paged fragment of skb.

Linux Networking

53

Name
__skb_frag_unref — release a reference on a paged fragment.

Synopsis

void __skb_frag_unref (skb_frag_t * frag);

Arguments

frag the paged fragment

Description

Releases a reference on the paged fragment frag.

Linux Networking

54

Name
skb_frag_unref — release a reference on a paged fragment of an skb.

Synopsis

void skb_frag_unref (struct sk_buff * skb, int f);

Arguments

skb the buffer

f the fragment offset

Description

Releases a reference on the f'th paged fragment of skb.

Linux Networking

55

Name
skb_frag_address — gets the address of the data contained in a paged fragment

Synopsis

void * skb_frag_address (const skb_frag_t * frag);

Arguments

frag the paged fragment buffer

Description

Returns the address of the data within frag. The page must already be mapped.

Linux Networking

56

Name
skb_frag_address_safe — gets the address of the data contained in a paged fragment

Synopsis

void * skb_frag_address_safe (const skb_frag_t * frag);

Arguments

frag the paged fragment buffer

Description

Returns the address of the data within frag. Checks that the page is mapped and returns NULL otherwise.

Linux Networking

57

Name
__skb_frag_set_page — sets the page contained in a paged fragment

Synopsis

void __skb_frag_set_page (skb_frag_t * frag, struct page * page);

Arguments

frag the paged fragment

page the page to set

Description

Sets the fragment frag to contain page.

Linux Networking

58

Name
skb_frag_set_page — sets the page contained in a paged fragment of an skb

Synopsis

void skb_frag_set_page (struct sk_buff * skb, int f, struct page * page);

Arguments

skb the buffer

f the fragment offset

page the page to set

Description

Sets the f'th fragment of skb to contain page.

Linux Networking

59

Name
skb_frag_dma_map — maps a paged fragment via the DMA API

Synopsis

dma_addr_t skb_frag_dma_map (struct device * dev, const skb_frag_t *
frag, size_t offset, size_t size, enum dma_data_direction dir);

Arguments

dev the device to map the fragment to

frag the paged fragment to map

offset the offset within the fragment (starting at the fragment's own offset)

size the number of bytes to map

dir the direction of the mapping (PCI_DMA_*)

Description

Maps the page associated with frag to device.

Linux Networking

60

Name
skb_clone_writable — is the header of a clone writable

Synopsis

int skb_clone_writable (const struct sk_buff * skb, unsigned int len);

Arguments

skb buffer to check

len length up to which to write

Description

Returns true if modifying the header part of the cloned buffer does not requires the data to be copied.

Linux Networking

61

Name
skb_cow — copy header of skb when it is required

Synopsis

int skb_cow (struct sk_buff * skb, unsigned int headroom);

Arguments

skb buffer to cow

headroom needed headroom

Description

If the skb passed lacks sufficient headroom or its data part is shared, data is reallocated. If reallocation
fails, an error is returned and original skb is not changed.

The result is skb with writable area skb->head...skb->tail and at least headroom of space at head.

Linux Networking

62

Name
skb_cow_head — skb_cow but only making the head writable

Synopsis

int skb_cow_head (struct sk_buff * skb, unsigned int headroom);

Arguments

skb buffer to cow

headroom needed headroom

Description

This function is identical to skb_cow except that we replace the skb_cloned check by skb_header_cloned.
It should be used when you only need to push on some header and do not need to modify the data.

Linux Networking

63

Name
skb_padto — pad an skbuff up to a minimal size

Synopsis

int skb_padto (struct sk_buff * skb, unsigned int len);

Arguments

skb buffer to pad

len minimal length

Description

Pads up a buffer to ensure the trailing bytes exist and are blanked. If the buffer already contains sufficient
data it is untouched. Otherwise it is extended. Returns zero on success. The skb is freed on error.

Linux Networking

64

Name
skb_put_padto — increase size and pad an skbuff up to a minimal size

Synopsis

int skb_put_padto (struct sk_buff * skb, unsigned int len);

Arguments

skb buffer to pad

len minimal length

Description

Pads up a buffer to ensure the trailing bytes exist and are blanked. If the buffer already contains sufficient
data it is untouched. Otherwise it is extended. Returns zero on success. The skb is freed on error.

Linux Networking

65

Name
skb_linearize — convert paged skb to linear one

Synopsis

int skb_linearize (struct sk_buff * skb);

Arguments

skb buffer to linarize

Description

If there is no free memory -ENOMEM is returned, otherwise zero is returned and the old skb data released.

Linux Networking

66

Name
skb_has_shared_frag — can any frag be overwritten

Synopsis

bool skb_has_shared_frag (const struct sk_buff * skb);

Arguments

skb buffer to test

Description

Return true if the skb has at least one frag that might be modified by an external entity (as in vmsplice/
sendfile)

Linux Networking

67

Name
skb_linearize_cow — make sure skb is linear and writable

Synopsis

int skb_linearize_cow (struct sk_buff * skb);

Arguments

skb buffer to process

Description

If there is no free memory -ENOMEM is returned, otherwise zero is returned and the old skb data released.

Linux Networking

68

Name
skb_postpull_rcsum — update checksum for received skb after pull

Synopsis

void skb_postpull_rcsum (struct sk_buff * skb, const void * start,
unsigned int len);

Arguments

skb buffer to update

start start of data before pull

len length of data pulled

Description

After doing a pull on a received packet, you need to call this to update the CHECKSUM_COMPLETE
checksum, or set ip_summed to CHECKSUM_NONE so that it can be recomputed from scratch.

Linux Networking

69

Name
pskb_trim_rcsum — trim received skb and update checksum

Synopsis

int pskb_trim_rcsum (struct sk_buff * skb, unsigned int len);

Arguments

skb buffer to trim

len new length

Description

This is exactly the same as pskb_trim except that it ensures the checksum of received packets are still
valid after the operation.

Linux Networking

70

Name
skb_needs_linearize — check if we need to linearize a given skb depending on the given device features.

Synopsis

bool skb_needs_linearize (struct sk_buff * skb, netdev_features_t fea-
tures);

Arguments

skb socket buffer to check

features net device features

Returns true if either

1. skb has frag_list and the device doesn't support FRAGLIST, or 2. skb is fragmented and the device
does not support SG.

Linux Networking

71

Name
skb_get_timestamp — get timestamp from a skb

Synopsis

void skb_get_timestamp (const struct sk_buff * skb, struct timeval *
stamp);

Arguments

skb skb to get stamp from

stamp pointer to struct timeval to store stamp in

Description

Timestamps are stored in the skb as offsets to a base timestamp. This function converts the offset back
to a struct timeval and stores it in stamp.

Linux Networking

72

Name
skb_tx_timestamp — Driver hook for transmit timestamping

Synopsis

void skb_tx_timestamp (struct sk_buff * skb);

Arguments

skb A socket buffer.

Description

Ethernet MAC Drivers should call this function in their hard_xmit function immediately before giving
the sk_buff to the MAC hardware.

Specifically, one should make absolutely sure that this function is called before TX completion of this
packet can trigger. Otherwise the packet could potentially already be freed.

Linux Networking

73

Name
skb_checksum_complete — Calculate checksum of an entire packet

Synopsis

__sum16 skb_checksum_complete (struct sk_buff * skb);

Arguments

skb packet to process

Description

This function calculates the checksum over the entire packet plus the value of skb->csum. The latter can
be used to supply the checksum of a pseudo header as used by TCP/UDP. It returns the checksum.

For protocols that contain complete checksums such as ICMP/TCP/UDP, this function can be used to
verify that checksum on received packets. In that case the function should return zero if the checksum is
correct. In particular, this function will return zero if skb->ip_summed is CHECKSUM_UNNECESSARY
which indicates that the hardware has already verified the correctness of the checksum.

Linux Networking

74

Name
skb_checksum_none_assert — make sure skb ip_summed is CHECKSUM_NONE

Synopsis

void skb_checksum_none_assert (const struct sk_buff * skb);

Arguments

skb skb to check

Description

fresh skbs have their ip_summed set to CHECKSUM_NONE. Instead of forcing ip_summed to
CHECKSUM_NONE, we can use this helper, to document places where we make this assertion.

Linux Networking

75

Name
skb_head_is_locked — Determine if the skb->head is locked down

Synopsis

bool skb_head_is_locked (const struct sk_buff * skb);

Arguments

skb skb to check

Description

The head on skbs build around a head frag can be removed if they are not cloned. This function returns
true if the skb head is locked down due to either being allocated via kmalloc, or by being a clone with
multiple references to the head.

Linux Networking

76

Name
skb_gso_network_seglen — Return length of individual segments of a gso packet

Synopsis

unsigned int skb_gso_network_seglen (const struct sk_buff * skb);

Arguments

skb GSO skb

Description

skb_gso_network_seglen is used to determine the real size of the individual segments, including Layer3
(IP, IPv6) and L4 headers (TCP/UDP).

The MAC/L2 header is not accounted for.

Linux Networking

77

Name
struct sock_common — minimal network layer representation of sockets

Synopsis

struct sock_common {
 union {unnamed_union};
 int skc_tx_queue_mapping;
 atomic_t skc_refcnt;
};

Members

{unnamed_union} anonymous

skc_tx_queue_mapping tx queue number for this connection

skc_refcnt reference count

Description

This is the minimal network layer representation of sockets, the header for struct sock and struct
inet_timewait_sock.

Linux Networking

78

Name
struct sock — network layer representation of sockets

Synopsis

struct sock {
 struct sock_common __sk_common;
#define sk_node __sk_common.skc_node
#define sk_nulls_node __sk_common.skc_nulls_node
#define sk_refcnt __sk_common.skc_refcnt
#define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
#define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
#define sk_dontcopy_end __sk_common.skc_dontcopy_end
#define sk_hash __sk_common.skc_hash
#define sk_portpair __sk_common.skc_portpair
#define sk_num __sk_common.skc_num
#define sk_dport __sk_common.skc_dport
#define sk_addrpair __sk_common.skc_addrpair
#define sk_daddr __sk_common.skc_daddr
#define sk_rcv_saddr __sk_common.skc_rcv_saddr
#define sk_family __sk_common.skc_family
#define sk_state __sk_common.skc_state
#define sk_reuse __sk_common.skc_reuse
#define sk_reuseport __sk_common.skc_reuseport
#define sk_ipv6only __sk_common.skc_ipv6only
#define sk_bound_dev_if __sk_common.skc_bound_dev_if
#define sk_bind_node __sk_common.skc_bind_node
#define sk_prot __sk_common.skc_prot
#define sk_net __sk_common.skc_net
#define sk_v6_daddr __sk_common.skc_v6_daddr
#define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
#define sk_cookie __sk_common.skc_cookie
 socket_lock_t sk_lock;
 struct sk_buff_head sk_receive_queue;
 struct sk_backlog;
#define sk_rmem_alloc sk_backlog.rmem_alloc
 int sk_forward_alloc;
#ifdef CONFIG_RPS
 __u32 sk_rxhash;
#endif
 u16 sk_incoming_cpu;
 __u32 sk_txhash;
#ifdef CONFIG_NET_RX_BUSY_POLL
 unsigned int sk_napi_id;
 unsigned int sk_ll_usec;
#endif
 atomic_t sk_drops;
 int sk_rcvbuf;
 struct sk_filter __rcu * sk_filter;
 struct socket_wq __rcu * sk_wq;
#ifdef CONFIG_XFRM
 struct xfrm_policy * sk_policy[2];

Linux Networking

79

#endif
 unsigned long sk_flags;
 struct dst_entry * sk_rx_dst;
 struct dst_entry __rcu * sk_dst_cache;
 spinlock_t sk_dst_lock;
 atomic_t sk_wmem_alloc;
 atomic_t sk_omem_alloc;
 int sk_sndbuf;
 struct sk_buff_head sk_write_queue;
 unsigned int sk_shutdown:2;
 unsigned int sk_no_check_tx:1;
 unsigned int sk_no_check_rx:1;
 unsigned int sk_userlocks:4;
 unsigned int sk_protocol:8;
#define SK_PROTOCOL_MAX U8_MAX
 int sk_wmem_queued;
 gfp_t sk_allocation;
 u32 sk_pacing_rate;
 u32 sk_max_pacing_rate;
 netdev_features_t sk_route_caps;
 netdev_features_t sk_route_nocaps;
 int sk_gso_type;
 unsigned int sk_gso_max_size;
 u16 sk_gso_max_segs;
 int sk_rcvlowat;
 unsigned long sk_lingertime;
 struct sk_buff_head sk_error_queue;
 struct proto * sk_prot_creator;
 rwlock_t sk_callback_lock;
 int sk_err;
 int sk_err_soft;
 u32 sk_ack_backlog;
 u32 sk_max_ack_backlog;
 __u32 sk_priority;
#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
 __u32 sk_cgrp_prioidx;
#endif
 struct pid * sk_peer_pid;
 const struct cred * sk_peer_cred;
 long sk_rcvtimeo;
 long sk_sndtimeo;
 void * sk_protinfo;
 struct timer_list sk_timer;
 ktime_t sk_stamp;
 u16 sk_tsflags;
 u32 sk_tskey;
 struct socket * sk_socket;
 void * sk_user_data;
 struct page_frag sk_frag;
 struct sk_buff * sk_send_head;
 __s32 sk_peek_off;
 int sk_write_pending;
#ifdef CONFIG_SECURITY
 void * sk_security;

Linux Networking

80

#endif
 __u32 sk_mark;
 u32 sk_classid;
 struct cg_proto * sk_cgrp;
 void (* sk_state_change) (struct sock *sk);
 void (* sk_data_ready) (struct sock *sk);
 void (* sk_write_space) (struct sock *sk);
 void (* sk_error_report) (struct sock *sk);
 int (* sk_backlog_rcv) (struct sock *sk,struct sk_buff *skb);
 void (* sk_destruct) (struct sock *sk);
};

Members

__sk_common shared layout with inet_timewait_sock

sk_lock synchronizer

sk_receive_queue incoming packets

sk_backlog always used with the per-socket spinlock held

sk_forward_alloc space allocated forward

sk_rxhash flow hash received from netif layer

sk_incoming_cpu record cpu processing incoming packets

sk_txhash computed flow hash for use on transmit

sk_napi_id id of the last napi context to receive data for sk

sk_ll_usec usecs to busypoll when there is no data

sk_drops raw/udp drops counter

sk_rcvbuf size of receive buffer in bytes

sk_filter socket filtering instructions

sk_wq sock wait queue and async head

sk_policy[2] flow policy

sk_flags SO_LINGER (l_onoff), SO_BROADCAST, SO_KEEPALIVE,
SO_OOBINLINE settings, SO_TIMESTAMPING settings

sk_rx_dst receive input route used by early demux

sk_dst_cache destination cache

sk_dst_lock destination cache lock

sk_wmem_alloc transmit queue bytes committed

sk_omem_alloc "o“ is ”option“ or ”other"

sk_sndbuf size of send buffer in bytes

Linux Networking

81

sk_write_queue Packet sending queue

sk_shutdown mask of SEND_SHUTDOWN and/or RCV_SHUTDOWN

sk_no_check_tx SO_NO_CHECK setting, set checksum in TX packets

sk_no_check_rx allow zero checksum in RX packets

sk_userlocks SO_SNDBUF and SO_RCVBUF settings

sk_protocol which protocol this socket belongs in this network family

sk_wmem_queued persistent queue size

sk_allocation allocation mode

sk_pacing_rate Pacing rate (if supported by transport/packet scheduler)

sk_max_pacing_rate Maximum pacing rate (SO_MAX_PACING_RATE)

sk_route_caps route capabilities (e.g. NETIF_F_TSO)

sk_route_nocaps forbidden route capabilities (e.g NETIF_F_GSO_MASK)

sk_gso_type GSO type (e.g. SKB_GSO_TCPV4)

sk_gso_max_size Maximum GSO segment size to build

sk_gso_max_segs Maximum number of GSO segments

sk_rcvlowat SO_RCVLOWAT setting

sk_lingertime SO_LINGER l_linger setting

sk_error_queue rarely used

sk_prot_creator sk_prot of original sock creator (see ipv6_setsockopt, IPV6_ADDRFORM
for instance)

sk_callback_lock used with the callbacks in the end of this struct

sk_err last error

sk_err_soft errors that don't cause failure but are the cause of a persistent failure not just
'timed out'

sk_ack_backlog current listen backlog

sk_max_ack_backlog listen backlog set in listen

sk_priority SO_PRIORITY setting

sk_cgrp_prioidx socket group's priority map index

sk_peer_pid struct pid for this socket's peer

sk_peer_cred SO_PEERCRED setting

sk_rcvtimeo SO_RCVTIMEO setting

Linux Networking

82

sk_sndtimeo SO_SNDTIMEO setting

sk_protinfo private area, net family specific, when not using slab

sk_timer sock cleanup timer

sk_stamp time stamp of last packet received

sk_tsflags SO_TIMESTAMPING socket options

sk_tskey counter to disambiguate concurrent tstamp requests

sk_socket Identd and reporting IO signals

sk_user_data RPC layer private data

sk_frag cached page frag

sk_send_head front of stuff to transmit

sk_peek_off current peek_offset value

sk_write_pending a write to stream socket waits to start

sk_security used by security modules

sk_mark generic packet mark

sk_classid this socket's cgroup classid

sk_cgrp this socket's cgroup-specific proto data

sk_state_change callback to indicate change in the state of the sock

sk_data_ready callback to indicate there is data to be processed

sk_write_space callback to indicate there is bf sending space available

sk_error_report callback to indicate errors (e.g. MSG_ERRQUEUE)

sk_backlog_rcv callback to process the backlog

sk_destruct called at sock freeing time, i.e. when all refcnt == 0

Linux Networking

83

Name
sk_nulls_for_each_entry_offset — iterate over a list at a given struct offset

Synopsis

sk_nulls_for_each_entry_offset (tpos, pos, head, offset);

Arguments

tpos the type * to use as a loop cursor.

pos the struct hlist_node to use as a loop cursor.

head the head for your list.

offset offset of hlist_node within the struct.

Linux Networking

84

Name
unlock_sock_fast — complement of lock_sock_fast

Synopsis

void unlock_sock_fast (struct sock * sk, bool slow);

Arguments

sk socket

slow slow mode

Description

fast unlock socket for user context. If slow mode is on, we call regular release_sock

Linux Networking

85

Name
sk_wmem_alloc_get — returns write allocations

Synopsis

int sk_wmem_alloc_get (const struct sock * sk);

Arguments

sk socket

Description

Returns sk_wmem_alloc minus initial offset of one

Linux Networking

86

Name
sk_rmem_alloc_get — returns read allocations

Synopsis

int sk_rmem_alloc_get (const struct sock * sk);

Arguments

sk socket

Description

Returns sk_rmem_alloc

Linux Networking

87

Name
sk_has_allocations — check if allocations are outstanding

Synopsis

bool sk_has_allocations (const struct sock * sk);

Arguments

sk socket

Description

Returns true if socket has write or read allocations

Linux Networking

88

Name
wq_has_sleeper — check if there are any waiting processes

Synopsis

bool wq_has_sleeper (struct socket_wq * wq);

Arguments

wq struct socket_wq

Description

Returns true if socket_wq has waiting processes

The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory barrier call. They were
added due to the race found within the tcp code.

Consider following tcp code paths

CPU1 CPU2

sys_select receive packet __add_wait_queue update tp->rcv_nxt tp->rcv_nxt check
sock_def_readable ... { schedule rcu_read_lock; wq = rcu_dereference(sk->sk_wq); if (wq &&
waitqueue_active(wq->wait)) wake_up_interruptible(wq->wait) ... }

The race for tcp fires when the __add_wait_queue changes done by CPU1 stay in its cache, and so does
the tp->rcv_nxt update on CPU2 side. The CPU1 could then endup calling schedule and sleep forever if
there are no more data on the socket.

Linux Networking

89

Name
sock_poll_wait — place memory barrier behind the poll_wait call.

Synopsis

void sock_poll_wait (struct file * filp, wait_queue_head_t *
wait_address, poll_table * p);

Arguments

filp file

wait_address socket wait queue

p poll_table

Description

See the comments in the wq_has_sleeper function.

Linux Networking

90

Name
sk_page_frag — return an appropriate page_frag

Synopsis

struct page_frag * sk_page_frag (struct sock * sk);

Arguments

sk socket

Description

If socket allocation mode allows current thread to sleep, it means its safe to use the per task page_frag
instead of the per socket one.

Linux Networking

91

Name
sock_tx_timestamp — checks whether the outgoing packet is to be time stamped

Synopsis

void sock_tx_timestamp (const struct sock * sk, __u8 * tx_flags);

Arguments

sk socket sending this packet

tx_flags completed with instructions for time stamping

Note

callers should take care of initial *tx_flags value (usually 0)

Linux Networking

92

Name
sk_eat_skb — Release a skb if it is no longer needed

Synopsis

void sk_eat_skb (struct sock * sk, struct sk_buff * skb);

Arguments

sk socket to eat this skb from

skb socket buffer to eat

Description

This routine must be called with interrupts disabled or with the socket locked so that the sk_buff queue
operation is ok.

Linux Networking

93

Name
sockfd_lookup — Go from a file number to its socket slot

Synopsis

struct socket * sockfd_lookup (int fd, int * err);

Arguments

fd file handle

err pointer to an error code return

Description

The file handle passed in is locked and the socket it is bound too is returned. If an error occurs the err
pointer is overwritten with a negative errno code and NULL is returned. The function checks for both
invalid handles and passing a handle which is not a socket.

On a success the socket object pointer is returned.

Linux Networking

94

Name
sock_release — close a socket

Synopsis

void sock_release (struct socket * sock);

Arguments

sock socket to close

Description

The socket is released from the protocol stack if it has a release callback, and the inode is then released
if the socket is bound to an inode not a file.

Linux Networking

95

Name
kernel_recvmsg — Receive a message from a socket (kernel space)

Synopsis

int kernel_recvmsg (struct socket * sock, struct msghdr * msg, struct
kvec * vec, size_t num, size_t size, int flags);

Arguments

sock The socket to receive the message from

msg Received message

vec Input s/g array for message data

num Size of input s/g array

size Number of bytes to read

flags Message flags (MSG_DONTWAIT, etc...)

Description

On return the msg structure contains the scatter/gather array passed in the vec argument. The array is
modified so that it consists of the unfilled portion of the original array.

The returned value is the total number of bytes received, or an error.

Linux Networking

96

Name
sock_register — add a socket protocol handler

Synopsis

int sock_register (const struct net_proto_family * ops);

Arguments

ops description of protocol

Description

This function is called by a protocol handler that wants to advertise its address family, and have it linked
into the socket interface. The value ops->family corresponds to the socket system call protocol family.

Linux Networking

97

Name
sock_unregister — remove a protocol handler

Synopsis

void sock_unregister (int family);

Arguments

family protocol family to remove

Description

This function is called by a protocol handler that wants to remove its address family, and have it unlinked
from the new socket creation.

If protocol handler is a module, then it can use module reference counts to protect against new references.
If protocol handler is not a module then it needs to provide its own protection in the ops->create routine.

Linux Networking

98

Name
__alloc_skb — allocate a network buffer

Synopsis

struct sk_buff * __alloc_skb (unsigned int size, gfp_t gfp_mask, int
flags, int node);

Arguments

size size to allocate

gfp_mask allocation mask

flags If SKB_ALLOC_FCLONE is set, allocate from fclone cache instead of head cache and
allocate a cloned (child) skb. If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be
used for allocations in case the data is required for writeback

node numa node to allocate memory on

Description

Allocate a new sk_buff. The returned buffer has no headroom and a tail room of at least size bytes. The
object has a reference count of one. The return is the buffer. On a failure the return is NULL.

Buffers may only be allocated from interrupts using a gfp_mask of GFP_ATOMIC.

Linux Networking

99

Name
netdev_alloc_frag — allocate a page fragment

Synopsis

void * netdev_alloc_frag (unsigned int fragsz);

Arguments

fragsz fragment size

Description

Allocates a frag from a page for receive buffer. Uses GFP_ATOMIC allocations.

Linux Networking

100

Name
__netdev_alloc_skb — allocate an skbuff for rx on a specific device

Synopsis

struct sk_buff * __netdev_alloc_skb (struct net_device * dev, unsigned
int length, gfp_t gfp_mask);

Arguments

dev network device to receive on

length length to allocate

gfp_mask get_free_pages mask, passed to alloc_skb

Description

Allocate a new sk_buff and assign it a usage count of one. The buffer has NET_SKB_PAD headroom built
in. Users should allocate the headroom they think they need without accounting for the built in space. The
built in space is used for optimisations.

NULL is returned if there is no free memory.

Linux Networking

101

Name
__napi_alloc_skb — allocate skbuff for rx in a specific NAPI instance

Synopsis

struct sk_buff * __napi_alloc_skb (struct napi_struct * napi, unsigned
int length, gfp_t gfp_mask);

Arguments

napi napi instance this buffer was allocated for

length length to allocate

gfp_mask get_free_pages mask, passed to alloc_skb and alloc_pages

Description

Allocate a new sk_buff for use in NAPI receive. This buffer will attempt to allocate the head from a special
reserved region used only for NAPI Rx allocation. By doing this we can save several CPU cycles by
avoiding having to disable and re-enable IRQs.

NULL is returned if there is no free memory.

Linux Networking

102

Name
__kfree_skb — private function

Synopsis

void __kfree_skb (struct sk_buff * skb);

Arguments

skb buffer

Description

Free an sk_buff. Release anything attached to the buffer. Clean the state. This is an internal helper function.
Users should always call kfree_skb

Linux Networking

103

Name
kfree_skb — free an sk_buff

Synopsis

void kfree_skb (struct sk_buff * skb);

Arguments

skb buffer to free

Description

Drop a reference to the buffer and free it if the usage count has hit zero.

Linux Networking

104

Name
skb_tx_error — report an sk_buff xmit error

Synopsis

void skb_tx_error (struct sk_buff * skb);

Arguments

skb buffer that triggered an error

Description

Report xmit error if a device callback is tracking this skb. skb must be freed afterwards.

Linux Networking

105

Name
consume_skb — free an skbuff

Synopsis

void consume_skb (struct sk_buff * skb);

Arguments

skb buffer to free

Description

Drop a ref to the buffer and free it if the usage count has hit zero Functions identically to kfree_skb, but
kfree_skb assumes that the frame is being dropped after a failure and notes that

Linux Networking

106

Name
skb_morph — morph one skb into another

Synopsis

struct sk_buff * skb_morph (struct sk_buff * dst, struct sk_buff * src);

Arguments

dst the skb to receive the contents

src the skb to supply the contents

Description

This is identical to skb_clone except that the target skb is supplied by the user.

The target skb is returned upon exit.

Linux Networking

107

Name
skb_copy_ubufs — copy userspace skb frags buffers to kernel

Synopsis

int skb_copy_ubufs (struct sk_buff * skb, gfp_t gfp_mask);

Arguments

skb the skb to modify

gfp_mask allocation priority

Description

This must be called on SKBTX_DEV_ZEROCOPY skb. It will copy all frags into kernel and drop the
reference to userspace pages.

If this function is called from an interrupt gfp_mask must be GFP_ATOMIC.

Returns 0 on success or a negative error code on failure to allocate kernel memory to copy to.

Linux Networking

108

Name
skb_clone — duplicate an sk_buff

Synopsis

struct sk_buff * skb_clone (struct sk_buff * skb, gfp_t gfp_mask);

Arguments

skb buffer to clone

gfp_mask allocation priority

Description

Duplicate an sk_buff. The new one is not owned by a socket. Both copies share the same packet data but
not structure. The new buffer has a reference count of 1. If the allocation fails the function returns NULL
otherwise the new buffer is returned.

If this function is called from an interrupt gfp_mask must be GFP_ATOMIC.

Linux Networking

109

Name
skb_copy — create private copy of an sk_buff

Synopsis

struct sk_buff * skb_copy (const struct sk_buff * skb, gfp_t gfp_mask);

Arguments

skb buffer to copy

gfp_mask allocation priority

Description

Make a copy of both an sk_buff and its data. This is used when the caller wishes to modify the data and
needs a private copy of the data to alter. Returns NULL on failure or the pointer to the buffer on success.
The returned buffer has a reference count of 1.

As by-product this function converts non-linear sk_buff to linear one, so that sk_buff becomes completely
private and caller is allowed to modify all the data of returned buffer. This means that this function is
not recommended for use in circumstances when only header is going to be modified. Use pskb_copy
instead.

Linux Networking

110

Name
__pskb_copy_fclone — create copy of an sk_buff with private head.

Synopsis

struct sk_buff * __pskb_copy_fclone (struct sk_buff * skb, int headroom,
gfp_t gfp_mask, bool fclone);

Arguments

skb buffer to copy

headroom headroom of new skb

gfp_mask allocation priority

fclone if true allocate the copy of the skb from the fclone cache instead of the head cache; it is
recommended to set this to true for the cases where the copy will likely be cloned

Description

Make a copy of both an sk_buff and part of its data, located in header. Fragmented data remain shared.
This is used when the caller wishes to modify only header of sk_buff and needs private copy of the header
to alter. Returns NULL on failure or the pointer to the buffer on success. The returned buffer has a reference
count of 1.

Linux Networking

111

Name
pskb_expand_head — reallocate header of sk_buff

Synopsis

int pskb_expand_head (struct sk_buff * skb, int nhead, int ntail, gfp_t
gfp_mask);

Arguments

skb buffer to reallocate

nhead room to add at head

ntail room to add at tail

gfp_mask allocation priority

Description

Expands (or creates identical copy, if nhead and ntail are zero) header of skb. sk_buff itself is not
changed. sk_buff MUST have reference count of 1. Returns zero in the case of success or error, if expansion
failed. In the last case, sk_buff is not changed.

All the pointers pointing into skb header may change and must be reloaded after call to this function.

Linux Networking

112

Name
skb_copy_expand — copy and expand sk_buff

Synopsis

struct sk_buff * skb_copy_expand (const struct sk_buff * skb, int new-
headroom, int newtailroom, gfp_t gfp_mask);

Arguments

skb buffer to copy

newheadroom new free bytes at head

newtailroom new free bytes at tail

gfp_mask allocation priority

Description

Make a copy of both an sk_buff and its data and while doing so allocate additional space.

This is used when the caller wishes to modify the data and needs a private copy of the data to alter as
well as more space for new fields. Returns NULL on failure or the pointer to the buffer on success. The
returned buffer has a reference count of 1.

You must pass GFP_ATOMIC as the allocation priority if this function is called from an interrupt.

Linux Networking

113

Name
skb_pad — zero pad the tail of an skb

Synopsis

int skb_pad (struct sk_buff * skb, int pad);

Arguments

skb buffer to pad

pad space to pad

Description

Ensure that a buffer is followed by a padding area that is zero filled. Used by network drivers which may
DMA or transfer data beyond the buffer end onto the wire.

May return error in out of memory cases. The skb is freed on error.

Linux Networking

114

Name
pskb_put — add data to the tail of a potentially fragmented buffer

Synopsis

unsigned char * pskb_put (struct sk_buff * skb, struct sk_buff * tail,
int len);

Arguments

skb start of the buffer to use

tail tail fragment of the buffer to use

len amount of data to add

Description

This function extends the used data area of the potentially fragmented buffer. tail must be the last
fragment of skb -- or skb itself. If this would exceed the total buffer size the kernel will panic. A pointer
to the first byte of the extra data is returned.

Linux Networking

115

Name
skb_put — add data to a buffer

Synopsis

unsigned char * skb_put (struct sk_buff * skb, unsigned int len);

Arguments

skb buffer to use

len amount of data to add

Description

This function extends the used data area of the buffer. If this would exceed the total buffer size the kernel
will panic. A pointer to the first byte of the extra data is returned.

Linux Networking

116

Name
skb_push — add data to the start of a buffer

Synopsis

unsigned char * skb_push (struct sk_buff * skb, unsigned int len);

Arguments

skb buffer to use

len amount of data to add

Description

This function extends the used data area of the buffer at the buffer start. If this would exceed the total
buffer headroom the kernel will panic. A pointer to the first byte of the extra data is returned.

Linux Networking

117

Name
skb_pull — remove data from the start of a buffer

Synopsis

unsigned char * skb_pull (struct sk_buff * skb, unsigned int len);

Arguments

skb buffer to use

len amount of data to remove

Description

This function removes data from the start of a buffer, returning the memory to the headroom. A pointer
to the next data in the buffer is returned. Once the data has been pulled future pushes will overwrite the
old data.

Linux Networking

118

Name
skb_trim — remove end from a buffer

Synopsis

void skb_trim (struct sk_buff * skb, unsigned int len);

Arguments

skb buffer to alter

len new length

Description

Cut the length of a buffer down by removing data from the tail. If the buffer is already under the length
specified it is not modified. The skb must be linear.

Linux Networking

119

Name
__pskb_pull_tail — advance tail of skb header

Synopsis

unsigned char * __pskb_pull_tail (struct sk_buff * skb, int delta);

Arguments

skb buffer to reallocate

delta number of bytes to advance tail

Description

The function makes a sense only on a fragmented sk_buff, it expands header moving its tail forward and
copying necessary data from fragmented part.

sk_buff MUST have reference count of 1.

Returns NULL (and sk_buff does not change) if pull failed or value of new tail of skb in the case of success.

All the pointers pointing into skb header may change and must be reloaded after call to this function.

Linux Networking

120

Name
skb_copy_bits — copy bits from skb to kernel buffer

Synopsis

int skb_copy_bits (const struct sk_buff * skb, int offset, void * to,
int len);

Arguments

skb source skb

offset offset in source

to destination buffer

len number of bytes to copy

Description

Copy the specified number of bytes from the source skb to the destination buffer.

CAUTION ! : If its prototype is ever changed, check arch/{*}/net/{*}.S files, since it is called from BPF
assembly code.

Linux Networking

121

Name
skb_store_bits — store bits from kernel buffer to skb

Synopsis

int skb_store_bits (struct sk_buff * skb, int offset, const void * from,
int len);

Arguments

skb destination buffer

offset offset in destination

from source buffer

len number of bytes to copy

Description

Copy the specified number of bytes from the source buffer to the destination skb. This function handles
all the messy bits of traversing fragment lists and such.

Linux Networking

122

Name
skb_zerocopy — Zero copy skb to skb

Synopsis

int skb_zerocopy (struct sk_buff * to, struct sk_buff * from, int len,
int hlen);

Arguments

to destination buffer

from source buffer

len number of bytes to copy from source buffer

hlen size of linear headroom in destination buffer

Description

Copies up to `len` bytes from `from` to `to` by creating references to the frags in the source buffer.

The `hlen` as calculated by skb_zerocopy_headlen specifies the headroom in the `to` buffer.

0

everything is OK -ENOMEM: couldn't orphan frags of from due to lack of memory -EFAULT:
skb_copy_bits found some problem with skb geometry

Linux Networking

123

Name
skb_dequeue — remove from the head of the queue

Synopsis

struct sk_buff * skb_dequeue (struct sk_buff_head * list);

Arguments

list list to dequeue from

Description

Remove the head of the list. The list lock is taken so the function may be used safely with other locking
list functions. The head item is returned or NULL if the list is empty.

Linux Networking

124

Name
skb_dequeue_tail — remove from the tail of the queue

Synopsis

struct sk_buff * skb_dequeue_tail (struct sk_buff_head * list);

Arguments

list list to dequeue from

Description

Remove the tail of the list. The list lock is taken so the function may be used safely with other locking list
functions. The tail item is returned or NULL if the list is empty.

Linux Networking

125

Name
skb_queue_purge — empty a list

Synopsis

void skb_queue_purge (struct sk_buff_head * list);

Arguments

list list to empty

Description

Delete all buffers on an sk_buff list. Each buffer is removed from the list and one reference dropped. This
function takes the list lock and is atomic with respect to other list locking functions.

Linux Networking

126

Name
skb_queue_head — queue a buffer at the list head

Synopsis

void skb_queue_head (struct sk_buff_head * list, struct sk_buff * newsk);

Arguments

list list to use

newsk buffer to queue

Description

Queue a buffer at the start of the list. This function takes the list lock and can be used safely with other
locking sk_buff functions safely.

A buffer cannot be placed on two lists at the same time.

Linux Networking

127

Name
skb_queue_tail — queue a buffer at the list tail

Synopsis

void skb_queue_tail (struct sk_buff_head * list, struct sk_buff * newsk);

Arguments

list list to use

newsk buffer to queue

Description

Queue a buffer at the tail of the list. This function takes the list lock and can be used safely with other
locking sk_buff functions safely.

A buffer cannot be placed on two lists at the same time.

Linux Networking

128

Name
skb_unlink — remove a buffer from a list

Synopsis

void skb_unlink (struct sk_buff * skb, struct sk_buff_head * list);

Arguments

skb buffer to remove

list list to use

Description

Remove a packet from a list. The list locks are taken and this function is atomic with respect to other list
locked calls

You must know what list the SKB is on.

Linux Networking

129

Name
skb_append — append a buffer

Synopsis

void skb_append (struct sk_buff * old, struct sk_buff * newsk, struct
sk_buff_head * list);

Arguments

old buffer to insert after

newsk buffer to insert

list list to use

Description

Place a packet after a given packet in a list. The list locks are taken and this function is atomic with respect
to other list locked calls. A buffer cannot be placed on two lists at the same time.

Linux Networking

130

Name
skb_insert — insert a buffer

Synopsis

void skb_insert (struct sk_buff * old, struct sk_buff * newsk, struct
sk_buff_head * list);

Arguments

old buffer to insert before

newsk buffer to insert

list list to use

Description

Place a packet before a given packet in a list. The list locks are taken and this function is atomic with
respect to other list locked calls.

A buffer cannot be placed on two lists at the same time.

Linux Networking

131

Name
skb_split — Split fragmented skb to two parts at length len.

Synopsis

void skb_split (struct sk_buff * skb, struct sk_buff * skb1, const u32
len);

Arguments

skb the buffer to split

skb1 the buffer to receive the second part

len new length for skb

Linux Networking

132

Name
skb_prepare_seq_read — Prepare a sequential read of skb data

Synopsis

void skb_prepare_seq_read (struct sk_buff * skb, unsigned int from,
unsigned int to, struct skb_seq_state * st);

Arguments

skb the buffer to read

from lower offset of data to be read

to upper offset of data to be read

st state variable

Description

Initializes the specified state variable. Must be called before invoking skb_seq_read for the first time.

Linux Networking

133

Name
skb_seq_read — Sequentially read skb data

Synopsis

unsigned int skb_seq_read (unsigned int consumed, const u8 ** data,
struct skb_seq_state * st);

Arguments

consumed number of bytes consumed by the caller so far

data destination pointer for data to be returned

st state variable

Description

Reads a block of skb data at consumed relative to the lower offset specified to
skb_prepare_seq_read. Assigns the head of the data block to data and returns the length of the
block or 0 if the end of the skb data or the upper offset has been reached.

The caller is not required to consume all of the data returned, i.e. consumed is typically set to the number
of bytes already consumed and the next call to skb_seq_read will return the remaining part of the block.

Note 1

The size of each block of data returned can be arbitrary, this limitation is the cost for zerocopy sequential
reads of potentially non linear data.

Note 2

Fragment lists within fragments are not implemented at the moment, state->root_skb could be replaced
with a stack for this purpose.

Linux Networking

134

Name
skb_abort_seq_read — Abort a sequential read of skb data

Synopsis

void skb_abort_seq_read (struct skb_seq_state * st);

Arguments

st state variable

Description

Must be called if skb_seq_read was not called until it returned 0.

Linux Networking

135

Name
skb_find_text — Find a text pattern in skb data

Synopsis

unsigned int skb_find_text (struct sk_buff * skb, unsigned int from,
unsigned int to, struct ts_config * config);

Arguments

skb the buffer to look in

from search offset

to search limit

config textsearch configuration

Description

Finds a pattern in the skb data according to the specified textsearch configuration. Use
textsearch_next to retrieve subsequent occurrences of the pattern. Returns the offset to the first oc-
currence or UINT_MAX if no match was found.

Linux Networking

136

Name
skb_append_datato_frags — append the user data to a skb

Synopsis

int skb_append_datato_frags (struct sock * sk, struct sk_buff * skb,
int (*getfrag) (void *from, char *to, int offset, int len, int odd,
struct sk_buff *skb), void * from, int length);

Arguments

sk sock structure

skb skb structure to be appended with user data.

getfrag call back function to be used for getting the user data

from pointer to user message iov

length length of the iov message

Description

This procedure append the user data in the fragment part of the skb if any page alloc fails user this procedure
returns -ENOMEM

Linux Networking

137

Name
skb_pull_rcsum — pull skb and update receive checksum

Synopsis

unsigned char * skb_pull_rcsum (struct sk_buff * skb, unsigned int len);

Arguments

skb buffer to update

len length of data pulled

Description

This function performs an skb_pull on the packet and updates the CHECKSUM_COMPLETE checksum.
It should be used on receive path processing instead of skb_pull unless you know that the checksum dif-
ference is zero (e.g., a valid IP header) or you are setting ip_summed to CHECKSUM_NONE.

Linux Networking

138

Name
skb_segment — Perform protocol segmentation on skb.

Synopsis

struct sk_buff * skb_segment (struct sk_buff * head_skb,
netdev_features_t features);

Arguments

head_skb buffer to segment

features features for the output path (see dev->features)

Description

This function performs segmentation on the given skb. It returns a pointer to the first in a list of new skbs
for the segments. In case of error it returns ERR_PTR(err).

Linux Networking

139

Name
skb_cow_data — Check that a socket buffer's data buffers are writable

Synopsis

int skb_cow_data (struct sk_buff * skb, int tailbits, struct sk_buff
** trailer);

Arguments

skb The socket buffer to check.

tailbits Amount of trailing space to be added

trailer Returned pointer to the skb where the tailbits space begins

Description

Make sure that the data buffers attached to a socket buffer are writable. If they are not, private copies are
made of the data buffers and the socket buffer is set to use these instead.

If tailbits is given, make sure that there is space to write tailbits bytes of data beyond current
end of socket buffer. trailer will be set to point to the skb in which this space begins.

The number of scatterlist elements required to completely map the COW'd and extended socket buffer
will be returned.

Linux Networking

140

Name
skb_clone_sk — create clone of skb, and take reference to socket

Synopsis

struct sk_buff * skb_clone_sk (struct sk_buff * skb);

Arguments

skb the skb to clone

Description

This function creates a clone of a buffer that holds a reference on sk_refcnt. Buffers created via this function
are meant to be returned using sock_queue_err_skb, or free via kfree_skb.

When passing buffers allocated with this function to sock_queue_err_skb it is necessary to wrap the call
with sock_hold/sock_put in order to prevent the socket from being released prior to being enqueued on
the sk_error_queue.

Linux Networking

141

Name
skb_partial_csum_set — set up and verify partial csum values for packet

Synopsis

bool skb_partial_csum_set (struct sk_buff * skb, u16 start, u16 off);

Arguments

skb the skb to set

start the number of bytes after skb->data to start checksumming.

off the offset from start to place the checksum.

Description

For untrusted partially-checksummed packets, we need to make sure the values for skb->csum_start and
skb->csum_offset are valid so we don't oops.

This function checks and sets those values and skb->ip_summed: if this returns false you should drop the
packet.

Linux Networking

142

Name
skb_checksum_setup — set up partial checksum offset

Synopsis

int skb_checksum_setup (struct sk_buff * skb, bool recalculate);

Arguments

skb the skb to set up

recalculate if true the pseudo-header checksum will be recalculated

Linux Networking

143

Name
skb_try_coalesce — try to merge skb to prior one

Synopsis

bool skb_try_coalesce (struct sk_buff * to, struct sk_buff * from, bool
* fragstolen, int * delta_truesize);

Arguments

to prior buffer

from buffer to add

fragstolen pointer to boolean

delta_truesize how much more was allocated than was requested

Linux Networking

144

Name
skb_scrub_packet — scrub an skb

Synopsis

void skb_scrub_packet (struct sk_buff * skb, bool xnet);

Arguments

skb buffer to clean

xnet packet is crossing netns

Description

skb_scrub_packet can be used after encapsulating or decapsulting a packet into/from a tunnel. Some in-
formation have to be cleared during these operations. skb_scrub_packet can also be used to clean a skb
before injecting it in another namespace (xnet == true). We have to clear all information in the skb that
could impact namespace isolation.

Linux Networking

145

Name
skb_gso_transport_seglen — Return length of individual segments of a gso packet

Synopsis

unsigned int skb_gso_transport_seglen (const struct sk_buff * skb);

Arguments

skb GSO skb

Description

skb_gso_transport_seglen is used to determine the real size of the individual segments, including Layer4
headers (TCP/UDP).

The MAC/L2 or network (IP, IPv6) headers are not accounted for.

Linux Networking

146

Name
alloc_skb_with_frags — allocate skb with page frags

Synopsis

struct sk_buff * alloc_skb_with_frags (unsigned long header_len, un-
signed long data_len, int max_page_order, int * errcode, gfp_t gfp_mask);

Arguments

header_len size of linear part

data_len needed length in frags

max_page_order max page order desired.

errcode pointer to error code if any

gfp_mask allocation mask

Description

This can be used to allocate a paged skb, given a maximal order for frags.

Linux Networking

147

Name
sk_ns_capable — General socket capability test

Synopsis

bool sk_ns_capable (const struct sock * sk, struct user_namespace *
user_ns, int cap);

Arguments

sk Socket to use a capability on or through

user_ns The user namespace of the capability to use

cap The capability to use

Description

Test to see if the opener of the socket had when the socket was created and the current process has the
capability cap in the user namespace user_ns.

Linux Networking

148

Name
sk_capable — Socket global capability test

Synopsis

bool sk_capable (const struct sock * sk, int cap);

Arguments

sk Socket to use a capability on or through

cap The global capability to use

Description

Test to see if the opener of the socket had when the socket was created and the current process has the
capability cap in all user namespaces.

Linux Networking

149

Name
sk_net_capable — Network namespace socket capability test

Synopsis

bool sk_net_capable (const struct sock * sk, int cap);

Arguments

sk Socket to use a capability on or through

cap The capability to use

Description

Test to see if the opener of the socket had when the socket was created and the current process has the
capability cap over the network namespace the socket is a member of.

Linux Networking

150

Name
sk_set_memalloc — sets SOCK_MEMALLOC

Synopsis

void sk_set_memalloc (struct sock * sk);

Arguments

sk socket to set it on

Description

Set SOCK_MEMALLOC on a socket for access to emergency reserves. It's the responsibility of the admin
to adjust min_free_kbytes to meet the requirements

Linux Networking

151

Name
sk_alloc — All socket objects are allocated here

Synopsis

struct sock * sk_alloc (struct net * net, int family, gfp_t priority,
struct proto * prot);

Arguments

net the applicable net namespace

family protocol family

priority for allocation (GFP_KERNEL, GFP_ATOMIC, etc)

prot struct proto associated with this new sock instance

Linux Networking

152

Name
sk_clone_lock — clone a socket, and lock its clone

Synopsis

struct sock * sk_clone_lock (const struct sock * sk, const gfp_t pri-
ority);

Arguments

sk the socket to clone

priority for allocation (GFP_KERNEL, GFP_ATOMIC, etc)

Description

Caller must unlock socket even in error path (bh_unlock_sock(newsk))

Linux Networking

153

Name
skb_page_frag_refill — check that a page_frag contains enough room

Synopsis

bool skb_page_frag_refill (unsigned int sz, struct page_frag * pfrag,
gfp_t gfp);

Arguments

sz minimum size of the fragment we want to get

pfrag pointer to page_frag

gfp priority for memory allocation

Note

While this allocator tries to use high order pages, there is no guarantee that allocations succeed. Therefore,
sz MUST be less or equal than PAGE_SIZE.

Linux Networking

154

Name
sk_wait_data — wait for data to arrive at sk_receive_queue

Synopsis

int sk_wait_data (struct sock * sk, long * timeo);

Arguments

sk sock to wait on

timeo for how long

Description

Now socket state including sk->sk_err is changed only under lock, hence we may omit checks after join-
ing wait queue. We check receive queue before schedule only as optimization; it is very likely that
release_sock added new data.

Linux Networking

155

Name
__sk_mem_schedule — increase sk_forward_alloc and memory_allocated

Synopsis

int __sk_mem_schedule (struct sock * sk, int size, int kind);

Arguments

sk socket

size memory size to allocate

kind allocation type

Description

If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means rmem allocation. This function
assumes that protocols which have memory_pressure use sk_wmem_queued as write buffer accounting.

Linux Networking

156

Name
__sk_mem_reclaim — reclaim memory_allocated

Synopsis

void __sk_mem_reclaim (struct sock * sk);

Arguments

sk socket

Linux Networking

157

Name
lock_sock_fast — fast version of lock_sock

Synopsis

bool lock_sock_fast (struct sock * sk);

Arguments

sk socket

Description

This version should be used for very small section, where process wont block return false if fast path
is taken sk_lock.slock locked, owned = 0, BH disabled return true if slow path is taken sk_lock.slock
unlocked, owned = 1, BH enabled

Linux Networking

158

Name
__skb_recv_datagram — Receive a datagram skbuff

Synopsis

struct sk_buff * __skb_recv_datagram (struct sock * sk, unsigned int
flags, int * peeked, int * off, int * err);

Arguments

sk socket

flags MSG_ flags

peeked returns non-zero if this packet has been seen before

off an offset in bytes to peek skb from. Returns an offset within an skb where data actually starts

err error code returned

Description

Get a datagram skbuff, understands the peeking, nonblocking wakeups and possible races. This replaces
identical code in packet, raw and udp, as well as the IPX AX.25 and Appletalk. It also finally fixes the long
standing peek and read race for datagram sockets. If you alter this routine remember it must be re-entrant.

This function will lock the socket if a skb is returned, so the caller needs to unlock the socket in that case
(usually by calling skb_free_datagram)

* It does not lock socket since today. This function is * free of race conditions. This measure should/
can improve * significantly datagram socket latencies at high loads, * when data copying to user space
takes lots of time. * (BTW I've just killed the last cli in IP/IPv6/core/netlink/packet * 8) Great win.) *
--ANK (980729)

The order of the tests when we find no data waiting are specified quite explicitly by POSIX 1003.1g, don't
change them without having the standard around please.

Linux Networking

159

Name
skb_kill_datagram — Free a datagram skbuff forcibly

Synopsis

int skb_kill_datagram (struct sock * sk, struct sk_buff * skb, unsigned
int flags);

Arguments

sk socket

skb datagram skbuff

flags MSG_ flags

Description

This function frees a datagram skbuff that was received by skb_recv_datagram. The flags argument must
match the one used for skb_recv_datagram.

If the MSG_PEEK flag is set, and the packet is still on the receive queue of the socket, it will be taken
off the queue before it is freed.

This function currently only disables BH when acquiring the sk_receive_queue lock. Therefore it must not
be used in a context where that lock is acquired in an IRQ context.

It returns 0 if the packet was removed by us.

Linux Networking

160

Name
skb_copy_datagram_iter — Copy a datagram to an iovec iterator.

Synopsis

int skb_copy_datagram_iter (const struct sk_buff * skb, int offset,
struct iov_iter * to, int len);

Arguments

skb buffer to copy

offset offset in the buffer to start copying from

to iovec iterator to copy to

len amount of data to copy from buffer to iovec

Linux Networking

161

Name
skb_copy_datagram_from_iter — Copy a datagram from an iov_iter.

Synopsis

int skb_copy_datagram_from_iter (struct sk_buff * skb, int offset,
struct iov_iter * from, int len);

Arguments

skb buffer to copy

offset offset in the buffer to start copying to

from the copy source

len amount of data to copy to buffer from iovec

Description

Returns 0 or -EFAULT.

Linux Networking

162

Name
zerocopy_sg_from_iter — Build a zerocopy datagram from an iov_iter

Synopsis

int zerocopy_sg_from_iter (struct sk_buff * skb, struct iov_iter * from);

Arguments

skb buffer to copy

from the source to copy from

Description

The function will first copy up to headlen, and then pin the userspace pages and build frags through them.

Returns 0, -EFAULT or -EMSGSIZE.

Linux Networking

163

Name
skb_copy_and_csum_datagram_msg — Copy and checksum skb to user iovec.

Synopsis

int skb_copy_and_csum_datagram_msg (struct sk_buff * skb, int hlen,
struct msghdr * msg);

Arguments

skb skbuff

hlen hardware length

msg destination

Description

Caller _must_ check that skb will fit to this iovec.

Returns

0 - success. -EINVAL - checksum failure. -EFAULT - fault during copy.

Linux Networking

164

Name
datagram_poll — generic datagram poll

Synopsis

unsigned int datagram_poll (struct file * file, struct socket * sock,
poll_table * wait);

Arguments

file file struct

sock socket

wait poll table

Datagram poll

Again totally generic. This also handles sequenced packet sockets providing the socket receive queue is
only ever holding data ready to receive.

Note

when you _don't_ use this routine for this protocol, and you use a different write policy from
sock_writeable then please supply your own write_space callback.

Linux Networking

165

Name
sk_stream_write_space — stream socket write_space callback.

Synopsis

void sk_stream_write_space (struct sock * sk);

Arguments

sk socket

FIXME

write proper description

Linux Networking

166

Name
sk_stream_wait_connect — Wait for a socket to get into the connected state

Synopsis

int sk_stream_wait_connect (struct sock * sk, long * timeo_p);

Arguments

sk sock to wait on

timeo_p for how long to wait

Description

Must be called with the socket locked.

Linux Networking

167

Name
sk_stream_wait_memory — Wait for more memory for a socket

Synopsis

int sk_stream_wait_memory (struct sock * sk, long * timeo_p);

Arguments

sk socket to wait for memory

timeo_p for how long

Socket Filter

Linux Networking

168

Name
sk_filter — run a packet through a socket filter

Synopsis

int sk_filter (struct sock * sk, struct sk_buff * skb);

Arguments

sk sock associated with sk_buff

skb buffer to filter

Description

Run the filter code and then cut skb->data to correct size returned by SK_RUN_FILTER. If pkt_len is
0 we toss packet. If skb->len is smaller than pkt_len we keep whole skb->data. This is the socket level
wrapper to SK_RUN_FILTER. It returns 0 if the packet should be accepted or -EPERM if the packet
should be tossed.

Linux Networking

169

Name
bpf_check_classic — verify socket filter code

Synopsis

int bpf_check_classic (const struct sock_filter * filter, unsigned int
flen);

Arguments

filter filter to verify

flen length of filter

Description

Check the user's filter code. If we let some ugly filter code slip through kaboom! The filter must contain
no references or jumps that are out of range, no illegal instructions, and must end with a RET instruction.

All jumps are forward as they are not signed.

Returns 0 if the rule set is legal or -EINVAL if not.

Linux Networking

170

Name
bpf_prog_create — create an unattached filter

Synopsis

int bpf_prog_create (struct bpf_prog ** pfp, struct sock_fprog_kern *
fprog);

Arguments

pfp the unattached filter that is created

fprog the filter program

Description

Create a filter independent of any socket. We first run some sanity checks on it to make sure it does not
explode on us later. If an error occurs or there is insufficient memory for the filter a negative errno code
is returned. On success the return is zero.

Linux Networking

171

Name
sk_attach_filter — attach a socket filter

Synopsis

int sk_attach_filter (struct sock_fprog * fprog, struct sock * sk);

Arguments

fprog the filter program

sk the socket to use

Description

Attach the user's filter code. We first run some sanity checks on it to make sure it does not explode on
us later. If an error occurs or there is insufficient memory for the filter a negative errno code is returned.
On success the return is zero.

Generic Network Statistics

Linux Networking

172

Name
struct gnet_stats_basic — byte/packet throughput statistics

Synopsis

struct gnet_stats_basic {
 __u64 bytes;
 __u32 packets;
};

Members

bytes number of seen bytes

packets number of seen packets

Linux Networking

173

Name
struct gnet_stats_rate_est — rate estimator

Synopsis

struct gnet_stats_rate_est {
 __u32 bps;
 __u32 pps;
};

Members

bps current byte rate

pps current packet rate

Linux Networking

174

Name
struct gnet_stats_rate_est64 — rate estimator

Synopsis

struct gnet_stats_rate_est64 {
 __u64 bps;
 __u64 pps;
};

Members

bps current byte rate

pps current packet rate

Linux Networking

175

Name
struct gnet_stats_queue — queuing statistics

Synopsis

struct gnet_stats_queue {
 __u32 qlen;
 __u32 backlog;
 __u32 drops;
 __u32 requeues;
 __u32 overlimits;
};

Members

qlen queue length

backlog backlog size of queue

drops number of dropped packets

requeues number of requeues

overlimits number of enqueues over the limit

Linux Networking

176

Name
struct gnet_estimator — rate estimator configuration

Synopsis

struct gnet_estimator {
 signed char interval;
 unsigned char ewma_log;
};

Members

interval sampling period

ewma_log the log of measurement window weight

Linux Networking

177

Name
gnet_stats_start_copy_compat — start dumping procedure in compatibility mode

Synopsis

int gnet_stats_start_copy_compat (struct sk_buff * skb, int type, int
tc_stats_type, int xstats_type, spinlock_t * lock, struct gnet_dump *
d);

Arguments

skb socket buffer to put statistics TLVs into

type TLV type for top level statistic TLV

tc_stats_type TLV type for backward compatibility struct tc_stats TLV

xstats_type TLV type for backward compatibility xstats TLV

lock statistics lock

d dumping handle

Description

Initializes the dumping handle, grabs the statistic lock and appends an empty TLV header to the socket
buffer for use a container for all other statistic TLVS.

The dumping handle is marked to be in backward compatibility mode telling all
gnet_stats_copy_XXX functions to fill a local copy of struct tc_stats.

Returns 0 on success or -1 if the room in the socket buffer was not sufficient.

Linux Networking

178

Name
gnet_stats_start_copy — start dumping procedure in compatibility mode

Synopsis

int gnet_stats_start_copy (struct sk_buff * skb, int type, spinlock_t
* lock, struct gnet_dump * d);

Arguments

skb socket buffer to put statistics TLVs into

type TLV type for top level statistic TLV

lock statistics lock

d dumping handle

Description

Initializes the dumping handle, grabs the statistic lock and appends an empty TLV header to the socket
buffer for use a container for all other statistic TLVS.

Returns 0 on success or -1 if the room in the socket buffer was not sufficient.

Linux Networking

179

Name
gnet_stats_copy_basic — copy basic statistics into statistic TLV

Synopsis

int gnet_stats_copy_basic (struct gnet_dump * d, struct
gnet_stats_basic_cpu __percpu * cpu, struct gnet_stats_basic_packed *
b);

Arguments

d dumping handle

cpu -- undescribed --

b basic statistics

Description

Appends the basic statistics to the top level TLV created by gnet_stats_start_copy.

Returns 0 on success or -1 with the statistic lock released if the room in the socket buffer was not sufficient.

Linux Networking

180

Name
gnet_stats_copy_rate_est — copy rate estimator statistics into statistics TLV

Synopsis

int gnet_stats_copy_rate_est (struct gnet_dump * d, const struct
gnet_stats_basic_packed * b, struct gnet_stats_rate_est64 * r);

Arguments

d dumping handle

b basic statistics

r rate estimator statistics

Description

Appends the rate estimator statistics to the top level TLV created by gnet_stats_start_copy.

Returns 0 on success or -1 with the statistic lock released if the room in the socket buffer was not sufficient.

Linux Networking

181

Name
gnet_stats_copy_queue — copy queue statistics into statistics TLV

Synopsis

int gnet_stats_copy_queue (struct gnet_dump * d, struct gnet_stats_queue
__percpu * cpu_q, struct gnet_stats_queue * q, __u32 qlen);

Arguments

d dumping handle

cpu_q per cpu queue statistics

q queue statistics

qlen queue length statistics

Description

Appends the queue statistics to the top level TLV created by gnet_stats_start_copy. Using per
cpu queue statistics if they are available.

Returns 0 on success or -1 with the statistic lock released if the room in the socket buffer was not sufficient.

Linux Networking

182

Name
gnet_stats_copy_app — copy application specific statistics into statistics TLV

Synopsis

int gnet_stats_copy_app (struct gnet_dump * d, void * st, int len);

Arguments

d dumping handle

st application specific statistics data

len length of data

Description

Appends the application specific statistics to the top level TLV created by gnet_stats_start_copy
and remembers the data for XSTATS if the dumping handle is in backward compatibility mode.

Returns 0 on success or -1 with the statistic lock released if the room in the socket buffer was not sufficient.

Linux Networking

183

Name
gnet_stats_finish_copy — finish dumping procedure

Synopsis

int gnet_stats_finish_copy (struct gnet_dump * d);

Arguments

d dumping handle

Description

Corrects the length of the top level TLV to include all TLVs added by gnet_stats_copy_XXX calls.
Adds the backward compatibility TLVs if gnet_stats_start_copy_compat was used and releases
the statistics lock.

Returns 0 on success or -1 with the statistic lock released if the room in the socket buffer was not sufficient.

Linux Networking

184

Name
gen_new_estimator — create a new rate estimator

Synopsis

int gen_new_estimator (struct gnet_stats_basic_packed * bstats,
struct gnet_stats_basic_cpu __percpu * cpu_bstats, struct
gnet_stats_rate_est64 * rate_est, spinlock_t * stats_lock, struct nlat-
tr * opt);

Arguments

bstats basic statistics

cpu_bstats -- undescribed --

rate_est rate estimator statistics

stats_lock statistics lock

opt rate estimator configuration TLV

Description

Creates a new rate estimator with bstats as source and rate_est as destination. A new timer with the interval
specified in the configuration TLV is created. Upon each interval, the latest statistics will be read from
bstats and the estimated rate will be stored in rate_est with the statistics lock grabbed during this period.

Returns 0 on success or a negative error code.

Linux Networking

185

Name
gen_kill_estimator — remove a rate estimator

Synopsis

void gen_kill_estimator (struct gnet_stats_basic_packed * bstats, struct
gnet_stats_rate_est64 * rate_est);

Arguments

bstats basic statistics

rate_est rate estimator statistics

Description

Removes the rate estimator specified by bstats and rate_est.

Note

Caller should respect an RCU grace period before freeing stats_lock

Linux Networking

186

Name
gen_replace_estimator — replace rate estimator configuration

Synopsis

int gen_replace_estimator (struct gnet_stats_basic_packed * bstats,
struct gnet_stats_basic_cpu __percpu * cpu_bstats, struct
gnet_stats_rate_est64 * rate_est, spinlock_t * stats_lock, struct nlat-
tr * opt);

Arguments

bstats basic statistics

cpu_bstats -- undescribed --

rate_est rate estimator statistics

stats_lock statistics lock

opt rate estimator configuration TLV

Description

Replaces the configuration of a rate estimator by calling gen_kill_estimator and
gen_new_estimator.

Returns 0 on success or a negative error code.

Linux Networking

187

Name
gen_estimator_active — test if estimator is currently in use

Synopsis

bool gen_estimator_active (const struct gnet_stats_basic_packed *
bstats, const struct gnet_stats_rate_est64 * rate_est);

Arguments

bstats basic statistics

rate_est rate estimator statistics

Description

Returns true if estimator is active, and false if not.

SUN RPC subsystem

Linux Networking

188

Name
xdr_encode_opaque_fixed — Encode fixed length opaque data

Synopsis

__be32 * xdr_encode_opaque_fixed (__be32 * p, const void * ptr, unsigned
int nbytes);

Arguments

p pointer to current position in XDR buffer.

ptr pointer to data to encode (or NULL)

nbytes size of data.

Description

Copy the array of data of length nbytes at ptr to the XDR buffer at position p, then align to the next 32-
bit boundary by padding with zero bytes (see RFC1832).

Note

if ptr is NULL, only the padding is performed.

Returns the updated current XDR buffer position

Linux Networking

189

Name
xdr_encode_opaque — Encode variable length opaque data

Synopsis

__be32 * xdr_encode_opaque (__be32 * p, const void * ptr, unsigned int
nbytes);

Arguments

p pointer to current position in XDR buffer.

ptr pointer to data to encode (or NULL)

nbytes size of data.

Description

Returns the updated current XDR buffer position

Linux Networking

190

Name
xdr_terminate_string — '\0'-terminate a string residing in an xdr_buf

Synopsis

void xdr_terminate_string (struct xdr_buf * buf, const u32 len);

Arguments

buf XDR buffer where string resides

len length of string, in bytes

Linux Networking

191

Name
_copy_from_pages —

Synopsis

void _copy_from_pages (char * p, struct page ** pages, size_t pgbase,
size_t len);

Arguments

p pointer to destination

pages array of pages

pgbase offset of source data

len length

Description

Copies data into an arbitrary memory location from an array of pages The copy is assumed to be non-
overlapping.

Linux Networking

192

Name
xdr_stream_pos — Return the current offset from the start of the xdr_stream

Synopsis

unsigned int xdr_stream_pos (const struct xdr_stream * xdr);

Arguments

xdr pointer to struct xdr_stream

Linux Networking

193

Name
xdr_init_encode — Initialize a struct xdr_stream for sending data.

Synopsis

void xdr_init_encode (struct xdr_stream * xdr, struct xdr_buf * buf,
__be32 * p);

Arguments

xdr pointer to xdr_stream struct

buf pointer to XDR buffer in which to encode data

p current pointer inside XDR buffer

Note

at the moment the RPC client only passes the length of our scratch buffer in the xdr_buf's header kvec.
Previously this meant we needed to call xdr_adjust_iovec after encoding the data. With the new
scheme, the xdr_stream manages the details of the buffer length, and takes care of adjusting the kvec
length for us.

Linux Networking

194

Name
xdr_commit_encode — Ensure all data is written to buffer

Synopsis

void xdr_commit_encode (struct xdr_stream * xdr);

Arguments

xdr pointer to xdr_stream

Description

We handle encoding across page boundaries by giving the caller a temporary location to write to, then
later copying the data into place; xdr_commit_encode does that copying.

Normally the caller doesn't need to call this directly, as the following xdr_reserve_space will do it. But an
explicit call may be required at the end of encoding, or any other time when the xdr_buf data might be read.

Linux Networking

195

Name
xdr_reserve_space — Reserve buffer space for sending

Synopsis

__be32 * xdr_reserve_space (struct xdr_stream * xdr, size_t nbytes);

Arguments

xdr pointer to xdr_stream

nbytes number of bytes to reserve

Description

Checks that we have enough buffer space to encode 'nbytes' more bytes of data. If so, update the total
xdr_buf length, and adjust the length of the current kvec.

Linux Networking

196

Name
xdr_truncate_encode — truncate an encode buffer

Synopsis

void xdr_truncate_encode (struct xdr_stream * xdr, size_t len);

Arguments

xdr pointer to xdr_stream

len new length of buffer

Description

Truncates the xdr stream, so that xdr->buf->len == len, and xdr->p points at offset len from the start of
the buffer, and head, tail, and page lengths are adjusted to correspond.

If this means moving xdr->p to a different buffer, we assume that that the end pointer should be set to the
end of the current page, except in the case of the head buffer when we assume the head buffer's current
length represents the end of the available buffer.

This is *not* safe to use on a buffer that already has inlined page cache pages (as in a zero-copy server
read reply), except for the simple case of truncating from one position in the tail to another.

Linux Networking

197

Name
xdr_restrict_buflen — decrease available buffer space

Synopsis

int xdr_restrict_buflen (struct xdr_stream * xdr, int newbuflen);

Arguments

xdr pointer to xdr_stream

newbuflen new maximum number of bytes available

Description

Adjust our idea of how much space is available in the buffer. If we've already used too much space in the
buffer, returns -1. If the available space is already smaller than newbuflen, returns 0 and does nothing.
Otherwise, adjusts xdr->buf->buflen to newbuflen and ensures xdr->end is set at most offset newbuflen
from the start of the buffer.

Linux Networking

198

Name
xdr_write_pages — Insert a list of pages into an XDR buffer for sending

Synopsis

void xdr_write_pages (struct xdr_stream * xdr, struct page ** pages,
unsigned int base, unsigned int len);

Arguments

xdr pointer to xdr_stream

pages list of pages

base offset of first byte

len length of data in bytes

Linux Networking

199

Name
xdr_init_decode — Initialize an xdr_stream for decoding data.

Synopsis

void xdr_init_decode (struct xdr_stream * xdr, struct xdr_buf * buf,
__be32 * p);

Arguments

xdr pointer to xdr_stream struct

buf pointer to XDR buffer from which to decode data

p current pointer inside XDR buffer

Linux Networking

200

Name
xdr_init_decode_pages — Initialize an xdr_stream for decoding data.

Synopsis

void xdr_init_decode_pages (struct xdr_stream * xdr, struct xdr_buf *
buf, struct page ** pages, unsigned int len);

Arguments

xdr pointer to xdr_stream struct

buf pointer to XDR buffer from which to decode data

pages list of pages to decode into

len length in bytes of buffer in pages

Linux Networking

201

Name
xdr_set_scratch_buffer — Attach a scratch buffer for decoding data.

Synopsis

void xdr_set_scratch_buffer (struct xdr_stream * xdr, void * buf, size_t
buflen);

Arguments

xdr pointer to xdr_stream struct

buf pointer to an empty buffer

buflen size of 'buf'

Description

The scratch buffer is used when decoding from an array of pages. If an xdr_inline_decode call spans
across page boundaries, then we copy the data into the scratch buffer in order to allow linear access.

Linux Networking

202

Name
xdr_inline_decode — Retrieve XDR data to decode

Synopsis

__be32 * xdr_inline_decode (struct xdr_stream * xdr, size_t nbytes);

Arguments

xdr pointer to xdr_stream struct

nbytes number of bytes of data to decode

Description

Check if the input buffer is long enough to enable us to decode 'nbytes' more bytes of data starting at the
current position. If so return the current pointer, then update the current pointer position.

Linux Networking

203

Name
xdr_read_pages — Ensure page-based XDR data to decode is aligned at current pointer position

Synopsis

unsigned int xdr_read_pages (struct xdr_stream * xdr, unsigned int len);

Arguments

xdr pointer to xdr_stream struct

len number of bytes of page data

Description

Moves data beyond the current pointer position from the XDR head[] buffer into the page list. Any data
that lies beyond current position + “len” bytes is moved into the XDR tail[].

Returns the number of XDR encoded bytes now contained in the pages

Linux Networking

204

Name
xdr_enter_page — decode data from the XDR page

Synopsis

void xdr_enter_page (struct xdr_stream * xdr, unsigned int len);

Arguments

xdr pointer to xdr_stream struct

len number of bytes of page data

Description

Moves data beyond the current pointer position from the XDR head[] buffer into the page list. Any data
that lies beyond current position + “len” bytes is moved into the XDR tail[]. The current pointer is then
repositioned at the beginning of the first XDR page.

Linux Networking

205

Name
xdr_buf_subsegment — set subbuf to a portion of buf

Synopsis

int xdr_buf_subsegment (struct xdr_buf * buf, struct xdr_buf * subbuf,
unsigned int base, unsigned int len);

Arguments

buf an xdr buffer

subbuf the result buffer

base beginning of range in bytes

len length of range in bytes

Description

sets subbuf to an xdr buffer representing the portion of buf of length len starting at offset base.

buf and subbuf may be pointers to the same struct xdr_buf.

Returns -1 if base of length are out of bounds.

Linux Networking

206

Name
xdr_buf_trim — lop at most “len” bytes off the end of “buf”

Synopsis

void xdr_buf_trim (struct xdr_buf * buf, unsigned int len);

Arguments

buf buf to be trimmed

len number of bytes to reduce “buf” by

Description

Trim an xdr_buf by the given number of bytes by fixing up the lengths. Note that it's possible that we'll
trim less than that amount if the xdr_buf is too small, or if (for instance) it's all in the head and the parser
has already read too far into it.

Linux Networking

207

Name
svc_print_addr — Format rq_addr field for printing

Synopsis

char * svc_print_addr (struct svc_rqst * rqstp, char * buf, size_t len);

Arguments

rqstp svc_rqst struct containing address to print

buf target buffer for formatted address

len length of target buffer

Linux Networking

208

Name
svc_reserve — change the space reserved for the reply to a request.

Synopsis

void svc_reserve (struct svc_rqst * rqstp, int space);

Arguments

rqstp The request in question

space new max space to reserve

Description

Each request reserves some space on the output queue of the transport to make sure the reply fits. This
function reduces that reserved space to be the amount of space used already, plus space.

Linux Networking

209

Name
svc_find_xprt — find an RPC transport instance

Synopsis

struct svc_xprt * svc_find_xprt (struct svc_serv * serv, const char *
xcl_name, struct net * net, const sa_family_t af, const unsigned short
port);

Arguments

serv pointer to svc_serv to search

xcl_name C string containing transport's class name

net owner net pointer

af Address family of transport's local address

port transport's IP port number

Description

Return the transport instance pointer for the endpoint accepting connections/peer traffic from the specified
transport class, address family and port.

Specifying 0 for the address family or port is effectively a wild-card, and will result in matching the first
transport in the service's list that has a matching class name.

Linux Networking

210

Name
svc_xprt_names — format a buffer with a list of transport names

Synopsis

int svc_xprt_names (struct svc_serv * serv, char * buf, const int
buflen);

Arguments

serv pointer to an RPC service

buf pointer to a buffer to be filled in

buflen length of buffer to be filled in

Description

Fills in buf with a string containing a list of transport names, each name terminated with '\n'.

Returns positive length of the filled-in string on success; otherwise a negative errno value is returned if
an error occurs.

Linux Networking

211

Name
xprt_register_transport — register a transport implementation

Synopsis

int xprt_register_transport (struct xprt_class * transport);

Arguments

transport transport to register

Description

If a transport implementation is loaded as a kernel module, it can call this interface to make itself known
to the RPC client.

0

transport successfully registered -EEXIST: transport already registered -EINVAL: transport module being
unloaded

Linux Networking

212

Name
xprt_unregister_transport — unregister a transport implementation

Synopsis

int xprt_unregister_transport (struct xprt_class * transport);

Arguments

transport transport to unregister

0

transport successfully unregistered -ENOENT: transport never registered

Linux Networking

213

Name
xprt_load_transport — load a transport implementation

Synopsis

int xprt_load_transport (const char * transport_name);

Arguments

transport_name transport to load

0

transport successfully loaded -ENOENT: transport module not available

Linux Networking

214

Name
xprt_reserve_xprt — serialize write access to transports

Synopsis

int xprt_reserve_xprt (struct rpc_xprt * xprt, struct rpc_task * task);

Arguments

xprt pointer to the target transport

task task that is requesting access to the transport

Description

This prevents mixing the payload of separate requests, and prevents transport connects from colliding with
writes. No congestion control is provided.

Linux Networking

215

Name
xprt_release_xprt — allow other requests to use a transport

Synopsis

void xprt_release_xprt (struct rpc_xprt * xprt, struct rpc_task * task);

Arguments

xprt transport with other tasks potentially waiting

task task that is releasing access to the transport

Description

Note that “task” can be NULL. No congestion control is provided.

Linux Networking

216

Name
xprt_release_xprt_cong — allow other requests to use a transport

Synopsis

void xprt_release_xprt_cong (struct rpc_xprt * xprt, struct rpc_task
* task);

Arguments

xprt transport with other tasks potentially waiting

task task that is releasing access to the transport

Description

Note that “task” can be NULL. Another task is awoken to use the transport if the transport's congestion
window allows it.

Linux Networking

217

Name
xprt_release_rqst_cong — housekeeping when request is complete

Synopsis

void xprt_release_rqst_cong (struct rpc_task * task);

Arguments

task RPC request that recently completed

Description

Useful for transports that require congestion control.

Linux Networking

218

Name
xprt_adjust_cwnd — adjust transport congestion window

Synopsis

void xprt_adjust_cwnd (struct rpc_xprt * xprt, struct rpc_task * task,
int result);

Arguments

xprt pointer to xprt

task recently completed RPC request used to adjust window

result result code of completed RPC request

Description

The transport code maintains an estimate on the maximum number of out- standing RPC requests, using a
smoothed version of the congestion avoidance implemented in 44BSD. This is basically the Van Jacobson

congestion algorithm

If a retransmit occurs, the congestion window is halved; otherwise, it is incremented by 1/cwnd when

- a reply is received and - a full number of requests are outstanding and - the congestion window hasn't
been updated recently.

Linux Networking

219

Name
xprt_wake_pending_tasks — wake all tasks on a transport's pending queue

Synopsis

void xprt_wake_pending_tasks (struct rpc_xprt * xprt, int status);

Arguments

xprt transport with waiting tasks

status result code to plant in each task before waking it

Linux Networking

220

Name
xprt_wait_for_buffer_space — wait for transport output buffer to clear

Synopsis

void xprt_wait_for_buffer_space (struct rpc_task * task, rpc_action
action);

Arguments

task task to be put to sleep

action function pointer to be executed after wait

Description

Note that we only set the timer for the case of RPC_IS_SOFT, since we don't in general want to force a
socket disconnection due to an incomplete RPC call transmission.

Linux Networking

221

Name
xprt_write_space — wake the task waiting for transport output buffer space

Synopsis

void xprt_write_space (struct rpc_xprt * xprt);

Arguments

xprt transport with waiting tasks

Description

Can be called in a soft IRQ context, so xprt_write_space never sleeps.

Linux Networking

222

Name
xprt_set_retrans_timeout_def — set a request's retransmit timeout

Synopsis

void xprt_set_retrans_timeout_def (struct rpc_task * task);

Arguments

task task whose timeout is to be set

Description

Set a request's retransmit timeout based on the transport's default timeout parameters. Used by transports
that don't adjust the retransmit timeout based on round-trip time estimation.

Linux Networking

223

Name
xprt_set_retrans_timeout_rtt — set a request's retransmit timeout

Synopsis

void xprt_set_retrans_timeout_rtt (struct rpc_task * task);

Arguments

task task whose timeout is to be set

Description

Set a request's retransmit timeout using the RTT estimator.

Linux Networking

224

Name
xprt_disconnect_done — mark a transport as disconnected

Synopsis

void xprt_disconnect_done (struct rpc_xprt * xprt);

Arguments

xprt transport to flag for disconnect

Linux Networking

225

Name
xprt_lookup_rqst — find an RPC request corresponding to an XID

Synopsis

struct rpc_rqst * xprt_lookup_rqst (struct rpc_xprt * xprt, __be32 xid);

Arguments

xprt transport on which the original request was transmitted

xid RPC XID of incoming reply

Linux Networking

226

Name
xprt_complete_rqst — called when reply processing is complete

Synopsis

void xprt_complete_rqst (struct rpc_task * task, int copied);

Arguments

task RPC request that recently completed

copied actual number of bytes received from the transport

Description

Caller holds transport lock.

Linux Networking

227

Name
rpc_wake_up — wake up all rpc_tasks

Synopsis

void rpc_wake_up (struct rpc_wait_queue * queue);

Arguments

queue rpc_wait_queue on which the tasks are sleeping

Description

Grabs queue->lock

Linux Networking

228

Name
rpc_wake_up_status — wake up all rpc_tasks and set their status value.

Synopsis

void rpc_wake_up_status (struct rpc_wait_queue * queue, int status);

Arguments

queue rpc_wait_queue on which the tasks are sleeping

status status value to set

Description

Grabs queue->lock

Linux Networking

229

Name
rpc_malloc — allocate an RPC buffer

Synopsis

void * rpc_malloc (struct rpc_task * task, size_t size);

Arguments

task RPC task that will use this buffer

size requested byte size

Description

To prevent rpciod from hanging, this allocator never sleeps, returning NULL and suppressing warning if
the request cannot be serviced immediately. The caller can arrange to sleep in a way that is safe for rpciod.

Most requests are 'small' (under 2KiB) and can be serviced from a mempool, ensuring that NFS reads and
writes can always proceed, and that there is good locality of reference for these buffers.

In order to avoid memory starvation triggering more writebacks of NFS requests, we avoid using
GFP_KERNEL.

Linux Networking

230

Name
rpc_free — free buffer allocated via rpc_malloc

Synopsis

void rpc_free (void * buffer);

Arguments

buffer buffer to free

Linux Networking

231

Name
xdr_skb_read_bits — copy some data bits from skb to internal buffer

Synopsis

size_t xdr_skb_read_bits (struct xdr_skb_reader * desc, void * to,
size_t len);

Arguments

desc sk_buff copy helper

to copy destination

len number of bytes to copy

Description

Possibly called several times to iterate over an sk_buff and copy data out of it.

Linux Networking

232

Name
xdr_partial_copy_from_skb — copy data out of an skb

Synopsis

ssize_t xdr_partial_copy_from_skb (struct xdr_buf * xdr, unsigned int
base, struct xdr_skb_reader * desc, xdr_skb_read_actor copy_actor);

Arguments

xdr target XDR buffer

base starting offset

desc sk_buff copy helper

copy_actor virtual method for copying data

Linux Networking

233

Name
csum_partial_copy_to_xdr — checksum and copy data

Synopsis

int csum_partial_copy_to_xdr (struct xdr_buf * xdr, struct sk_buff *
skb);

Arguments

xdr target XDR buffer

skb source skb

Description

We have set things up such that we perform the checksum of the UDP packet in parallel with the copies
into the RPC client iovec. -DaveM

Linux Networking

234

Name
rpc_alloc_iostats — allocate an rpc_iostats structure

Synopsis

struct rpc_iostats * rpc_alloc_iostats (struct rpc_clnt * clnt);

Arguments

clnt RPC program, version, and xprt

Linux Networking

235

Name
rpc_free_iostats — release an rpc_iostats structure

Synopsis

void rpc_free_iostats (struct rpc_iostats * stats);

Arguments

stats doomed rpc_iostats structure

Linux Networking

236

Name
rpc_count_iostats_metrics — tally up per-task stats

Synopsis

void rpc_count_iostats_metrics (const struct rpc_task * task, struct
rpc_iostats * op_metrics);

Arguments

task completed rpc_task

op_metrics stat structure for OP that will accumulate stats from task

Linux Networking

237

Name
rpc_count_iostats — tally up per-task stats

Synopsis

void rpc_count_iostats (const struct rpc_task * task, struct rpc_iostats
* stats);

Arguments

task completed rpc_task

stats array of stat structures

Description

Uses the statidx from task

Linux Networking

238

Name
rpc_queue_upcall — queue an upcall message to userspace

Synopsis

int rpc_queue_upcall (struct rpc_pipe * pipe, struct rpc_pipe_msg *
msg);

Arguments

pipe upcall pipe on which to queue given message

msg message to queue

Description

Call with an inode created by rpc_mkpipe to queue an upcall. A userspace process may then later
read the upcall by performing a read on an open file for this inode. It is up to the caller to initialize the
fields of msg (other than msg->list) appropriately.

Linux Networking

239

Name
rpc_mkpipe_dentry — make an rpc_pipefs file for kernel<->userspace communication

Synopsis

struct dentry * rpc_mkpipe_dentry (struct dentry * parent, const char
* name, void * private, struct rpc_pipe * pipe);

Arguments

parent dentry of directory to create new “pipe” in

name name of pipe

private private data to associate with the pipe, for the caller's use

pipe rpc_pipe containing input parameters

Description

Data is made available for userspace to read by calls to rpc_queue_upcall. The actual reads will
result in calls to ops->upcall, which will be called with the file pointer, message, and userspace buffer
to copy to.

Writes can come at any time, and do not necessarily have to be responses to upcalls. They will result in
calls to msg->downcall.

The private argument passed here will be available to all these methods from the file pointer, via
RPC_I(file_inode(file))->private.

Linux Networking

240

Name
rpc_unlink — remove a pipe

Synopsis

int rpc_unlink (struct dentry * dentry);

Arguments

dentry dentry for the pipe, as returned from rpc_mkpipe

Description

After this call, lookups will no longer find the pipe, and any attempts to read or write using preexisting
opens of the pipe will return -EPIPE.

Linux Networking

241

Name
rpc_init_pipe_dir_head — initialise a struct rpc_pipe_dir_head

Synopsis

void rpc_init_pipe_dir_head (struct rpc_pipe_dir_head * pdh);

Arguments

pdh pointer to struct rpc_pipe_dir_head

Linux Networking

242

Name
rpc_init_pipe_dir_object — initialise a struct rpc_pipe_dir_object

Synopsis

void rpc_init_pipe_dir_object (struct rpc_pipe_dir_object * pdo, const
struct rpc_pipe_dir_object_ops * pdo_ops, void * pdo_data);

Arguments

pdo pointer to struct rpc_pipe_dir_object

pdo_ops pointer to const struct rpc_pipe_dir_object_ops

pdo_data pointer to caller-defined data

Linux Networking

243

Name
rpc_add_pipe_dir_object — associate a rpc_pipe_dir_object to a directory

Synopsis

int rpc_add_pipe_dir_object (struct net * net, struct rpc_pipe_dir_head
* pdh, struct rpc_pipe_dir_object * pdo);

Arguments

net pointer to struct net

pdh pointer to struct rpc_pipe_dir_head

pdo pointer to struct rpc_pipe_dir_object

Linux Networking

244

Name
rpc_remove_pipe_dir_object — remove a rpc_pipe_dir_object from a directory

Synopsis

void rpc_remove_pipe_dir_object (struct net * net, struct
rpc_pipe_dir_head * pdh, struct rpc_pipe_dir_object * pdo);

Arguments

net pointer to struct net

pdh pointer to struct rpc_pipe_dir_head

pdo pointer to struct rpc_pipe_dir_object

Linux Networking

245

Name
rpc_find_or_alloc_pipe_dir_object —

Synopsis

struct rpc_pipe_dir_object * rpc_find_or_alloc_pipe_dir_object (struct
net * net, struct rpc_pipe_dir_head * pdh, int (*match) (struct
rpc_pipe_dir_object *, void *), struct rpc_pipe_dir_object *(*alloc)
(void *), void * data);

Arguments

net pointer to struct net

pdh pointer to struct rpc_pipe_dir_head

match match struct rpc_pipe_dir_object to data

alloc allocate a new struct rpc_pipe_dir_object

data user defined data for match and alloc

Linux Networking

246

Name
rpcb_getport_async — obtain the port for a given RPC service on a given host

Synopsis

void rpcb_getport_async (struct rpc_task * task);

Arguments

task task that is waiting for portmapper request

Description

This one can be called for an ongoing RPC request, and can be used in an async (rpciod) context.

Linux Networking

247

Name
rpc_create — create an RPC client and transport with one call

Synopsis

struct rpc_clnt * rpc_create (struct rpc_create_args * args);

Arguments

args rpc_clnt create argument structure

Description

Creates and initializes an RPC transport and an RPC client.

It can ping the server in order to determine if it is up, and to see if it supports this program and version.
RPC_CLNT_CREATE_NOPING disables this behavior so asynchronous tasks can also use rpc_create.

Linux Networking

248

Name
rpc_clone_client — Clone an RPC client structure

Synopsis

struct rpc_clnt * rpc_clone_client (struct rpc_clnt * clnt);

Arguments

clnt RPC client whose parameters are copied

Description

Returns a fresh RPC client or an ERR_PTR.

Linux Networking

249

Name
rpc_clone_client_set_auth — Clone an RPC client structure and set its auth

Synopsis

struct rpc_clnt * rpc_clone_client_set_auth (struct rpc_clnt * clnt,
rpc_authflavor_t flavor);

Arguments

clnt RPC client whose parameters are copied

flavor security flavor for new client

Description

Returns a fresh RPC client or an ERR_PTR.

Linux Networking

250

Name
rpc_switch_client_transport —

Synopsis

int rpc_switch_client_transport (struct rpc_clnt * clnt, struct
xprt_create * args, const struct rpc_timeout * timeout);

Arguments

clnt pointer to a struct rpc_clnt

args pointer to the new transport arguments

timeout pointer to the new timeout parameters

Description

This function allows the caller to switch the RPC transport for the rpc_clnt structure 'clnt' to allow it to
connect to a mirrored NFS server, for instance. It assumes that the caller has ensured that there are no
active RPC tasks by using some form of locking.

Returns zero if “clnt” is now using the new xprt. Otherwise a negative errno is returned, and “clnt” con-
tinues to use the old xprt.

Linux Networking

251

Name
rpc_bind_new_program — bind a new RPC program to an existing client

Synopsis

struct rpc_clnt * rpc_bind_new_program (struct rpc_clnt * old, const
struct rpc_program * program, u32 vers);

Arguments

old old rpc_client

program rpc program to set

vers rpc program version

Description

Clones the rpc client and sets up a new RPC program. This is mainly of use for enabling different RPC
programs to share the same transport. The Sun NFSv2/v3 ACL protocol can do this.

Linux Networking

252

Name
rpc_run_task — Allocate a new RPC task, then run rpc_execute against it

Synopsis

struct rpc_task * rpc_run_task (const struct rpc_task_setup *
task_setup_data);

Arguments

task_setup_data pointer to task initialisation data

Linux Networking

253

Name
rpc_call_sync — Perform a synchronous RPC call

Synopsis

int rpc_call_sync (struct rpc_clnt * clnt, const struct rpc_message *
msg, int flags);

Arguments

clnt pointer to RPC client

msg RPC call parameters

flags RPC call flags

Linux Networking

254

Name
rpc_call_async — Perform an asynchronous RPC call

Synopsis

int rpc_call_async (struct rpc_clnt * clnt, const struct rpc_message *
msg, int flags, const struct rpc_call_ops * tk_ops, void * data);

Arguments

clnt pointer to RPC client

msg RPC call parameters

flags RPC call flags

tk_ops RPC call ops

data user call data

Linux Networking

255

Name
rpc_peeraddr — extract remote peer address from clnt's xprt

Synopsis

size_t rpc_peeraddr (struct rpc_clnt * clnt, struct sockaddr * buf,
size_t bufsize);

Arguments

clnt RPC client structure

buf target buffer

bufsize length of target buffer

Description

Returns the number of bytes that are actually in the stored address.

Linux Networking

256

Name
rpc_peeraddr2str — return remote peer address in printable format

Synopsis

const char * rpc_peeraddr2str (struct rpc_clnt * clnt, enum
rpc_display_format_t format);

Arguments

clnt RPC client structure

format address format

NB

the lifetime of the memory referenced by the returned pointer is the same as the rpc_xprt itself. As long
as the caller uses this pointer, it must hold the RCU read lock.

Linux Networking

257

Name
rpc_localaddr — discover local endpoint address for an RPC client

Synopsis

int rpc_localaddr (struct rpc_clnt * clnt, struct sockaddr * buf, size_t
buflen);

Arguments

clnt RPC client structure

buf target buffer

buflen size of target buffer, in bytes

Description

Returns zero and fills in “buf” and “buflen” if successful; otherwise, a negative errno is returned.

This works even if the underlying transport is not currently connected, or if the upper layer never previously
provided a source address.

The result of this function call is transient

multiple calls in succession may give different results, depending on how local networking configuration
changes over time.

Linux Networking

258

Name
rpc_protocol — Get transport protocol number for an RPC client

Synopsis

int rpc_protocol (struct rpc_clnt * clnt);

Arguments

clnt RPC client to query

Linux Networking

259

Name
rpc_net_ns — Get the network namespace for this RPC client

Synopsis

struct net * rpc_net_ns (struct rpc_clnt * clnt);

Arguments

clnt RPC client to query

Linux Networking

260

Name
rpc_max_payload — Get maximum payload size for a transport, in bytes

Synopsis

size_t rpc_max_payload (struct rpc_clnt * clnt);

Arguments

clnt RPC client to query

Description

For stream transports, this is one RPC record fragment (see RFC 1831), as we don't support multi-record
requests yet. For datagram transports, this is the size of an IP packet minus the IP, UDP, and RPC header
sizes.

Linux Networking

261

Name
rpc_get_timeout — Get timeout for transport in units of HZ

Synopsis

unsigned long rpc_get_timeout (struct rpc_clnt * clnt);

Arguments

clnt RPC client to query

Linux Networking

262

Name
rpc_force_rebind — force transport to check that remote port is unchanged

Synopsis

void rpc_force_rebind (struct rpc_clnt * clnt);

Arguments

clnt client to rebind

WiMAX

Linux Networking

263

Name
wimax_msg_alloc — Create a new skb for sending a message to userspace

Synopsis

struct sk_buff * wimax_msg_alloc (struct wimax_dev * wimax_dev, const
char * pipe_name, const void * msg, size_t size, gfp_t gfp_flags);

Arguments

wimax_dev WiMAX device descriptor

pipe_name "named pipe" the message will be sent to

msg pointer to the message data to send

size size of the message to send (in bytes), including the header.

gfp_flags flags for memory allocation.

Returns

0 if ok, negative errno code on error

Description

Allocates an skb that will contain the message to send to user space over the messaging pipe and initializes
it, copying the payload.

Once this call is done, you can deliver it with wimax_msg_send.

IMPORTANT

Don't use skb_push/skb_pull/skb_reserve on the skb, as wimax_msg_send depends on skb-
>data being placed at the beginning of the user message.

Unlike other WiMAX stack calls, this call can be used way early, even before wimax_dev_add is called,
as long as the wimax_dev->net_dev pointer is set to point to a proper net_dev. This is so that drivers can
use it early in case they need to send stuff around or communicate with user space.

Linux Networking

264

Name
wimax_msg_data_len — Return a pointer and size of a message's payload

Synopsis

const void * wimax_msg_data_len (struct sk_buff * msg, size_t * size);

Arguments

msg Pointer to a message created with wimax_msg_alloc

size Pointer to where to store the message's size

Description

Returns the pointer to the message data.

Linux Networking

265

Name
wimax_msg_data — Return a pointer to a message's payload

Synopsis

const void * wimax_msg_data (struct sk_buff * msg);

Arguments

msg Pointer to a message created with wimax_msg_alloc

Linux Networking

266

Name
wimax_msg_len — Return a message's payload length

Synopsis

ssize_t wimax_msg_len (struct sk_buff * msg);

Arguments

msg Pointer to a message created with wimax_msg_alloc

Linux Networking

267

Name
wimax_msg_send — Send a pre-allocated message to user space

Synopsis

int wimax_msg_send (struct wimax_dev * wimax_dev, struct sk_buff * skb);

Arguments

wimax_dev WiMAX device descriptor

skb struct sk_buff returned by wimax_msg_alloc. Note the ownership of skb is trans-
ferred to this function.

Returns

0 if ok, < 0 errno code on error

Description

Sends a free-form message that was preallocated with wimax_msg_alloc and filled up.

Assumes that once you pass an skb to this function for sending, it owns it and will release it when done
(on success).

IMPORTANT

Don't use skb_push/skb_pull/skb_reserve on the skb, as wimax_msg_send depends on skb-
>data being placed at the beginning of the user message.

Unlike other WiMAX stack calls, this call can be used way early, even before wimax_dev_add is called,
as long as the wimax_dev->net_dev pointer is set to point to a proper net_dev. This is so that drivers can
use it early in case they need to send stuff around or communicate with user space.

Linux Networking

268

Name
wimax_msg — Send a message to user space

Synopsis

int wimax_msg (struct wimax_dev * wimax_dev, const char * pipe_name,
const void * buf, size_t size, gfp_t gfp_flags);

Arguments

wimax_dev WiMAX device descriptor (properly referenced)

pipe_name "named pipe" the message will be sent to

buf pointer to the message to send.

size size of the buffer pointed to by buf (in bytes).

gfp_flags flags for memory allocation.

Returns

0 if ok, negative errno code on error.

Description

Sends a free-form message to user space on the device wimax_dev.

NOTES

Once the skb is given to this function, who will own it and will release it when done (unless it returns
error).

Linux Networking

269

Name
wimax_reset — Reset a WiMAX device

Synopsis

int wimax_reset (struct wimax_dev * wimax_dev);

Arguments

wimax_dev WiMAX device descriptor

Returns

0 if ok and a warm reset was done (the device still exists in the system).

-ENODEV if a cold/bus reset had to be done (device has disconnected and reconnected, so current handle
is not valid any more).

-EINVAL if the device is not even registered.

Any other negative error code shall be considered as non-recoverable.

Description

Called when wanting to reset the device for any reason. Device is taken back to power on status.

This call blocks; on successful return, the device has completed the reset process and is ready to operate.

Linux Networking

270

Name
wimax_report_rfkill_hw — Reports changes in the hardware RF switch

Synopsis

void wimax_report_rfkill_hw (struct wimax_dev * wimax_dev, enum
wimax_rf_state state);

Arguments

wimax_dev WiMAX device descriptor

state New state of the RF Kill switch. WIMAX_RF_ON radio on, WIMAX_RF_OFF radio off.

Description

When the device detects a change in the state of thehardware RF switch, it must call this function to let
the WiMAX kernel stack know that the state has changed so it can be properly propagated.

The WiMAX stack caches the state (the driver doesn't need to). As well, as the change is propagated it
will come back as a request to change the software state to mirror the hardware state.

If the device doesn't have a hardware kill switch, just report it on initialization as always on
(WIMAX_RF_ON, radio on).

Linux Networking

271

Name
wimax_report_rfkill_sw — Reports changes in the software RF switch

Synopsis

void wimax_report_rfkill_sw (struct wimax_dev * wimax_dev, enum
wimax_rf_state state);

Arguments

wimax_dev WiMAX device descriptor

state New state of the RF kill switch. WIMAX_RF_ON radio on, WIMAX_RF_OFF radio off.

Description

Reports changes in the software RF switch state to the the WiMAX stack.

The main use is during initialization, so the driver can query the device for its current software radio kill
switch state and feed it to the system.

On the side, the device does not change the software state by itself. In practice, this can happen, as the
device might decide to switch (in software) the radio off for different reasons.

Linux Networking

272

Name
wimax_rfkill — Set the software RF switch state for a WiMAX device

Synopsis

int wimax_rfkill (struct wimax_dev * wimax_dev, enum wimax_rf_state
state);

Arguments

wimax_dev WiMAX device descriptor

state New RF state.

Returns

>= 0 toggle state if ok, < 0 errno code on error. The toggle state is returned as a bitmap, bit 0 being the
hardware RF state, bit 1 the software RF state.

0 means disabled (WIMAX_RF_ON, radio on), 1 means enabled radio off (WIMAX_RF_OFF).

Description

Called by the user when he wants to request the WiMAX radio to be switched on (WIMAX_RF_ON) or off
(WIMAX_RF_OFF). With WIMAX_RF_QUERY, just the current state is returned.

NOTE

This call will block until the operation is complete.

Linux Networking

273

Name
wimax_state_change — Set the current state of a WiMAX device

Synopsis

void wimax_state_change (struct wimax_dev * wimax_dev, enum wimax_st
new_state);

Arguments

wimax_dev WiMAX device descriptor (properly referenced)

new_state New state to switch to

Description

This implements the state changes for the wimax devices. It will

- verify that the state transition is legal (for now it'll just print a warning if not) according to the table in
linux/wimax.h's documentation for 'enum wimax_st'.

- perform the actions needed for leaving the current state and whichever are needed for entering the new
state.

- issue a report to user space indicating the new state (and an optional payload with information about
the new state).

NOTE

wimax_dev must be locked

Linux Networking

274

Name
wimax_state_get — Return the current state of a WiMAX device

Synopsis

enum wimax_st wimax_state_get (struct wimax_dev * wimax_dev);

Arguments

wimax_dev WiMAX device descriptor

Returns

Current state of the device according to its driver.

Linux Networking

275

Name
wimax_dev_init — initialize a newly allocated instance

Synopsis

void wimax_dev_init (struct wimax_dev * wimax_dev);

Arguments

wimax_dev WiMAX device descriptor to initialize.

Description

Initializes fields of a freshly allocated wimax_dev instance. This function assumes that after allocation,
the memory occupied by wimax_dev was zeroed.

Linux Networking

276

Name
wimax_dev_add — Register a new WiMAX device

Synopsis

int wimax_dev_add (struct wimax_dev * wimax_dev, struct net_device *
net_dev);

Arguments

wimax_dev WiMAX device descriptor (as embedded in your net_dev's priv data). You must have
called wimax_dev_init on it before.

net_dev net device the wimax_dev is associated with. The function expects SET_NETDEV_DEV
and register_netdev were already called on it.

Description

Registers the new WiMAX device, sets up the user-kernel control interface (generic netlink) and common
WiMAX infrastructure.

Note that the parts that will allow interaction with user space are setup at the very end, when the rest is in
place, as once that happens, the driver might get user space control requests via netlink or from debugfs
that might translate into calls into wimax_dev->op_*().

Linux Networking

277

Name
wimax_dev_rm — Unregister an existing WiMAX device

Synopsis

void wimax_dev_rm (struct wimax_dev * wimax_dev);

Arguments

wimax_dev WiMAX device descriptor

Description

Unregisters a WiMAX device previously registered for use with wimax_add_rm.

IMPORTANT! Must call before calling unregister_netdev.

After this function returns, you will not get any more user space control requests (via netlink or debugfs)
and thus to wimax_dev->ops.

Reentrancy control is ensured by setting the state to __WIMAX_ST_QUIESCING. rfkill operations com-
ing through wimax_*rfkill*() will be stopped by the quiescing state; ops coming from the rfkill subsystem
will be stopped by the support being removed by wimax_rfkill_rm.

Linux Networking

278

Name
struct wimax_dev — Generic WiMAX device

Synopsis

struct wimax_dev {
 struct net_device * net_dev;
 struct list_head id_table_node;
 struct mutex mutex;
 struct mutex mutex_reset;
 enum wimax_st state;
 int (* op_msg_from_user) (struct wimax_dev *wimax_dev,const char *,const void *, size_t,const struct genl_info *info);
 int (* op_rfkill_sw_toggle) (struct wimax_dev *wimax_dev,enum wimax_rf_state);
 int (* op_reset) (struct wimax_dev *wimax_dev);
 struct rfkill * rfkill;
 unsigned int rf_hw;
 unsigned int rf_sw;
 char name[32];
 struct dentry * debugfs_dentry;
};

Members

net_dev [fill] Pointer to the struct net_device this WiMAX device implements.

id_table_node [private] link to the list of wimax devices kept by id-table.c. Protected by
it's own spinlock.

mutex [private] Serializes all concurrent access and execution of operations.

mutex_reset [private] Serializes reset operations. Needs to be a different mutex because
as part of the reset operation, the driver has to call back into the stack to do
things such as state change, that require wimax_dev->mutex.

state [private] Current state of the WiMAX device.

op_msg_from_user [fill] Driver-specific operation to handle a raw message from user space
to the driver. The driver can send messages to user space using with
wimax_msg_to_user.

op_rfkill_sw_toggle [fill] Driver-specific operation to act on userspace (or any other agent)
requesting the WiMAX device to change the RF Kill software switch
(WIMAX_RF_ON or WIMAX_RF_OFF). If such hardware support is not
present, it is assumed the radio cannot be switched off and it is always on
(and the stack will error out when trying to switch it off). In such case, this
function pointer can be left as NULL.

op_reset [fill] Driver specific operation to reset the device. This operation should
always attempt first a warm reset that does not disconnect the device from
the bus and return 0. If that fails, it should resort to some sort of cold or
bus reset (even if it implies a bus disconnection and device disappearance).
In that case, -ENODEV should be returned to indicate the device is gone.
This operation has to be synchronous, and return only when the reset is

Linux Networking

279

complete. In case of having had to resort to bus/cold reset implying a device
disconnection, the call is allowed to return immediately.

rfkill [private] integration into the RF-Kill infrastructure.

rf_hw [private] State of the hardware radio switch (OFF/ON)

rf_sw [private] State of the software radio switch (OFF/ON)

name[32] [fill] A way to identify this device. We need to register a name with many
subsystems (rfkill, workqueue creation, etc). We can't use the network de-
vice name as that might change and in some instances we don't know it
yet (until we don't call register_netdev). So we generate an unique
one using the driver name and device bus id, place it here and use it across
the board. Recommended naming: DRIVERNAME-BUSNAME:BUSID
(dev->bus->name, dev->bus_id).

debugfs_dentry [private] Used to hook up a debugfs entry. This shows up in the debugfs
root as wimax\:DEVICENAME.

NOTE

wimax_dev->mutex is NOT locked when this op is being called; however, wimax_dev->mutex_reset IS
locked to ensure serialization of calls to wimax_reset. See wimax_reset's documentation.

Description

This structure defines a common interface to access all WiMAX devices from different vendors and pro-
vides a common API as well as a free-form device-specific messaging channel.

Usage

1. Embed a struct wimax_dev at *the beginning* the network device structure so that netdev_priv
points to it.

2. memset it to zero

3. Initialize with wimax_dev_init. This will leave the WiMAX device in the __WIMAX_ST_NULL
state.

4. Fill all the fields marked with [fill]; once called wimax_dev_add, those fields CANNOT be modified.

5. Call wimax_dev_add *after* registering the network device. This will leave the WiMAX device
in the WIMAX_ST_DOWN state. Protect the driver's net_device->open against succeeding if the wimax
device state is lower than WIMAX_ST_DOWN.

6. Select when the device is going to be turned on/initialized; for example, it could be initialized on 'ifconfig
up' (when the netdev op 'open' is called on the driver).

When the device is initialized (at `ifconfig up` time, or right after calling wimax_dev_add from
_probe, make sure the following steps are taken

a. Move the device to WIMAX_ST_UNINITIALIZED. This is needed so some API calls that shouldn't
work until the device is ready can be blocked.

Linux Networking

280

b. Initialize the device. Make sure to turn the SW radio switch off and move the device to state
WIMAX_ST_RADIO_OFF when done. When just initialized, a device should be left in RADIO OFF state
until user space devices to turn it on.

c. Query the device for the state of the hardware rfkill switch and call wimax_rfkill_report_hw
and wimax_rfkill_report_sw as needed. See below.

wimax_dev_rm undoes before unregistering the network device. Once wimax_dev_add is called, the
driver can get called on the wimax_dev->op_* function pointers

CONCURRENCY

The stack provides a mutex for each device that will disallow API calls happening concurrently; thus,
op calls into the driver through the wimax_dev->op*() function pointers will always be serialized and
never concurrent.

For locking, take wimax_dev->mutex is taken; (most) operations in the API have to check for
wimax_dev_is_ready to return 0 before continuing (this is done internally).

REFERENCE COUNTING

The WiMAX device is reference counted by the associated network device. The only operation that can
be used to reference the device is wimax_dev_get_by_genl_info, and the reference it acquires has
to be released with dev_put(wimax_dev->net_dev).

RFKILL

At startup, both HW and SW radio switchess are assumed to be off.

At initialization time [after calling wimax_dev_add], have the driver query the device for the
status of the software and hardware RF kill switches and call wimax_report_rfkill_hw and
wimax_rfkill_report_sw to indicate their state. If any is missing, just call it to indicate it is ON
(radio always on).

Whenever the driver detects a change in the state of the RF kill switches, it should call
wimax_report_rfkill_hw or wimax_report_rfkill_sw to report it to the stack.

Linux Networking

281

Name
enum wimax_st — The different states of a WiMAX device

Synopsis

enum wimax_st {
 __WIMAX_ST_NULL,
 WIMAX_ST_DOWN,
 __WIMAX_ST_QUIESCING,
 WIMAX_ST_UNINITIALIZED,
 WIMAX_ST_RADIO_OFF,
 WIMAX_ST_READY,
 WIMAX_ST_SCANNING,
 WIMAX_ST_CONNECTING,
 WIMAX_ST_CONNECTED,
 __WIMAX_ST_INVALID
};

Constants

__WIMAX_ST_NULL The device structure has been allocated and zeroed, but still
wimax_dev_add hasn't been called. There is no state.

WIMAX_ST_DOWN The device has been registered with the WiMAX and networking
stacks, but it is not initialized (normally that is done with 'ifconfig
DEV up' [or equivalent], which can upload firmware and enable com-
munications with the device). In this state, the device is powered down
and using as less power as possible. This state is the default after
a call to wimax_dev_add. It is ok to have drivers move directly
to WIMAX_ST_UNINITIALIZED or WIMAX_ST_RADIO_OFF in
_probe after the call to wimax_dev_add. It is recommended that
the driver leaves this state when calling 'ifconfig DEV up' and enters
it back on 'ifconfig DEV down'.

__WIMAX_ST_QUIESCING The device is being torn down, so no API operations are allowed
to proceed except the ones needed to complete the device clean up
process.

WIMAX_ST_UNINITIALIZED [optional] Communication with the device is setup, but the device still
requires some configuration before being operational. Some WiMAX
API calls might work.

WIMAX_ST_RADIO_OFF The device is fully up; radio is off (wether by hardware or software
switches). It is recommended to always leave the device in this state
after initialization.

WIMAX_ST_READY The device is fully up and radio is on.

WIMAX_ST_SCANNING [optional] The device has been instructed to scan. In this state, the de-
vice cannot be actively connected to a network.

WIMAX_ST_CONNECTING The device is connecting to a network. This state exists because in
some devices, the connect process can include a number of negoti-

Linux Networking

282

ations between user space, kernel space and the device. User space
needs to know what the device is doing. If the connect sequence in a
device is atomic and fast, the device can transition directly to CON-
NECTED

WIMAX_ST_CONNECTED The device is connected to a network.

__WIMAX_ST_INVALID This is an invalid state used to mark the maximum numeric value of
states.

Description

Transitions from one state to another one are atomic and can only be caused in kernel space with
wimax_state_change. To read the state, use wimax_state_get.

States starting with __ are internal and shall not be used or referred to by drivers or userspace. They look
ugly, but that's the point -- if any use is made non-internal to the stack, it is easier to catch on review.

All API operations [with well defined exceptions] will take the device mutex before starting and then check
the state. If the state is __WIMAX_ST_NULL, WIMAX_ST_DOWN, WIMAX_ST_UNINITIALIZED or
__WIMAX_ST_QUIESCING, it will drop the lock and quit with -EINVAL, -ENOMEDIUM, -ENOTCONN
or -ESHUTDOWN.

The order of the definitions is important, so we can do numerical comparisons (eg: <
WIMAX_ST_RADIO_OFF means the device is not ready to operate).

283

Chapter 2. Network device support
Driver Support

Network device support

284

Name
dev_add_pack — add packet handler

Synopsis

void dev_add_pack (struct packet_type * pt);

Arguments

pt packet type declaration

Description

Add a protocol handler to the networking stack. The passed packet_type is linked into kernel lists and may
not be freed until it has been removed from the kernel lists.

This call does not sleep therefore it can not guarantee all CPU's that are in middle of receiving packets
will see the new packet type (until the next received packet).

Network device support

285

Name
__dev_remove_pack — remove packet handler

Synopsis

void __dev_remove_pack (struct packet_type * pt);

Arguments

pt packet type declaration

Description

Remove a protocol handler that was previously added to the kernel protocol handlers by dev_add_pack.
The passed packet_type is removed from the kernel lists and can be freed or reused once this function
returns.

The packet type might still be in use by receivers and must not be freed until after all the CPU's have gone
through a quiescent state.

Network device support

286

Name
dev_remove_pack — remove packet handler

Synopsis

void dev_remove_pack (struct packet_type * pt);

Arguments

pt packet type declaration

Description

Remove a protocol handler that was previously added to the kernel protocol handlers by dev_add_pack.
The passed packet_type is removed from the kernel lists and can be freed or reused once this function
returns.

This call sleeps to guarantee that no CPU is looking at the packet type after return.

Network device support

287

Name
dev_add_offload — register offload handlers

Synopsis

void dev_add_offload (struct packet_offload * po);

Arguments

po protocol offload declaration

Description

Add protocol offload handlers to the networking stack. The passed proto_offload is linked into kernel lists
and may not be freed until it has been removed from the kernel lists.

This call does not sleep therefore it can not guarantee all CPU's that are in middle of receiving packets
will see the new offload handlers (until the next received packet).

Network device support

288

Name
dev_remove_offload — remove packet offload handler

Synopsis

void dev_remove_offload (struct packet_offload * po);

Arguments

po packet offload declaration

Description

Remove a packet offload handler that was previously added to the kernel offload handlers by
dev_add_offload. The passed offload_type is removed from the kernel lists and can be freed or reused
once this function returns.

This call sleeps to guarantee that no CPU is looking at the packet type after return.

Network device support

289

Name
netdev_boot_setup_check — check boot time settings

Synopsis

int netdev_boot_setup_check (struct net_device * dev);

Arguments

dev the netdevice

Description

Check boot time settings for the device. The found settings are set for the device to be used later in the
device probing. Returns 0 if no settings found, 1 if they are.

Network device support

290

Name
dev_get_iflink — get 'iflink' value of a interface

Synopsis

int dev_get_iflink (const struct net_device * dev);

Arguments

dev targeted interface

Description

Indicates the ifindex the interface is linked to. Physical interfaces have the same 'ifindex' and 'iflink' values.

Network device support

291

Name
__dev_get_by_name — find a device by its name

Synopsis

struct net_device * __dev_get_by_name (struct net * net, const char
* name);

Arguments

net the applicable net namespace

name name to find

Description

Find an interface by name. Must be called under RTNL semaphore or dev_base_lock. If the name is
found a pointer to the device is returned. If the name is not found then NULL is returned. The reference
counters are not incremented so the caller must be careful with locks.

Network device support

292

Name
dev_get_by_name_rcu — find a device by its name

Synopsis

struct net_device * dev_get_by_name_rcu (struct net * net, const char
* name);

Arguments

net the applicable net namespace

name name to find

Description

Find an interface by name. If the name is found a pointer to the device is returned. If the name is not found
then NULL is returned. The reference counters are not incremented so the caller must be careful with locks.
The caller must hold RCU lock.

Network device support

293

Name
dev_get_by_name — find a device by its name

Synopsis

struct net_device * dev_get_by_name (struct net * net, const char *
name);

Arguments

net the applicable net namespace

name name to find

Description

Find an interface by name. This can be called from any context and does its own locking. The returned
handle has the usage count incremented and the caller must use dev_put to release it when it is no longer
needed. NULL is returned if no matching device is found.

Network device support

294

Name
__dev_get_by_index — find a device by its ifindex

Synopsis

struct net_device * __dev_get_by_index (struct net * net, int ifindex);

Arguments

net the applicable net namespace

ifindex index of device

Description

Search for an interface by index. Returns NULL if the device is not found or a pointer to the device. The
device has not had its reference counter increased so the caller must be careful about locking. The caller
must hold either the RTNL semaphore or dev_base_lock.

Network device support

295

Name
dev_get_by_index_rcu — find a device by its ifindex

Synopsis

struct net_device * dev_get_by_index_rcu (struct net * net, int ifindex);

Arguments

net the applicable net namespace

ifindex index of device

Description

Search for an interface by index. Returns NULL if the device is not found or a pointer to the device. The
device has not had its reference counter increased so the caller must be careful about locking. The caller
must hold RCU lock.

Network device support

296

Name
dev_get_by_index — find a device by its ifindex

Synopsis

struct net_device * dev_get_by_index (struct net * net, int ifindex);

Arguments

net the applicable net namespace

ifindex index of device

Description

Search for an interface by index. Returns NULL if the device is not found or a pointer to the device. The
device returned has had a reference added and the pointer is safe until the user calls dev_put to indicate
they have finished with it.

Network device support

297

Name
dev_getbyhwaddr_rcu — find a device by its hardware address

Synopsis

struct net_device * dev_getbyhwaddr_rcu (struct net * net, unsigned
short type, const char * ha);

Arguments

net the applicable net namespace

type media type of device

ha hardware address

Description

Search for an interface by MAC address. Returns NULL if the device is not found or a pointer to the
device. The caller must hold RCU or RTNL. The returned device has not had its ref count increased and
the caller must therefore be careful about locking

Network device support

298

Name
__dev_get_by_flags — find any device with given flags

Synopsis

struct net_device * __dev_get_by_flags (struct net * net, unsigned short
if_flags, unsigned short mask);

Arguments

net the applicable net namespace

if_flags IFF_* values

mask bitmask of bits in if_flags to check

Description

Search for any interface with the given flags. Returns NULL if a device is not found or a pointer to the
device. Must be called inside rtnl_lock, and result refcount is unchanged.

Network device support

299

Name
dev_valid_name — check if name is okay for network device

Synopsis

bool dev_valid_name (const char * name);

Arguments

name name string

Description

Network device names need to be valid file names to to allow sysfs to work. We also disallow any kind
of whitespace.

Network device support

300

Name
dev_alloc_name — allocate a name for a device

Synopsis

int dev_alloc_name (struct net_device * dev, const char * name);

Arguments

dev device

name name format string

Description

Passed a format string - eg "ltd" it will try and find a suitable id. It scans list of devices to build up a free
map, then chooses the first empty slot. The caller must hold the dev_base or rtnl lock while allocating the
name and adding the device in order to avoid duplicates. Limited to bits_per_byte * page size devices (ie
32K on most platforms). Returns the number of the unit assigned or a negative errno code.

Network device support

301

Name
netdev_features_change — device changes features

Synopsis

void netdev_features_change (struct net_device * dev);

Arguments

dev device to cause notification

Description

Called to indicate a device has changed features.

Network device support

302

Name
netdev_state_change — device changes state

Synopsis

void netdev_state_change (struct net_device * dev);

Arguments

dev device to cause notification

Description

Called to indicate a device has changed state. This function calls the notifier chains for netdev_chain and
sends a NEWLINK message to the routing socket.

Network device support

303

Name
netdev_notify_peers — notify network peers about existence of dev

Synopsis

void netdev_notify_peers (struct net_device * dev);

Arguments

dev network device

Description

Generate traffic such that interested network peers are aware of dev, such as by generating a gratuitous
ARP. This may be used when a device wants to inform the rest of the network about some sort of recon-
figuration such as a failover event or virtual machine migration.

Network device support

304

Name
dev_open — prepare an interface for use.

Synopsis

int dev_open (struct net_device * dev);

Arguments

dev device to open

Description

Takes a device from down to up state. The device's private open function is invoked and then the multicast
lists are loaded. Finally the device is moved into the up state and a NETDEV_UP message is sent to the
netdev notifier chain.

Calling this function on an active interface is a nop. On a failure a negative errno code is returned.

Network device support

305

Name
dev_close — shutdown an interface.

Synopsis

int dev_close (struct net_device * dev);

Arguments

dev device to shutdown

Description

This function moves an active device into down state. A NETDEV_GOING_DOWN is sent to the netdev
notifier chain. The device is then deactivated and finally a NETDEV_DOWN is sent to the notifier chain.

Network device support

306

Name
dev_disable_lro — disable Large Receive Offload on a device

Synopsis

void dev_disable_lro (struct net_device * dev);

Arguments

dev device

Description

Disable Large Receive Offload (LRO) on a net device. Must be called under RTNL. This is needed if
received packets may be forwarded to another interface.

Network device support

307

Name
register_netdevice_notifier — register a network notifier block

Synopsis

int register_netdevice_notifier (struct notifier_block * nb);

Arguments

nb notifier

Description

Register a notifier to be called when network device events occur. The notifier passed is linked into the
kernel structures and must not be reused until it has been unregistered. A negative errno code is returned
on a failure.

When registered all registration and up events are replayed to the new notifier to allow device to have a
race free view of the network device list.

Network device support

308

Name
unregister_netdevice_notifier — unregister a network notifier block

Synopsis

int unregister_netdevice_notifier (struct notifier_block * nb);

Arguments

nb notifier

Description

Unregister a notifier previously registered by register_netdevice_notifier. The notifier is un-
linked into the kernel structures and may then be reused. A negative errno code is returned on a failure.

After unregistering unregister and down device events are synthesized for all devices on the device list to
the removed notifier to remove the need for special case cleanup code.

Network device support

309

Name
call_netdevice_notifiers — call all network notifier blocks

Synopsis

int call_netdevice_notifiers (unsigned long val, struct net_device *
dev);

Arguments

val value passed unmodified to notifier function

dev net_device pointer passed unmodified to notifier function

Description

Call all network notifier blocks. Parameters and return value are as for raw_notifier_call_chain.

Network device support

310

Name
dev_forward_skb — loopback an skb to another netif

Synopsis

int dev_forward_skb (struct net_device * dev, struct sk_buff * skb);

Arguments

dev destination network device

skb buffer to forward

return values

NET_RX_SUCCESS (no congestion) NET_RX_DROP (packet was dropped, but freed)

dev_forward_skb can be used for injecting an skb from the start_xmit function of one device into the
receive queue of another device.

The receiving device may be in another namespace, so we have to clear all information in the skb that
could impact namespace isolation.

Network device support

311

Name
netif_set_real_num_rx_queues — set actual number of RX queues used

Synopsis

int netif_set_real_num_rx_queues (struct net_device * dev, unsigned int
rxq);

Arguments

dev Network device

rxq Actual number of RX queues

Description

This must be called either with the rtnl_lock held or before registration of the net device. Returns 0 on
success, or a negative error code. If called before registration, it always succeeds.

Network device support

312

Name
netif_get_num_default_rss_queues — default number of RSS queues

Synopsis

int netif_get_num_default_rss_queues (void);

Arguments

void no arguments

Description

This routine should set an upper limit on the number of RSS queues used by default by multiqueue devices.

Network device support

313

Name
netif_wake_subqueue — allow sending packets on subqueue

Synopsis

void netif_wake_subqueue (struct net_device * dev, u16 queue_index);

Arguments

dev network device

queue_index sub queue index

Description

Resume individual transmit queue of a device with multiple transmit queues.

Network device support

314

Name
netif_device_detach — mark device as removed

Synopsis

void netif_device_detach (struct net_device * dev);

Arguments

dev network device

Description

Mark device as removed from system and therefore no longer available.

Network device support

315

Name
netif_device_attach — mark device as attached

Synopsis

void netif_device_attach (struct net_device * dev);

Arguments

dev network device

Description

Mark device as attached from system and restart if needed.

Network device support

316

Name
skb_mac_gso_segment — mac layer segmentation handler.

Synopsis

struct sk_buff * skb_mac_gso_segment (struct sk_buff * skb,
netdev_features_t features);

Arguments

skb buffer to segment

features features for the output path (see dev->features)

Network device support

317

Name
__skb_gso_segment — Perform segmentation on skb.

Synopsis

struct sk_buff * __skb_gso_segment (struct sk_buff * skb,
netdev_features_t features, bool tx_path);

Arguments

skb buffer to segment

features features for the output path (see dev->features)

tx_path whether it is called in TX path

Description

This function segments the given skb and returns a list of segments.

It may return NULL if the skb requires no segmentation. This is only possible when GSO is used for
verifying header integrity.

Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.

Network device support

318

Name
dev_loopback_xmit — loop back skb

Synopsis

int dev_loopback_xmit (struct sock * sk, struct sk_buff * skb);

Arguments

sk -- undescribed --

skb buffer to transmit

Network device support

319

Name
rps_may_expire_flow — check whether an RFS hardware filter may be removed

Synopsis

bool rps_may_expire_flow (struct net_device * dev, u16 rxq_index, u32
flow_id, u16 filter_id);

Arguments

dev Device on which the filter was set

rxq_index RX queue index

flow_id Flow ID passed to ndo_rx_flow_steer

filter_id Filter ID returned by ndo_rx_flow_steer

Description

Drivers that implement ndo_rx_flow_steer should periodically call this function for each installed
filter and remove the filters for which it returns true.

Network device support

320

Name
netif_rx — post buffer to the network code

Synopsis

int netif_rx (struct sk_buff * skb);

Arguments

skb buffer to post

Description

This function receives a packet from a device driver and queues it for the upper (protocol) levels to process.
It always succeeds. The buffer may be dropped during processing for congestion control or by the protocol
layers.

return values

NET_RX_SUCCESS (no congestion) NET_RX_DROP (packet was dropped)

Network device support

321

Name
netdev_rx_handler_register — register receive handler

Synopsis

int netdev_rx_handler_register (struct net_device * dev,
rx_handler_func_t * rx_handler, void * rx_handler_data);

Arguments

dev device to register a handler for

rx_handler receive handler to register

rx_handler_data data pointer that is used by rx handler

Description

Register a receive handler for a device. This handler will then be called from __netif_receive_skb. A
negative errno code is returned on a failure.

The caller must hold the rtnl_mutex.

For a general description of rx_handler, see enum rx_handler_result.

Network device support

322

Name
netdev_rx_handler_unregister — unregister receive handler

Synopsis

void netdev_rx_handler_unregister (struct net_device * dev);

Arguments

dev device to unregister a handler from

Description

Unregister a receive handler from a device.

The caller must hold the rtnl_mutex.

Network device support

323

Name
netif_receive_skb_sk — process receive buffer from network

Synopsis

int netif_receive_skb_sk (struct sock * sk, struct sk_buff * skb);

Arguments

sk -- undescribed --

skb buffer to process

Description

netif_receive_skb is the main receive data processing function. It always succeeds. The buffer may
be dropped during processing for congestion control or by the protocol layers.

This function may only be called from softirq context and interrupts should be enabled.

Return values (usually ignored):

NET_RX_SUCCESS

no congestion

NET_RX_DROP

packet was dropped

Network device support

324

Name
__napi_schedule — schedule for receive

Synopsis

void __napi_schedule (struct napi_struct * n);

Arguments

n entry to schedule

Description

The entry's receive function will be scheduled to run. Consider using __napi_schedule_irqoff if
hard irqs are masked.

Network device support

325

Name
__napi_schedule_irqoff — schedule for receive

Synopsis

void __napi_schedule_irqoff (struct napi_struct * n);

Arguments

n entry to schedule

Description

Variant of __napi_schedule assuming hard irqs are masked

Network device support

326

Name
netdev_has_upper_dev — Check if device is linked to an upper device

Synopsis

bool netdev_has_upper_dev (struct net_device * dev, struct net_device
* upper_dev);

Arguments

dev device

upper_dev upper device to check

Description

Find out if a device is linked to specified upper device and return true in case it is. Note that this checks only
immediate upper device, not through a complete stack of devices. The caller must hold the RTNL lock.

Network device support

327

Name
netdev_master_upper_dev_get — Get master upper device

Synopsis

struct net_device * netdev_master_upper_dev_get (struct net_device *
dev);

Arguments

dev device

Description

Find a master upper device and return pointer to it or NULL in case it's not there. The caller must hold
the RTNL lock.

Network device support

328

Name
netdev_upper_get_next_dev_rcu — Get the next dev from upper list

Synopsis

struct net_device * netdev_upper_get_next_dev_rcu (struct net_device *
dev, struct list_head ** iter);

Arguments

dev device

iter list_head ** of the current position

Description

Gets the next device from the dev's upper list, starting from iter position. The caller must hold RCU read
lock.

Network device support

329

Name
netdev_all_upper_get_next_dev_rcu — Get the next dev from upper list

Synopsis

struct net_device * netdev_all_upper_get_next_dev_rcu (struct
net_device * dev, struct list_head ** iter);

Arguments

dev device

iter list_head ** of the current position

Description

Gets the next device from the dev's upper list, starting from iter position. The caller must hold RCU read
lock.

Network device support

330

Name
netdev_lower_get_next_private — Get the next ->private from the lower neighbour list

Synopsis

void * netdev_lower_get_next_private (struct net_device * dev, struct
list_head ** iter);

Arguments

dev device

iter list_head ** of the current position

Description

Gets the next netdev_adjacent->private from the dev's lower neighbour list, starting from iter position. The
caller must hold either hold the RTNL lock or its own locking that guarantees that the neighbour lower
list will remain unchainged.

Network device support

331

Name
netdev_lower_get_next_private_rcu — Get the next ->private from the lower neighbour list, RCU variant

Synopsis

void * netdev_lower_get_next_private_rcu (struct net_device * dev,
struct list_head ** iter);

Arguments

dev device

iter list_head ** of the current position

Description

Gets the next netdev_adjacent->private from the dev's lower neighbour list, starting from iter position.
The caller must hold RCU read lock.

Network device support

332

Name
netdev_lower_get_next — Get the next device from the lower neighbour list

Synopsis

void * netdev_lower_get_next (struct net_device * dev, struct list_head
** iter);

Arguments

dev device

iter list_head ** of the current position

Description

Gets the next netdev_adjacent from the dev's lower neighbour list, starting from iter position. The caller
must hold RTNL lock or its own locking that guarantees that the neighbour lower list will remain un-
chainged.

Network device support

333

Name
netdev_lower_get_first_private_rcu — Get the first ->private from the lower neighbour list, RCU variant

Synopsis

void * netdev_lower_get_first_private_rcu (struct net_device * dev);

Arguments

dev device

Description

Gets the first netdev_adjacent->private from the dev's lower neighbour list. The caller must hold RCU
read lock.

Network device support

334

Name
netdev_master_upper_dev_get_rcu — Get master upper device

Synopsis

struct net_device * netdev_master_upper_dev_get_rcu (struct net_device
* dev);

Arguments

dev device

Description

Find a master upper device and return pointer to it or NULL in case it's not there. The caller must hold
the RCU read lock.

Network device support

335

Name
netdev_upper_dev_link — Add a link to the upper device

Synopsis

int netdev_upper_dev_link (struct net_device * dev, struct net_device
* upper_dev);

Arguments

dev device

upper_dev new upper device

Description

Adds a link to device which is upper to this one. The caller must hold the RTNL lock. On a failure a
negative errno code is returned. On success the reference counts are adjusted and the function returns zero.

Network device support

336

Name
netdev_master_upper_dev_link — Add a master link to the upper device

Synopsis

int netdev_master_upper_dev_link (struct net_device * dev, struct
net_device * upper_dev);

Arguments

dev device

upper_dev new upper device

Description

Adds a link to device which is upper to this one. In this case, only one master upper device can be linked,
although other non-master devices might be linked as well. The caller must hold the RTNL lock. On a
failure a negative errno code is returned. On success the reference counts are adjusted and the function
returns zero.

Network device support

337

Name
netdev_upper_dev_unlink — Removes a link to upper device

Synopsis

void netdev_upper_dev_unlink (struct net_device * dev, struct net_device
* upper_dev);

Arguments

dev device

upper_dev new upper device

Description

Removes a link to device which is upper to this one. The caller must hold the RTNL lock.

Network device support

338

Name
netdev_bonding_info_change — Dispatch event about slave change

Synopsis

void netdev_bonding_info_change (struct net_device * dev, struct
netdev_bonding_info * bonding_info);

Arguments

dev device

bonding_info info to dispatch

Description

Send NETDEV_BONDING_INFO to netdev notifiers with info. The caller must hold the RTNL lock.

Network device support

339

Name
dev_set_promiscuity — update promiscuity count on a device

Synopsis

int dev_set_promiscuity (struct net_device * dev, int inc);

Arguments

dev device

inc modifier

Description

Add or remove promiscuity from a device. While the count in the device remains above zero the interface
remains promiscuous. Once it hits zero the device reverts back to normal filtering operation. A negative
inc value is used to drop promiscuity on the device. Return 0 if successful or a negative errno code on error.

Network device support

340

Name
dev_set_allmulti — update allmulti count on a device

Synopsis

int dev_set_allmulti (struct net_device * dev, int inc);

Arguments

dev device

inc modifier

Description

Add or remove reception of all multicast frames to a device. While the count in the device remains above
zero the interface remains listening to all interfaces. Once it hits zero the device reverts back to normal
filtering operation. A negative inc value is used to drop the counter when releasing a resource needing
all multicasts. Return 0 if successful or a negative errno code on error.

Network device support

341

Name
dev_get_flags — get flags reported to userspace

Synopsis

unsigned int dev_get_flags (const struct net_device * dev);

Arguments

dev device

Description

Get the combination of flag bits exported through APIs to userspace.

Network device support

342

Name
dev_change_flags — change device settings

Synopsis

int dev_change_flags (struct net_device * dev, unsigned int flags);

Arguments

dev device

flags device state flags

Description

Change settings on device based state flags. The flags are in the userspace exported format.

Network device support

343

Name
dev_set_mtu — Change maximum transfer unit

Synopsis

int dev_set_mtu (struct net_device * dev, int new_mtu);

Arguments

dev device

new_mtu new transfer unit

Description

Change the maximum transfer size of the network device.

Network device support

344

Name
dev_set_group — Change group this device belongs to

Synopsis

void dev_set_group (struct net_device * dev, int new_group);

Arguments

dev device

new_group group this device should belong to

Network device support

345

Name
dev_set_mac_address — Change Media Access Control Address

Synopsis

int dev_set_mac_address (struct net_device * dev, struct sockaddr * sa);

Arguments

dev device

sa new address

Description

Change the hardware (MAC) address of the device

Network device support

346

Name
dev_change_carrier — Change device carrier

Synopsis

int dev_change_carrier (struct net_device * dev, bool new_carrier);

Arguments

dev device

new_carrier new value

Description

Change device carrier

Network device support

347

Name
dev_get_phys_port_id — Get device physical port ID

Synopsis

int dev_get_phys_port_id (struct net_device * dev, struct
netdev_phys_item_id * ppid);

Arguments

dev device

ppid port ID

Description

Get device physical port ID

Network device support

348

Name
dev_get_phys_port_name — Get device physical port name

Synopsis

int dev_get_phys_port_name (struct net_device * dev, char * name, size_t
len);

Arguments

dev device

name port name

len -- undescribed --

Description

Get device physical port name

Network device support

349

Name
netdev_update_features — recalculate device features

Synopsis

void netdev_update_features (struct net_device * dev);

Arguments

dev the device to check

Description

Recalculate dev->features set and send notifications if it has changed. Should be called after driver or
hardware dependent conditions might have changed that influence the features.

Network device support

350

Name
netdev_change_features — recalculate device features

Synopsis

void netdev_change_features (struct net_device * dev);

Arguments

dev the device to check

Description

Recalculate dev->features set and send notifications even if they have not changed. Should be called
instead of netdev_update_features if also dev->vlan_features might have changed to allow the
changes to be propagated to stacked VLAN devices.

Network device support

351

Name
netif_stacked_transfer_operstate — transfer operstate

Synopsis

void netif_stacked_transfer_operstate (const struct net_device * root-
dev, struct net_device * dev);

Arguments

rootdev the root or lower level device to transfer state from

dev the device to transfer operstate to

Description

Transfer operational state from root to device. This is normally called when a stacking relationship exists
between the root device and the device(a leaf device).

Network device support

352

Name
register_netdevice — register a network device

Synopsis

int register_netdevice (struct net_device * dev);

Arguments

dev device to register

Description

Take a completed network device structure and add it to the kernel interfaces. A NETDEV_REGISTER
message is sent to the netdev notifier chain. 0 is returned on success. A negative errno code is returned on
a failure to set up the device, or if the name is a duplicate.

Callers must hold the rtnl semaphore. You may want register_netdev instead of this.

BUGS

The locking appears insufficient to guarantee two parallel registers will not get the same name.

Network device support

353

Name
init_dummy_netdev — init a dummy network device for NAPI

Synopsis

int init_dummy_netdev (struct net_device * dev);

Arguments

dev device to init

Description

This takes a network device structure and initialize the minimum amount of fields so it can be used to
schedule NAPI polls without registering a full blown interface. This is to be used by drivers that need to
tie several hardware interfaces to a single NAPI poll scheduler due to HW limitations.

Network device support

354

Name
register_netdev — register a network device

Synopsis

int register_netdev (struct net_device * dev);

Arguments

dev device to register

Description

Take a completed network device structure and add it to the kernel interfaces. A NETDEV_REGISTER
message is sent to the netdev notifier chain. 0 is returned on success. A negative errno code is returned on
a failure to set up the device, or if the name is a duplicate.

This is a wrapper around register_netdevice that takes the rtnl semaphore and expands the device name
if you passed a format string to alloc_netdev.

Network device support

355

Name
dev_get_stats — get network device statistics

Synopsis

struct rtnl_link_stats64 * dev_get_stats (struct net_device * dev,
struct rtnl_link_stats64 * storage);

Arguments

dev device to get statistics from

storage place to store stats

Description

Get network statistics from device. Return storage. The device driver may provide its own method
by setting dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; otherwise the internal statistics
structure is used.

Network device support

356

Name
alloc_netdev_mqs — allocate network device

Synopsis

struct net_device * alloc_netdev_mqs (int sizeof_priv, const char *
name, unsigned char name_assign_type, void (*setup) (struct net_device
*), unsigned int txqs, unsigned int rxqs);

Arguments

sizeof_priv size of private data to allocate space for

name device name format string

name_assign_type origin of device name

setup callback to initialize device

txqs the number of TX subqueues to allocate

rxqs the number of RX subqueues to allocate

Description

Allocates a struct net_device with private data area for driver use and performs basic initialization. Also
allocates subqueue structs for each queue on the device.

Network device support

357

Name
free_netdev — free network device

Synopsis

void free_netdev (struct net_device * dev);

Arguments

dev device

Description

This function does the last stage of destroying an allocated device interface. The reference to the device
object is released. If this is the last reference then it will be freed.

Network device support

358

Name
synchronize_net — Synchronize with packet receive processing

Synopsis

void synchronize_net (void);

Arguments

void no arguments

Description

Wait for packets currently being received to be done. Does not block later packets from starting.

Network device support

359

Name
unregister_netdevice_queue — remove device from the kernel

Synopsis

void unregister_netdevice_queue (struct net_device * dev, struct
list_head * head);

Arguments

dev device

head list

Description

This function shuts down a device interface and removes it from the kernel tables. If head not NULL,
device is queued to be unregistered later.

Callers must hold the rtnl semaphore. You may want unregister_netdev instead of this.

Network device support

360

Name
unregister_netdevice_many — unregister many devices

Synopsis

void unregister_netdevice_many (struct list_head * head);

Arguments

head list of devices

Note

As most callers use a stack allocated list_head, we force a list_del to make sure stack wont be corrupted
later.

Network device support

361

Name
unregister_netdev — remove device from the kernel

Synopsis

void unregister_netdev (struct net_device * dev);

Arguments

dev device

Description

This function shuts down a device interface and removes it from the kernel tables.

This is just a wrapper for unregister_netdevice that takes the rtnl semaphore. In general you want to use
this and not unregister_netdevice.

Network device support

362

Name
dev_change_net_namespace — move device to different nethost namespace

Synopsis

int dev_change_net_namespace (struct net_device * dev, struct net * net,
const char * pat);

Arguments

dev device

net network namespace

pat If not NULL name pattern to try if the current device name is already taken in the destination
network namespace.

Description

This function shuts down a device interface and moves it to a new network namespace. On success 0 is
returned, on a failure a netagive errno code is returned.

Callers must hold the rtnl semaphore.

Network device support

363

Name
netdev_increment_features — increment feature set by one

Synopsis

netdev_features_t netdev_increment_features (netdev_features_t all,
netdev_features_t one, netdev_features_t mask);

Arguments

all current feature set

one new feature set

mask mask feature set

Description

Computes a new feature set after adding a device with feature set one to the master device with current
feature set all. Will not enable anything that is off in mask. Returns the new feature set.

Network device support

364

Name
eth_header — create the Ethernet header

Synopsis

int eth_header (struct sk_buff * skb, struct net_device * dev, unsigned
short type, const void * daddr, const void * saddr, unsigned int len);

Arguments

skb buffer to alter

dev source device

type Ethernet type field

daddr destination address (NULL leave destination address)

saddr source address (NULL use device source address)

len packet length (<= skb->len)

Description

Set the protocol type. For a packet of type ETH_P_802_3/2 we put the length in here instead.

Network device support

365

Name
eth_get_headlen — determine the the length of header for an ethernet frame

Synopsis

u32 eth_get_headlen (void * data, unsigned int len);

Arguments

data pointer to start of frame

len total length of frame

Description

Make a best effort attempt to pull the length for all of the headers for a given frame in a linear buffer.

Network device support

366

Name
eth_type_trans — determine the packet's protocol ID.

Synopsis

__be16 eth_type_trans (struct sk_buff * skb, struct net_device * dev);

Arguments

skb received socket data

dev receiving network device

Description

The rule here is that we assume 802.3 if the type field is short enough to be a length. This is normal practice
and works for any 'now in use' protocol.

Network device support

367

Name
eth_header_parse — extract hardware address from packet

Synopsis

int eth_header_parse (const struct sk_buff * skb, unsigned char * haddr);

Arguments

skb packet to extract header from

haddr destination buffer

Network device support

368

Name
eth_header_cache — fill cache entry from neighbour

Synopsis

int eth_header_cache (const struct neighbour * neigh, struct hh_cache
* hh, __be16 type);

Arguments

neigh source neighbour

hh destination cache entry

type Ethernet type field

Description

Create an Ethernet header template from the neighbour.

Network device support

369

Name
eth_header_cache_update — update cache entry

Synopsis

void eth_header_cache_update (struct hh_cache * hh, const struct
net_device * dev, const unsigned char * haddr);

Arguments

hh destination cache entry

dev network device

haddr new hardware address

Description

Called by Address Resolution module to notify changes in address.

Network device support

370

Name
eth_prepare_mac_addr_change — prepare for mac change

Synopsis

int eth_prepare_mac_addr_change (struct net_device * dev, void * p);

Arguments

dev network device

p socket address

Network device support

371

Name
eth_commit_mac_addr_change — commit mac change

Synopsis

void eth_commit_mac_addr_change (struct net_device * dev, void * p);

Arguments

dev network device

p socket address

Network device support

372

Name
eth_mac_addr — set new Ethernet hardware address

Synopsis

int eth_mac_addr (struct net_device * dev, void * p);

Arguments

dev network device

p socket address

Description

Change hardware address of device.

This doesn't change hardware matching, so needs to be overridden for most real devices.

Network device support

373

Name
eth_change_mtu — set new MTU size

Synopsis

int eth_change_mtu (struct net_device * dev, int new_mtu);

Arguments

dev network device

new_mtu new Maximum Transfer Unit

Description

Allow changing MTU size. Needs to be overridden for devices supporting jumbo frames.

Network device support

374

Name
ether_setup — setup Ethernet network device

Synopsis

void ether_setup (struct net_device * dev);

Arguments

dev network device

Description

Fill in the fields of the device structure with Ethernet-generic values.

Network device support

375

Name
alloc_etherdev_mqs — Allocates and sets up an Ethernet device

Synopsis

struct net_device * alloc_etherdev_mqs (int sizeof_priv, unsigned int
txqs, unsigned int rxqs);

Arguments

sizeof_priv Size of additional driver-private structure to be allocated for this Ethernet device

txqs The number of TX queues this device has.

rxqs The number of RX queues this device has.

Description

Fill in the fields of the device structure with Ethernet-generic values. Basically does everything except
registering the device.

Constructs a new net device, complete with a private data area of size (sizeof_priv). A 32-byte (not bit)
alignment is enforced for this private data area.

Network device support

376

Name
netif_carrier_on — set carrier

Synopsis

void netif_carrier_on (struct net_device * dev);

Arguments

dev network device

Description

Device has detected that carrier.

Network device support

377

Name
netif_carrier_off — clear carrier

Synopsis

void netif_carrier_off (struct net_device * dev);

Arguments

dev network device

Description

Device has detected loss of carrier.

Network device support

378

Name
is_link_local_ether_addr — Determine if given Ethernet address is link-local

Synopsis

bool is_link_local_ether_addr (const u8 * addr);

Arguments

addr Pointer to a six-byte array containing the Ethernet address

Description

Return true if address is link local reserved addr (01:80:c2:00:00:0X) per IEEE 802.1Q 8.6.3 Frame fil-
tering.

Please note

addr must be aligned to u16.

Network device support

379

Name
is_zero_ether_addr — Determine if give Ethernet address is all zeros.

Synopsis

bool is_zero_ether_addr (const u8 * addr);

Arguments

addr Pointer to a six-byte array containing the Ethernet address

Description

Return true if the address is all zeroes.

Please note

addr must be aligned to u16.

Network device support

380

Name
is_multicast_ether_addr — Determine if the Ethernet address is a multicast.

Synopsis

bool is_multicast_ether_addr (const u8 * addr);

Arguments

addr Pointer to a six-byte array containing the Ethernet address

Description

Return true if the address is a multicast address. By definition the broadcast address is also a multicast
address.

Network device support

381

Name
is_local_ether_addr — Determine if the Ethernet address is locally-assigned one (IEEE 802).

Synopsis

bool is_local_ether_addr (const u8 * addr);

Arguments

addr Pointer to a six-byte array containing the Ethernet address

Description

Return true if the address is a local address.

Network device support

382

Name
is_broadcast_ether_addr — Determine if the Ethernet address is broadcast

Synopsis

bool is_broadcast_ether_addr (const u8 * addr);

Arguments

addr Pointer to a six-byte array containing the Ethernet address

Description

Return true if the address is the broadcast address.

Please note

addr must be aligned to u16.

Network device support

383

Name
is_unicast_ether_addr — Determine if the Ethernet address is unicast

Synopsis

bool is_unicast_ether_addr (const u8 * addr);

Arguments

addr Pointer to a six-byte array containing the Ethernet address

Description

Return true if the address is a unicast address.

Network device support

384

Name
is_valid_ether_addr — Determine if the given Ethernet address is valid

Synopsis

bool is_valid_ether_addr (const u8 * addr);

Arguments

addr Pointer to a six-byte array containing the Ethernet address

Description

Check that the Ethernet address (MAC) is not 00:00:00:00:00:00, is not a multicast address, and is not
FF:FF:FF:FF:FF:FF.

Return true if the address is valid.

Please note

addr must be aligned to u16.

Network device support

385

Name
eth_random_addr — Generate software assigned random Ethernet address

Synopsis

void eth_random_addr (u8 * addr);

Arguments

addr Pointer to a six-byte array containing the Ethernet address

Description

Generate a random Ethernet address (MAC) that is not multicast and has the local assigned bit set.

Network device support

386

Name
eth_broadcast_addr — Assign broadcast address

Synopsis

void eth_broadcast_addr (u8 * addr);

Arguments

addr Pointer to a six-byte array containing the Ethernet address

Description

Assign the broadcast address to the given address array.

Network device support

387

Name
eth_zero_addr — Assign zero address

Synopsis

void eth_zero_addr (u8 * addr);

Arguments

addr Pointer to a six-byte array containing the Ethernet address

Description

Assign the zero address to the given address array.

Network device support

388

Name
eth_hw_addr_random — Generate software assigned random Ethernet and set device flag

Synopsis

void eth_hw_addr_random (struct net_device * dev);

Arguments

dev pointer to net_device structure

Description

Generate a random Ethernet address (MAC) to be used by a net device and set addr_assign_type so the
state can be read by sysfs and be used by userspace.

Network device support

389

Name
ether_addr_copy — Copy an Ethernet address

Synopsis

void ether_addr_copy (u8 * dst, const u8 * src);

Arguments

dst Pointer to a six-byte array Ethernet address destination

src Pointer to a six-byte array Ethernet address source

Please note

dst & src must both be aligned to u16.

Network device support

390

Name
eth_hw_addr_inherit — Copy dev_addr from another net_device

Synopsis

void eth_hw_addr_inherit (struct net_device * dst, struct net_device
* src);

Arguments

dst pointer to net_device to copy dev_addr to

src pointer to net_device to copy dev_addr from

Description

Copy the Ethernet address from one net_device to another along with the address attributes
(addr_assign_type).

Network device support

391

Name
ether_addr_equal — Compare two Ethernet addresses

Synopsis

bool ether_addr_equal (const u8 * addr1, const u8 * addr2);

Arguments

addr1 Pointer to a six-byte array containing the Ethernet address

addr2 Pointer other six-byte array containing the Ethernet address

Description

Compare two Ethernet addresses, returns true if equal

Please note

addr1 & addr2 must both be aligned to u16.

Network device support

392

Name
ether_addr_equal_64bits — Compare two Ethernet addresses

Synopsis

bool ether_addr_equal_64bits (const u8 addr1[6+2], const u8 addr2[6+2]);

Arguments

addr1[6+2] Pointer to an array of 8 bytes

addr2[6+2] Pointer to an other array of 8 bytes

Description

Compare two Ethernet addresses, returns true if equal, false otherwise.

The function doesn't need any conditional branches and possibly uses word memory accesses on CPU
allowing cheap unaligned memory reads. arrays = { byte1, byte2, byte3, byte4, byte5, byte6, pad1, pad2 }

Please note that alignment of addr1 & addr2 are only guaranteed to be 16 bits.

Network device support

393

Name
ether_addr_equal_unaligned — Compare two not u16 aligned Ethernet addresses

Synopsis

bool ether_addr_equal_unaligned (const u8 * addr1, const u8 * addr2);

Arguments

addr1 Pointer to a six-byte array containing the Ethernet address

addr2 Pointer other six-byte array containing the Ethernet address

Description

Compare two Ethernet addresses, returns true if equal

Please note

Use only when any Ethernet address may not be u16 aligned.

Network device support

394

Name
is_etherdev_addr — Tell if given Ethernet address belongs to the device.

Synopsis

bool is_etherdev_addr (const struct net_device * dev, const u8 addr[6
+ 2]);

Arguments

dev Pointer to a device structure

addr[6 + 2] Pointer to a six-byte array containing the Ethernet address

Description

Compare passed address with all addresses of the device. Return true if the address if one of the device
addresses.

Note that this function calls ether_addr_equal_64bits so take care of the right padding.

Network device support

395

Name
compare_ether_header — Compare two Ethernet headers

Synopsis

unsigned long compare_ether_header (const void * a, const void * b);

Arguments

a Pointer to Ethernet header

b Pointer to Ethernet header

Description

Compare two Ethernet headers, returns 0 if equal. This assumes that the network header (i.e., IP header) is
4-byte aligned OR the platform can handle unaligned access. This is the case for all packets coming into
netif_receive_skb or similar entry points.

Network device support

396

Name
eth_skb_pad — Pad buffer to mininum number of octets for Ethernet frame

Synopsis

int eth_skb_pad (struct sk_buff * skb);

Arguments

skb Buffer to pad

Description

An Ethernet frame should have a minimum size of 60 bytes. This function takes short frames and pads
them with zeros up to the 60 byte limit.

Network device support

397

Name
napi_schedule_prep — check if napi can be scheduled

Synopsis

bool napi_schedule_prep (struct napi_struct * n);

Arguments

n napi context

Description

Test if NAPI routine is already running, and if not mark it as running. This is used as a condition variable
insure only one NAPI poll instance runs. We also make sure there is no pending NAPI disable.

Network device support

398

Name
napi_schedule — schedule NAPI poll

Synopsis

void napi_schedule (struct napi_struct * n);

Arguments

n napi context

Description

Schedule NAPI poll routine to be called if it is not already running.

Network device support

399

Name
napi_schedule_irqoff — schedule NAPI poll

Synopsis

void napi_schedule_irqoff (struct napi_struct * n);

Arguments

n napi context

Description

Variant of napi_schedule, assuming hard irqs are masked.

Network device support

400

Name
napi_complete — NAPI processing complete

Synopsis

void napi_complete (struct napi_struct * n);

Arguments

n napi context

Description

Mark NAPI processing as complete. Consider using napi_complete_done instead.

Network device support

401

Name
napi_enable — enable NAPI scheduling

Synopsis

void napi_enable (struct napi_struct * n);

Arguments

n napi context

Description

Resume NAPI from being scheduled on this context. Must be paired with napi_disable.

Network device support

402

Name
napi_synchronize — wait until NAPI is not running

Synopsis

void napi_synchronize (const struct napi_struct * n);

Arguments

n napi context

Description

Wait until NAPI is done being scheduled on this context. Waits till any outstanding processing completes
but does not disable future activations.

Network device support

403

Name
enum netdev_priv_flags — struct net_device priv_flags

Synopsis

enum netdev_priv_flags {
 IFF_802_1Q_VLAN,
 IFF_EBRIDGE,
 IFF_SLAVE_INACTIVE,
 IFF_MASTER_8023AD,
 IFF_MASTER_ALB,
 IFF_BONDING,
 IFF_SLAVE_NEEDARP,
 IFF_ISATAP,
 IFF_MASTER_ARPMON,
 IFF_WAN_HDLC,
 IFF_XMIT_DST_RELEASE,
 IFF_DONT_BRIDGE,
 IFF_DISABLE_NETPOLL,
 IFF_MACVLAN_PORT,
 IFF_BRIDGE_PORT,
 IFF_OVS_DATAPATH,
 IFF_TX_SKB_SHARING,
 IFF_UNICAST_FLT,
 IFF_TEAM_PORT,
 IFF_SUPP_NOFCS,
 IFF_LIVE_ADDR_CHANGE,
 IFF_MACVLAN,
 IFF_XMIT_DST_RELEASE_PERM,
 IFF_IPVLAN_MASTER,
 IFF_IPVLAN_SLAVE
};

Constants

IFF_802_1Q_VLAN 802.1Q VLAN device

IFF_EBRIDGE Ethernet bridging device

IFF_SLAVE_INACTIVE bonding slave not the curr. active

IFF_MASTER_8023AD bonding master, 802.3ad

IFF_MASTER_ALB bonding master, balance-alb

IFF_BONDING bonding master or slave

IFF_SLAVE_NEEDARP need ARPs for validation

IFF_ISATAP ISATAP interface (RFC4214)

IFF_MASTER_ARPMON bonding master, ARP mon in use

IFF_WAN_HDLC WAN HDLC device

Network device support

404

IFF_XMIT_DST_RELEASE dev_hard_start_xmit is allowed to release skb->dst

IFF_DONT_BRIDGE disallow bridging this ether dev

IFF_DISABLE_NETPOLL disable netpoll at run-time

IFF_MACVLAN_PORT device used as macvlan port

IFF_BRIDGE_PORT device used as bridge port

IFF_OVS_DATAPATH device used as Open vSwitch datapath port

IFF_TX_SKB_SHARING The interface supports sharing skbs on transmit

IFF_UNICAST_FLT Supports unicast filtering

IFF_TEAM_PORT device used as team port

IFF_SUPP_NOFCS device supports sending custom FCS

IFF_LIVE_ADDR_CHANGE device supports hardware address change when it's running

IFF_MACVLAN Macvlan device

IFF_XMIT_DST_RELEASE_PERM -- undescribed --

IFF_IPVLAN_MASTER -- undescribed --

IFF_IPVLAN_SLAVE -- undescribed --

Description

These are the struct net_device, they are only set internally by drivers and used in the kernel. These flags
are invisible to userspace, this means that the order of these flags can change during any kernel release.

You should have a pretty good reason to be extending these flags.

Network device support

405

Name
struct net_device — The DEVICE structure. Actually, this whole structure is a big mistake. It mixes I/
O data with strictly “high-level” data, and it has to know about almost every data structure used in the
INET module.

Synopsis

struct net_device {
 char name[IFNAMSIZ];
 struct hlist_node name_hlist;
 char * ifalias;
 unsigned long mem_end;
 unsigned long mem_start;
 unsigned long base_addr;
 int irq;
 atomic_t carrier_changes;
 unsigned long state;
 struct list_head dev_list;
 struct list_head napi_list;
 struct list_head unreg_list;
 struct list_head close_list;
 struct {unnamed_struct};
 struct garp_port __rcu * garp_port;
 struct mrp_port __rcu * mrp_port;
 struct device dev;
 const struct attribute_group * sysfs_groups[4];
 const struct attribute_group * sysfs_rx_queue_group;
 const struct rtnl_link_ops * rtnl_link_ops;
#define GSO_MAX_SIZE 65536
 unsigned int gso_max_size;
#define GSO_MAX_SEGS 65535
 u16 gso_max_segs;
 u16 gso_min_segs;
#ifdef CONFIG_DCB
 const struct dcbnl_rtnl_ops * dcbnl_ops;
#endif
 u8 num_tc;
 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
 u8 prio_tc_map[TC_BITMASK + 1];
#if IS_ENABLED(CONFIG_FCOE)
 unsigned int fcoe_ddp_xid;
#endif
#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
 struct netprio_map __rcu * priomap;
#endif
 struct phy_device * phydev;
 struct lock_class_key * qdisc_tx_busylock;
};

Network device support

406

Members

name[IFNAMSIZ] This is the first field of the “visible” part of this structure (i.e. as
seen by users in the “Space.c” file). It is the name of the interface.

name_hlist Device name hash chain, please keep it close to name[]

ifalias SNMP alias

mem_end Shared memory end

mem_start Shared memory start

base_addr Device I/O address

irq Device IRQ number

carrier_changes Stats to monitor carrier on<->off transitions

state Generic network queuing layer state, see netdev_state_t

dev_list The global list of network devices

napi_list List entry, that is used for polling napi devices

unreg_list List entry, that is used, when we are unregistering the device, see
the function unregister_netdev

close_list List entry, that is used, when we are closing the device

{unnamed_struct} anonymous

garp_port GARP

mrp_port MRP

dev Class/net/name entry

sysfs_groups[4] Space for optional device, statistics and wireless sysfs groups

sysfs_rx_queue_group Space for optional per-rx queue attributes

rtnl_link_ops Rtnl_link_ops

gso_max_size Maximum size of generic segmentation offload

gso_max_segs Maximum number of segments that can be passed to the NIC for
GSO

gso_min_segs Minimum number of segments that can be passed to the NIC for
GSO

dcbnl_ops Data Center Bridging netlink ops

num_tc Number of traffic classes in the net device

tc_to_txq[TC_MAX_QUEUE] XXX: need comments on this one

Network device support

407

prio_tc_map[TC_BITMASK + 1] need comments on this one

fcoe_ddp_xid Max exchange id for FCoE LRO by ddp

priomap XXX: need comments on this one

phydev Physical device may attach itself for hardware timestamping

qdisc_tx_busylock XXX: need comments on this one

FIXME

cleanup struct net_device such that network protocol info moves out.

Network device support

408

Name
netdev_priv — access network device private data

Synopsis

void * netdev_priv (const struct net_device * dev);

Arguments

dev network device

Description

Get network device private data

Network device support

409

Name
netif_start_queue — allow transmit

Synopsis

void netif_start_queue (struct net_device * dev);

Arguments

dev network device

Description

Allow upper layers to call the device hard_start_xmit routine.

Network device support

410

Name
netif_wake_queue — restart transmit

Synopsis

void netif_wake_queue (struct net_device * dev);

Arguments

dev network device

Description

Allow upper layers to call the device hard_start_xmit routine. Used for flow control when transmit re-
sources are available.

Network device support

411

Name
netif_stop_queue — stop transmitted packets

Synopsis

void netif_stop_queue (struct net_device * dev);

Arguments

dev network device

Description

Stop upper layers calling the device hard_start_xmit routine. Used for flow control when transmit resources
are unavailable.

Network device support

412

Name
netif_queue_stopped — test if transmit queue is flowblocked

Synopsis

bool netif_queue_stopped (const struct net_device * dev);

Arguments

dev network device

Description

Test if transmit queue on device is currently unable to send.

Network device support

413

Name
netdev_txq_bql_enqueue_prefetchw — prefetch bql data for write

Synopsis

void netdev_txq_bql_enqueue_prefetchw (struct netdev_queue *
dev_queue);

Arguments

dev_queue pointer to transmit queue

Description

BQL enabled drivers might use this helper in their ndo_start_xmit, to give appropriate hint to the cpu.

Network device support

414

Name
netdev_txq_bql_complete_prefetchw — prefetch bql data for write

Synopsis

void netdev_txq_bql_complete_prefetchw (struct netdev_queue *
dev_queue);

Arguments

dev_queue pointer to transmit queue

Description

BQL enabled drivers might use this helper in their TX completion path, to give appropriate hint to the cpu.

Network device support

415

Name
netdev_sent_queue — report the number of bytes queued to hardware

Synopsis

void netdev_sent_queue (struct net_device * dev, unsigned int bytes);

Arguments

dev network device

bytes number of bytes queued to the hardware device queue

Description

Report the number of bytes queued for sending/completion to the network device hardware queue. bytes
should be a good approximation and should exactly match netdev_completed_queue bytes

Network device support

416

Name
netdev_completed_queue — report bytes and packets completed by device

Synopsis

void netdev_completed_queue (struct net_device * dev, unsigned int pkts,
unsigned int bytes);

Arguments

dev network device

pkts actual number of packets sent over the medium

bytes actual number of bytes sent over the medium

Description

Report the number of bytes and packets transmitted by the network device hardware queue over the phys-
ical medium, bytes must exactly match the bytes amount passed to netdev_sent_queue

Network device support

417

Name
netdev_reset_queue — reset the packets and bytes count of a network device

Synopsis

void netdev_reset_queue (struct net_device * dev_queue);

Arguments

dev_queue network device

Description

Reset the bytes and packet count of a network device and clear the software flow control OFF bit for this
network device

Network device support

418

Name
netdev_cap_txqueue — check if selected tx queue exceeds device queues

Synopsis

u16 netdev_cap_txqueue (struct net_device * dev, u16 queue_index);

Arguments

dev network device

queue_index given tx queue index

Description

Returns 0 if given tx queue index >= number of device tx queues, otherwise returns the originally passed
tx queue index.

Network device support

419

Name
netif_running — test if up

Synopsis

bool netif_running (const struct net_device * dev);

Arguments

dev network device

Description

Test if the device has been brought up.

Network device support

420

Name
netif_start_subqueue — allow sending packets on subqueue

Synopsis

void netif_start_subqueue (struct net_device * dev, u16 queue_index);

Arguments

dev network device

queue_index sub queue index

Description

Start individual transmit queue of a device with multiple transmit queues.

Network device support

421

Name
netif_stop_subqueue — stop sending packets on subqueue

Synopsis

void netif_stop_subqueue (struct net_device * dev, u16 queue_index);

Arguments

dev network device

queue_index sub queue index

Description

Stop individual transmit queue of a device with multiple transmit queues.

Network device support

422

Name
__netif_subqueue_stopped — test status of subqueue

Synopsis

bool __netif_subqueue_stopped (const struct net_device * dev, u16
queue_index);

Arguments

dev network device

queue_index sub queue index

Description

Check individual transmit queue of a device with multiple transmit queues.

Network device support

423

Name
netif_is_multiqueue — test if device has multiple transmit queues

Synopsis

bool netif_is_multiqueue (const struct net_device * dev);

Arguments

dev network device

Description

Check if device has multiple transmit queues

Network device support

424

Name
dev_put — release reference to device

Synopsis

void dev_put (struct net_device * dev);

Arguments

dev network device

Description

Release reference to device to allow it to be freed.

Network device support

425

Name
dev_hold — get reference to device

Synopsis

void dev_hold (struct net_device * dev);

Arguments

dev network device

Description

Hold reference to device to keep it from being freed.

Network device support

426

Name
netif_carrier_ok — test if carrier present

Synopsis

bool netif_carrier_ok (const struct net_device * dev);

Arguments

dev network device

Description

Check if carrier is present on device

Network device support

427

Name
netif_dormant_on — mark device as dormant.

Synopsis

void netif_dormant_on (struct net_device * dev);

Arguments

dev network device

Description

Mark device as dormant (as per RFC2863).

The dormant state indicates that the relevant interface is not actually in a condition to pass packets (i.e., it
is not 'up') but is in a “pending” state, waiting for some external event. For “on- demand” interfaces, this
new state identifies the situation where the interface is waiting for events to place it in the up state.

Network device support

428

Name
netif_dormant_off — set device as not dormant.

Synopsis

void netif_dormant_off (struct net_device * dev);

Arguments

dev network device

Description

Device is not in dormant state.

Network device support

429

Name
netif_dormant — test if carrier present

Synopsis

bool netif_dormant (const struct net_device * dev);

Arguments

dev network device

Description

Check if carrier is present on device

Network device support

430

Name
netif_oper_up — test if device is operational

Synopsis

bool netif_oper_up (const struct net_device * dev);

Arguments

dev network device

Description

Check if carrier is operational

Network device support

431

Name
netif_device_present — is device available or removed

Synopsis

bool netif_device_present (struct net_device * dev);

Arguments

dev network device

Description

Check if device has not been removed from system.

Network device support

432

Name
netif_tx_lock — grab network device transmit lock

Synopsis

void netif_tx_lock (struct net_device * dev);

Arguments

dev network device

Description

Get network device transmit lock

Network device support

433

Name
__dev_uc_sync — Synchonize device's unicast list

Synopsis

int __dev_uc_sync (struct net_device * dev, int (*sync) (struct
net_device *, const unsigned char *), int (*unsync) (struct net_device
*, const unsigned char *));

Arguments

dev device to sync

sync function to call if address should be added

unsync function to call if address should be removed

Description

Add newly added addresses to the interface, and release addresses that have been deleted.

Network device support

434

Name
__dev_uc_unsync — Remove synchronized addresses from device

Synopsis

void __dev_uc_unsync (struct net_device * dev, int (*unsync) (struct
net_device *, const unsigned char *));

Arguments

dev device to sync

unsync function to call if address should be removed

Description

Remove all addresses that were added to the device by dev_uc_sync.

Network device support

435

Name
__dev_mc_sync — Synchonize device's multicast list

Synopsis

int __dev_mc_sync (struct net_device * dev, int (*sync) (struct
net_device *, const unsigned char *), int (*unsync) (struct net_device
*, const unsigned char *));

Arguments

dev device to sync

sync function to call if address should be added

unsync function to call if address should be removed

Description

Add newly added addresses to the interface, and release addresses that have been deleted.

Network device support

436

Name
__dev_mc_unsync — Remove synchronized addresses from device

Synopsis

void __dev_mc_unsync (struct net_device * dev, int (*unsync) (struct
net_device *, const unsigned char *));

Arguments

dev device to sync

unsync function to call if address should be removed

Description

Remove all addresses that were added to the device by dev_mc_sync.

PHY Support

Network device support

437

Name
phy_print_status — Convenience function to print out the current phy status

Synopsis

void phy_print_status (struct phy_device * phydev);

Arguments

phydev the phy_device struct

Network device support

438

Name
phy_ethtool_sset — generic ethtool sset function, handles all the details

Synopsis

int phy_ethtool_sset (struct phy_device * phydev, struct ethtool_cmd
* cmd);

Arguments

phydev target phy_device struct

cmd ethtool_cmd

A few notes about parameter checking

- We don't set port or transceiver, so we don't care what they were set to. - phy_start_aneg will make
sure forced settings are sane, and choose the next best ones from the ones selected, so we don't care if
ethtool tries to give us bad values.

Network device support

439

Name
phy_mii_ioctl — generic PHY MII ioctl interface

Synopsis

int phy_mii_ioctl (struct phy_device * phydev, struct ifreq * ifr, int
cmd);

Arguments

phydev the phy_device struct

ifr struct ifreq for socket ioctl's

cmd ioctl cmd to execute

Description

Note that this function is currently incompatible with the PHYCONTROL layer. It changes registers with-
out regard to current state. Use at own risk.

Network device support

440

Name
phy_start_aneg — start auto-negotiation for this PHY device

Synopsis

int phy_start_aneg (struct phy_device * phydev);

Arguments

phydev the phy_device struct

Description

Sanitizes the settings (if we're not autonegotiating them), and then calls the driver's config_aneg function.
If the PHYCONTROL Layer is operating, we change the state to reflect the beginning of Auto-negotiation
or forcing.

Network device support

441

Name
phy_start_interrupts — request and enable interrupts for a PHY device

Synopsis

int phy_start_interrupts (struct phy_device * phydev);

Arguments

phydev target phy_device struct

Description

Request the interrupt for the given PHY. If this fails, then we set irq to PHY_POLL. Otherwise, we enable
the interrupts in the PHY. This should only be called with a valid IRQ number. Returns 0 on success or
< 0 on error.

Network device support

442

Name
phy_stop_interrupts — disable interrupts from a PHY device

Synopsis

int phy_stop_interrupts (struct phy_device * phydev);

Arguments

phydev target phy_device struct

Network device support

443

Name
phy_stop — Bring down the PHY link, and stop checking the status

Synopsis

void phy_stop (struct phy_device * phydev);

Arguments

phydev target phy_device struct

Network device support

444

Name
phy_start — start or restart a PHY device

Synopsis

void phy_start (struct phy_device * phydev);

Arguments

phydev target phy_device struct

Description

Indicates the attached device's readiness to handle PHY-related work. Used during startup to start the PHY,
and after a call to phy_stop to resume operation. Also used to indicate the MDIO bus has cleared an
error condition.

Network device support

445

Name
phy_read_mmd_indirect — reads data from the MMD registers

Synopsis

int phy_read_mmd_indirect (struct phy_device * phydev, int prtad, int
devad, int addr);

Arguments

phydev The PHY device bus

prtad MMD Address

devad MMD DEVAD

addr PHY address on the MII bus

Description

it reads data from the MMD registers (clause 22 to access to clause 45) of the specified phy address.

To read these register we have

1) Write reg 13 // DEVAD 2) Write reg 14 // MMD Address 3) Write reg 13 // MMD Data Command for
MMD DEVAD 3) Read reg 14 // Read MMD data

Network device support

446

Name
phy_write_mmd_indirect — writes data to the MMD registers

Synopsis

void phy_write_mmd_indirect (struct phy_device * phydev, int prtad, int
devad, int addr, u32 data);

Arguments

phydev The PHY device

prtad MMD Address

devad MMD DEVAD

addr PHY address on the MII bus

data data to write in the MMD register

Description

Write data from the MMD registers of the specified phy address.

To write these register we have

1) Write reg 13 // DEVAD 2) Write reg 14 // MMD Address 3) Write reg 13 // MMD Data Command for
MMD DEVAD 3) Write reg 14 // Write MMD data

Network device support

447

Name
phy_init_eee — init and check the EEE feature

Synopsis

int phy_init_eee (struct phy_device * phydev, bool clk_stop_enable);

Arguments

phydev target phy_device struct

clk_stop_enable PHY may stop the clock during LPI

Description

it checks if the Energy-Efficient Ethernet (EEE) is supported by looking at the MMD registers 3.20 and
7.60/61 and it programs the MMD register 3.0 setting the “Clock stop enable” bit if required.

Network device support

448

Name
phy_get_eee_err — report the EEE wake error count

Synopsis

int phy_get_eee_err (struct phy_device * phydev);

Arguments

phydev target phy_device struct

Description

it is to report the number of time where the PHY failed to complete its normal wake sequence.

Network device support

449

Name
phy_ethtool_get_eee — get EEE supported and status

Synopsis

int phy_ethtool_get_eee (struct phy_device * phydev, struct ethtool_eee
* data);

Arguments

phydev target phy_device struct

data ethtool_eee data

Description

it reportes the Supported/Advertisement/LP Advertisement capabilities.

Network device support

450

Name
phy_ethtool_set_eee — set EEE supported and status

Synopsis

int phy_ethtool_set_eee (struct phy_device * phydev, struct ethtool_eee
* data);

Arguments

phydev target phy_device struct

data ethtool_eee data

Description

it is to program the Advertisement EEE register.

Network device support

451

Name
phy_clear_interrupt — Ack the phy device's interrupt

Synopsis

int phy_clear_interrupt (struct phy_device * phydev);

Arguments

phydev the phy_device struct

Description

If the phydev driver has an ack_interrupt function, call it to ack and clear the phy device's interrupt.

Returns 0 on success or < 0 on error.

Network device support

452

Name
phy_config_interrupt — configure the PHY device for the requested interrupts

Synopsis

int phy_config_interrupt (struct phy_device * phydev, u32 interrupts);

Arguments

phydev the phy_device struct

interrupts interrupt flags to configure for this phydev

Description

Returns 0 on success or < 0 on error.

Network device support

453

Name
phy_aneg_done — return auto-negotiation status

Synopsis

int phy_aneg_done (struct phy_device * phydev);

Arguments

phydev target phy_device struct

Description

Return the auto-negotiation status from this phydev Returns > 0 on success or < 0 on error. 0 means that
auto-negotiation is still pending.

Network device support

454

Name
phy_find_setting — find a PHY settings array entry that matches speed & duplex

Synopsis

unsigned int phy_find_setting (int speed, int duplex);

Arguments

speed speed to match

duplex duplex to match

Description

Searches the settings array for the setting which matches the desired speed and duplex, and returns the
index of that setting. Returns the index of the last setting if none of the others match.

Network device support

455

Name
phy_find_valid — find a PHY setting that matches the requested features mask

Synopsis

unsigned int phy_find_valid (unsigned int idx, u32 features);

Arguments

idx The first index in settings[] to search

features A mask of the valid settings

Description

Returns the index of the first valid setting less than or equal to the one pointed to by idx, as determined by
the mask in features. Returns the index of the last setting if nothing else matches.

Network device support

456

Name
phy_check_valid — check if there is a valid PHY setting which matches speed, duplex, and feature mask

Synopsis

bool phy_check_valid (int speed, int duplex, u32 features);

Arguments

speed speed to match

duplex duplex to match

features A mask of the valid settings

Description

Returns true if there is a valid setting, false otherwise.

Network device support

457

Name
phy_sanitize_settings — make sure the PHY is set to supported speed and duplex

Synopsis

void phy_sanitize_settings (struct phy_device * phydev);

Arguments

phydev the target phy_device struct

Description

Make sure the PHY is set to supported speeds and duplexes. Drop down by one in this order: 1000/FULL,
1000/HALF, 100/FULL, 100/HALF, 10/FULL, 10/HALF.

Network device support

458

Name
phy_start_machine — start PHY state machine tracking

Synopsis

void phy_start_machine (struct phy_device * phydev);

Arguments

phydev the phy_device struct

Description

The PHY infrastructure can run a state machine which tracks whether the PHY is starting up, negotiating,
etc. This function starts the timer which tracks the state of the PHY. If you want to maintain your own
state machine, do not call this function.

Network device support

459

Name
phy_stop_machine — stop the PHY state machine tracking

Synopsis

void phy_stop_machine (struct phy_device * phydev);

Arguments

phydev target phy_device struct

Description

Stops the state machine timer, sets the state to UP (unless it wasn't up yet). This function must be called
BEFORE phy_detach.

Network device support

460

Name
phy_error — enter HALTED state for this PHY device

Synopsis

void phy_error (struct phy_device * phydev);

Arguments

phydev target phy_device struct

Description

Moves the PHY to the HALTED state in response to a read or write error, and tells the controller the link
is down. Must not be called from interrupt context, or while the phydev->lock is held.

Network device support

461

Name
phy_interrupt — PHY interrupt handler

Synopsis

irqreturn_t phy_interrupt (int irq, void * phy_dat);

Arguments

irq interrupt line

phy_dat phy_device pointer

Description

When a PHY interrupt occurs, the handler disables interrupts, and schedules a work task to clear the
interrupt.

Network device support

462

Name
phy_enable_interrupts — Enable the interrupts from the PHY side

Synopsis

int phy_enable_interrupts (struct phy_device * phydev);

Arguments

phydev target phy_device struct

Network device support

463

Name
phy_disable_interrupts — Disable the PHY interrupts from the PHY side

Synopsis

int phy_disable_interrupts (struct phy_device * phydev);

Arguments

phydev target phy_device struct

Network device support

464

Name
phy_change — Scheduled by the phy_interrupt/timer to handle PHY changes

Synopsis

void phy_change (struct work_struct * work);

Arguments

work work_struct that describes the work to be done

Network device support

465

Name
phy_state_machine — Handle the state machine

Synopsis

void phy_state_machine (struct work_struct * work);

Arguments

work work_struct that describes the work to be done

Network device support

466

Name
phy_register_fixup — creates a new phy_fixup and adds it to the list

Synopsis

int phy_register_fixup (const char * bus_id, u32 phy_uid, u32
phy_uid_mask, int (*run) (struct phy_device *));

Arguments

bus_id A string which matches phydev->dev.bus_id (or PHY_ANY_ID)

phy_uid Used to match against phydev->phy_id (the UID of the PHY) It can also be
PHY_ANY_UID

phy_uid_mask Applied to phydev->phy_id and fixup->phy_uid before comparison

run The actual code to be run when a matching PHY is found

Network device support

467

Name
get_phy_device — reads the specified PHY device and returns its phy_device struct

Synopsis

struct phy_device * get_phy_device (struct mii_bus * bus, int addr,
bool is_c45);

Arguments

bus the target MII bus

addr PHY address on the MII bus

is_c45 If true the PHY uses the 802.3 clause 45 protocol

Description

Reads the ID registers of the PHY at addr on the bus, then allocates and returns the phy_device to
represent it.

Network device support

468

Name
phy_device_register — Register the phy device on the MDIO bus

Synopsis

int phy_device_register (struct phy_device * phydev);

Arguments

phydev phy_device structure to be added to the MDIO bus

Network device support

469

Name
phy_find_first — finds the first PHY device on the bus

Synopsis

struct phy_device * phy_find_first (struct mii_bus * bus);

Arguments

bus the target MII bus

Network device support

470

Name
phy_connect_direct — connect an ethernet device to a specific phy_device

Synopsis

int phy_connect_direct (struct net_device * dev, struct phy_device *
phydev, void (*handler) (struct net_device *), phy_interface_t inter-
face);

Arguments

dev the network device to connect

phydev the pointer to the phy device

handler callback function for state change notifications

interface PHY device's interface

Network device support

471

Name
phy_connect — connect an ethernet device to a PHY device

Synopsis

struct phy_device * phy_connect (struct net_device * dev, const char
* bus_id, void (*handler) (struct net_device *), phy_interface_t in-
terface);

Arguments

dev the network device to connect

bus_id the id string of the PHY device to connect

handler callback function for state change notifications

interface PHY device's interface

Description

Convenience function for connecting ethernet devices to PHY devices. The default behavior is for the PHY
infrastructure to handle everything, and only notify the connected driver when the link status changes. If
you don't want, or can't use the provided functionality, you may choose to call only the subset of functions
which provide the desired functionality.

Network device support

472

Name
phy_disconnect — disable interrupts, stop state machine, and detach a PHY device

Synopsis

void phy_disconnect (struct phy_device * phydev);

Arguments

phydev target phy_device struct

Network device support

473

Name
phy_attach_direct — attach a network device to a given PHY device pointer

Synopsis

int phy_attach_direct (struct net_device * dev, struct phy_device *
phydev, u32 flags, phy_interface_t interface);

Arguments

dev network device to attach

phydev Pointer to phy_device to attach

flags PHY device's dev_flags

interface PHY device's interface

Description

Called by drivers to attach to a particular PHY device. The phy_device is found, and properly hooked
up to the phy_driver. If no driver is attached, then a generic driver is used. The phy_device is given a
ptr to the attaching device, and given a callback for link status change. The phy_device is returned to the
attaching driver.

Network device support

474

Name
phy_attach — attach a network device to a particular PHY device

Synopsis

struct phy_device * phy_attach (struct net_device * dev, const char *
bus_id, phy_interface_t interface);

Arguments

dev network device to attach

bus_id Bus ID of PHY device to attach

interface PHY device's interface

Description

Same as phy_attach_direct except that a PHY bus_id string is passed instead of a pointer to a struct
phy_device.

Network device support

475

Name
phy_detach — detach a PHY device from its network device

Synopsis

void phy_detach (struct phy_device * phydev);

Arguments

phydev target phy_device struct

Network device support

476

Name
genphy_setup_forced — configures/forces speed/duplex from phydev

Synopsis

int genphy_setup_forced (struct phy_device * phydev);

Arguments

phydev target phy_device struct

Description

Configures MII_BMCR to force speed/duplex to the values in phydev. Assumes that the values are valid.
Please see phy_sanitize_settings.

Network device support

477

Name
genphy_restart_aneg — Enable and Restart Autonegotiation

Synopsis

int genphy_restart_aneg (struct phy_device * phydev);

Arguments

phydev target phy_device struct

Network device support

478

Name
genphy_config_aneg — restart auto-negotiation or write BMCR

Synopsis

int genphy_config_aneg (struct phy_device * phydev);

Arguments

phydev target phy_device struct

Description

If auto-negotiation is enabled, we configure the advertising, and then restart auto-negotiation. If it is not
enabled, then we write the BMCR.

Network device support

479

Name
genphy_aneg_done — return auto-negotiation status

Synopsis

int genphy_aneg_done (struct phy_device * phydev);

Arguments

phydev target phy_device struct

Description

Reads the status register and returns 0 either if auto-negotiation is incomplete, or if there was an error.
Returns BMSR_ANEGCOMPLETE if auto-negotiation is done.

Network device support

480

Name
genphy_update_link — update link status in phydev

Synopsis

int genphy_update_link (struct phy_device * phydev);

Arguments

phydev target phy_device struct

Description

Update the value in phydev->link to reflect the current link value. In order to do this, we need to read the
status register twice, keeping the second value.

Network device support

481

Name
genphy_read_status — check the link status and update current link state

Synopsis

int genphy_read_status (struct phy_device * phydev);

Arguments

phydev target phy_device struct

Description

Check the link, then figure out the current state by comparing what we advertise with what the link partner
advertises. Start by checking the gigabit possibilities, then move on to 10/100.

Network device support

482

Name
genphy_soft_reset — software reset the PHY via BMCR_RESET bit

Synopsis

int genphy_soft_reset (struct phy_device * phydev);

Arguments

phydev target phy_device struct

Description

Perform a software PHY reset using the standard BMCR_RESET bit and poll for the reset bit to be cleared.

Returns

0 on success, < 0 on failure

Network device support

483

Name
phy_driver_register — register a phy_driver with the PHY layer

Synopsis

int phy_driver_register (struct phy_driver * new_driver);

Arguments

new_driver new phy_driver to register

Network device support

484

Name
get_phy_c45_ids — reads the specified addr for its 802.3-c45 IDs.

Synopsis

int get_phy_c45_ids (struct mii_bus * bus, int addr, u32 * phy_id,
struct phy_c45_device_ids * c45_ids);

Arguments

bus the target MII bus

addr PHY address on the MII bus

phy_id where to store the ID retrieved.

c45_ids where to store the c45 ID information.

Description

If the PHY devices-in-package appears to be valid, it and the corresponding identifiers are stored in
c45_ids, zero is stored in phy_id. Otherwise 0xffffffff is stored in phy_id. Returns zero on success.

Network device support

485

Name
get_phy_id — reads the specified addr for its ID.

Synopsis

int get_phy_id (struct mii_bus * bus, int addr, u32 * phy_id, bool
is_c45, struct phy_c45_device_ids * c45_ids);

Arguments

bus the target MII bus

addr PHY address on the MII bus

phy_id where to store the ID retrieved.

is_c45 If true the PHY uses the 802.3 clause 45 protocol

c45_ids where to store the c45 ID information.

Description

In the case of a 802.3-c22 PHY, reads the ID registers of the PHY at addr on the bus, stores it in phy_id
and returns zero on success.

In the case of a 802.3-c45 PHY, get_phy_c45_ids is invoked, and its return value is in turn returned.

Network device support

486

Name
phy_prepare_link — prepares the PHY layer to monitor link status

Synopsis

void phy_prepare_link (struct phy_device * phydev, void (*handler)
(struct net_device *));

Arguments

phydev target phy_device struct

handler callback function for link status change notifications

Description

Tells the PHY infrastructure to handle the gory details on monitoring link status (whether through polling
or an interrupt), and to call back to the connected device driver when the link status changes. If you want
to monitor your own link state, don't call this function.

Network device support

487

Name
phy_poll_reset — Safely wait until a PHY reset has properly completed

Synopsis

int phy_poll_reset (struct phy_device * phydev);

Arguments

phydev The PHY device to poll

Description

According to IEEE 802.3, Section 2, Subsection 22.2.4.1.1, as published in 2008, a PHY reset may take
up to 0.5 seconds. The MII BMCR register must be polled until the BMCR_RESET bit clears.

Furthermore, any attempts to write to PHY registers may have no effect or even generate MDIO bus errors
until this is complete.

Some PHYs (such as the Marvell 88E1111) don't entirely conform to the standard and do not fully reset
after the BMCR_RESET bit is set, and may even *REQUIRE* a soft-reset to properly restart autonegotia-
tion. In an effort to support such broken PHYs, this function is separate from the standard phy_init_hw
which will zero all the other bits in the BMCR and reapply all driver-specific and board-specific fixups.

Network device support

488

Name
genphy_config_advert — sanitize and advertise auto-negotiation parameters

Synopsis

int genphy_config_advert (struct phy_device * phydev);

Arguments

phydev target phy_device struct

Description

Writes MII_ADVERTISE with the appropriate values, after sanitizing the values to make sure we only
advertise what is supported. Returns < 0 on error, 0 if the PHY's advertisement hasn't changed, and > 0
if it has changed.

Network device support

489

Name
phy_probe — probe and init a PHY device

Synopsis

int phy_probe (struct device * dev);

Arguments

dev device to probe and init

Description

Take care of setting up the phy_device structure, set the state to READY (the driver's init function should
set it to STARTING if needed).

Network device support

490

Name
mdiobus_alloc_size — allocate a mii_bus structure

Synopsis

struct mii_bus * mdiobus_alloc_size (size_t size);

Arguments

size extra amount of memory to allocate for private storage. If non-zero, then bus->priv is points to
that memory.

Description

called by a bus driver to allocate an mii_bus structure to fill in.

Network device support

491

Name
devm_mdiobus_alloc_size — Resource-managed mdiobus_alloc_size

Synopsis

struct mii_bus * devm_mdiobus_alloc_size (struct device * dev, int
sizeof_priv);

Arguments

dev Device to allocate mii_bus for

sizeof_priv Space to allocate for private structure.

Description

Managed mdiobus_alloc_size. mii_bus allocated with this function is automatically freed on driver detach.

If an mii_bus allocated with this function needs to be freed separately, devm_mdiobus_free must be
used.

RETURNS

Pointer to allocated mii_bus on success, NULL on failure.

Network device support

492

Name
devm_mdiobus_free — Resource-managed mdiobus_free

Synopsis

void devm_mdiobus_free (struct device * dev, struct mii_bus * bus);

Arguments

dev Device this mii_bus belongs to

bus the mii_bus associated with the device

Description

Free mii_bus allocated with devm_mdiobus_alloc_size.

Network device support

493

Name
of_mdio_find_bus — Given an mii_bus node, find the mii_bus.

Synopsis

struct mii_bus * of_mdio_find_bus (struct device_node * mdio_bus_np);

Arguments

mdio_bus_np Pointer to the mii_bus.

Description

Returns a pointer to the mii_bus, or NULL if none found.

Because the association of a device_node and mii_bus is made via of_mdiobus_register, the
mii_bus cannot be found before it is registered with of_mdiobus_register.

Network device support

494

Name
mdiobus_register — bring up all the PHYs on a given bus and attach them to bus

Synopsis

int mdiobus_register (struct mii_bus * bus);

Arguments

bus target mii_bus

Description

Called by a bus driver to bring up all the PHYs on a given bus, and attach them to the bus.

Returns 0 on success or < 0 on error.

Network device support

495

Name
mdiobus_free — free a struct mii_bus

Synopsis

void mdiobus_free (struct mii_bus * bus);

Arguments

bus mii_bus to free

Description

This function releases the reference to the underlying device object in the mii_bus. If this is the last refer-
ence, the mii_bus will be freed.

Network device support

496

Name
mdiobus_read — Convenience function for reading a given MII mgmt register

Synopsis

int mdiobus_read (struct mii_bus * bus, int addr, u32 regnum);

Arguments

bus the mii_bus struct

addr the phy address

regnum register number to read

NOTE

MUST NOT be called from interrupt context, because the bus read/write functions may wait for an interrupt
to conclude the operation.

Network device support

497

Name
mdiobus_write — Convenience function for writing a given MII mgmt register

Synopsis

int mdiobus_write (struct mii_bus * bus, int addr, u32 regnum, u16 val);

Arguments

bus the mii_bus struct

addr the phy address

regnum register number to write

val value to write to regnum

NOTE

MUST NOT be called from interrupt context, because the bus read/write functions may wait for an interrupt
to conclude the operation.

Network device support

498

Name
mdiobus_release — mii_bus device release callback

Synopsis

void mdiobus_release (struct device * d);

Arguments

d the target struct device that contains the mii_bus

Description

called when the last reference to an mii_bus is dropped, to free the underlying memory.

Network device support

499

Name
mdio_bus_match — determine if given PHY driver supports the given PHY device

Synopsis

int mdio_bus_match (struct device * dev, struct device_driver * drv);

Arguments

dev target PHY device

drv given PHY driver

Description

Given a PHY device, and a PHY driver, return 1 if the driver supports the device. Otherwise, return 0.

	Linux Networking and Network Devices APIs
	Table of Contents
	Chapter 1. Linux Networking
	Networking Base Types
	enum sock_type
	struct socket

	Socket Buffer Functions
	struct skb_shared_hwtstamps
	struct skb_mstamp
	skb_mstamp_get
	skb_mstamp_us_delta
	struct sk_buff
	skb_dst
	skb_dst_set
	skb_dst_set_noref
	skb_dst_is_noref
	skb_fclone_busy
	skb_queue_empty
	skb_queue_is_last
	skb_queue_is_first
	skb_queue_next
	skb_queue_prev
	skb_get
	skb_cloned
	skb_header_cloned
	skb_header_release
	__skb_header_release
	skb_shared
	skb_share_check
	skb_unshare
	skb_peek
	skb_peek_next
	skb_peek_tail
	skb_queue_len
	__skb_queue_head_init
	skb_queue_splice
	skb_queue_splice_init
	skb_queue_splice_tail
	skb_queue_splice_tail_init
	__skb_queue_after
	__skb_fill_page_desc
	skb_fill_page_desc
	skb_headroom
	skb_tailroom
	skb_availroom
	skb_reserve
	pskb_trim_unique
	skb_orphan
	skb_orphan_frags
	netdev_alloc_skb
	__dev_alloc_pages
	__dev_alloc_page
	skb_propagate_pfmemalloc
	skb_frag_page
	__skb_frag_ref
	skb_frag_ref
	__skb_frag_unref
	skb_frag_unref
	skb_frag_address
	skb_frag_address_safe
	__skb_frag_set_page
	skb_frag_set_page
	skb_frag_dma_map
	skb_clone_writable
	skb_cow
	skb_cow_head
	skb_padto
	skb_put_padto
	skb_linearize
	skb_has_shared_frag
	skb_linearize_cow
	skb_postpull_rcsum
	pskb_trim_rcsum
	skb_needs_linearize
	skb_get_timestamp
	skb_tx_timestamp
	skb_checksum_complete
	skb_checksum_none_assert
	skb_head_is_locked
	skb_gso_network_seglen
	struct sock_common
	struct sock
	sk_nulls_for_each_entry_offset
	unlock_sock_fast
	sk_wmem_alloc_get
	sk_rmem_alloc_get
	sk_has_allocations
	wq_has_sleeper
	sock_poll_wait
	sk_page_frag
	sock_tx_timestamp
	sk_eat_skb
	sockfd_lookup
	sock_release
	kernel_recvmsg
	sock_register
	sock_unregister
	__alloc_skb
	netdev_alloc_frag
	__netdev_alloc_skb
	__napi_alloc_skb
	__kfree_skb
	kfree_skb
	skb_tx_error
	consume_skb
	skb_morph
	skb_copy_ubufs
	skb_clone
	skb_copy
	__pskb_copy_fclone
	pskb_expand_head
	skb_copy_expand
	skb_pad
	pskb_put
	skb_put
	skb_push
	skb_pull
	skb_trim
	__pskb_pull_tail
	skb_copy_bits
	skb_store_bits
	skb_zerocopy
	skb_dequeue
	skb_dequeue_tail
	skb_queue_purge
	skb_queue_head
	skb_queue_tail
	skb_unlink
	skb_append
	skb_insert
	skb_split
	skb_prepare_seq_read
	skb_seq_read
	skb_abort_seq_read
	skb_find_text
	skb_append_datato_frags
	skb_pull_rcsum
	skb_segment
	skb_cow_data
	skb_clone_sk
	skb_partial_csum_set
	skb_checksum_setup
	skb_try_coalesce
	skb_scrub_packet
	skb_gso_transport_seglen
	alloc_skb_with_frags
	sk_ns_capable
	sk_capable
	sk_net_capable
	sk_set_memalloc
	sk_alloc
	sk_clone_lock
	skb_page_frag_refill
	sk_wait_data
	__sk_mem_schedule
	__sk_mem_reclaim
	lock_sock_fast
	__skb_recv_datagram
	skb_kill_datagram
	skb_copy_datagram_iter
	skb_copy_datagram_from_iter
	zerocopy_sg_from_iter
	skb_copy_and_csum_datagram_msg
	datagram_poll
	sk_stream_write_space
	sk_stream_wait_connect
	sk_stream_wait_memory

	Socket Filter
	sk_filter
	bpf_check_classic
	bpf_prog_create
	sk_attach_filter

	Generic Network Statistics
	struct gnet_stats_basic
	struct gnet_stats_rate_est
	struct gnet_stats_rate_est64
	struct gnet_stats_queue
	struct gnet_estimator
	gnet_stats_start_copy_compat
	gnet_stats_start_copy
	gnet_stats_copy_basic
	gnet_stats_copy_rate_est
	gnet_stats_copy_queue
	gnet_stats_copy_app
	gnet_stats_finish_copy
	gen_new_estimator
	gen_kill_estimator
	gen_replace_estimator
	gen_estimator_active

	SUN RPC subsystem
	xdr_encode_opaque_fixed
	xdr_encode_opaque
	xdr_terminate_string
	_copy_from_pages
	xdr_stream_pos
	xdr_init_encode
	xdr_commit_encode
	xdr_reserve_space
	xdr_truncate_encode
	xdr_restrict_buflen
	xdr_write_pages
	xdr_init_decode
	xdr_init_decode_pages
	xdr_set_scratch_buffer
	xdr_inline_decode
	xdr_read_pages
	xdr_enter_page
	xdr_buf_subsegment
	xdr_buf_trim
	svc_print_addr
	svc_reserve
	svc_find_xprt
	svc_xprt_names
	xprt_register_transport
	xprt_unregister_transport
	xprt_load_transport
	xprt_reserve_xprt
	xprt_release_xprt
	xprt_release_xprt_cong
	xprt_release_rqst_cong
	xprt_adjust_cwnd
	xprt_wake_pending_tasks
	xprt_wait_for_buffer_space
	xprt_write_space
	xprt_set_retrans_timeout_def
	xprt_set_retrans_timeout_rtt
	xprt_disconnect_done
	xprt_lookup_rqst
	xprt_complete_rqst
	rpc_wake_up
	rpc_wake_up_status
	rpc_malloc
	rpc_free
	xdr_skb_read_bits
	xdr_partial_copy_from_skb
	csum_partial_copy_to_xdr
	rpc_alloc_iostats
	rpc_free_iostats
	rpc_count_iostats_metrics
	rpc_count_iostats
	rpc_queue_upcall
	rpc_mkpipe_dentry
	rpc_unlink
	rpc_init_pipe_dir_head
	rpc_init_pipe_dir_object
	rpc_add_pipe_dir_object
	rpc_remove_pipe_dir_object
	rpc_find_or_alloc_pipe_dir_object
	rpcb_getport_async
	rpc_create
	rpc_clone_client
	rpc_clone_client_set_auth
	rpc_switch_client_transport
	rpc_bind_new_program
	rpc_run_task
	rpc_call_sync
	rpc_call_async
	rpc_peeraddr
	rpc_peeraddr2str
	rpc_localaddr
	rpc_protocol
	rpc_net_ns
	rpc_max_payload
	rpc_get_timeout
	rpc_force_rebind

	WiMAX
	wimax_msg_alloc
	wimax_msg_data_len
	wimax_msg_data
	wimax_msg_len
	wimax_msg_send
	wimax_msg
	wimax_reset
	wimax_report_rfkill_hw
	wimax_report_rfkill_sw
	wimax_rfkill
	wimax_state_change
	wimax_state_get
	wimax_dev_init
	wimax_dev_add
	wimax_dev_rm
	struct wimax_dev
	enum wimax_st

	Chapter 2. Network device support
	Driver Support
	dev_add_pack
	__dev_remove_pack
	dev_remove_pack
	dev_add_offload
	dev_remove_offload
	netdev_boot_setup_check
	dev_get_iflink
	__dev_get_by_name
	dev_get_by_name_rcu
	dev_get_by_name
	__dev_get_by_index
	dev_get_by_index_rcu
	dev_get_by_index
	dev_getbyhwaddr_rcu
	__dev_get_by_flags
	dev_valid_name
	dev_alloc_name
	netdev_features_change
	netdev_state_change
	netdev_notify_peers
	dev_open
	dev_close
	dev_disable_lro
	register_netdevice_notifier
	unregister_netdevice_notifier
	call_netdevice_notifiers
	dev_forward_skb
	netif_set_real_num_rx_queues
	netif_get_num_default_rss_queues
	netif_wake_subqueue
	netif_device_detach
	netif_device_attach
	skb_mac_gso_segment
	__skb_gso_segment
	dev_loopback_xmit
	rps_may_expire_flow
	netif_rx
	netdev_rx_handler_register
	netdev_rx_handler_unregister
	netif_receive_skb_sk
	__napi_schedule
	__napi_schedule_irqoff
	netdev_has_upper_dev
	netdev_master_upper_dev_get
	netdev_upper_get_next_dev_rcu
	netdev_all_upper_get_next_dev_rcu
	netdev_lower_get_next_private
	netdev_lower_get_next_private_rcu
	netdev_lower_get_next
	netdev_lower_get_first_private_rcu
	netdev_master_upper_dev_get_rcu
	netdev_upper_dev_link
	netdev_master_upper_dev_link
	netdev_upper_dev_unlink
	netdev_bonding_info_change
	dev_set_promiscuity
	dev_set_allmulti
	dev_get_flags
	dev_change_flags
	dev_set_mtu
	dev_set_group
	dev_set_mac_address
	dev_change_carrier
	dev_get_phys_port_id
	dev_get_phys_port_name
	netdev_update_features
	netdev_change_features
	netif_stacked_transfer_operstate
	register_netdevice
	init_dummy_netdev
	register_netdev
	dev_get_stats
	alloc_netdev_mqs
	free_netdev
	synchronize_net
	unregister_netdevice_queue
	unregister_netdevice_many
	unregister_netdev
	dev_change_net_namespace
	netdev_increment_features
	eth_header
	eth_get_headlen
	eth_type_trans
	eth_header_parse
	eth_header_cache
	eth_header_cache_update
	eth_prepare_mac_addr_change
	eth_commit_mac_addr_change
	eth_mac_addr
	eth_change_mtu
	ether_setup
	alloc_etherdev_mqs
	netif_carrier_on
	netif_carrier_off
	is_link_local_ether_addr
	is_zero_ether_addr
	is_multicast_ether_addr
	is_local_ether_addr
	is_broadcast_ether_addr
	is_unicast_ether_addr
	is_valid_ether_addr
	eth_random_addr
	eth_broadcast_addr
	eth_zero_addr
	eth_hw_addr_random
	ether_addr_copy
	eth_hw_addr_inherit
	ether_addr_equal
	ether_addr_equal_64bits
	ether_addr_equal_unaligned
	is_etherdev_addr
	compare_ether_header
	eth_skb_pad
	napi_schedule_prep
	napi_schedule
	napi_schedule_irqoff
	napi_complete
	napi_enable
	napi_synchronize
	enum netdev_priv_flags
	struct net_device
	netdev_priv
	netif_start_queue
	netif_wake_queue
	netif_stop_queue
	netif_queue_stopped
	netdev_txq_bql_enqueue_prefetchw
	netdev_txq_bql_complete_prefetchw
	netdev_sent_queue
	netdev_completed_queue
	netdev_reset_queue
	netdev_cap_txqueue
	netif_running
	netif_start_subqueue
	netif_stop_subqueue
	__netif_subqueue_stopped
	netif_is_multiqueue
	dev_put
	dev_hold
	netif_carrier_ok
	netif_dormant_on
	netif_dormant_off
	netif_dormant
	netif_oper_up
	netif_device_present
	netif_tx_lock
	__dev_uc_sync
	__dev_uc_unsync
	__dev_mc_sync
	__dev_mc_unsync

	PHY Support
	phy_print_status
	phy_ethtool_sset
	phy_mii_ioctl
	phy_start_aneg
	phy_start_interrupts
	phy_stop_interrupts
	phy_stop
	phy_start
	phy_read_mmd_indirect
	phy_write_mmd_indirect
	phy_init_eee
	phy_get_eee_err
	phy_ethtool_get_eee
	phy_ethtool_set_eee
	phy_clear_interrupt
	phy_config_interrupt
	phy_aneg_done
	phy_find_setting
	phy_find_valid
	phy_check_valid
	phy_sanitize_settings
	phy_start_machine
	phy_stop_machine
	phy_error
	phy_interrupt
	phy_enable_interrupts
	phy_disable_interrupts
	phy_change
	phy_state_machine
	phy_register_fixup
	get_phy_device
	phy_device_register
	phy_find_first
	phy_connect_direct
	phy_connect
	phy_disconnect
	phy_attach_direct
	phy_attach
	phy_detach
	genphy_setup_forced
	genphy_restart_aneg
	genphy_config_aneg
	genphy_aneg_done
	genphy_update_link
	genphy_read_status
	genphy_soft_reset
	phy_driver_register
	get_phy_c45_ids
	get_phy_id
	phy_prepare_link
	phy_poll_reset
	genphy_config_advert
	phy_probe
	mdiobus_alloc_size
	devm_mdiobus_alloc_size
	devm_mdiobus_free
	of_mdio_find_bus
	mdiobus_register
	mdiobus_free
	mdiobus_read
	mdiobus_write
	mdiobus_release
	mdio_bus_match

