
Linux Device Drivers

Linux Device Drivers
This documentation is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

For more details see the file COPYING in the source distribution of Linux.

iii

Table of Contents
1. Driver Basics .. 1

Driver Entry and Exit points ... 1
Atomic and pointer manipulation ... 3
Delaying, scheduling, and timer routines ... 17
Wait queues and Wake events ... 71
High-resolution timers .. 103
Workqueues and Kevents .. 123
Internal Functions .. 140
Kernel objects manipulation .. 174
Kernel utility functions ... 187
Device Resource Management ... 243

2. Device drivers infrastructure .. 267
The Basic Device Driver-Model Structures ... 267
Device Drivers Base ... 278
Device Drivers DMA Management ... 380
Device Drivers Power Management .. 432
Device Drivers ACPI Support .. 438
Device drivers PnP support ... 447
Userspace IO devices ... 459

3. Parallel Port Devices .. 466
parport_yield ... 467
parport_yield_blocking .. 468
parport_wait_event ... 469
parport_wait_peripheral ... 470
parport_negotiate ... 471
parport_write ... 472
parport_read .. 473
parport_set_timeout .. 474
parport_register_driver .. 475
parport_unregister_driver ... 476
parport_get_port .. 477
parport_put_port .. 478
parport_register_port ... 479
parport_announce_port .. 480
parport_remove_port ... 481
parport_register_device ... 482
parport_unregister_device .. 484
parport_find_number .. 485
parport_find_base ... 486
parport_claim .. 487
parport_claim_or_block ... 488
parport_release .. 489
parport_open ... 490
parport_close ... 491

4. Message-based devices .. 492
Fusion message devices .. 492

5. Sound Devices ... 611
snd_printk ... 612
snd_printd ... 613
snd_BUG .. 614
snd_printd_ratelimit .. 615

Linux Device Drivers

iv

snd_BUG_ON ... 616
snd_printdd ... 617
register_sound_special_device .. 618
register_sound_mixer .. 619
register_sound_midi ... 620
register_sound_dsp ... 621
unregister_sound_special ... 622
unregister_sound_mixer .. 623
unregister_sound_midi .. 624
unregister_sound_dsp .. 625
snd_pcm_stream_linked .. 626
snd_pcm_stream_lock_irqsave .. 627
snd_pcm_group_for_each_entry .. 628
snd_pcm_running ... 629
bytes_to_samples ... 630
bytes_to_frames ... 631
samples_to_bytes ... 632
frames_to_bytes ... 633
frame_aligned .. 634
snd_pcm_lib_buffer_bytes ... 635
snd_pcm_lib_period_bytes ... 636
snd_pcm_playback_avail ... 637
snd_pcm_capture_avail ... 638
snd_pcm_playback_hw_avail ... 639
snd_pcm_capture_hw_avail ... 640
snd_pcm_playback_ready .. 641
snd_pcm_capture_ready .. 642
snd_pcm_playback_data .. 643
snd_pcm_playback_empty ... 644
snd_pcm_capture_empty ... 645
snd_pcm_trigger_done .. 646
params_channels .. 647
params_rate ... 648
params_period_size .. 649
params_periods .. 650
params_buffer_size ... 651
params_buffer_bytes ... 652
snd_pcm_format_cpu_endian ... 653
snd_pcm_set_runtime_buffer .. 654
snd_pcm_gettime ... 655
snd_pcm_lib_alloc_vmalloc_buffer ... 656
snd_pcm_lib_alloc_vmalloc_32_buffer .. 657
snd_pcm_sgbuf_get_addr .. 658
snd_pcm_sgbuf_get_ptr ... 659
snd_pcm_sgbuf_get_chunk_size ... 660
snd_pcm_mmap_data_open ... 661
snd_pcm_mmap_data_close ... 662
snd_pcm_limit_isa_dma_size ... 663
snd_pcm_stream_str ... 664
snd_pcm_chmap_substream ... 665
pcm_format_to_bits .. 666
snd_pcm_format_name ... 667
snd_pcm_new_stream ... 668
snd_pcm_new .. 669

Linux Device Drivers

v

snd_pcm_new_internal .. 670
snd_pcm_notify ... 671
snd_device_new ... 672
snd_device_disconnect .. 673
snd_device_free ... 674
snd_device_register .. 675
snd_iprintf .. 676
snd_info_get_line ... 677
snd_info_get_str .. 678
snd_info_create_module_entry ... 679
snd_info_create_card_entry .. 680
snd_card_proc_new .. 681
snd_info_free_entry .. 682
snd_info_register .. 683
snd_rawmidi_receive .. 684
snd_rawmidi_transmit_empty ... 685
__snd_rawmidi_transmit_peek .. 686
snd_rawmidi_transmit_peek ... 687
__snd_rawmidi_transmit_ack ... 688
snd_rawmidi_transmit_ack ... 689
snd_rawmidi_transmit ... 690
snd_rawmidi_new .. 691
snd_rawmidi_set_ops .. 692
snd_request_card .. 693
snd_lookup_minor_data .. 694
snd_register_device .. 695
snd_unregister_device ... 696
copy_to_user_fromio .. 697
copy_from_user_toio .. 698
snd_pcm_lib_preallocate_free_for_all .. 699
snd_pcm_lib_preallocate_pages .. 700
snd_pcm_lib_preallocate_pages_for_all .. 701
snd_pcm_sgbuf_ops_page ... 702
snd_pcm_lib_malloc_pages .. 703
snd_pcm_lib_free_pages .. 704
snd_pcm_lib_free_vmalloc_buffer ... 705
snd_pcm_lib_get_vmalloc_page .. 706
snd_device_initialize ... 707
snd_card_new .. 708
snd_card_disconnect ... 709
snd_card_free_when_closed ... 710
snd_card_free .. 711
snd_card_set_id ... 712
snd_card_add_dev_attr .. 713
snd_card_register ... 714
snd_component_add ... 715
snd_card_file_add .. 716
snd_card_file_remove ... 717
snd_power_wait ... 718
snd_dma_program .. 719
snd_dma_disable .. 720
snd_dma_pointer .. 721
snd_ctl_notify .. 722
snd_ctl_new1 .. 723

Linux Device Drivers

vi

snd_ctl_free_one .. 724
snd_ctl_add ... 725
snd_ctl_replace .. 726
snd_ctl_remove .. 727
snd_ctl_remove_id ... 728
snd_ctl_activate_id ... 729
snd_ctl_rename_id ... 730
snd_ctl_find_numid .. 731
snd_ctl_find_id .. 732
snd_ctl_register_ioctl .. 733
snd_ctl_register_ioctl_compat .. 734
snd_ctl_unregister_ioctl ... 735
snd_ctl_unregister_ioctl_compat ... 736
snd_ctl_boolean_mono_info ... 737
snd_ctl_boolean_stereo_info .. 738
snd_ctl_enum_info ... 739
snd_pcm_set_ops ... 740
snd_pcm_set_sync .. 741
snd_interval_refine ... 742
snd_interval_ratnum ... 743
snd_interval_list ... 744
snd_interval_ranges .. 745
snd_pcm_hw_rule_add .. 746
snd_pcm_hw_constraint_mask64 .. 747
snd_pcm_hw_constraint_integer ... 748
snd_pcm_hw_constraint_minmax .. 749
snd_pcm_hw_constraint_list ... 750
snd_pcm_hw_constraint_ranges .. 751
snd_pcm_hw_constraint_ratnums .. 752
snd_pcm_hw_constraint_ratdens ... 753
snd_pcm_hw_constraint_msbits .. 754
snd_pcm_hw_constraint_step ... 755
snd_pcm_hw_constraint_pow2 ... 756
snd_pcm_hw_rule_noresample ... 757
snd_pcm_hw_param_value .. 758
snd_pcm_hw_param_first .. 759
snd_pcm_hw_param_last ... 760
snd_pcm_lib_ioctl .. 761
snd_pcm_period_elapsed ... 762
snd_pcm_add_chmap_ctls ... 763
snd_hwdep_new .. 764
snd_pcm_stream_lock ... 765
snd_pcm_stream_unlock .. 766
snd_pcm_stream_lock_irq ... 767
snd_pcm_stream_unlock_irq .. 768
snd_pcm_stream_unlock_irqrestore ... 769
snd_pcm_stop .. 770
snd_pcm_stop_xrun .. 771
snd_pcm_suspend .. 772
snd_pcm_suspend_all ... 773
snd_pcm_lib_default_mmap ... 774
snd_pcm_lib_mmap_iomem ... 775
snd_malloc_pages .. 776
snd_free_pages .. 777

Linux Device Drivers

vii

snd_dma_alloc_pages ... 778
snd_dma_alloc_pages_fallback ... 779
snd_dma_free_pages ... 780

6. 16x50 UART Driver ... 781
uart_update_timeout ... 782
uart_get_baud_rate ... 783
uart_get_divisor ... 784
uart_console_write ... 785
uart_parse_earlycon .. 786
uart_parse_options ... 787
uart_set_options ... 788
uart_register_driver .. 789
uart_unregister_driver ... 790
uart_add_one_port .. 791
uart_remove_one_port .. 792
uart_handle_dcd_change .. 793
uart_handle_cts_change ... 794
uart_insert_char ... 795
serial8250_get_port .. 796
serial8250_suspend_port .. 797
serial8250_resume_port ... 798
serial8250_register_8250_port .. 799
serial8250_unregister_port ... 800

7. Frame Buffer Library .. 801
Frame Buffer Memory .. 801
Frame Buffer Colormap .. 804
Frame Buffer Video Mode Database ... 809
Frame Buffer Macintosh Video Mode Database .. 821
Frame Buffer Fonts .. 824

8. Input Subsystem ... 825
Input core ... 825
Multitouch Library ... 866
Polled input devices ... 878
Matrix keyboars/keypads ... 884
Sparse keymap support ... 887

9. Serial Peripheral Interface (SPI) .. 895
struct spi_device .. 896
struct spi_driver ... 898
spi_unregister_driver .. 899
module_spi_driver .. 900
struct spi_master .. 901
struct spi_transfer ... 905
struct spi_message ... 907
spi_message_init_with_transfers ... 908
spi_write .. 909
spi_read .. 910
spi_sync_transfer ... 911
spi_w8r8 .. 912
spi_w8r16 ... 913
spi_w8r16be .. 914
struct spi_board_info .. 915
spi_register_board_info ... 916
spi_register_driver .. 917
spi_alloc_device .. 918

Linux Device Drivers

viii

spi_add_device .. 919
spi_new_device ... 920
spi_finalize_current_transfer .. 921
spi_get_next_queued_message .. 922
spi_finalize_current_message ... 923
spi_alloc_master .. 924
spi_register_master ... 925
devm_spi_register_master .. 926
spi_unregister_master ... 927
spi_busnum_to_master .. 928
spi_setup .. 929
spi_async .. 930
spi_async_locked ... 931
spi_sync ... 932
spi_sync_locked ... 933
spi_bus_lock ... 934
spi_bus_unlock .. 935
spi_write_then_read .. 936

10. I2C and SMBus Subsystem .. 937
struct i2c_driver ... 938
struct i2c_client ... 940
struct i2c_board_info .. 941
I2C_BOARD_INFO ... 942
struct i2c_algorithm .. 943
struct i2c_bus_recovery_info .. 944
struct i2c_adapter_quirks ... 945
module_i2c_driver ... 946
i2c_register_board_info ... 947
i2c_verify_client .. 948
i2c_lock_adapter .. 949
i2c_unlock_adapter ... 950
i2c_new_device ... 951
i2c_unregister_device ... 952
i2c_new_dummy .. 953
i2c_verify_adapter .. 954
i2c_add_adapter ... 955
i2c_add_numbered_adapter .. 956
i2c_del_adapter .. 957
i2c_del_driver ... 958
i2c_use_client .. 959
i2c_release_client ... 960
__i2c_transfer .. 961
i2c_transfer ... 962
i2c_master_send .. 963
i2c_master_recv ... 964
i2c_smbus_read_byte .. 965
i2c_smbus_write_byte ... 966
i2c_smbus_read_byte_data ... 967
i2c_smbus_write_byte_data ... 968
i2c_smbus_read_word_data ... 969
i2c_smbus_write_word_data .. 970
i2c_smbus_read_block_data ... 971
i2c_smbus_write_block_data .. 972
i2c_smbus_xfer .. 973

Linux Device Drivers

ix

11. High Speed Synchronous Serial Interface (HSI) ... 974
struct hsi_channel .. 975
struct hsi_config .. 976
struct hsi_board_info .. 977
struct hsi_client ... 978
struct hsi_client_driver .. 979
struct hsi_msg ... 980
struct hsi_port ... 981
struct hsi_controller .. 982
hsi_id ... 983
hsi_port_id .. 984
hsi_setup .. 985
hsi_flush ... 986
hsi_async_read .. 987
hsi_async_write ... 988
hsi_start_tx ... 989
hsi_stop_tx ... 990
hsi_port_unregister_clients ... 991
hsi_unregister_controller ... 992
hsi_register_controller ... 993
hsi_register_client_driver ... 994
hsi_put_controller .. 995
hsi_alloc_controller .. 996
hsi_free_msg ... 997
hsi_alloc_msg .. 998
hsi_async .. 999
hsi_claim_port ... 1000
hsi_release_port ... 1001
hsi_register_port_event .. 1002
hsi_unregister_port_event .. 1003
hsi_event .. 1004
hsi_get_channel_id_by_name ... 1005

1

Chapter 1. Driver Basics
Driver Entry and Exit points

Driver Basics

2

Name
module_init — driver initialization entry point

Synopsis

module_init (x);

Arguments

x function to be run at kernel boot time or module insertion

Description

module_init will either be called during do_initcalls (if builtin) or at module insertion time (if
a module). There can only be one per module.

Driver Basics

3

Name
module_exit — driver exit entry point

Synopsis

module_exit (x);

Arguments

x function to be run when driver is removed

Description

module_exit will wrap the driver clean-up code with cleanup_module when used with rmmod
when the driver is a module. If the driver is statically compiled into the kernel, module_exit has no
effect. There can only be one per module.

Atomic and pointer manipulation

Driver Basics

4

Name
atomic_read — read atomic variable

Synopsis

int atomic_read (const atomic_t * v);

Arguments

v pointer of type atomic_t

Description

Atomically reads the value of v.

Driver Basics

5

Name
atomic_set — set atomic variable

Synopsis

void atomic_set (atomic_t * v, int i);

Arguments

v pointer of type atomic_t

i required value

Description

Atomically sets the value of v to i.

Driver Basics

6

Name
atomic_add — add integer to atomic variable

Synopsis

void atomic_add (int i, atomic_t * v);

Arguments

i integer value to add

v pointer of type atomic_t

Description

Atomically adds i to v.

Driver Basics

7

Name
atomic_sub — subtract integer from atomic variable

Synopsis

void atomic_sub (int i, atomic_t * v);

Arguments

i integer value to subtract

v pointer of type atomic_t

Description

Atomically subtracts i from v.

Driver Basics

8

Name
atomic_sub_and_test — subtract value from variable and test result

Synopsis

int atomic_sub_and_test (int i, atomic_t * v);

Arguments

i integer value to subtract

v pointer of type atomic_t

Description

Atomically subtracts i from v and returns true if the result is zero, or false for all other cases.

Driver Basics

9

Name
atomic_inc — increment atomic variable

Synopsis

void atomic_inc (atomic_t * v);

Arguments

v pointer of type atomic_t

Description

Atomically increments v by 1.

Driver Basics

10

Name
atomic_dec — decrement atomic variable

Synopsis

void atomic_dec (atomic_t * v);

Arguments

v pointer of type atomic_t

Description

Atomically decrements v by 1.

Driver Basics

11

Name
atomic_dec_and_test — decrement and test

Synopsis

int atomic_dec_and_test (atomic_t * v);

Arguments

v pointer of type atomic_t

Description

Atomically decrements v by 1 and returns true if the result is 0, or false for all other cases.

Driver Basics

12

Name
atomic_inc_and_test — increment and test

Synopsis

int atomic_inc_and_test (atomic_t * v);

Arguments

v pointer of type atomic_t

Description

Atomically increments v by 1 and returns true if the result is zero, or false for all other cases.

Driver Basics

13

Name
atomic_add_negative — add and test if negative

Synopsis

int atomic_add_negative (int i, atomic_t * v);

Arguments

i integer value to add

v pointer of type atomic_t

Description

Atomically adds i to v and returns true if the result is negative, or false when result is greater than or
equal to zero.

Driver Basics

14

Name
atomic_add_return — add integer and return

Synopsis

int atomic_add_return (int i, atomic_t * v);

Arguments

i integer value to add

v pointer of type atomic_t

Description

Atomically adds i to v and returns i + v

Driver Basics

15

Name
atomic_sub_return — subtract integer and return

Synopsis

int atomic_sub_return (int i, atomic_t * v);

Arguments

i integer value to subtract

v pointer of type atomic_t

Description

Atomically subtracts i from v and returns v - i

Driver Basics

16

Name
__atomic_add_unless — add unless the number is already a given value

Synopsis

int __atomic_add_unless (atomic_t * v, int a, int u);

Arguments

v pointer of type atomic_t

a the amount to add to v...

u ...unless v is equal to u.

Description

Atomically adds a to v, so long as v was not already u. Returns the old value of v.

Driver Basics

17

Name
atomic_inc_short — increment of a short integer

Synopsis

short int atomic_inc_short (short int * v);

Arguments

v pointer to type int

Description

Atomically adds 1 to v Returns the new value of u

Delaying, scheduling, and timer routines

Driver Basics

18

Name
struct cputime — snaphsot of system and user cputime

Synopsis

struct cputime {
 cputime_t utime;
 cputime_t stime;
};

Members

utime time spent in user mode

stime time spent in system mode

Description

Gathers a generic snapshot of user and system time.

Driver Basics

19

Name
struct task_cputime — collected CPU time counts

Synopsis

struct task_cputime {
 cputime_t utime;
 cputime_t stime;
 unsigned long long sum_exec_runtime;
};

Members

utime time spent in user mode, in cputime_t units

stime time spent in kernel mode, in cputime_t units

sum_exec_runtime total time spent on the CPU, in nanoseconds

Description

This is an extension of struct cputime that includes the total runtime spent by the task from the scheduler
point of view.

As a result, this structure groups together three kinds of CPU time that are tracked for threads and thread
groups. Most things considering CPU time want to group these counts together and treat all three of them
in parallel.

Driver Basics

20

Name
struct thread_group_cputimer — thread group interval timer counts

Synopsis

struct thread_group_cputimer {
 struct task_cputime cputime;
 int running;
 raw_spinlock_t lock;
};

Members

cputime thread group interval timers.

running non-zero when there are timers running and cputime receives updates.

lock lock for fields in this struct.

Description

This structure contains the version of task_cputime, above, that is used for thread group CPU timer cal-
culations.

Driver Basics

21

Name
pid_alive — check that a task structure is not stale

Synopsis

int pid_alive (const struct task_struct * p);

Arguments

p Task structure to be checked.

Description

Test if a process is not yet dead (at most zombie state) If pid_alive fails, then pointers within the task
structure can be stale and must not be dereferenced.

Return

1 if the process is alive. 0 otherwise.

Driver Basics

22

Name
is_global_init — check if a task structure is init

Synopsis

int is_global_init (struct task_struct * tsk);

Arguments

tsk Task structure to be checked.

Description

Check if a task structure is the first user space task the kernel created.

Return

1 if the task structure is init. 0 otherwise.

Driver Basics

23

Name
task_nice — return the nice value of a given task.

Synopsis

int task_nice (const struct task_struct * p);

Arguments

p the task in question.

Return

The nice value [-20 ... 0 ... 19].

Driver Basics

24

Name
is_idle_task — is the specified task an idle task?

Synopsis

bool is_idle_task (const struct task_struct * p);

Arguments

p the task in question.

Return

1 if p is an idle task. 0 otherwise.

Driver Basics

25

Name
threadgroup_lock — lock threadgroup

Synopsis

void threadgroup_lock (struct task_struct * tsk);

Arguments

tsk member task of the threadgroup to lock

Description

Lock the threadgroup tsk belongs to. No new task is allowed to enter and member tasks aren't allowed
to exit (as indicated by PF_EXITING) or change ->group_leader/pid. This is useful for cases where the
threadgroup needs to stay stable across blockable operations.

fork and exit paths explicitly call threadgroup_change_{begin|end}() for synchronization. While held, no
new task will be added to threadgroup and no existing live task will have its PF_EXITING set.

de_thread does threadgroup_change_{begin|end}() when a non-leader sub-thread becomes a new
leader.

Driver Basics

26

Name
threadgroup_unlock — unlock threadgroup

Synopsis

void threadgroup_unlock (struct task_struct * tsk);

Arguments

tsk member task of the threadgroup to unlock

Description

Reverse threadgroup_lock.

Driver Basics

27

Name
wake_up_process — Wake up a specific process

Synopsis

int wake_up_process (struct task_struct * p);

Arguments

p The process to be woken up.

Description

Attempt to wake up the nominated process and move it to the set of runnable processes.

Return

1 if the process was woken up, 0 if it was already running.

It may be assumed that this function implies a write memory barrier before changing the task state if and
only if any tasks are woken up.

Driver Basics

28

Name
preempt_notifier_register — tell me when current is being preempted & rescheduled

Synopsis

void preempt_notifier_register (struct preempt_notifier * notifier);

Arguments

notifier notifier struct to register

Driver Basics

29

Name
preempt_notifier_unregister — no longer interested in preemption notifications

Synopsis

void preempt_notifier_unregister (struct preempt_notifier * notifier);

Arguments

notifier notifier struct to unregister

Description

This is safe to call from within a preemption notifier.

Driver Basics

30

Name
preempt_schedule_context — preempt_schedule called by tracing

Synopsis

__visible void __sched notrace preempt_schedule_context (void);

Arguments

void no arguments

Description

The tracing infrastructure uses preempt_enable_notrace to prevent recursion and tracing preempt enabling
caused by the tracing infrastructure itself. But as tracing can happen in areas coming from userspace or
just about to enter userspace, a preempt enable can occur before user_exit is called. This will cause
the scheduler to be called when the system is still in usermode.

To prevent this, the preempt_enable_notrace will use this function instead of preempt_schedule to
exit user context if needed before calling the scheduler.

Driver Basics

31

Name
sched_setscheduler — change the scheduling policy and/or RT priority of a thread.

Synopsis

int sched_setscheduler (struct task_struct * p, int policy, const struct
sched_param * param);

Arguments

p the task in question.

policy new policy.

param structure containing the new RT priority.

Return

0 on success. An error code otherwise.

NOTE that the task may be already dead.

Driver Basics

32

Name
yield — yield the current processor to other threads.

Synopsis

void __sched yield (void);

Arguments

void no arguments

Description

Do not ever use this function, there's a 99% chance you're doing it wrong.

The scheduler is at all times free to pick the calling task as the most eligible task to run, if removing the
yield call from your code breaks it, its already broken.

Typical broken usage is

while (!event) yield;

where one assumes that yield will let 'the other' process run that will make event true. If the current task
is a SCHED_FIFO task that will never happen. Never use yield as a progress guarantee!!

If you want to use yield to wait for something, use wait_event. If you want to use yield to be 'nice'
for others, use cond_resched. If you still want to use yield, do not!

Driver Basics

33

Name
yield_to — yield the current processor to another thread in your thread group, or accelerate that thread
toward the processor it's on.

Synopsis

int __sched yield_to (struct task_struct * p, bool preempt);

Arguments

p target task

preempt whether task preemption is allowed or not

Description

It's the caller's job to ensure that the target task struct can't go away on us before we can do any checks.

Return

true (>0) if we indeed boosted the target task. false (0) if we failed to boost the target. -ESRCH if there's
no task to yield to.

Driver Basics

34

Name
cpupri_find — find the best (lowest-pri) CPU in the system

Synopsis

int cpupri_find (struct cpupri * cp, struct task_struct * p, struct
cpumask * lowest_mask);

Arguments

cp The cpupri context

p The task

lowest_mask A mask to fill in with selected CPUs (or NULL)

Note

This function returns the recommended CPUs as calculated during the current invocation. By the time the
call returns, the CPUs may have in fact changed priorities any number of times. While not ideal, it is not
an issue of correctness since the normal rebalancer logic will correct any discrepancies created by racing
against the uncertainty of the current priority configuration.

Return

(int)bool - CPUs were found

Driver Basics

35

Name
cpupri_set — update the cpu priority setting

Synopsis

void cpupri_set (struct cpupri * cp, int cpu, int newpri);

Arguments

cp The cpupri context

cpu The target cpu

newpri The priority (INVALID-RT99) to assign to this CPU

Note

Assumes cpu_rq(cpu)->lock is locked

Returns

(void)

Driver Basics

36

Name
cpupri_init — initialize the cpupri structure

Synopsis

int cpupri_init (struct cpupri * cp);

Arguments

cp The cpupri context

Return

-ENOMEM on memory allocation failure.

Driver Basics

37

Name
cpupri_cleanup — clean up the cpupri structure

Synopsis

void cpupri_cleanup (struct cpupri * cp);

Arguments

cp The cpupri context

Driver Basics

38

Name
get_sd_load_idx — Obtain the load index for a given sched domain.

Synopsis

int get_sd_load_idx (struct sched_domain * sd, enum cpu_idle_type idle);

Arguments

sd The sched_domain whose load_idx is to be obtained.

idle The idle status of the CPU for whose sd load_idx is obtained.

Return

The load index.

Driver Basics

39

Name
update_sg_lb_stats — Update sched_group's statistics for load balancing.

Synopsis

void update_sg_lb_stats (struct lb_env * env, struct sched_group *
group, int load_idx, int local_group, struct sg_lb_stats * sgs, bool
* overload);

Arguments

env The load balancing environment.

group sched_group whose statistics are to be updated.

load_idx Load index of sched_domain of this_cpu for load calc.

local_group Does group contain this_cpu.

sgs variable to hold the statistics for this group.

overload Indicate more than one runnable task for any CPU.

Driver Basics

40

Name
update_sd_pick_busiest — return 1 on busiest group

Synopsis

bool update_sd_pick_busiest (struct lb_env * env, struct sd_lb_stats *
sds, struct sched_group * sg, struct sg_lb_stats * sgs);

Arguments

env The load balancing environment.

sds sched_domain statistics

sg sched_group candidate to be checked for being the busiest

sgs sched_group statistics

Description

Determine if sg is a busier group than the previously selected busiest group.

Return

true if sg is a busier group than the previously selected busiest group. false otherwise.

Driver Basics

41

Name
update_sd_lb_stats — Update sched_domain's statistics for load balancing.

Synopsis

void update_sd_lb_stats (struct lb_env * env, struct sd_lb_stats * sds);

Arguments

env The load balancing environment.

sds variable to hold the statistics for this sched_domain.

Driver Basics

42

Name
check_asym_packing — Check to see if the group is packed into the sched doman.

Synopsis

int check_asym_packing (struct lb_env * env, struct sd_lb_stats * sds);

Arguments

env The load balancing environment.

sds Statistics of the sched_domain which is to be packed

Description

This is primarily intended to used at the sibling level. Some cores like POWER7 prefer to use lower
numbered SMT threads. In the case of POWER7, it can move to lower SMT modes only when higher
threads are idle. When in lower SMT modes, the threads will perform better since they share less core
resources. Hence when we have idle threads, we want them to be the higher ones.

This packing function is run on idle threads. It checks to see if the busiest CPU in this domain (core in the
P7 case) has a higher CPU number than the packing function is being run on. Here we are assuming lower
CPU number will be equivalent to lower a SMT thread number.

Return

1 when packing is required and a task should be moved to this CPU. The amount of the imbalance is
returned in *imbalance.

Driver Basics

43

Name
fix_small_imbalance — Calculate the minor imbalance that exists amongst the groups of a sched_domain,
during load balancing.

Synopsis

void fix_small_imbalance (struct lb_env * env, struct sd_lb_stats *
sds);

Arguments

env The load balancing environment.

sds Statistics of the sched_domain whose imbalance is to be calculated.

Driver Basics

44

Name
calculate_imbalance — Calculate the amount of imbalance present within the groups of a given
sched_domain during load balance.

Synopsis

void calculate_imbalance (struct lb_env * env, struct sd_lb_stats *
sds);

Arguments

env load balance environment

sds statistics of the sched_domain whose imbalance is to be calculated.

Driver Basics

45

Name
find_busiest_group — Returns the busiest group within the sched_domain if there is an imbalance. If there
isn't an imbalance, and the user has opted for power-savings, it returns a group whose CPUs can be put to
idle by rebalancing those tasks elsewhere, if such a group exists.

Synopsis

struct sched_group * find_busiest_group (struct lb_env * env);

Arguments

env The load balancing environment.

Description

Also calculates the amount of weighted load which should be moved to restore balance.

Return

- The busiest group if imbalance exists. - If no imbalance and user has opted for power-savings balance,
return the least loaded group whose CPUs can be put to idle by rebalancing its tasks onto our group.

Driver Basics

46

Name
DECLARE_COMPLETION — declare and initialize a completion structure

Synopsis

DECLARE_COMPLETION (work);

Arguments

work identifier for the completion structure

Description

This macro declares and initializes a completion structure. Generally used for static declarations. You
should use the _ONSTACK variant for automatic variables.

Driver Basics

47

Name
DECLARE_COMPLETION_ONSTACK — declare and initialize a completion structure

Synopsis

DECLARE_COMPLETION_ONSTACK (work);

Arguments

work identifier for the completion structure

Description

This macro declares and initializes a completion structure on the kernel stack.

Driver Basics

48

Name
init_completion — Initialize a dynamically allocated completion

Synopsis

void init_completion (struct completion * x);

Arguments

x pointer to completion structure that is to be initialized

Description

This inline function will initialize a dynamically created completion structure.

Driver Basics

49

Name
reinit_completion — reinitialize a completion structure

Synopsis

void reinit_completion (struct completion * x);

Arguments

x pointer to completion structure that is to be reinitialized

Description

This inline function should be used to reinitialize a completion structure so it can be reused. This is espe-
cially important after complete_all is used.

Driver Basics

50

Name
__round_jiffies — function to round jiffies to a full second

Synopsis

unsigned long __round_jiffies (unsigned long j, int cpu);

Arguments

j the time in (absolute) jiffies that should be rounded

cpu the processor number on which the timeout will happen

Description

__round_jiffies rounds an absolute time in the future (in jiffies) up or down to (approximately) full
seconds. This is useful for timers for which the exact time they fire does not matter too much, as long as
they fire approximately every X seconds.

By rounding these timers to whole seconds, all such timers will fire at the same time, rather than at various
times spread out. The goal of this is to have the CPU wake up less, which saves power.

The exact rounding is skewed for each processor to avoid all processors firing at the exact same time,
which could lead to lock contention or spurious cache line bouncing.

The return value is the rounded version of the j parameter.

Driver Basics

51

Name
__round_jiffies_relative — function to round jiffies to a full second

Synopsis

unsigned long __round_jiffies_relative (unsigned long j, int cpu);

Arguments

j the time in (relative) jiffies that should be rounded

cpu the processor number on which the timeout will happen

Description

__round_jiffies_relative rounds a time delta in the future (in jiffies) up or down to (approxi-
mately) full seconds. This is useful for timers for which the exact time they fire does not matter too much,
as long as they fire approximately every X seconds.

By rounding these timers to whole seconds, all such timers will fire at the same time, rather than at various
times spread out. The goal of this is to have the CPU wake up less, which saves power.

The exact rounding is skewed for each processor to avoid all processors firing at the exact same time,
which could lead to lock contention or spurious cache line bouncing.

The return value is the rounded version of the j parameter.

Driver Basics

52

Name
round_jiffies — function to round jiffies to a full second

Synopsis

unsigned long round_jiffies (unsigned long j);

Arguments

j the time in (absolute) jiffies that should be rounded

Description

round_jiffies rounds an absolute time in the future (in jiffies) up or down to (approximately) full
seconds. This is useful for timers for which the exact time they fire does not matter too much, as long as
they fire approximately every X seconds.

By rounding these timers to whole seconds, all such timers will fire at the same time, rather than at various
times spread out. The goal of this is to have the CPU wake up less, which saves power.

The return value is the rounded version of the j parameter.

Driver Basics

53

Name
round_jiffies_relative — function to round jiffies to a full second

Synopsis

unsigned long round_jiffies_relative (unsigned long j);

Arguments

j the time in (relative) jiffies that should be rounded

Description

round_jiffies_relative rounds a time delta in the future (in jiffies) up or down to (approximately)
full seconds. This is useful for timers for which the exact time they fire does not matter too much, as long
as they fire approximately every X seconds.

By rounding these timers to whole seconds, all such timers will fire at the same time, rather than at various
times spread out. The goal of this is to have the CPU wake up less, which saves power.

The return value is the rounded version of the j parameter.

Driver Basics

54

Name
__round_jiffies_up — function to round jiffies up to a full second

Synopsis

unsigned long __round_jiffies_up (unsigned long j, int cpu);

Arguments

j the time in (absolute) jiffies that should be rounded

cpu the processor number on which the timeout will happen

Description

This is the same as __round_jiffies except that it will never round down. This is useful for timeouts
for which the exact time of firing does not matter too much, as long as they don't fire too early.

Driver Basics

55

Name
__round_jiffies_up_relative — function to round jiffies up to a full second

Synopsis

unsigned long __round_jiffies_up_relative (unsigned long j, int cpu);

Arguments

j the time in (relative) jiffies that should be rounded

cpu the processor number on which the timeout will happen

Description

This is the same as __round_jiffies_relative except that it will never round down. This is useful
for timeouts for which the exact time of firing does not matter too much, as long as they don't fire too early.

Driver Basics

56

Name
round_jiffies_up — function to round jiffies up to a full second

Synopsis

unsigned long round_jiffies_up (unsigned long j);

Arguments

j the time in (absolute) jiffies that should be rounded

Description

This is the same as round_jiffies except that it will never round down. This is useful for timeouts
for which the exact time of firing does not matter too much, as long as they don't fire too early.

Driver Basics

57

Name
round_jiffies_up_relative — function to round jiffies up to a full second

Synopsis

unsigned long round_jiffies_up_relative (unsigned long j);

Arguments

j the time in (relative) jiffies that should be rounded

Description

This is the same as round_jiffies_relative except that it will never round down. This is useful
for timeouts for which the exact time of firing does not matter too much, as long as they don't fire too early.

Driver Basics

58

Name
set_timer_slack — set the allowed slack for a timer

Synopsis

void set_timer_slack (struct timer_list * timer, int slack_hz);

Arguments

timer the timer to be modified

slack_hz the amount of time (in jiffies) allowed for rounding

Description

Set the amount of time, in jiffies, that a certain timer has in terms of slack. By setting this value, the timer
subsystem will schedule the actual timer somewhere between the time mod_timer asks for, and that
time plus the slack.

By setting the slack to -1, a percentage of the delay is used instead.

Driver Basics

59

Name
init_timer_key — initialize a timer

Synopsis

void init_timer_key (struct timer_list * timer, unsigned int flags,
const char * name, struct lock_class_key * key);

Arguments

timer the timer to be initialized

flags timer flags

name name of the timer

key lockdep class key of the fake lock used for tracking timer sync lock dependencies

Description

init_timer_key must be done to a timer prior calling *any* of the other timer functions.

Driver Basics

60

Name
mod_timer_pending — modify a pending timer's timeout

Synopsis

int mod_timer_pending (struct timer_list * timer, unsigned long ex-
pires);

Arguments

timer the pending timer to be modified

expires new timeout in jiffies

Description

mod_timer_pending is the same for pending timers as mod_timer, but will not re-activate and
modify already deleted timers.

It is useful for unserialized use of timers.

Driver Basics

61

Name
mod_timer — modify a timer's timeout

Synopsis

int mod_timer (struct timer_list * timer, unsigned long expires);

Arguments

timer the timer to be modified

expires new timeout in jiffies

Description

mod_timer is a more efficient way to update the expire field of an active timer (if the timer is inactive
it will be activated)

mod_timer(timer, expires) is equivalent to:

del_timer(timer); timer->expires = expires; add_timer(timer);

Note that if there are multiple unserialized concurrent users of the same timer, then mod_timer is the
only safe way to modify the timeout, since add_timer cannot modify an already running timer.

The function returns whether it has modified a pending timer or not. (ie. mod_timer of an inactive timer
returns 0, mod_timer of an active timer returns 1.)

Driver Basics

62

Name
mod_timer_pinned — modify a timer's timeout

Synopsis

int mod_timer_pinned (struct timer_list * timer, unsigned long expires);

Arguments

timer the timer to be modified

expires new timeout in jiffies

Description

mod_timer_pinned is a way to update the expire field of an active timer (if the timer is inactive it will
be activated) and to ensure that the timer is scheduled on the current CPU.

Note that this does not prevent the timer from being migrated when the current CPU goes offline. If this
is a problem for you, use CPU-hotplug notifiers to handle it correctly, for example, cancelling the timer
when the corresponding CPU goes offline.

mod_timer_pinned(timer, expires) is equivalent to:

del_timer(timer); timer->expires = expires; add_timer(timer);

Driver Basics

63

Name
add_timer — start a timer

Synopsis

void add_timer (struct timer_list * timer);

Arguments

timer the timer to be added

Description

The kernel will do a ->function(->data) callback from the timer interrupt at the ->expires point in the
future. The current time is 'jiffies'.

The timer's ->expires, ->function (and if the handler uses it, ->data) fields must be set prior calling this
function.

Timers with an ->expires field in the past will be executed in the next timer tick.

Driver Basics

64

Name
add_timer_on — start a timer on a particular CPU

Synopsis

void add_timer_on (struct timer_list * timer, int cpu);

Arguments

timer the timer to be added

cpu the CPU to start it on

Description

This is not very scalable on SMP. Double adds are not possible.

Driver Basics

65

Name
del_timer — deactive a timer.

Synopsis

int del_timer (struct timer_list * timer);

Arguments

timer the timer to be deactivated

Description

del_timer deactivates a timer - this works on both active and inactive timers.

The function returns whether it has deactivated a pending timer or not. (ie. del_timer of an inactive
timer returns 0, del_timer of an active timer returns 1.)

Driver Basics

66

Name
try_to_del_timer_sync — Try to deactivate a timer

Synopsis

int try_to_del_timer_sync (struct timer_list * timer);

Arguments

timer timer do del

Description

This function tries to deactivate a timer. Upon successful (ret >= 0) exit the timer is not queued and the
handler is not running on any CPU.

Driver Basics

67

Name
del_timer_sync — deactivate a timer and wait for the handler to finish.

Synopsis

int del_timer_sync (struct timer_list * timer);

Arguments

timer the timer to be deactivated

Description

This function only differs from del_timer on SMP: besides deactivating the timer it also makes sure
the handler has finished executing on other CPUs.

Synchronization rules

Callers must prevent restarting of the timer, otherwise this function is meaningless. It must not be called
from interrupt contexts unless the timer is an irqsafe one. The caller must not hold locks which would
prevent completion of the timer's handler. The timer's handler must not call add_timer_on. Upon exit
the timer is not queued and the handler is not running on any CPU.

Note

For !irqsafe timers, you must not hold locks that are held in interrupt context while calling this function.
Even if the lock has nothing to do with the timer in question. Here's why:

CPU0 CPU1 ---- ---- <SOFTIRQ> call_timer_fn; base->running_timer = mytimer;
spin_lock_irq(somelock); <IRQ> spin_lock(somelock); del_timer_sync(mytimer); while (base-
>running_timer == mytimer);

Now del_timer_sync will never return and never release somelock. The interrupt on the other CPU
is waiting to grab somelock but it has interrupted the softirq that CPU0 is waiting to finish.

The function returns whether it has deactivated a pending timer or not.

Driver Basics

68

Name
schedule_timeout — sleep until timeout

Synopsis

signed long __sched schedule_timeout (signed long timeout);

Arguments

timeout timeout value in jiffies

Description

Make the current task sleep until timeout jiffies have elapsed. The routine will return immediately unless
the current task state has been set (see set_current_state).

You can set the task state as follows -

TASK_UNINTERRUPTIBLE - at least timeout jiffies are guaranteed to pass before the routine returns.
The routine will return 0

TASK_INTERRUPTIBLE - the routine may return early if a signal is delivered to the current task. In this
case the remaining time in jiffies will be returned, or 0 if the timer expired in time

The current task state is guaranteed to be TASK_RUNNING when this routine returns.

Specifying a timeout value of MAX_SCHEDULE_TIMEOUT will schedule the CPU away without a
bound on the timeout. In this case the return value will be MAX_SCHEDULE_TIMEOUT.

In all cases the return value is guaranteed to be non-negative.

Driver Basics

69

Name
msleep — sleep safely even with waitqueue interruptions

Synopsis

void msleep (unsigned int msecs);

Arguments

msecs Time in milliseconds to sleep for

Driver Basics

70

Name
msleep_interruptible — sleep waiting for signals

Synopsis

unsigned long msleep_interruptible (unsigned int msecs);

Arguments

msecs Time in milliseconds to sleep for

Driver Basics

71

Name
usleep_range — Drop in replacement for udelay where wakeup is flexible

Synopsis

void usleep_range (unsigned long min, unsigned long max);

Arguments

min Minimum time in usecs to sleep

max Maximum time in usecs to sleep

Wait queues and Wake events

Driver Basics

72

Name
wait_event — sleep until a condition gets true

Synopsis

wait_event (wq, condition);

Arguments

wq the waitqueue to wait on

condition a C expression for the event to wait for

Description

The process is put to sleep (TASK_UNINTERRUPTIBLE) until the condition evaluates to true. The
condition is checked each time the waitqueue wq is woken up.

wake_up has to be called after changing any variable that could change the result of the wait condition.

Driver Basics

73

Name
wait_event_freezable — sleep (or freeze) until a condition gets true

Synopsis

wait_event_freezable (wq, condition);

Arguments

wq the waitqueue to wait on

condition a C expression for the event to wait for

Description

The process is put to sleep (TASK_INTERRUPTIBLE -- so as not to contribute to system load) until the
condition evaluates to true. The condition is checked each time the waitqueue wq is woken up.

wake_up has to be called after changing any variable that could change the result of the wait condition.

Driver Basics

74

Name
wait_event_timeout — sleep until a condition gets true or a timeout elapses

Synopsis

wait_event_timeout (wq, condition, timeout);

Arguments

wq the waitqueue to wait on

condition a C expression for the event to wait for

timeout timeout, in jiffies

Description

The process is put to sleep (TASK_UNINTERRUPTIBLE) until the condition evaluates to true. The
condition is checked each time the waitqueue wq is woken up.

wake_up has to be called after changing any variable that could change the result of the wait condition.

Returns

0 if the condition evaluated to false after the timeout elapsed, 1 if the condition evaluated
to true after the timeout elapsed, or the remaining jiffies (at least 1) if the condition evaluated to
true before the timeout elapsed.

Driver Basics

75

Name
wait_event_cmd — sleep until a condition gets true

Synopsis

wait_event_cmd (wq, condition, cmd1, cmd2);

Arguments

wq the waitqueue to wait on

condition a C expression for the event to wait for

cmd1 the command will be executed before sleep

cmd2 the command will be executed after sleep

Description

The process is put to sleep (TASK_UNINTERRUPTIBLE) until the condition evaluates to true. The
condition is checked each time the waitqueue wq is woken up.

wake_up has to be called after changing any variable that could change the result of the wait condition.

Driver Basics

76

Name
wait_event_interruptible — sleep until a condition gets true

Synopsis

wait_event_interruptible (wq, condition);

Arguments

wq the waitqueue to wait on

condition a C expression for the event to wait for

Description

The process is put to sleep (TASK_INTERRUPTIBLE) until the condition evaluates to true or a signal
is received. The condition is checked each time the waitqueue wq is woken up.

wake_up has to be called after changing any variable that could change the result of the wait condition.

The function will return -ERESTARTSYS if it was interrupted by a signal and 0 if condition evaluated
to true.

Driver Basics

77

Name
wait_event_interruptible_timeout — sleep until a condition gets true or a timeout elapses

Synopsis

wait_event_interruptible_timeout (wq, condition, timeout);

Arguments

wq the waitqueue to wait on

condition a C expression for the event to wait for

timeout timeout, in jiffies

Description

The process is put to sleep (TASK_INTERRUPTIBLE) until the condition evaluates to true or a signal
is received. The condition is checked each time the waitqueue wq is woken up.

wake_up has to be called after changing any variable that could change the result of the wait condition.

Returns

0 if the condition evaluated to false after the timeout elapsed, 1 if the condition evaluated to
true after the timeout elapsed, the remaining jiffies (at least 1) if the condition evaluated to true
before the timeout elapsed, or -ERESTARTSYS if it was interrupted by a signal.

Driver Basics

78

Name
wait_event_hrtimeout — sleep until a condition gets true or a timeout elapses

Synopsis

wait_event_hrtimeout (wq, condition, timeout);

Arguments

wq the waitqueue to wait on

condition a C expression for the event to wait for

timeout timeout, as a ktime_t

Description

The process is put to sleep (TASK_UNINTERRUPTIBLE) until the condition evaluates to true or a
signal is received. The condition is checked each time the waitqueue wq is woken up.

wake_up has to be called after changing any variable that could change the result of the wait condition.

The function returns 0 if condition became true, or -ETIME if the timeout elapsed.

Driver Basics

79

Name
wait_event_interruptible_hrtimeout — sleep until a condition gets true or a timeout elapses

Synopsis

wait_event_interruptible_hrtimeout (wq, condition, timeout);

Arguments

wq the waitqueue to wait on

condition a C expression for the event to wait for

timeout timeout, as a ktime_t

Description

The process is put to sleep (TASK_INTERRUPTIBLE) until the condition evaluates to true or a signal
is received. The condition is checked each time the waitqueue wq is woken up.

wake_up has to be called after changing any variable that could change the result of the wait condition.

The function returns 0 if condition became true, -ERESTARTSYS if it was interrupted by a signal,
or -ETIME if the timeout elapsed.

Driver Basics

80

Name
wait_event_interruptible_locked — sleep until a condition gets true

Synopsis

wait_event_interruptible_locked (wq, condition);

Arguments

wq the waitqueue to wait on

condition a C expression for the event to wait for

Description

The process is put to sleep (TASK_INTERRUPTIBLE) until the condition evaluates to true or a signal
is received. The condition is checked each time the waitqueue wq is woken up.

It must be called with wq.lock being held. This spinlock is unlocked while sleeping but condition
testing is done while lock is held and when this macro exits the lock is held.

The lock is locked/unlocked using spin_lock/spin_unlock functions which must match the way
they are locked/unlocked outside of this macro.

wake_up_locked has to be called after changing any variable that could change the result of the wait
condition.

The function will return -ERESTARTSYS if it was interrupted by a signal and 0 if condition evaluated
to true.

Driver Basics

81

Name
wait_event_interruptible_locked_irq — sleep until a condition gets true

Synopsis

wait_event_interruptible_locked_irq (wq, condition);

Arguments

wq the waitqueue to wait on

condition a C expression for the event to wait for

Description

The process is put to sleep (TASK_INTERRUPTIBLE) until the condition evaluates to true or a signal
is received. The condition is checked each time the waitqueue wq is woken up.

It must be called with wq.lock being held. This spinlock is unlocked while sleeping but condition
testing is done while lock is held and when this macro exits the lock is held.

The lock is locked/unlocked using spin_lock_irq/spin_unlock_irq functions which must match
the way they are locked/unlocked outside of this macro.

wake_up_locked has to be called after changing any variable that could change the result of the wait
condition.

The function will return -ERESTARTSYS if it was interrupted by a signal and 0 if condition evaluated
to true.

Driver Basics

82

Name
wait_event_interruptible_exclusive_locked — sleep exclusively until a condition gets true

Synopsis

wait_event_interruptible_exclusive_locked (wq, condition);

Arguments

wq the waitqueue to wait on

condition a C expression for the event to wait for

Description

The process is put to sleep (TASK_INTERRUPTIBLE) until the condition evaluates to true or a signal
is received. The condition is checked each time the waitqueue wq is woken up.

It must be called with wq.lock being held. This spinlock is unlocked while sleeping but condition
testing is done while lock is held and when this macro exits the lock is held.

The lock is locked/unlocked using spin_lock/spin_unlock functions which must match the way
they are locked/unlocked outside of this macro.

The process is put on the wait queue with an WQ_FLAG_EXCLUSIVE flag set thus when other process
waits process on the list if this process is awaken further processes are not considered.

wake_up_locked has to be called after changing any variable that could change the result of the wait
condition.

The function will return -ERESTARTSYS if it was interrupted by a signal and 0 if condition evaluated
to true.

Driver Basics

83

Name
wait_event_interruptible_exclusive_locked_irq — sleep until a condition gets true

Synopsis

wait_event_interruptible_exclusive_locked_irq (wq, condition);

Arguments

wq the waitqueue to wait on

condition a C expression for the event to wait for

Description

The process is put to sleep (TASK_INTERRUPTIBLE) until the condition evaluates to true or a signal
is received. The condition is checked each time the waitqueue wq is woken up.

It must be called with wq.lock being held. This spinlock is unlocked while sleeping but condition
testing is done while lock is held and when this macro exits the lock is held.

The lock is locked/unlocked using spin_lock_irq/spin_unlock_irq functions which must match
the way they are locked/unlocked outside of this macro.

The process is put on the wait queue with an WQ_FLAG_EXCLUSIVE flag set thus when other process
waits process on the list if this process is awaken further processes are not considered.

wake_up_locked has to be called after changing any variable that could change the result of the wait
condition.

The function will return -ERESTARTSYS if it was interrupted by a signal and 0 if condition evaluated
to true.

Driver Basics

84

Name
wait_event_killable — sleep until a condition gets true

Synopsis

wait_event_killable (wq, condition);

Arguments

wq the waitqueue to wait on

condition a C expression for the event to wait for

Description

The process is put to sleep (TASK_KILLABLE) until the condition evaluates to true or a signal is
received. The condition is checked each time the waitqueue wq is woken up.

wake_up has to be called after changing any variable that could change the result of the wait condition.

The function will return -ERESTARTSYS if it was interrupted by a signal and 0 if condition evaluated
to true.

Driver Basics

85

Name
wait_event_lock_irq_cmd — sleep until a condition gets true. The condition is checked under the lock.
This is expected to be called with the lock taken.

Synopsis

wait_event_lock_irq_cmd (wq, condition, lock, cmd);

Arguments

wq the waitqueue to wait on

condition a C expression for the event to wait for

lock a locked spinlock_t, which will be released before cmd and schedule and reacquired
afterwards.

cmd a command which is invoked outside the critical section before sleep

Description

The process is put to sleep (TASK_UNINTERRUPTIBLE) until the condition evaluates to true. The
condition is checked each time the waitqueue wq is woken up.

wake_up has to be called after changing any variable that could change the result of the wait condition.

This is supposed to be called while holding the lock. The lock is dropped before invoking the cmd and
going to sleep and is reacquired afterwards.

Driver Basics

86

Name
wait_event_lock_irq — sleep until a condition gets true. The condition is checked under the lock. This is
expected to be called with the lock taken.

Synopsis

wait_event_lock_irq (wq, condition, lock);

Arguments

wq the waitqueue to wait on

condition a C expression for the event to wait for

lock a locked spinlock_t, which will be released before schedule and reacquired afterwards.

Description

The process is put to sleep (TASK_UNINTERRUPTIBLE) until the condition evaluates to true. The
condition is checked each time the waitqueue wq is woken up.

wake_up has to be called after changing any variable that could change the result of the wait condition.

This is supposed to be called while holding the lock. The lock is dropped before going to sleep and is
reacquired afterwards.

Driver Basics

87

Name
wait_event_interruptible_lock_irq_cmd — sleep until a condition gets true. The condition is checked under
the lock. This is expected to be called with the lock taken.

Synopsis

wait_event_interruptible_lock_irq_cmd (wq, condition, lock, cmd);

Arguments

wq the waitqueue to wait on

condition a C expression for the event to wait for

lock a locked spinlock_t, which will be released before cmd and schedule and reacquired
afterwards.

cmd a command which is invoked outside the critical section before sleep

Description

The process is put to sleep (TASK_INTERRUPTIBLE) until the condition evaluates to true or a signal
is received. The condition is checked each time the waitqueue wq is woken up.

wake_up has to be called after changing any variable that could change the result of the wait condition.

This is supposed to be called while holding the lock. The lock is dropped before invoking the cmd and
going to sleep and is reacquired afterwards.

The macro will return -ERESTARTSYS if it was interrupted by a signal and 0 if condition evaluated
to true.

Driver Basics

88

Name
wait_event_interruptible_lock_irq — sleep until a condition gets true. The condition is checked under the
lock. This is expected to be called with the lock taken.

Synopsis

wait_event_interruptible_lock_irq (wq, condition, lock);

Arguments

wq the waitqueue to wait on

condition a C expression for the event to wait for

lock a locked spinlock_t, which will be released before schedule and reacquired afterwards.

Description

The process is put to sleep (TASK_INTERRUPTIBLE) until the condition evaluates to true or signal
is received. The condition is checked each time the waitqueue wq is woken up.

wake_up has to be called after changing any variable that could change the result of the wait condition.

This is supposed to be called while holding the lock. The lock is dropped before going to sleep and is
reacquired afterwards.

The macro will return -ERESTARTSYS if it was interrupted by a signal and 0 if condition evaluated
to true.

Driver Basics

89

Name
wait_event_interruptible_lock_irq_timeout — sleep until a condition gets true or a timeout elapses. The
condition is checked under the lock. This is expected to be called with the lock taken.

Synopsis

wait_event_interruptible_lock_irq_timeout (wq, condition, lock, time-
out);

Arguments

wq the waitqueue to wait on

condition a C expression for the event to wait for

lock a locked spinlock_t, which will be released before schedule and reacquired afterwards.

timeout timeout, in jiffies

Description

The process is put to sleep (TASK_INTERRUPTIBLE) until the condition evaluates to true or signal
is received. The condition is checked each time the waitqueue wq is woken up.

wake_up has to be called after changing any variable that could change the result of the wait condition.

This is supposed to be called while holding the lock. The lock is dropped before going to sleep and is
reacquired afterwards.

The function returns 0 if the timeout elapsed, -ERESTARTSYS if it was interrupted by a signal, and
the remaining jiffies otherwise if the condition evaluated to true before the timeout elapsed.

Driver Basics

90

Name
wait_on_bit — wait for a bit to be cleared

Synopsis

int wait_on_bit (void * word, int bit, unsigned mode);

Arguments

word the word being waited on, a kernel virtual address

bit the bit of the word being waited on

mode the task state to sleep in

Description

There is a standard hashed waitqueue table for generic use. This is the part of the hashtable's accessor API
that waits on a bit. For instance, if one were to have waiters on a bitflag, one would call wait_on_bit in
threads waiting for the bit to clear. One uses wait_on_bit where one is waiting for the bit to clear, but
has no intention of setting it. Returned value will be zero if the bit was cleared, or non-zero if the process
received a signal and the mode permitted wakeup on that signal.

Driver Basics

91

Name
wait_on_bit_io — wait for a bit to be cleared

Synopsis

int wait_on_bit_io (void * word, int bit, unsigned mode);

Arguments

word the word being waited on, a kernel virtual address

bit the bit of the word being waited on

mode the task state to sleep in

Description

Use the standard hashed waitqueue table to wait for a bit to be cleared. This is similar to wait_on_bit,
but calls io_schedule instead of schedule for the actual waiting.

Returned value will be zero if the bit was cleared, or non-zero if the process received a signal and the
mode permitted wakeup on that signal.

Driver Basics

92

Name
wait_on_bit_timeout — wait for a bit to be cleared or a timeout elapses

Synopsis

int wait_on_bit_timeout (void * word, int bit, unsigned mode, unsigned
long timeout);

Arguments

word the word being waited on, a kernel virtual address

bit the bit of the word being waited on

mode the task state to sleep in

timeout timeout, in jiffies

Description

Use the standard hashed waitqueue table to wait for a bit to be cleared. This is similar to wait_on_bit,
except also takes a timeout parameter.

Returned value will be zero if the bit was cleared before the timeout elapsed, or non-zero if the time-
out elapsed or process received a signal and the mode permitted wakeup on that signal.

Driver Basics

93

Name
wait_on_bit_action — wait for a bit to be cleared

Synopsis

int wait_on_bit_action (void * word, int bit, wait_bit_action_f * action,
unsigned mode);

Arguments

word the word being waited on, a kernel virtual address

bit the bit of the word being waited on

action the function used to sleep, which may take special actions

mode the task state to sleep in

Description

Use the standard hashed waitqueue table to wait for a bit to be cleared, and allow the waiting action to be
specified. This is like wait_on_bit but allows fine control of how the waiting is done.

Returned value will be zero if the bit was cleared, or non-zero if the process received a signal and the
mode permitted wakeup on that signal.

Driver Basics

94

Name
wait_on_bit_lock — wait for a bit to be cleared, when wanting to set it

Synopsis

int wait_on_bit_lock (void * word, int bit, unsigned mode);

Arguments

word the word being waited on, a kernel virtual address

bit the bit of the word being waited on

mode the task state to sleep in

Description

There is a standard hashed waitqueue table for generic use. This is the part of the hashtable's accessor
API that waits on a bit when one intends to set it, for instance, trying to lock bitflags. For instance, if
one were to have waiters trying to set bitflag and waiting for it to clear before setting it, one would call
wait_on_bit in threads waiting to be able to set the bit. One uses wait_on_bit_lock where one
is waiting for the bit to clear with the intention of setting it, and when done, clearing it.

Returns zero if the bit was (eventually) found to be clear and was set. Returns non-zero if a signal was
delivered to the process and the mode allows that signal to wake the process.

Driver Basics

95

Name
wait_on_bit_lock_io — wait for a bit to be cleared, when wanting to set it

Synopsis

int wait_on_bit_lock_io (void * word, int bit, unsigned mode);

Arguments

word the word being waited on, a kernel virtual address

bit the bit of the word being waited on

mode the task state to sleep in

Description

Use the standard hashed waitqueue table to wait for a bit to be cleared and then to atomically set it. This
is similar to wait_on_bit, but calls io_schedule instead of schedule for the actual waiting.

Returns zero if the bit was (eventually) found to be clear and was set. Returns non-zero if a signal was
delivered to the process and the mode allows that signal to wake the process.

Driver Basics

96

Name
wait_on_bit_lock_action — wait for a bit to be cleared, when wanting to set it

Synopsis

int wait_on_bit_lock_action (void * word, int bit, wait_bit_action_f *
action, unsigned mode);

Arguments

word the word being waited on, a kernel virtual address

bit the bit of the word being waited on

action the function used to sleep, which may take special actions

mode the task state to sleep in

Description

Use the standard hashed waitqueue table to wait for a bit to be cleared and then to set it, and allow the
waiting action to be specified. This is like wait_on_bit but allows fine control of how the waiting is
done.

Returns zero if the bit was (eventually) found to be clear and was set. Returns non-zero if a signal was
delivered to the process and the mode allows that signal to wake the process.

Driver Basics

97

Name
wait_on_atomic_t — Wait for an atomic_t to become 0

Synopsis

int wait_on_atomic_t (atomic_t * val, int (*action) (atomic_t *), un-
signed mode);

Arguments

val The atomic value being waited on, a kernel virtual address

action the function used to sleep, which may take special actions

mode the task state to sleep in

Description

Wait for an atomic_t to become 0. We abuse the bit-wait waitqueue table for the purpose of getting a
waitqueue, but we set the key to a bit number outside of the target 'word'.

Driver Basics

98

Name
__wake_up — wake up threads blocked on a waitqueue.

Synopsis

void __wake_up (wait_queue_head_t * q, unsigned int mode, int
nr_exclusive, void * key);

Arguments

q the waitqueue

mode which threads

nr_exclusive how many wake-one or wake-many threads to wake up

key is directly passed to the wakeup function

Description

It may be assumed that this function implies a write memory barrier before changing the task state if and
only if any tasks are woken up.

Driver Basics

99

Name
__wake_up_sync_key — wake up threads blocked on a waitqueue.

Synopsis

void __wake_up_sync_key (wait_queue_head_t * q, unsigned int mode, int
nr_exclusive, void * key);

Arguments

q the waitqueue

mode which threads

nr_exclusive how many wake-one or wake-many threads to wake up

key opaque value to be passed to wakeup targets

Description

The sync wakeup differs that the waker knows that it will schedule away soon, so while the target thread
will be woken up, it will not be migrated to another CPU - ie. the two threads are 'synchronized' with each
other. This can prevent needless bouncing between CPUs.

On UP it can prevent extra preemption.

It may be assumed that this function implies a write memory barrier before changing the task state if and
only if any tasks are woken up.

Driver Basics

100

Name
finish_wait — clean up after waiting in a queue

Synopsis

void finish_wait (wait_queue_head_t * q, wait_queue_t * wait);

Arguments

q waitqueue waited on

wait wait descriptor

Description

Sets current thread back to running state and removes the wait descriptor from the given waitqueue if still
queued.

Driver Basics

101

Name
abort_exclusive_wait — abort exclusive waiting in a queue

Synopsis

void abort_exclusive_wait (wait_queue_head_t * q, wait_queue_t * wait,
unsigned int mode, void * key);

Arguments

q waitqueue waited on

wait wait descriptor

mode runstate of the waiter to be woken

key key to identify a wait bit queue or NULL

Description

Sets current thread back to running state and removes the wait descriptor from the given waitqueue if still
queued.

Wakes up the next waiter if the caller is concurrently woken up through the queue.

This prevents waiter starvation where an exclusive waiter aborts and is woken up concurrently and no one
wakes up the next waiter.

Driver Basics

102

Name
wake_up_bit — wake up a waiter on a bit

Synopsis

void wake_up_bit (void * word, int bit);

Arguments

word the word being waited on, a kernel virtual address

bit the bit of the word being waited on

Description

There is a standard hashed waitqueue table for generic use. This is the part of the hashtable's accessor
API that wakes up waiters on a bit. For instance, if one were to have waiters on a bitflag, one would call
wake_up_bit after clearing the bit.

In order for this to function properly, as it uses waitqueue_active internally, some kind of memory
barrier must be done prior to calling this. Typically, this will be smp_mb__after_atomic, but in some
cases where bitflags are manipulated non-atomically under a lock, one may need to use a less regular
barrier, such fs/inode.c's smp_mb, because spin_unlock does not guarantee a memory barrier.

Driver Basics

103

Name
wake_up_atomic_t — Wake up a waiter on a atomic_t

Synopsis

void wake_up_atomic_t (atomic_t * p);

Arguments

p The atomic_t being waited on, a kernel virtual address

Description

Wake up anyone waiting for the atomic_t to go to zero.

Abuse the bit-waker function and its waitqueue hash table set (the atomic_t check is done by the waiter's
wake function, not the by the waker itself).

High-resolution timers

Driver Basics

104

Name
ktime_set — Set a ktime_t variable from a seconds/nanoseconds value

Synopsis

ktime_t ktime_set (const s64 secs, const unsigned long nsecs);

Arguments

secs seconds to set

nsecs nanoseconds to set

Return

The ktime_t representation of the value.

Driver Basics

105

Name
ktime_equal — Compares two ktime_t variables to see if they are equal

Synopsis

int ktime_equal (const ktime_t cmp1, const ktime_t cmp2);

Arguments

cmp1 comparable1

cmp2 comparable2

Description

Compare two ktime_t variables.

Return

1 if equal.

Driver Basics

106

Name
ktime_compare — Compares two ktime_t variables for less, greater or equal

Synopsis

int ktime_compare (const ktime_t cmp1, const ktime_t cmp2);

Arguments

cmp1 comparable1

cmp2 comparable2

Return

... cmp1 < cmp2: return <0 cmp1 == cmp2: return 0 cmp1 > cmp2: return >0

Driver Basics

107

Name
ktime_after — Compare if a ktime_t value is bigger than another one.

Synopsis

bool ktime_after (const ktime_t cmp1, const ktime_t cmp2);

Arguments

cmp1 comparable1

cmp2 comparable2

Return

true if cmp1 happened after cmp2.

Driver Basics

108

Name
ktime_before — Compare if a ktime_t value is smaller than another one.

Synopsis

bool ktime_before (const ktime_t cmp1, const ktime_t cmp2);

Arguments

cmp1 comparable1

cmp2 comparable2

Return

true if cmp1 happened before cmp2.

Driver Basics

109

Name
ktime_to_timespec_cond — convert a ktime_t variable to timespec format only if the variable contains data

Synopsis

bool ktime_to_timespec_cond (const ktime_t kt, struct timespec * ts);

Arguments

kt the ktime_t variable to convert

ts the timespec variable to store the result in

Return

true if there was a successful conversion, false if kt was 0.

Driver Basics

110

Name
ktime_to_timespec64_cond — convert a ktime_t variable to timespec64 format only if the variable con-
tains data

Synopsis

bool ktime_to_timespec64_cond (const ktime_t kt, struct timespec64 *
ts);

Arguments

kt the ktime_t variable to convert

ts the timespec variable to store the result in

Return

true if there was a successful conversion, false if kt was 0.

Driver Basics

111

Name
struct hrtimer — the basic hrtimer structure

Synopsis

struct hrtimer {
 struct timerqueue_node node;
 ktime_t _softexpires;
 enum hrtimer_restart (* function) (struct hrtimer *);
 struct hrtimer_clock_base * base;
 unsigned long state;
#ifdef CONFIG_TIMER_STATS
 int start_pid;
 void * start_site;
 char start_comm[16];
#endif
};

Members

node timerqueue node, which also manages node.expires, the absolute expiry time in
the hrtimers internal representation. The time is related to the clock on which the
timer is based. Is setup by adding slack to the _softexpires value. For non range
timers identical to _softexpires.

_softexpires the absolute earliest expiry time of the hrtimer. The time which was given as expiry
time when the timer was armed.

function timer expiry callback function

base pointer to the timer base (per cpu and per clock)

state state information (See bit values above)

start_pid timer statistics field to store the pid of the task which started the timer

start_site timer statistics field to store the site where the timer was started

start_comm[16] timer statistics field to store the name of the process which started the timer

Description

The hrtimer structure must be initialized by hrtimer_init

Driver Basics

112

Name
struct hrtimer_sleeper — simple sleeper structure

Synopsis

struct hrtimer_sleeper {
 struct hrtimer timer;
 struct task_struct * task;
};

Members

timer embedded timer structure

task task to wake up

Description

task is set to NULL, when the timer expires.

Driver Basics

113

Name
struct hrtimer_clock_base — the timer base for a specific clock

Synopsis

struct hrtimer_clock_base {
 struct hrtimer_cpu_base * cpu_base;
 int index;
 clockid_t clockid;
 struct timerqueue_head active;
 ktime_t resolution;
 ktime_t (* get_time) (void);
 ktime_t softirq_time;
 ktime_t offset;
};

Members

cpu_base per cpu clock base

index clock type index for per_cpu support when moving a timer to a base on another cpu.

clockid clock id for per_cpu support

active red black tree root node for the active timers

resolution the resolution of the clock, in nanoseconds

get_time function to retrieve the current time of the clock

softirq_time the time when running the hrtimer queue in the softirq

offset offset of this clock to the monotonic base

Driver Basics

114

Name
hrtimer_forward — forward the timer expiry

Synopsis

u64 hrtimer_forward (struct hrtimer * timer, ktime_t now, ktime_t in-
terval);

Arguments

timer hrtimer to forward

now forward past this time

interval the interval to forward

Description

Forward the timer expiry so it will expire in the future. Returns the number of overruns.

Driver Basics

115

Name
hrtimer_start_range_ns — (re)start an hrtimer on the current CPU

Synopsis

int hrtimer_start_range_ns (struct hrtimer * timer, ktime_t tim, un-
signed long delta_ns, const enum hrtimer_mode mode);

Arguments

timer the timer to be added

tim expiry time

delta_ns "slack" range for the timer

mode expiry mode: absolute (HRTIMER_MODE_ABS) or relative (HRTIMER_MODE_REL)

Returns

0 on success 1 when the timer was active

Driver Basics

116

Name
hrtimer_start — (re)start an hrtimer on the current CPU

Synopsis

int hrtimer_start (struct hrtimer * timer, ktime_t tim, const enum
hrtimer_mode mode);

Arguments

timer the timer to be added

tim expiry time

mode expiry mode: absolute (HRTIMER_MODE_ABS) or relative (HRTIMER_MODE_REL)

Returns

0 on success 1 when the timer was active

Driver Basics

117

Name
hrtimer_try_to_cancel — try to deactivate a timer

Synopsis

int hrtimer_try_to_cancel (struct hrtimer * timer);

Arguments

timer hrtimer to stop

Returns

0 when the timer was not active 1 when the timer was active -1 when the timer is currently excuting the
callback function and cannot be stopped

Driver Basics

118

Name
hrtimer_cancel — cancel a timer and wait for the handler to finish.

Synopsis

int hrtimer_cancel (struct hrtimer * timer);

Arguments

timer the timer to be cancelled

Returns

0 when the timer was not active 1 when the timer was active

Driver Basics

119

Name
hrtimer_get_remaining — get remaining time for the timer

Synopsis

ktime_t hrtimer_get_remaining (const struct hrtimer * timer);

Arguments

timer the timer to read

Driver Basics

120

Name
hrtimer_init — initialize a timer to the given clock

Synopsis

void hrtimer_init (struct hrtimer * timer, clockid_t clock_id, enum
hrtimer_mode mode);

Arguments

timer the timer to be initialized

clock_id the clock to be used

mode timer mode abs/rel

Driver Basics

121

Name
hrtimer_get_res — get the timer resolution for a clock

Synopsis

int hrtimer_get_res (const clockid_t which_clock, struct timespec * tp);

Arguments

which_clock which clock to query

tp pointer to timespec variable to store the resolution

Description

Store the resolution of the clock selected by which_clock in the variable pointed to by tp.

Driver Basics

122

Name
schedule_hrtimeout_range — sleep until timeout

Synopsis

int __sched schedule_hrtimeout_range (ktime_t * expires, unsigned long
delta, const enum hrtimer_mode mode);

Arguments

expires timeout value (ktime_t)

delta slack in expires timeout (ktime_t)

mode timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL

Description

Make the current task sleep until the given expiry time has elapsed. The routine will return immediately
unless the current task state has been set (see set_current_state).

The delta argument gives the kernel the freedom to schedule the actual wakeup to a time that is both
power and performance friendly. The kernel give the normal best effort behavior for "expires+delta",
but may decide to fire the timer earlier, but no earlier than expires.

You can set the task state as follows -

TASK_UNINTERRUPTIBLE - at least timeout time is guaranteed to pass before the routine returns.

TASK_INTERRUPTIBLE - the routine may return early if a signal is delivered to the current task.

The current task state is guaranteed to be TASK_RUNNING when this routine returns.

Returns 0 when the timer has expired otherwise -EINTR

Driver Basics

123

Name
schedule_hrtimeout — sleep until timeout

Synopsis

int __sched schedule_hrtimeout (ktime_t * expires, const enum
hrtimer_mode mode);

Arguments

expires timeout value (ktime_t)

mode timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL

Description

Make the current task sleep until the given expiry time has elapsed. The routine will return immediately
unless the current task state has been set (see set_current_state).

You can set the task state as follows -

TASK_UNINTERRUPTIBLE - at least timeout time is guaranteed to pass before the routine returns.

TASK_INTERRUPTIBLE - the routine may return early if a signal is delivered to the current task.

The current task state is guaranteed to be TASK_RUNNING when this routine returns.

Returns 0 when the timer has expired otherwise -EINTR

Workqueues and Kevents

Driver Basics

124

Name
queue_work_on — queue work on specific cpu

Synopsis

bool queue_work_on (int cpu, struct workqueue_struct * wq, struct
work_struct * work);

Arguments

cpu CPU number to execute work on

wq workqueue to use

work work to queue

Description

We queue the work to a specific CPU, the caller must ensure it can't go away.

Return

false if work was already on a queue, true otherwise.

Driver Basics

125

Name
queue_delayed_work_on — queue work on specific CPU after delay

Synopsis

bool queue_delayed_work_on (int cpu, struct workqueue_struct * wq,
struct delayed_work * dwork, unsigned long delay);

Arguments

cpu CPU number to execute work on

wq workqueue to use

dwork work to queue

delay number of jiffies to wait before queueing

Return

false if work was already on a queue, true otherwise. If delay is zero and dwork is idle, it will
be scheduled for immediate execution.

Driver Basics

126

Name
mod_delayed_work_on — modify delay of or queue a delayed work on specific CPU

Synopsis

bool mod_delayed_work_on (int cpu, struct workqueue_struct * wq, struct
delayed_work * dwork, unsigned long delay);

Arguments

cpu CPU number to execute work on

wq workqueue to use

dwork work to queue

delay number of jiffies to wait before queueing

Description

If dwork is idle, equivalent to queue_delayed_work_on; otherwise, modify dwork's timer so that
it expires after delay. If delay is zero, work is guaranteed to be scheduled immediately regardless of
its current state.

Return

false if dwork was idle and queued, true if dwork was pending and its timer was modified.

This function is safe to call from any context including IRQ handler. See try_to_grab_pending for
details.

Driver Basics

127

Name
flush_workqueue — ensure that any scheduled work has run to completion.

Synopsis

void flush_workqueue (struct workqueue_struct * wq);

Arguments

wq workqueue to flush

Description

This function sleeps until all work items which were queued on entry have finished execution, but it is
not livelocked by new incoming ones.

Driver Basics

128

Name
drain_workqueue — drain a workqueue

Synopsis

void drain_workqueue (struct workqueue_struct * wq);

Arguments

wq workqueue to drain

Description

Wait until the workqueue becomes empty. While draining is in progress, only chain queueing is allowed.
IOW, only currently pending or running work items on wq can queue further work items on it. wq is
flushed repeatedly until it becomes empty. The number of flushing is detemined by the depth of chaining
and should be relatively short. Whine if it takes too long.

Driver Basics

129

Name
flush_work — wait for a work to finish executing the last queueing instance

Synopsis

bool flush_work (struct work_struct * work);

Arguments

work the work to flush

Description

Wait until work has finished execution. work is guaranteed to be idle on return if it hasn't been requeued
since flush started.

Return

true if flush_work waited for the work to finish execution, false if it was already idle.

Driver Basics

130

Name
cancel_work_sync — cancel a work and wait for it to finish

Synopsis

bool cancel_work_sync (struct work_struct * work);

Arguments

work the work to cancel

Description

Cancel work and wait for its execution to finish. This function can be used even if the work re-queues itself
or migrates to another workqueue. On return from this function, work is guaranteed to be not pending
or executing on any CPU.

cancel_work_sync(delayed_work->work) must not be used for delayed_work's. Use
cancel_delayed_work_sync instead.

The caller must ensure that the workqueue on which work was last queued can't be destroyed before this
function returns.

Return

true if work was pending, false otherwise.

Driver Basics

131

Name
flush_delayed_work — wait for a dwork to finish executing the last queueing

Synopsis

bool flush_delayed_work (struct delayed_work * dwork);

Arguments

dwork the delayed work to flush

Description

Delayed timer is cancelled and the pending work is queued for immediate execution. Like flush_work,
this function only considers the last queueing instance of dwork.

Return

true if flush_work waited for the work to finish execution, false if it was already idle.

Driver Basics

132

Name
cancel_delayed_work — cancel a delayed work

Synopsis

bool cancel_delayed_work (struct delayed_work * dwork);

Arguments

dwork delayed_work to cancel

Description

Kill off a pending delayed_work.

Return

true if dwork was pending and canceled; false if it wasn't pending.

Note

The work callback function may still be running on return, unless it returns true and the work doesn't
re-arm itself. Explicitly flush or use cancel_delayed_work_sync to wait on it.

This function is safe to call from any context including IRQ handler.

Driver Basics

133

Name
cancel_delayed_work_sync — cancel a delayed work and wait for it to finish

Synopsis

bool cancel_delayed_work_sync (struct delayed_work * dwork);

Arguments

dwork the delayed work cancel

Description

This is cancel_work_sync for delayed works.

Return

true if dwork was pending, false otherwise.

Driver Basics

134

Name
flush_scheduled_work — ensure that any scheduled work has run to completion.

Synopsis

void flush_scheduled_work (void);

Arguments

void no arguments

Description

Forces execution of the kernel-global workqueue and blocks until its completion.

Think twice before calling this function! It's very easy to get into trouble if you don't take great care. Either
of the following situations

will lead to deadlock

One of the work items currently on the workqueue needs to acquire a lock held by your code or its caller.

Your code is running in the context of a work routine.

They will be detected by lockdep when they occur, but the first might not occur very often. It depends on
what work items are on the workqueue and what locks they need, which you have no control over.

In most situations flushing the entire workqueue is overkill; you merely need to know that a particular
work item isn't queued and isn't running. In such cases you should use cancel_delayed_work_sync
or cancel_work_sync instead.

Driver Basics

135

Name
execute_in_process_context — reliably execute the routine with user context

Synopsis

int execute_in_process_context (work_func_t fn, struct execute_work *
ew);

Arguments

fn the function to execute

ew guaranteed storage for the execute work structure (must be available when the work executes)

Description

Executes the function immediately if process context is available, otherwise schedules the function for
delayed execution.

Return

0 - function was executed 1 - function was scheduled for execution

Driver Basics

136

Name
destroy_workqueue — safely terminate a workqueue

Synopsis

void destroy_workqueue (struct workqueue_struct * wq);

Arguments

wq target workqueue

Description

Safely destroy a workqueue. All work currently pending will be done first.

Driver Basics

137

Name
workqueue_set_max_active — adjust max_active of a workqueue

Synopsis

void workqueue_set_max_active (struct workqueue_struct * wq, int
max_active);

Arguments

wq target workqueue

max_active new max_active value.

Description

Set max_active of wq to max_active.

CONTEXT

Don't call from IRQ context.

Driver Basics

138

Name
workqueue_congested — test whether a workqueue is congested

Synopsis

bool workqueue_congested (int cpu, struct workqueue_struct * wq);

Arguments

cpu CPU in question

wq target workqueue

Description

Test whether wq's cpu workqueue for cpu is congested. There is no synchronization around this function
and the test result is unreliable and only useful as advisory hints or for debugging.

If cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. Note that both per-cpu and
unbound workqueues may be associated with multiple pool_workqueues which have separate congested
states. A workqueue being congested on one CPU doesn't mean the workqueue is also contested on other
CPUs / NUMA nodes.

Return

true if congested, false otherwise.

Driver Basics

139

Name
work_busy — test whether a work is currently pending or running

Synopsis

unsigned int work_busy (struct work_struct * work);

Arguments

work the work to be tested

Description

Test whether work is currently pending or running. There is no synchronization around this function and
the test result is unreliable and only useful as advisory hints or for debugging.

Return

OR'd bitmask of WORK_BUSY_* bits.

Driver Basics

140

Name
work_on_cpu — run a function in user context on a particular cpu

Synopsis

long work_on_cpu (int cpu, long (*fn) (void *), void * arg);

Arguments

cpu the cpu to run on

fn the function to run

arg the function arg

Description

It is up to the caller to ensure that the cpu doesn't go offline. The caller must not hold any locks which
would prevent fn from completing.

Return

The value fn returns.

Internal Functions

Driver Basics

141

Name
wait_task_stopped — Wait for TASK_STOPPED or TASK_TRACED

Synopsis

int wait_task_stopped (struct wait_opts * wo, int ptrace, struct
task_struct * p);

Arguments

wo wait options

ptrace is the wait for ptrace

p task to wait for

Description

Handle sys_wait4 work for p in state TASK_STOPPED or TASK_TRACED.

CONTEXT

read_lock(tasklist_lock), which is released if return value is non-zero. Also, grabs and releases p->sig-
hand->siglock.

RETURNS

0 if wait condition didn't exist and search for other wait conditions should continue. Non-zero return, -
errno on failure and p's pid on success, implies that tasklist_lock is released and wait condition search
should terminate.

Driver Basics

142

Name
task_set_jobctl_pending — set jobctl pending bits

Synopsis

bool task_set_jobctl_pending (struct task_struct * task, unsigned int
mask);

Arguments

task target task

mask pending bits to set

Description

Clear mask from task->jobctl. mask must be subset of JOBCTL_PENDING_MASK |
JOBCTL_STOP_CONSUME | JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING. If stop signo is being
set, the existing signo is cleared. If task is already being killed or exiting, this function becomes noop.

CONTEXT

Must be called with task->sighand->siglock held.

RETURNS

true if mask is set, false if made noop because task was dying.

Driver Basics

143

Name
task_clear_jobctl_trapping — clear jobctl trapping bit

Synopsis

void task_clear_jobctl_trapping (struct task_struct * task);

Arguments

task target task

Description

If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. Clear it and wake up the
ptracer. Note that we don't need any further locking. task->siglock guarantees that task->parent points
to the ptracer.

CONTEXT

Must be called with task->sighand->siglock held.

Driver Basics

144

Name
task_clear_jobctl_pending — clear jobctl pending bits

Synopsis

void task_clear_jobctl_pending (struct task_struct * task, unsigned int
mask);

Arguments

task target task

mask pending bits to clear

Description

Clear mask from task->jobctl. mask must be subset of JOBCTL_PENDING_MASK. If
JOBCTL_STOP_PENDING is being cleared, other STOP bits are cleared together.

If clearing of mask leaves no stop or trap pending, this function calls
task_clear_jobctl_trapping.

CONTEXT

Must be called with task->sighand->siglock held.

Driver Basics

145

Name
task_participate_group_stop — participate in a group stop

Synopsis

bool task_participate_group_stop (struct task_struct * task);

Arguments

task task participating in a group stop

Description

task has JOBCTL_STOP_PENDING set and is participating in a group stop. Group stop states are cleared
and the group stop count is consumed if JOBCTL_STOP_CONSUME was set. If the consumption completes
the group stop, the appropriate SIGNAL_* flags are set.

CONTEXT

Must be called with task->sighand->siglock held.

RETURNS

true if group stop completion should be notified to the parent, false otherwise.

Driver Basics

146

Name
ptrace_trap_notify — schedule trap to notify ptracer

Synopsis

void ptrace_trap_notify (struct task_struct * t);

Arguments

t tracee wanting to notify tracer

Description

This function schedules sticky ptrace trap which is cleared on the next TRAP_STOP to notify ptracer of
an event. t must have been seized by ptracer.

If t is running, STOP trap will be taken. If trapped for STOP and ptracer is listening for events, tracee is
woken up so that it can re-trap for the new event. If trapped otherwise, STOP trap will be eventually taken
without returning to userland after the existing traps are finished by PTRACE_CONT.

CONTEXT

Must be called with task->sighand->siglock held.

Driver Basics

147

Name
do_notify_parent_cldstop — notify parent of stopped/continued state change

Synopsis

void do_notify_parent_cldstop (struct task_struct * tsk, bool
for_ptracer, int why);

Arguments

tsk task reporting the state change

for_ptracer the notification is for ptracer

why CLD_{CONTINUED|STOPPED|TRAPPED} to report

Description

Notify tsk's parent that the stopped/continued state has changed. If for_ptracer is false, tsk's
group leader notifies to its real parent. If true, tsk reports to tsk->parent which should be the ptracer.

CONTEXT

Must be called with tasklist_lock at least read locked.

Driver Basics

148

Name
do_signal_stop — handle group stop for SIGSTOP and other stop signals

Synopsis

bool do_signal_stop (int signr);

Arguments

signr signr causing group stop if initiating

Description

If JOBCTL_STOP_PENDING is not set yet, initiate group stop with signr and participate in it. If already
set, participate in the existing group stop. If participated in a group stop (and thus slept), true is returned
with siglock released.

If ptraced, this function doesn't handle stop itself. Instead, JOBCTL_TRAP_STOP is scheduled and
false is returned with siglock untouched. The caller must ensure that INTERRUPT trap handling takes
places afterwards.

CONTEXT

Must be called with current->sighand->siglock held, which is released on true return.

RETURNS

false if group stop is already cancelled or ptrace trap is scheduled. true if participated in group stop.

Driver Basics

149

Name
do_jobctl_trap — take care of ptrace jobctl traps

Synopsis

void do_jobctl_trap (void);

Arguments

void no arguments

Description

When PT_SEIZED, it's used for both group stop and explicit SEIZE/INTERRUPT traps. Both generate
PTRACE_EVENT_STOP trap with accompanying siginfo. If stopped, lower eight bits of exit_code con-
tain the stop signal; otherwise, SIGTRAP.

When !PT_SEIZED, it's used only for group stop trap with stop signal number as exit_code and no siginfo.

CONTEXT

Must be called with current->sighand->siglock held, which may be released and re-acquired before
returning with intervening sleep.

Driver Basics

150

Name
signal_delivered —

Synopsis

void signal_delivered (struct ksignal * ksig, int stepping);

Arguments

ksig kernel signal struct

stepping nonzero if debugger single-step or block-step in use

Description

This function should be called when a signal has successfully been delivered. It updates the blocked
signals accordingly (ksig->ka.sa.sa_mask is always blocked, and the signal itself is blocked unless
SA_NODEFER is set in ksig->ka.sa.sa_flags. Tracing is notified.

Driver Basics

151

Name
sys_restart_syscall — restart a system call

Synopsis

long sys_restart_syscall (void);

Arguments

void no arguments

Driver Basics

152

Name
set_current_blocked — change current->blocked mask

Synopsis

void set_current_blocked (sigset_t * newset);

Arguments

newset new mask

Description

It is wrong to change ->blocked directly, this helper should be used to ensure the process can't miss a
shared signal we are going to block.

Driver Basics

153

Name
sys_rt_sigprocmask — change the list of currently blocked signals

Synopsis

long sys_rt_sigprocmask (int how, sigset_t __user * nset, sigset_t
__user * oset, size_t sigsetsize);

Arguments

how whether to add, remove, or set signals

nset stores pending signals

oset previous value of signal mask if non-null

sigsetsize size of sigset_t type

Driver Basics

154

Name
sys_rt_sigpending — examine a pending signal that has been raised while blocked

Synopsis

long sys_rt_sigpending (sigset_t __user * uset, size_t sigsetsize);

Arguments

uset stores pending signals

sigsetsize size of sigset_t type or larger

Driver Basics

155

Name
do_sigtimedwait — wait for queued signals specified in which

Synopsis

int do_sigtimedwait (const sigset_t * which, siginfo_t * info, const
struct timespec * ts);

Arguments

which queued signals to wait for

info if non-null, the signal's siginfo is returned here

ts upper bound on process time suspension

Driver Basics

156

Name
sys_rt_sigtimedwait — synchronously wait for queued signals specified in uthese

Synopsis

long sys_rt_sigtimedwait (const sigset_t __user * uthese, siginfo_t
__user * uinfo, const struct timespec __user * uts, size_t sigsetsize);

Arguments

uthese queued signals to wait for

uinfo if non-null, the signal's siginfo is returned here

uts upper bound on process time suspension

sigsetsize size of sigset_t type

Driver Basics

157

Name
sys_kill — send a signal to a process

Synopsis

long sys_kill (pid_t pid, int sig);

Arguments

pid the PID of the process

sig signal to be sent

Driver Basics

158

Name
sys_tgkill — send signal to one specific thread

Synopsis

long sys_tgkill (pid_t tgid, pid_t pid, int sig);

Arguments

tgid the thread group ID of the thread

pid the PID of the thread

sig signal to be sent

Description

This syscall also checks the tgid and returns -ESRCH even if the PID exists but it's not belonging to the
target process anymore. This method solves the problem of threads exiting and PIDs getting reused.

Driver Basics

159

Name
sys_tkill — send signal to one specific task

Synopsis

long sys_tkill (pid_t pid, int sig);

Arguments

pid the PID of the task

sig signal to be sent

Description

Send a signal to only one task, even if it's a CLONE_THREAD task.

Driver Basics

160

Name
sys_rt_sigqueueinfo — send signal information to a signal

Synopsis

long sys_rt_sigqueueinfo (pid_t pid, int sig, siginfo_t __user * uinfo);

Arguments

pid the PID of the thread

sig signal to be sent

uinfo signal info to be sent

Driver Basics

161

Name
sys_sigpending — examine pending signals

Synopsis

long sys_sigpending (old_sigset_t __user * set);

Arguments

set where mask of pending signal is returned

Driver Basics

162

Name
sys_sigprocmask — examine and change blocked signals

Synopsis

long sys_sigprocmask (int how, old_sigset_t __user * nset, old_sigset_t
__user * oset);

Arguments

how whether to add, remove, or set signals

nset signals to add or remove (if non-null)

oset previous value of signal mask if non-null

Description

Some platforms have their own version with special arguments; others support only sys_rt_sigprocmask.

Driver Basics

163

Name
sys_rt_sigaction — alter an action taken by a process

Synopsis

long sys_rt_sigaction (int sig, const struct sigaction __user * act,
struct sigaction __user * oact, size_t sigsetsize);

Arguments

sig signal to be sent

act new sigaction

oact used to save the previous sigaction

sigsetsize size of sigset_t type

Driver Basics

164

Name
sys_rt_sigsuspend — replace the signal mask for a value with the unewset value until a signal is received

Synopsis

long sys_rt_sigsuspend (sigset_t __user * unewset, size_t sigsetsize);

Arguments

unewset new signal mask value

sigsetsize size of sigset_t type

Driver Basics

165

Name
kthread_run — create and wake a thread.

Synopsis

kthread_run (threadfn, data, namefmt, ...);

Arguments

threadfn the function to run until signal_pending(current).

data data ptr for threadfn.

namefmt printf-style name for the thread.

... variable arguments

Description

Convenient wrapper for kthread_create followed by wake_up_process. Returns the kthread or
ERR_PTR(-ENOMEM).

Driver Basics

166

Name
kthread_should_stop — should this kthread return now?

Synopsis

bool kthread_should_stop (void);

Arguments

void no arguments

Description

When someone calls kthread_stop on your kthread, it will be woken and this will return true. You
should then return, and your return value will be passed through to kthread_stop.

Driver Basics

167

Name
kthread_freezable_should_stop — should this freezable kthread return now?

Synopsis

bool kthread_freezable_should_stop (bool * was_frozen);

Arguments

was_frozen optional out parameter, indicates whether current was frozen

Description

kthread_should_stop for freezable kthreads, which will enter refrigerator if necessary. This func-
tion is safe from kthread_stop / freezer deadlock and freezable kthreads should use this function in-
stead of calling try_to_freeze directly.

Driver Basics

168

Name
kthread_create_on_node — create a kthread.

Synopsis

struct task_struct * kthread_create_on_node (int (*threadfn) (void *da-
ta), void * data, int node, const char namefmt[], ...);

Arguments

threadfn the function to run until signal_pending(current).

data data ptr for threadfn.

node memory node number.

namefmt[] printf-style name for the thread.

... variable arguments

Description

This helper function creates and names a kernel thread. The thread will be stopped: use
wake_up_process to start it. See also kthread_run.

If thread is going to be bound on a particular cpu, give its node in node, to get NUMA affinity for
kthread stack, or else give -1. When woken, the thread will run @threadfn with data as its argument.
@threadfn can either call do_exit directly if it is a standalone thread for which no one will call
kthread_stop, or return when 'kthread_should_stop' is true (which means kthread_stop
has been called). The return value should be zero or a negative error number; it will be passed to
kthread_stop.

Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR).

Driver Basics

169

Name
kthread_bind — bind a just-created kthread to a cpu.

Synopsis

void kthread_bind (struct task_struct * p, unsigned int cpu);

Arguments

p thread created by kthread_create.

cpu cpu (might not be online, must be possible) for k to run on.

Description

This function is equivalent to set_cpus_allowed, except that cpu doesn't need to be online, and the
thread must be stopped (i.e., just returned from kthread_create).

Driver Basics

170

Name
kthread_stop — stop a thread created by kthread_create.

Synopsis

int kthread_stop (struct task_struct * k);

Arguments

k thread created by kthread_create.

Description

Sets kthread_should_stop for k to return true, wakes it, and waits for it to exit. This can also be
called after kthread_create instead of calling wake_up_process: the thread will exit without
calling threadfn.

If threadfn may call do_exit itself, the caller must ensure task_struct can't go away.

Returns the result of threadfn, or -EINTR if wake_up_process was never called.

Driver Basics

171

Name
kthread_worker_fn — kthread function to process kthread_worker

Synopsis

int kthread_worker_fn (void * worker_ptr);

Arguments

worker_ptr pointer to initialized kthread_worker

Description

This function can be used as threadfn to kthread_create or kthread_run with worker_ptr
argument pointing to an initialized kthread_worker. The started kthread will process work_list until the it
is stopped with kthread_stop. A kthread can also call this function directly after extra initialization.

Different kthreads can be used for the same kthread_worker as long as there's only one kthread attached to
it at any given time. A kthread_worker without an attached kthread simply collects queued kthread_works.

Driver Basics

172

Name
queue_kthread_work — queue a kthread_work

Synopsis

bool queue_kthread_work (struct kthread_worker * worker, struct
kthread_work * work);

Arguments

worker target kthread_worker

work kthread_work to queue

Description

Queue work to work processor task for async execution. task must have been created with
kthread_worker_create. Returns true if work was successfully queued, false if it was already
pending.

Driver Basics

173

Name
flush_kthread_work — flush a kthread_work

Synopsis

void flush_kthread_work (struct kthread_work * work);

Arguments

work work to flush

Description

If work is queued or executing, wait for it to finish execution.

Driver Basics

174

Name
flush_kthread_worker — flush all current works on a kthread_worker

Synopsis

void flush_kthread_worker (struct kthread_worker * worker);

Arguments

worker worker to flush

Description

Wait until all currently executing or pending works on worker are finished.

Kernel objects manipulation

Driver Basics

175

Name
kobject_get_path — generate and return the path associated with a given kobj and kset pair.

Synopsis

char * kobject_get_path (struct kobject * kobj, gfp_t gfp_mask);

Arguments

kobj kobject in question, with which to build the path

gfp_mask the allocation type used to allocate the path

Description

The result must be freed by the caller with kfree.

Driver Basics

176

Name
kobject_set_name — Set the name of a kobject

Synopsis

int kobject_set_name (struct kobject * kobj, const char * fmt, ...);

Arguments

kobj struct kobject to set the name of

fmt format string used to build the name

... variable arguments

Description

This sets the name of the kobject. If you have already added the kobject to the system, you must call
kobject_rename in order to change the name of the kobject.

Driver Basics

177

Name
kobject_init — initialize a kobject structure

Synopsis

void kobject_init (struct kobject * kobj, struct kobj_type * ktype);

Arguments

kobj pointer to the kobject to initialize

ktype pointer to the ktype for this kobject.

Description

This function will properly initialize a kobject such that it can then be passed to the kobject_add call.

After this function is called, the kobject MUST be cleaned up by a call to kobject_put, not by a call
to kfree directly to ensure that all of the memory is cleaned up properly.

Driver Basics

178

Name
kobject_add — the main kobject add function

Synopsis

int kobject_add (struct kobject * kobj, struct kobject * parent, const
char * fmt, ...);

Arguments

kobj the kobject to add

parent pointer to the parent of the kobject.

fmt format to name the kobject with.

... variable arguments

Description

The kobject name is set and added to the kobject hierarchy in this function.

If parent is set, then the parent of the kobj will be set to it. If parent is NULL, then the parent of the
kobj will be set to the kobject associated with the kset assigned to this kobject. If no kset is assigned to
the kobject, then the kobject will be located in the root of the sysfs tree.

If this function returns an error, kobject_put must be called to properly clean up the memory associated
with the object. Under no instance should the kobject that is passed to this function be directly freed with
a call to kfree, that can leak memory.

Note, no “add” uevent will be created with this call, the caller should set up all of the necessary sysfs
files for the object and then call kobject_uevent with the UEVENT_ADD parameter to ensure that
userspace is properly notified of this kobject's creation.

Driver Basics

179

Name
kobject_init_and_add — initialize a kobject structure and add it to the kobject hierarchy

Synopsis

int kobject_init_and_add (struct kobject * kobj, struct kobj_type *
ktype, struct kobject * parent, const char * fmt, ...);

Arguments

kobj pointer to the kobject to initialize

ktype pointer to the ktype for this kobject.

parent pointer to the parent of this kobject.

fmt the name of the kobject.

... variable arguments

Description

This function combines the call to kobject_init and kobject_add. The same type of error handling
after a call to kobject_add and kobject lifetime rules are the same here.

Driver Basics

180

Name
kobject_rename — change the name of an object

Synopsis

int kobject_rename (struct kobject * kobj, const char * new_name);

Arguments

kobj object in question.

new_name object's new name

Description

It is the responsibility of the caller to provide mutual exclusion between two different calls of
kobject_rename on the same kobject and to ensure that new_name is valid and won't conflict with other
kobjects.

Driver Basics

181

Name
kobject_del — unlink kobject from hierarchy.

Synopsis

void kobject_del (struct kobject * kobj);

Arguments

kobj object.

Driver Basics

182

Name
kobject_get — increment refcount for object.

Synopsis

struct kobject * kobject_get (struct kobject * kobj);

Arguments

kobj object.

Driver Basics

183

Name
kobject_put — decrement refcount for object.

Synopsis

void kobject_put (struct kobject * kobj);

Arguments

kobj object.

Description

Decrement the refcount, and if 0, call kobject_cleanup.

Driver Basics

184

Name
kobject_create_and_add — create a struct kobject dynamically and register it with sysfs

Synopsis

struct kobject * kobject_create_and_add (const char * name, struct
kobject * parent);

Arguments

name the name for the kobject

parent the parent kobject of this kobject, if any.

Description

This function creates a kobject structure dynamically and registers it with sysfs. When you are finished
with this structure, call kobject_put and the structure will be dynamically freed when it is no longer
being used.

If the kobject was not able to be created, NULL will be returned.

Driver Basics

185

Name
kset_register — initialize and add a kset.

Synopsis

int kset_register (struct kset * k);

Arguments

k kset.

Driver Basics

186

Name
kset_unregister — remove a kset.

Synopsis

void kset_unregister (struct kset * k);

Arguments

k kset.

Driver Basics

187

Name
kset_create_and_add — create a struct kset dynamically and add it to sysfs

Synopsis

struct kset * kset_create_and_add (const char * name, const struct
kset_uevent_ops * uevent_ops, struct kobject * parent_kobj);

Arguments

name the name for the kset

uevent_ops a struct kset_uevent_ops for the kset

parent_kobj the parent kobject of this kset, if any.

Description

This function creates a kset structure dynamically and registers it with sysfs. When you are finished with
this structure, call kset_unregister and the structure will be dynamically freed when it is no longer
being used.

If the kset was not able to be created, NULL will be returned.

Kernel utility functions

Driver Basics

188

Name
upper_32_bits — return bits 32-63 of a number

Synopsis

upper_32_bits (n);

Arguments

n the number we're accessing

Description

A basic shift-right of a 64- or 32-bit quantity. Use this to suppress the “right shift count >= width of type”
warning when that quantity is 32-bits.

Driver Basics

189

Name
lower_32_bits — return bits 0-31 of a number

Synopsis

lower_32_bits (n);

Arguments

n the number we're accessing

Driver Basics

190

Name
might_sleep — annotation for functions that can sleep

Synopsis

might_sleep (void);

Arguments

None

Description

this macro will print a stack trace if it is executed in an atomic context (spinlock, irq-handler, ...).

This is a useful debugging help to be able to catch problems early and not be bitten later when the calling
function happens to sleep when it is not supposed to.

Driver Basics

191

Name
reciprocal_scale — "scale" a value into range [0, ep_ro)

Synopsis

u32 reciprocal_scale (u32 val, u32 ep_ro);

Arguments

val value

ep_ro right open interval endpoint

Description

Perform a “reciprocal multiplication” in order to “scale” a value into range [0, ep_ro), where the upper
interval endpoint is right-open. This is useful, e.g. for accessing a index of an array containing ep_ro
elements, for example. Think of it as sort of modulus, only that the result isn't that of modulo. ;) Note that
if initial input is a small value, then result will return 0.

Return

a result based on val in interval [0, ep_ro).

Driver Basics

192

Name
kstrtoul — convert a string to an unsigned long

Synopsis

int kstrtoul (const char * s, unsigned int base, unsigned long * res);

Arguments

s The start of the string. The string must be null-terminated, and may also include a single newline
before its terminating null. The first character may also be a plus sign, but not a minus sign.

base The number base to use. The maximum supported base is 16. If base is given as 0, then the base
of the string is automatically detected with the conventional semantics - If it begins with 0x the
number will be parsed as a hexadecimal (case insensitive), if it otherwise begins with 0, it will be
parsed as an octal number. Otherwise it will be parsed as a decimal.

res Where to write the result of the conversion on success.

Description

Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. Used as a replacement for
the obsolete simple_strtoull. Return code must be checked.

Driver Basics

193

Name
kstrtol — convert a string to a long

Synopsis

int kstrtol (const char * s, unsigned int base, long * res);

Arguments

s The start of the string. The string must be null-terminated, and may also include a single newline
before its terminating null. The first character may also be a plus sign or a minus sign.

base The number base to use. The maximum supported base is 16. If base is given as 0, then the base
of the string is automatically detected with the conventional semantics - If it begins with 0x the
number will be parsed as a hexadecimal (case insensitive), if it otherwise begins with 0, it will be
parsed as an octal number. Otherwise it will be parsed as a decimal.

res Where to write the result of the conversion on success.

Description

Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. Used as a replacement for
the obsolete simple_strtoull. Return code must be checked.

Driver Basics

194

Name
trace_printk — printf formatting in the ftrace buffer

Synopsis

trace_printk (fmt, ...);

Arguments

fmt the printf format for printing

... variable arguments

Note

__trace_printk is an internal function for trace_printk and the ip is passed in via the trace_printk macro.

This function allows a kernel developer to debug fast path sections that printk is not appropriate for.
By scattering in various printk like tracing in the code, a developer can quickly see where problems are
occurring.

This is intended as a debugging tool for the developer only. Please refrain from leaving trace_printks
scattered around in your code. (Extra memory is used for special buffers that are allocated when
trace_printk is used)

A little optization trick is done here. If there's only one argument, there's no need to scan the string for
printf formats. The trace_puts will suffice. But how can we take advantage of using trace_puts
when trace_printk has only one argument? By stringifying the args and checking the size we can tell
whether or not there are args. __stringify((__VA_ARGS__)) will turn into “()\0” with a size of 3 when
there are no args, anything else will be bigger. All we need to do is define a string to this, and then take its
size and compare to 3. If it's bigger, use do_trace_printk otherwise, optimize it to trace_puts.
Then just let gcc optimize the rest.

Driver Basics

195

Name
trace_puts — write a string into the ftrace buffer

Synopsis

trace_puts (str);

Arguments

str the string to record

Note

__trace_bputs is an internal function for trace_puts and the ip is passed in via the trace_puts macro.

This is similar to trace_printk but is made for those really fast paths that a developer wants the least
amount of “Heisenbug” affects, where the processing of the print format is still too much.

This function allows a kernel developer to debug fast path sections that printk is not appropriate for.
By scattering in various printk like tracing in the code, a developer can quickly see where problems are
occurring.

This is intended as a debugging tool for the developer only. Please refrain from leaving trace_puts scattered
around in your code. (Extra memory is used for special buffers that are allocated when trace_puts
is used)

Returns

0 if nothing was written, positive # if string was. (1 when __trace_bputs is used, strlen(str) when
__trace_puts is used)

Driver Basics

196

Name
min_not_zero — return the minimum that is _not_ zero, unless both are zero

Synopsis

min_not_zero (x, y);

Arguments

x value1

y value2

Driver Basics

197

Name
clamp — return a value clamped to a given range with strict typechecking

Synopsis

clamp (val, lo, hi);

Arguments

val current value

lo lowest allowable value

hi highest allowable value

Description

This macro does strict typechecking of lo/hi to make sure they are of the same type as val. See the unnec-
essary pointer comparisons.

Driver Basics

198

Name
clamp_t — return a value clamped to a given range using a given type

Synopsis

clamp_t (type, val, lo, hi);

Arguments

type the type of variable to use

val current value

lo minimum allowable value

hi maximum allowable value

Description

This macro does no typechecking and uses temporary variables of type 'type' to make all the comparisons.

Driver Basics

199

Name
clamp_val — return a value clamped to a given range using val's type

Synopsis

clamp_val (val, lo, hi);

Arguments

val current value

lo minimum allowable value

hi maximum allowable value

Description

This macro does no typechecking and uses temporary variables of whatever type the input argument 'val'
is. This is useful when val is an unsigned type and min and max are literals that will otherwise be assigned
a signed integer type.

Driver Basics

200

Name
container_of — cast a member of a structure out to the containing structure

Synopsis

container_of (ptr, type, member);

Arguments

ptr the pointer to the member.

type the type of the container struct this is embedded in.

member the name of the member within the struct.

Driver Basics

201

Name
printk — print a kernel message

Synopsis

__visible int printk (const char * fmt, ...);

Arguments

fmt format string

... variable arguments

Description

This is printk. It can be called from any context. We want it to work.

We try to grab the console_lock. If we succeed, it's easy - we log the output and call the console drivers. If
we fail to get the semaphore, we place the output into the log buffer and return. The current holder of the
console_sem will notice the new output in console_unlock; and will send it to the consoles before
releasing the lock.

One effect of this deferred printing is that code which calls printk and then changes console_loglevel
may break. This is because console_loglevel is inspected when the actual printing occurs.

See also

printf(3)

See the vsnprintf documentation for format string extensions over C99.

Driver Basics

202

Name
console_lock — lock the console system for exclusive use.

Synopsis

void console_lock (void);

Arguments

void no arguments

Description

Acquires a lock which guarantees that the caller has exclusive access to the console system and the
console_drivers list.

Can sleep, returns nothing.

Driver Basics

203

Name
console_trylock — try to lock the console system for exclusive use.

Synopsis

int console_trylock (void);

Arguments

void no arguments

Description

Try to acquire a lock which guarantees that the caller has exclusive access to the console system and the
console_drivers list.

returns 1 on success, and 0 on failure to acquire the lock.

Driver Basics

204

Name
console_unlock — unlock the console system

Synopsis

void console_unlock (void);

Arguments

void no arguments

Description

Releases the console_lock which the caller holds on the console system and the console driver list.

While the console_lock was held, console output may have been buffered by printk. If this is the case,
console_unlock; emits the output prior to releasing the lock.

If there is output waiting, we wake /dev/kmsg and syslog users.

console_unlock; may be called from any context.

Driver Basics

205

Name
console_conditional_schedule — yield the CPU if required

Synopsis

void __sched console_conditional_schedule (void);

Arguments

void no arguments

Description

If the console code is currently allowed to sleep, and if this CPU should yield the CPU to another task,
do so here.

Must be called within console_lock;.

Driver Basics

206

Name
printk_timed_ratelimit — caller-controlled printk ratelimiting

Synopsis

bool printk_timed_ratelimit (unsigned long * caller_jiffies, unsigned
int interval_msecs);

Arguments

caller_jiffies pointer to caller's state

interval_msecs minimum interval between prints

Description

printk_timed_ratelimit returns true if more than interval_msecs milliseconds have elapsed
since the last time printk_timed_ratelimit returned true.

Driver Basics

207

Name
kmsg_dump_register — register a kernel log dumper.

Synopsis

int kmsg_dump_register (struct kmsg_dumper * dumper);

Arguments

dumper pointer to the kmsg_dumper structure

Description

Adds a kernel log dumper to the system. The dump callback in the structure will be called when the kernel
oopses or panics and must be set. Returns zero on success and -EINVAL or -EBUSY otherwise.

Driver Basics

208

Name
kmsg_dump_unregister — unregister a kmsg dumper.

Synopsis

int kmsg_dump_unregister (struct kmsg_dumper * dumper);

Arguments

dumper pointer to the kmsg_dumper structure

Description

Removes a dump device from the system. Returns zero on success and -EINVAL otherwise.

Driver Basics

209

Name
kmsg_dump_get_line — retrieve one kmsg log line

Synopsis

bool kmsg_dump_get_line (struct kmsg_dumper * dumper, bool syslog, char
* line, size_t size, size_t * len);

Arguments

dumper registered kmsg dumper

syslog include the “<4>” prefixes

line buffer to copy the line to

size maximum size of the buffer

len length of line placed into buffer

Description

Start at the beginning of the kmsg buffer, with the oldest kmsg record, and copy one record into the
provided buffer.

Consecutive calls will return the next available record moving towards the end of the buffer with the
youngest messages.

A return value of FALSE indicates that there are no more records to read.

Driver Basics

210

Name
kmsg_dump_get_buffer — copy kmsg log lines

Synopsis

bool kmsg_dump_get_buffer (struct kmsg_dumper * dumper, bool syslog,
char * buf, size_t size, size_t * len);

Arguments

dumper registered kmsg dumper

syslog include the “<4>” prefixes

buf buffer to copy the line to

size maximum size of the buffer

len length of line placed into buffer

Description

Start at the end of the kmsg buffer and fill the provided buffer with as many of the the *youngest* kmsg
records that fit into it. If the buffer is large enough, all available kmsg records will be copied with a single
call.

Consecutive calls will fill the buffer with the next block of available older records, not including the earlier
retrieved ones.

A return value of FALSE indicates that there are no more records to read.

Driver Basics

211

Name
kmsg_dump_rewind — reset the interator

Synopsis

void kmsg_dump_rewind (struct kmsg_dumper * dumper);

Arguments

dumper registered kmsg dumper

Description

Reset the dumper's iterator so that kmsg_dump_get_line and kmsg_dump_get_buffer can be
called again and used multiple times within the same dumper.dump callback.

Driver Basics

212

Name
printk_hash — print a kernel message include a hash over the message

Synopsis

int printk_hash (const char * prefix, const char * fmt, ...);

Arguments

prefix message prefix including the ".06x" for the hash

fmt format string

... variable arguments

Driver Basics

213

Name
printk_dev_hash — print a kernel message include a hash over the message

Synopsis

int printk_dev_hash (const char * prefix, const char * driver_name,
const char * fmt, ...);

Arguments

prefix message prefix including the ".06x" for the hash

driver_name -- undescribed --

fmt format string

... variable arguments

Driver Basics

214

Name
panic — halt the system

Synopsis

void panic (const char * fmt, ...);

Arguments

fmt The text string to print

... variable arguments

Description

Display a message, then perform cleanups.

This function never returns.

Driver Basics

215

Name
add_taint —

Synopsis

void add_taint (unsigned flag, enum lockdep_ok lockdep_ok);

Arguments

flag one of the TAINT_* constants.

lockdep_ok whether lock debugging is still OK.

Description

If something bad has gone wrong, you'll want lockdebug_ok = false, but for some notewortht-but-not-
corrupting cases, it can be set to true.

Driver Basics

216

Name
/usr/src/linux-4.1.27-24//kernel/sys.c — Document generation inconsistency

Oops

Warning

The template for this document tried to insert the structured comment from the file /usr/src/
linux-4.1.27-24//kernel/sys.c at this point, but none was found. This dummy sec-
tion is inserted to allow generation to continue.

Driver Basics

217

Name
init_srcu_struct — initialize a sleep-RCU structure

Synopsis

int init_srcu_struct (struct srcu_struct * sp);

Arguments

sp structure to initialize.

Description

Must invoke this on a given srcu_struct before passing that srcu_struct to any other function. Each
srcu_struct represents a separate domain of SRCU protection.

Driver Basics

218

Name
cleanup_srcu_struct — deconstruct a sleep-RCU structure

Synopsis

void cleanup_srcu_struct (struct srcu_struct * sp);

Arguments

sp structure to clean up.

Description

Must invoke this after you are finished using a given srcu_struct that was initialized via
init_srcu_struct, else you leak memory.

Driver Basics

219

Name
synchronize_srcu — wait for prior SRCU read-side critical-section completion

Synopsis

void synchronize_srcu (struct srcu_struct * sp);

Arguments

sp srcu_struct with which to synchronize.

Description

Wait for the count to drain to zero of both indexes. To avoid the possible starvation of
synchronize_srcu, it waits for the count of the index=((->completed & 1) ^ 1) to drain to zero at
first, and then flip the completed and wait for the count of the other index.

Can block; must be called from process context.

Note that it is illegal to call synchronize_srcu from the corresponding SRCU read-side critical sec-
tion; doing so will result in deadlock. However, it is perfectly legal to call synchronize_srcu on
one srcu_struct from some other srcu_struct's read-side critical section, as long as the resulting graph of
srcu_structs is acyclic.

There are memory-ordering constraints implied by synchronize_srcu. On systems with more than
one CPU, when synchronize_srcu returns, each CPU is guaranteed to have executed a full memory
barrier since the end of its last corresponding SRCU-sched read-side critical section whose beginning
preceded the call to synchronize_srcu. In addition, each CPU having an SRCU read-side critical
section that extends beyond the return from synchronize_srcu is guaranteed to have executed a full
memory barrier after the beginning of synchronize_srcu and before the beginning of that SRCU
read-side critical section. Note that these guarantees include CPUs that are offline, idle, or executing in
user mode, as well as CPUs that are executing in the kernel.

Furthermore, if CPU A invoked synchronize_srcu, which returned to its caller on CPU B, then
both CPU A and CPU B are guaranteed to have executed a full memory barrier during the execution of
synchronize_srcu. This guarantee applies even if CPU A and CPU B are the same CPU, but again
only if the system has more than one CPU.

Of course, these memory-ordering guarantees apply only when synchronize_srcu,
srcu_read_lock, and srcu_read_unlock are passed the same srcu_struct structure.

Driver Basics

220

Name
synchronize_srcu_expedited — Brute-force SRCU grace period

Synopsis

void synchronize_srcu_expedited (struct srcu_struct * sp);

Arguments

sp srcu_struct with which to synchronize.

Description

Wait for an SRCU grace period to elapse, but be more aggressive about spinning rather than blocking
when waiting.

Note that synchronize_srcu_expedited has the same deadlock and memory-ordering properties
as does synchronize_srcu.

Driver Basics

221

Name
srcu_barrier — Wait until all in-flight call_srcu callbacks complete.

Synopsis

void srcu_barrier (struct srcu_struct * sp);

Arguments

sp srcu_struct on which to wait for in-flight callbacks.

Driver Basics

222

Name
srcu_batches_completed — return batches completed.

Synopsis

unsigned long srcu_batches_completed (struct srcu_struct * sp);

Arguments

sp srcu_struct on which to report batch completion.

Description

Report the number of batches, correlated with, but not necessarily precisely the same as, the number of
grace periods that have elapsed.

Driver Basics

223

Name
rcu_idle_enter — inform RCU that current CPU is entering idle

Synopsis

void rcu_idle_enter (void);

Arguments

void no arguments

Description

Enter idle mode, in other words, -leave- the mode in which RCU read-side critical sections can oc-
cur. (Though RCU read-side critical sections can occur in irq handlers in idle, a possibility handled by
irq_enter and irq_exit.)

We crowbar the ->dynticks_nesting field to zero to allow for the possibility of usermode upcalls having
messed up our count of interrupt nesting level during the prior busy period.

Driver Basics

224

Name
rcu_idle_exit — inform RCU that current CPU is leaving idle

Synopsis

void rcu_idle_exit (void);

Arguments

void no arguments

Description

Exit idle mode, in other words, -enter- the mode in which RCU read-side critical sections can occur.

We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to allow for the possibility of user-
mode upcalls messing up our count of interrupt nesting level during the busy period that is just now starting.

Driver Basics

225

Name
rcu_is_watching — see if RCU thinks that the current CPU is idle

Synopsis

bool notrace rcu_is_watching (void);

Arguments

void no arguments

Description

If the current CPU is in its idle loop and is neither in an interrupt or NMI handler, return true.

Driver Basics

226

Name
synchronize_sched — wait until an rcu-sched grace period has elapsed.

Synopsis

void synchronize_sched (void);

Arguments

void no arguments

Description

Control will return to the caller some time after a full rcu-sched grace period has elapsed, in other words
after all currently executing rcu-sched read-side critical sections have completed. These read-side critical
sections are delimited by rcu_read_lock_sched and rcu_read_unlock_sched, and may be
nested. Note that preempt_disable, local_irq_disable, and so on may be used in place of
rcu_read_lock_sched.

This means that all preempt_disable code sequences, including NMI and non-threaded hardware-interrupt
handlers, in progress on entry will have completed before this primitive returns. However, this does not
guarantee that softirq handlers will have completed, since in some kernels, these handlers can run in process
context, and can block.

Note that this guarantee implies further memory-ordering guarantees. On systems with more than one
CPU, when synchronize_sched returns, each CPU is guaranteed to have executed a full memory
barrier since the end of its last RCU-sched read-side critical section whose beginning preceded the call
to synchronize_sched. In addition, each CPU having an RCU read-side critical section that extends
beyond the return from synchronize_sched is guaranteed to have executed a full memory barrier
after the beginning of synchronize_sched and before the beginning of that RCU read-side critical
section. Note that these guarantees include CPUs that are offline, idle, or executing in user mode, as well
as CPUs that are executing in the kernel.

Furthermore, if CPU A invoked synchronize_sched, which returned to its caller on CPU B, then
both CPU A and CPU B are guaranteed to have executed a full memory barrier during the execution of
synchronize_sched -- even if CPU A and CPU B are the same CPU (but again only if the system
has more than one CPU).

This primitive provides the guarantees made by the (now removed) synchronize_kernel API. In
contrast, synchronize_rcu only guarantees that rcu_read_lock sections will have completed.
In “classic RCU”, these two guarantees happen to be one and the same, but can differ in realtime RCU
implementations.

Driver Basics

227

Name
synchronize_rcu_bh — wait until an rcu_bh grace period has elapsed.

Synopsis

void synchronize_rcu_bh (void);

Arguments

void no arguments

Description

Control will return to the caller some time after a full rcu_bh grace period has elapsed, in other words after
all currently executing rcu_bh read-side critical sections have completed. RCU read-side critical sections
are delimited by rcu_read_lock_bh and rcu_read_unlock_bh, and may be nested.

See the description of synchronize_sched for more detailed information on memory ordering guar-
antees.

Driver Basics

228

Name
get_state_synchronize_rcu — Snapshot current RCU state

Synopsis

unsigned long get_state_synchronize_rcu (void);

Arguments

void no arguments

Description

Returns a cookie that is used by a later call to cond_synchronize_rcu to determine whether or not
a full grace period has elapsed in the meantime.

Driver Basics

229

Name
cond_synchronize_rcu — Conditionally wait for an RCU grace period

Synopsis

void cond_synchronize_rcu (unsigned long oldstate);

Arguments

oldstate return value from earlier call to get_state_synchronize_rcu

Description

If a full RCU grace period has elapsed since the earlier call to get_state_synchronize_rcu, just
return. Otherwise, invoke synchronize_rcu to wait for a full grace period.

Yes, this function does not take counter wrap into account. But counter wrap is harmless. If the counter
wraps, we have waited for more than 2 billion grace periods (and way more on a 64-bit system!), so waiting
for one additional grace period should be just fine.

Driver Basics

230

Name
synchronize_sched_expedited — Brute-force RCU-sched grace period

Synopsis

void synchronize_sched_expedited (void);

Arguments

void no arguments

Description

Wait for an RCU-sched grace period to elapse, but use a “big hammer” approach to force the grace
period to end quickly. This consumes significant time on all CPUs and is unfriendly to real-time
workloads, so is thus not recommended for any sort of common-case code. In fact, if you are using
synchronize_sched_expedited in a loop, please restructure your code to batch your updates, and
then use a single synchronize_sched instead.

This implementation can be thought of as an application of ticket locking to RCU, with
sync_sched_expedited_started and sync_sched_expedited_done taking on the roles of the halves of the
ticket-lock word. Each task atomically increments sync_sched_expedited_started upon entry, snapshotting
the old value, then attempts to stop all the CPUs. If this succeeds, then each CPU will have executed a
context switch, resulting in an RCU-sched grace period. We are then done, so we use atomic_cmpxchg
to update sync_sched_expedited_done to match our snapshot -- but only if someone else has not already
advanced past our snapshot.

On the other hand, if try_stop_cpus fails, we check the value of sync_sched_expedited_done. If it
has advanced past our initial snapshot, then someone else must have forced a grace period some time after
we took our snapshot. In this case, our work is done for us, and we can simply return. Otherwise, we try
again, but keep our initial snapshot for purposes of checking for someone doing our work for us.

If we fail too many times in a row, we fall back to synchronize_sched.

Driver Basics

231

Name
rcu_barrier_bh — Wait until all in-flight call_rcu_bh callbacks complete.

Synopsis

void rcu_barrier_bh (void);

Arguments

void no arguments

Driver Basics

232

Name
rcu_barrier_sched — Wait for in-flight call_rcu_sched callbacks.

Synopsis

void rcu_barrier_sched (void);

Arguments

void no arguments

Driver Basics

233

Name
synchronize_rcu — wait until a grace period has elapsed.

Synopsis

void synchronize_rcu (void);

Arguments

void no arguments

Description

Control will return to the caller some time after a full grace period has elapsed, in other words after all
currently executing RCU read-side critical sections have completed. Note, however, that upon return from
synchronize_rcu, the caller might well be executing concurrently with new RCU read-side critical
sections that began while synchronize_rcu was waiting. RCU read-side critical sections are delimited
by rcu_read_lock and rcu_read_unlock, and may be nested.

See the description of synchronize_sched for more detailed information on memory ordering guar-
antees.

Driver Basics

234

Name
synchronize_rcu_expedited — Brute-force RCU grace period

Synopsis

void synchronize_rcu_expedited (void);

Arguments

void no arguments

Description

Wait for an RCU-preempt grace period, but expedite it. The basic idea is to invoke
synchronize_sched_expedited to push all the tasks to the ->blkd_tasks lists and wait for
this list to drain. This consumes significant time on all CPUs and is unfriendly to real-time work-
loads, so is thus not recommended for any sort of common-case code. In fact, if you are using
synchronize_rcu_expedited in a loop, please restructure your code to batch your updates, and
then Use a single synchronize_rcu instead.

Driver Basics

235

Name
rcu_barrier — Wait until all in-flight call_rcu callbacks complete.

Synopsis

void rcu_barrier (void);

Arguments

void no arguments

Description

Note that this primitive does not necessarily wait for an RCU grace period to complete. For example, if
there are no RCU callbacks queued anywhere in the system, then rcu_barrier is within its rights to
return immediately, without waiting for anything, much less an RCU grace period.

Driver Basics

236

Name
rcu_expedite_gp — Expedite future RCU grace periods

Synopsis

void rcu_expedite_gp (void);

Arguments

void no arguments

Description

After a call to this function, future calls to synchronize_rcu and friends act as the corresponding
synchronize_rcu_expedited function had instead been called.

Driver Basics

237

Name
rcu_unexpedite_gp — Cancel prior rcu_expedite_gp invocation

Synopsis

void rcu_unexpedite_gp (void);

Arguments

void no arguments

Description

Undo a prior call to rcu_expedite_gp. If all prior calls to rcu_expedite_gp are undone by a sub-
sequent call to rcu_unexpedite_gp, and if the rcu_expedited sysfs/boot parameter is not set, then all
subsequent calls to synchronize_rcu and friends will return to their normal non-expedited behavior.

Driver Basics

238

Name
rcu_read_lock_held — might we be in RCU read-side critical section?

Synopsis

int rcu_read_lock_held (void);

Arguments

void no arguments

Description

If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU read-side critical sec-
tion. In absence of CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU read-side critical
section unless it can prove otherwise. This is useful for debug checks in functions that require that they
be called within an RCU read-side critical section.

Checks debug_lockdep_rcu_enabled to prevent false positives during boot and while lockdep is
disabled.

Note that rcu_read_lock and the matching rcu_read_unlock must occur in the same con-
text, for example, it is illegal to invoke rcu_read_unlock in process context if the matching
rcu_read_lock was invoked from within an irq handler.

Note that rcu_read_lock is disallowed if the CPU is either idle or offline from an RCU perspective,
so check for those as well.

Driver Basics

239

Name
rcu_read_lock_bh_held — might we be in RCU-bh read-side critical section?

Synopsis

int rcu_read_lock_bh_held (void);

Arguments

void no arguments

Description

Check for bottom half being disabled, which covers both the CONFIG_PROVE_RCU and not cases. Note
that if someone uses rcu_read_lock_bh, but then later enables BH, lockdep (if enabled) will show
the situation. This is useful for debug checks in functions that require that they be called within an RCU
read-side critical section.

Check debug_lockdep_rcu_enabled to prevent false positives during boot.

Note that rcu_read_lock is disallowed if the CPU is either idle or offline from an RCU perspective,
so check for those as well.

Driver Basics

240

Name
init_rcu_head_on_stack — initialize on-stack rcu_head for debugobjects

Synopsis

void init_rcu_head_on_stack (struct rcu_head * head);

Arguments

head pointer to rcu_head structure to be initialized

Description

This function informs debugobjects of a new rcu_head structure that has been allocated as an
auto variable on the stack. This function is not required for rcu_head structures that are stati-
cally defined or that are dynamically allocated on the heap. This function has no effect for !
CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.

Driver Basics

241

Name
destroy_rcu_head_on_stack — destroy on-stack rcu_head for debugobjects

Synopsis

void destroy_rcu_head_on_stack (struct rcu_head * head);

Arguments

head pointer to rcu_head structure to be initialized

Description

This function informs debugobjects that an on-stack rcu_head structure is about to go out of scope. As with
init_rcu_head_on_stack, this function is not required for rcu_head structures that are statically
defined or that are dynamically allocated on the heap. Also as with init_rcu_head_on_stack, this
function has no effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.

Driver Basics

242

Name
synchronize_rcu_tasks — wait until an rcu-tasks grace period has elapsed.

Synopsis

void synchronize_rcu_tasks (void);

Arguments

void no arguments

Description

Control will return to the caller some time after a full rcu-tasks grace period has elapsed, in other words after
all currently executing rcu-tasks read-side critical sections have elapsed. These read-side critical sections
are delimited by calls to schedule, cond_resched_rcu_qs, idle execution, userspace execution,
calls to synchronize_rcu_tasks, and (in theory, anyway) cond_resched.

This is a very specialized primitive, intended only for a few uses in tracing and other situations requiring
manipulation of function preambles and profiling hooks. The synchronize_rcu_tasks function is
not (yet) intended for heavy use from multiple CPUs.

Note that this guarantee implies further memory-ordering guarantees. On systems with more than one CPU,
when synchronize_rcu_tasks returns, each CPU is guaranteed to have executed a full memory
barrier since the end of its last RCU-tasks read-side critical section whose beginning preceded the call
to synchronize_rcu_tasks. In addition, each CPU having an RCU-tasks read-side critical section
that extends beyond the return from synchronize_rcu_tasks is guaranteed to have executed a full
memory barrier after the beginning of synchronize_rcu_tasks and before the beginning of that
RCU-tasks read-side critical section. Note that these guarantees include CPUs that are offline, idle, or
executing in user mode, as well as CPUs that are executing in the kernel.

Furthermore, if CPU A invoked synchronize_rcu_tasks, which returned to its caller on CPU B,
then both CPU A and CPU B are guaranteed to have executed a full memory barrier during the execution
of synchronize_rcu_tasks -- even if CPU A and CPU B are the same CPU (but again only if the
system has more than one CPU).

Driver Basics

243

Name
rcu_barrier_tasks — Wait for in-flight call_rcu_tasks callbacks.

Synopsis

void rcu_barrier_tasks (void);

Arguments

void no arguments

Description

Although the current implementation is guaranteed to wait, it is not obligated to, for example, if there are
no pending callbacks.

Device Resource Management

Driver Basics

244

Name
devres_alloc — Allocate device resource data

Synopsis

void * devres_alloc (dr_release_t release, size_t size, gfp_t gfp);

Arguments

release Release function devres will be associated with

size Allocation size

gfp Allocation flags

Description

Allocate devres of size bytes. The allocated area is zeroed, then associated with release. The returned
pointer can be passed to other devres_*() functions.

RETURNS

Pointer to allocated devres on success, NULL on failure.

Driver Basics

245

Name
devres_for_each_res — Resource iterator

Synopsis

void devres_for_each_res (struct device * dev, dr_release_t release,
dr_match_t match, void * match_data, void (*fn) (struct device *, void
*, void *), void * data);

Arguments

dev Device to iterate resource from

release Look for resources associated with this release function

match Match function (optional)

match_data Data for the match function

fn Function to be called for each matched resource.

data Data for fn, the 3rd parameter of fn

Description

Call fn for each devres of dev which is associated with release and for which match returns 1.

RETURNS

void

Driver Basics

246

Name
devres_free — Free device resource data

Synopsis

void devres_free (void * res);

Arguments

res Pointer to devres data to free

Description

Free devres created with devres_alloc.

Driver Basics

247

Name
devres_add — Register device resource

Synopsis

void devres_add (struct device * dev, void * res);

Arguments

dev Device to add resource to

res Resource to register

Description

Register devres res to dev. res should have been allocated using devres_alloc. On driver detach,
the associated release function will be invoked and devres will be freed automatically.

Driver Basics

248

Name
devres_find — Find device resource

Synopsis

void * devres_find (struct device * dev, dr_release_t release, dr_match_t
match, void * match_data);

Arguments

dev Device to lookup resource from

release Look for resources associated with this release function

match Match function (optional)

match_data Data for the match function

Description

Find the latest devres of dev which is associated with release and for which match returns 1. If
match is NULL, it's considered to match all.

RETURNS

Pointer to found devres, NULL if not found.

Driver Basics

249

Name
devres_get — Find devres, if non-existent, add one atomically

Synopsis

void * devres_get (struct device * dev, void * new_res, dr_match_t
match, void * match_data);

Arguments

dev Device to lookup or add devres for

new_res Pointer to new initialized devres to add if not found

match Match function (optional)

match_data Data for the match function

Description

Find the latest devres of dev which has the same release function as new_res and for which match
return 1. If found, new_res is freed; otherwise, new_res is added atomically.

RETURNS

Pointer to found or added devres.

Driver Basics

250

Name
devres_remove — Find a device resource and remove it

Synopsis

void * devres_remove (struct device * dev, dr_release_t release,
dr_match_t match, void * match_data);

Arguments

dev Device to find resource from

release Look for resources associated with this release function

match Match function (optional)

match_data Data for the match function

Description

Find the latest devres of dev associated with release and for which match returns 1. If match is
NULL, it's considered to match all. If found, the resource is removed atomically and returned.

RETURNS

Pointer to removed devres on success, NULL if not found.

Driver Basics

251

Name
devres_destroy — Find a device resource and destroy it

Synopsis

int devres_destroy (struct device * dev, dr_release_t release,
dr_match_t match, void * match_data);

Arguments

dev Device to find resource from

release Look for resources associated with this release function

match Match function (optional)

match_data Data for the match function

Description

Find the latest devres of dev associated with release and for which match returns 1. If match is
NULL, it's considered to match all. If found, the resource is removed atomically and freed.

Note that the release function for the resource will not be called, only the devres-allocated data will be
freed. The caller becomes responsible for freeing any other data.

RETURNS

0 if devres is found and freed, -ENOENT if not found.

Driver Basics

252

Name
devres_release — Find a device resource and destroy it, calling release

Synopsis

int devres_release (struct device * dev, dr_release_t release,
dr_match_t match, void * match_data);

Arguments

dev Device to find resource from

release Look for resources associated with this release function

match Match function (optional)

match_data Data for the match function

Description

Find the latest devres of dev associated with release and for which match returns 1. If match is
NULL, it's considered to match all. If found, the resource is removed atomically, the release function called
and the resource freed.

RETURNS

0 if devres is found and freed, -ENOENT if not found.

Driver Basics

253

Name
devres_open_group — Open a new devres group

Synopsis

void * devres_open_group (struct device * dev, void * id, gfp_t gfp);

Arguments

dev Device to open devres group for

id Separator ID

gfp Allocation flags

Description

Open a new devres group for dev with id. For id, using a pointer to an object which won't be used for
another group is recommended. If id is NULL, address-wise unique ID is created.

RETURNS

ID of the new group, NULL on failure.

Driver Basics

254

Name
devres_close_group — Close a devres group

Synopsis

void devres_close_group (struct device * dev, void * id);

Arguments

dev Device to close devres group for

id ID of target group, can be NULL

Description

Close the group identified by id. If id is NULL, the latest open group is selected.

Driver Basics

255

Name
devres_remove_group — Remove a devres group

Synopsis

void devres_remove_group (struct device * dev, void * id);

Arguments

dev Device to remove group for

id ID of target group, can be NULL

Description

Remove the group identified by id. If id is NULL, the latest open group is selected. Note that removing
a group doesn't affect any other resources.

Driver Basics

256

Name
devres_release_group — Release resources in a devres group

Synopsis

int devres_release_group (struct device * dev, void * id);

Arguments

dev Device to release group for

id ID of target group, can be NULL

Description

Release all resources in the group identified by id. If id is NULL, the latest open group is selected. The
selected group and groups properly nested inside the selected group are removed.

RETURNS

The number of released non-group resources.

Driver Basics

257

Name
devm_add_action — add a custom action to list of managed resources

Synopsis

int devm_add_action (struct device * dev, void (*action) (void *), void
* data);

Arguments

dev Device that owns the action

action Function that should be called

data Pointer to data passed to action implementation

Description

This adds a custom action to the list of managed resources so that it gets executed as part of standard
resource unwinding.

Driver Basics

258

Name
devm_remove_action — removes previously added custom action

Synopsis

void devm_remove_action (struct device * dev, void (*action) (void *),
void * data);

Arguments

dev Device that owns the action

action Function implementing the action

data Pointer to data passed to action implementation

Description

Removes instance of action previously added by devm_add_action. Both action and data should
match one of the existing entries.

Driver Basics

259

Name
devm_kmalloc — Resource-managed kmalloc

Synopsis

void * devm_kmalloc (struct device * dev, size_t size, gfp_t gfp);

Arguments

dev Device to allocate memory for

size Allocation size

gfp Allocation gfp flags

Description

Managed kmalloc. Memory allocated with this function is automatically freed on driver detach. Like all
other devres resources, guaranteed alignment is unsigned long long.

RETURNS

Pointer to allocated memory on success, NULL on failure.

Driver Basics

260

Name
devm_kstrdup — Allocate resource managed space and copy an existing string into that.

Synopsis

char * devm_kstrdup (struct device * dev, const char * s, gfp_t gfp);

Arguments

dev Device to allocate memory for

s the string to duplicate

gfp the GFP mask used in the devm_kmalloc call when allocating memory

RETURNS

Pointer to allocated string on success, NULL on failure.

Driver Basics

261

Name
devm_kvasprintf — Allocate resource managed space and format a string into that.

Synopsis

char * devm_kvasprintf (struct device * dev, gfp_t gfp, const char *
fmt, va_list ap);

Arguments

dev Device to allocate memory for

gfp the GFP mask used in the devm_kmalloc call when allocating memory

fmt The printf-style format string

ap Arguments for the format string

RETURNS

Pointer to allocated string on success, NULL on failure.

Driver Basics

262

Name
devm_kasprintf — Allocate resource managed space and format a string into that.

Synopsis

char * devm_kasprintf (struct device * dev, gfp_t gfp, const char *
fmt, ...);

Arguments

dev Device to allocate memory for

gfp the GFP mask used in the devm_kmalloc call when allocating memory

fmt The printf-style format string @...: Arguments for the format string

... variable arguments

RETURNS

Pointer to allocated string on success, NULL on failure.

Driver Basics

263

Name
devm_kfree — Resource-managed kfree

Synopsis

void devm_kfree (struct device * dev, void * p);

Arguments

dev Device this memory belongs to

p Memory to free

Description

Free memory allocated with devm_kmalloc.

Driver Basics

264

Name
devm_kmemdup — Resource-managed kmemdup

Synopsis

void * devm_kmemdup (struct device * dev, const void * src, size_t len,
gfp_t gfp);

Arguments

dev Device this memory belongs to

src Memory region to duplicate

len Memory region length

gfp GFP mask to use

Description

Duplicate region of a memory using resource managed kmalloc

Driver Basics

265

Name
devm_get_free_pages — Resource-managed __get_free_pages

Synopsis

unsigned long devm_get_free_pages (struct device * dev, gfp_t gfp_mask,
unsigned int order);

Arguments

dev Device to allocate memory for

gfp_mask Allocation gfp flags

order Allocation size is (1 << order) pages

Description

Managed get_free_pages. Memory allocated with this function is automatically freed on driver detach.

RETURNS

Address of allocated memory on success, 0 on failure.

Driver Basics

266

Name
devm_free_pages — Resource-managed free_pages

Synopsis

void devm_free_pages (struct device * dev, unsigned long addr);

Arguments

dev Device this memory belongs to

addr Memory to free

Description

Free memory allocated with devm_get_free_pages. Unlike free_pages, there is no need to supply
the order.

267

Chapter 2. Device drivers infrastructure
The Basic Device Driver-Model Structures

Device drivers infrastructure

268

Name
struct bus_type — The bus type of the device

Synopsis

struct bus_type {
 const char * name;
 const char * dev_name;
 struct device * dev_root;
 struct device_attribute * dev_attrs;
 const struct attribute_group ** bus_groups;
 const struct attribute_group ** dev_groups;
 const struct attribute_group ** drv_groups;
 int (* match) (struct device *dev, struct device_driver *drv);
 int (* uevent) (struct device *dev, struct kobj_uevent_env *env);
 int (* probe) (struct device *dev);
 int (* remove) (struct device *dev);
 void (* shutdown) (struct device *dev);
 int (* online) (struct device *dev);
 int (* offline) (struct device *dev);
 int (* suspend) (struct device *dev, pm_message_t state);
 int (* resume) (struct device *dev);
 const struct dev_pm_ops * pm;
 const struct iommu_ops * iommu_ops;
 struct subsys_private * p;
 struct lock_class_key lock_key;
};

Members

name The name of the bus.

dev_name Used for subsystems to enumerate devices like (“foou”, dev->id).

dev_root Default device to use as the parent.

dev_attrs Default attributes of the devices on the bus.

bus_groups Default attributes of the bus.

dev_groups Default attributes of the devices on the bus.

drv_groups Default attributes of the device drivers on the bus.

match Called, perhaps multiple times, whenever a new device or driver is added for this bus. It
should return a nonzero value if the given device can be handled by the given driver.

uevent Called when a device is added, removed, or a few other things that generate uevents to
add the environment variables.

probe Called when a new device or driver add to this bus, and callback the specific driver's
probe to initial the matched device.

remove Called when a device removed from this bus.

Device drivers infrastructure

269

shutdown Called at shut-down time to quiesce the device.

online Called to put the device back online (after offlining it).

offline Called to put the device offline for hot-removal. May fail.

suspend Called when a device on this bus wants to go to sleep mode.

resume Called to bring a device on this bus out of sleep mode.

pm Power management operations of this bus, callback the specific device driver's pm-ops.

iommu_ops IOMMU specific operations for this bus, used to attach IOMMU driver implementations
to a bus and allow the driver to do bus-specific setup

p The private data of the driver core, only the driver core can touch this.

lock_key Lock class key for use by the lock validator

Description

A bus is a channel between the processor and one or more devices. For the purposes of the device model,
all devices are connected via a bus, even if it is an internal, virtual, “platform” bus. Buses can plug into
each other. A USB controller is usually a PCI device, for example. The device model represents the actual
connections between buses and the devices they control. A bus is represented by the bus_type structure. It
contains the name, the default attributes, the bus' methods, PM operations, and the driver core's private data.

Device drivers infrastructure

270

Name
struct device_driver — The basic device driver structure

Synopsis

struct device_driver {
 const char * name;
 struct bus_type * bus;
 struct module * owner;
 const char * mod_name;
 bool suppress_bind_attrs;
 const struct of_device_id * of_match_table;
 const struct acpi_device_id * acpi_match_table;
 int (* probe) (struct device *dev);
 int (* remove) (struct device *dev);
 void (* shutdown) (struct device *dev);
 int (* suspend) (struct device *dev, pm_message_t state);
 int (* resume) (struct device *dev);
 const struct attribute_group ** groups;
 const struct dev_pm_ops * pm;
 struct driver_private * p;
};

Members

name Name of the device driver.

bus The bus which the device of this driver belongs to.

owner The module owner.

mod_name Used for built-in modules.

suppress_bind_attrs Disables bind/unbind via sysfs.

of_match_table The open firmware table.

acpi_match_table The ACPI match table.

probe Called to query the existence of a specific device, whether this driver can
work with it, and bind the driver to a specific device.

remove Called when the device is removed from the system to unbind a device
from this driver.

shutdown Called at shut-down time to quiesce the device.

suspend Called to put the device to sleep mode. Usually to a low power state.

resume Called to bring a device from sleep mode.

groups Default attributes that get created by the driver core automatically.

pm Power management operations of the device which matched this driver.

Device drivers infrastructure

271

p Driver core's private data, no one other than the driver core can touch this.

Description

The device driver-model tracks all of the drivers known to the system. The main reason for this tracking is
to enable the driver core to match up drivers with new devices. Once drivers are known objects within the
system, however, a number of other things become possible. Device drivers can export information and
configuration variables that are independent of any specific device.

Device drivers infrastructure

272

Name
struct subsys_interface — interfaces to device functions

Synopsis

struct subsys_interface {
 const char * name;
 struct bus_type * subsys;
 struct list_head node;
 int (* add_dev) (struct device *dev, struct subsys_interface *sif);
 int (* remove_dev) (struct device *dev, struct subsys_interface *sif);
};

Members

name name of the device function

subsys subsytem of the devices to attach to

node the list of functions registered at the subsystem

add_dev device hookup to device function handler

remove_dev device hookup to device function handler

Description

Simple interfaces attached to a subsystem. Multiple interfaces can attach to a subsystem and its devices.
Unlike drivers, they do not exclusively claim or control devices. Interfaces usually represent a specific
functionality of a subsystem/class of devices.

Device drivers infrastructure

273

Name
struct class — device classes

Synopsis

struct class {
 const char * name;
 struct module * owner;
 struct class_attribute * class_attrs;
 const struct attribute_group ** dev_groups;
 struct kobject * dev_kobj;
 int (* dev_uevent) (struct device *dev, struct kobj_uevent_env *env);
 char *(* devnode) (struct device *dev, umode_t *mode);
 void (* class_release) (struct class *class);
 void (* dev_release) (struct device *dev);
 int (* suspend) (struct device *dev, pm_message_t state);
 int (* resume) (struct device *dev);
 const struct kobj_ns_type_operations * ns_type;
 const void *(* namespace) (struct device *dev);
 const struct dev_pm_ops * pm;
 struct subsys_private * p;
};

Members

name Name of the class.

owner The module owner.

class_attrs Default attributes of this class.

dev_groups Default attributes of the devices that belong to the class.

dev_kobj The kobject that represents this class and links it into the hierarchy.

dev_uevent Called when a device is added, removed from this class, or a few other things that
generate uevents to add the environment variables.

devnode Callback to provide the devtmpfs.

class_release Called to release this class.

dev_release Called to release the device.

suspend Used to put the device to sleep mode, usually to a low power state.

resume Used to bring the device from the sleep mode.

ns_type Callbacks so sysfs can detemine namespaces.

namespace Namespace of the device belongs to this class.

pm The default device power management operations of this class.

p The private data of the driver core, no one other than the driver core can touch this.

Device drivers infrastructure

274

Description

A class is a higher-level view of a device that abstracts out low-level implementation details. Drivers may
see a SCSI disk or an ATA disk, but, at the class level, they are all simply disks. Classes allow user space
to work with devices based on what they do, rather than how they are connected or how they work.

Device drivers infrastructure

275

Name
struct device — The basic device structure

Synopsis

struct device {
 struct device * parent;
 struct device_private * p;
 struct kobject kobj;
 const char * init_name;
 const struct device_type * type;
 struct mutex mutex;
 struct bus_type * bus;
 struct device_driver * driver;
 void * platform_data;
 void * driver_data;
 struct dev_pm_info power;
 struct dev_pm_domain * pm_domain;
#ifdef CONFIG_PINCTRL
 struct dev_pin_info * pins;
#endif
#ifdef CONFIG_NUMA
 int numa_node;
#endif
 u64 * dma_mask;
 u64 coherent_dma_mask;
 unsigned long dma_pfn_offset;
 struct device_dma_parameters * dma_parms;
 struct list_head dma_pools;
 struct dma_coherent_mem * dma_mem;
#ifdef CONFIG_DMA_CMA
 struct cma * cma_area;
#endif
 struct dev_archdata archdata;
 struct device_node * of_node;
 struct fwnode_handle * fwnode;
 dev_t devt;
 u32 id;
 spinlock_t devres_lock;
 struct list_head devres_head;
 struct klist_node knode_class;
 struct class * class;
 const struct attribute_group ** groups;
 void (* release) (struct device *dev);
 struct iommu_group * iommu_group;
 bool offline_disabled:1;
 bool offline:1;
};

Device drivers infrastructure

276

Members

parent The device's “parent” device, the device to which it is attached. In most cases,
a parent device is some sort of bus or host controller. If parent is NULL, the
device, is a top-level device, which is not usually what you want.

p Holds the private data of the driver core portions of the device. See the com-
ment of the struct device_private for detail.

kobj A top-level, abstract class from which other classes are derived.

init_name Initial name of the device.

type The type of device. This identifies the device type and carries type-specific
information.

mutex Mutex to synchronize calls to its driver.

bus Type of bus device is on.

driver Which driver has allocated this

platform_data Platform data specific to the device.

driver_data Private pointer for driver specific info.

power For device power management. See Documentation/power/devices.txt for de-
tails.

pm_domain Provide callbacks that are executed during system suspend, hibernation, sys-
tem resume and during runtime PM transitions along with subsystem-level
and driver-level callbacks.

pins For device pin management. See Documentation/pinctrl.txt for details.

numa_node NUMA node this device is close to.

dma_mask Dma mask (if dma'ble device).

coherent_dma_mask Like dma_mask, but for alloc_coherent mapping as not all hardware supports
64-bit addresses for consistent allocations such descriptors.

dma_pfn_offset offset of DMA memory range relatively of RAM

dma_parms A low level driver may set these to teach IOMMU code about segment limi-
tations.

dma_pools Dma pools (if dma'ble device).

dma_mem Internal for coherent mem override.

cma_area Contiguous memory area for dma allocations

archdata For arch-specific additions.

of_node Associated device tree node.

fwnode Associated device node supplied by platform firmware.

Device drivers infrastructure

277

devt For creating the sysfs “dev”.

id device instance

devres_lock Spinlock to protect the resource of the device.

devres_head The resources list of the device.

knode_class The node used to add the device to the class list.

class The class of the device.

groups Optional attribute groups.

release Callback to free the device after all references have gone away. This should be
set by the allocator of the device (i.e. the bus driver that discovered the device).

iommu_group IOMMU group the device belongs to.

offline_disabled If set, the device is permanently online.

offline Set after successful invocation of bus type's .offline.

Example

 For devices on custom boards, as typical of embedded
 and SOC based hardware, Linux often uses platform_data to point
 to board-specific structures describing devices and how they
 are wired. That can include what ports are available, chip
 variants, which GPIO pins act in what additional roles, and so
 on. This shrinks the “Board Support Packages” (BSPs) and
 minimizes board-specific #ifdefs in drivers.

Description

At the lowest level, every device in a Linux system is represented by an instance of struct device. The
device structure contains the information that the device model core needs to model the system. Most
subsystems, however, track additional information about the devices they host. As a result, it is rare for
devices to be represented by bare device structures; instead, that structure, like kobject structures, is usually
embedded within a higher-level representation of the device.

Device drivers infrastructure

278

Name
module_driver — Helper macro for drivers that don't do anything special in module init/exit. This
eliminates a lot of boilerplate. Each module may only use this macro once, and calling it replaces
module_init and module_exit.

Synopsis

module_driver (__driver, __register, __unregister, ...);

Arguments

__driver driver name

__register register function for this driver type

__unregister unregister function for this driver type @...: Additional arguments to be passed to
__register and __unregister.

... variable arguments

Description

Use this macro to construct bus specific macros for registering drivers, and do not use it on its own.

Device Drivers Base

Device drivers infrastructure

279

Name
driver_init — initialize driver model.

Synopsis

void driver_init (void);

Arguments

void no arguments

Description

Call the driver model init functions to initialize their subsystems. Called early from init/main.c.

Device drivers infrastructure

280

Name
driver_for_each_device — Iterator for devices bound to a driver.

Synopsis

int driver_for_each_device (struct device_driver * drv, struct device
* start, void * data, int (*fn) (struct device *, void *));

Arguments

drv Driver we're iterating.

start Device to begin with

data Data to pass to the callback.

fn Function to call for each device.

Description

Iterate over the drv's list of devices calling fn for each one.

Device drivers infrastructure

281

Name
driver_find_device — device iterator for locating a particular device.

Synopsis

struct device * driver_find_device (struct device_driver * drv, struct
device * start, void * data, int (*match) (struct device *dev, void
*data));

Arguments

drv The device's driver

start Device to begin with

data Data to pass to match function

match Callback function to check device

Description

This is similar to the driver_for_each_device function above, but it returns a reference to a device
that is 'found' for later use, as determined by the match callback.

The callback should return 0 if the device doesn't match and non-zero if it does. If the callback returns
non-zero, this function will return to the caller and not iterate over any more devices.

Device drivers infrastructure

282

Name
driver_create_file — create sysfs file for driver.

Synopsis

int driver_create_file (struct device_driver * drv, const struct
driver_attribute * attr);

Arguments

drv driver.

attr driver attribute descriptor.

Device drivers infrastructure

283

Name
driver_remove_file — remove sysfs file for driver.

Synopsis

void driver_remove_file (struct device_driver * drv, const struct
driver_attribute * attr);

Arguments

drv driver.

attr driver attribute descriptor.

Device drivers infrastructure

284

Name
driver_register — register driver with bus

Synopsis

int driver_register (struct device_driver * drv);

Arguments

drv driver to register

Description

We pass off most of the work to the bus_add_driver call, since most of the things we have to do
deal with the bus structures.

Device drivers infrastructure

285

Name
driver_unregister — remove driver from system.

Synopsis

void driver_unregister (struct device_driver * drv);

Arguments

drv driver.

Description

Again, we pass off most of the work to the bus-level call.

Device drivers infrastructure

286

Name
driver_find — locate driver on a bus by its name.

Synopsis

struct device_driver * driver_find (const char * name, struct bus_type
* bus);

Arguments

name name of the driver.

bus bus to scan for the driver.

Description

Call kset_find_obj to iterate over list of drivers on a bus to find driver by name. Return driver if found.

This routine provides no locking to prevent the driver it returns from being unregistered or unloaded while
the caller is using it. The caller is responsible for preventing this.

Device drivers infrastructure

287

Name
dev_driver_string — Return a device's driver name, if at all possible

Synopsis

const char * dev_driver_string (const struct device * dev);

Arguments

dev struct device to get the name of

Description

Will return the device's driver's name if it is bound to a device. If the device is not bound to a driver, it
will return the name of the bus it is attached to. If it is not attached to a bus either, an empty string will
be returned.

Device drivers infrastructure

288

Name
device_create_file — create sysfs attribute file for device.

Synopsis

int device_create_file (struct device * dev, const struct
device_attribute * attr);

Arguments

dev device.

attr device attribute descriptor.

Device drivers infrastructure

289

Name
device_remove_file — remove sysfs attribute file.

Synopsis

void device_remove_file (struct device * dev, const struct
device_attribute * attr);

Arguments

dev device.

attr device attribute descriptor.

Device drivers infrastructure

290

Name
device_remove_file_self — remove sysfs attribute file from its own method.

Synopsis

bool device_remove_file_self (struct device * dev, const struct
device_attribute * attr);

Arguments

dev device.

attr device attribute descriptor.

Description

See kernfs_remove_self for details.

Device drivers infrastructure

291

Name
device_create_bin_file — create sysfs binary attribute file for device.

Synopsis

int device_create_bin_file (struct device * dev, const struct
bin_attribute * attr);

Arguments

dev device.

attr device binary attribute descriptor.

Device drivers infrastructure

292

Name
device_remove_bin_file — remove sysfs binary attribute file

Synopsis

void device_remove_bin_file (struct device * dev, const struct
bin_attribute * attr);

Arguments

dev device.

attr device binary attribute descriptor.

Device drivers infrastructure

293

Name
device_initialize — init device structure.

Synopsis

void device_initialize (struct device * dev);

Arguments

dev device.

Description

This prepares the device for use by other layers by initializing its fields. It is the first half of
device_register, if called by that function, though it can also be called separately, so one may use
dev's fields. In particular, get_device/put_device may be used for reference counting of dev after
calling this function.

All fields in dev must be initialized by the caller to 0, except for those explicitly set to some other value.
The simplest approach is to use kzalloc to allocate the structure containing dev.

NOTE

Use put_device to give up your reference instead of freeing dev directly once you have called this
function.

Device drivers infrastructure

294

Name
dev_set_name — set a device name

Synopsis

int dev_set_name (struct device * dev, const char * fmt, ...);

Arguments

dev device

fmt format string for the device's name

... variable arguments

Device drivers infrastructure

295

Name
device_add — add device to device hierarchy.

Synopsis

int device_add (struct device * dev);

Arguments

dev device.

Description

This is part 2 of device_register, though may be called separately _iff_ device_initialize
has been called separately.

This adds dev to the kobject hierarchy via kobject_add, adds it to the global and sibling lists for the
device, then adds it to the other relevant subsystems of the driver model.

Do not call this routine or device_register more than once for any device structure. The driver
model core is not designed to work with devices that get unregistered and then spring back to life. (Among
other things, it's very hard to guarantee that all references to the previous incarnation of dev have been
dropped.) Allocate and register a fresh new struct device instead.

NOTE

Never directly free dev after calling this function, even if it returned an error! Always use
put_device to give up your reference instead.

Device drivers infrastructure

296

Name
device_register — register a device with the system.

Synopsis

int device_register (struct device * dev);

Arguments

dev pointer to the device structure

Description

This happens in two clean steps - initialize the device and add it to the system. The two steps can be called
separately, but this is the easiest and most common. I.e. you should only call the two helpers separately if
have a clearly defined need to use and refcount the device before it is added to the hierarchy.

For more information, see the kerneldoc for device_initialize and device_add.

NOTE

Never directly free dev after calling this function, even if it returned an error! Always use
put_device to give up the reference initialized in this function instead.

Device drivers infrastructure

297

Name
get_device — increment reference count for device.

Synopsis

struct device * get_device (struct device * dev);

Arguments

dev device.

Description

This simply forwards the call to kobject_get, though we do take care to provide for the case that we
get a NULL pointer passed in.

Device drivers infrastructure

298

Name
put_device — decrement reference count.

Synopsis

void put_device (struct device * dev);

Arguments

dev device in question.

Device drivers infrastructure

299

Name
device_del — delete device from system.

Synopsis

void device_del (struct device * dev);

Arguments

dev device.

Description

This is the first part of the device unregistration sequence. This removes the device from the lists we control
from here, has it removed from the other driver model subsystems it was added to in device_add, and
removes it from the kobject hierarchy.

NOTE

this should be called manually _iff_ device_add was also called manually.

Device drivers infrastructure

300

Name
device_unregister — unregister device from system.

Synopsis

void device_unregister (struct device * dev);

Arguments

dev device going away.

Description

We do this in two parts, like we do device_register. First, we remove it from all the subsystems with
device_del, then we decrement the reference count via put_device. If that is the final reference
count, the device will be cleaned up via device_release above. Otherwise, the structure will stick
around until the final reference to the device is dropped.

Device drivers infrastructure

301

Name
device_for_each_child — device child iterator.

Synopsis

int device_for_each_child (struct device * parent, void * data, int
(*fn) (struct device *dev, void *data));

Arguments

parent parent struct device.

data data for the callback.

fn function to be called for each device.

Description

Iterate over parent's child devices, and call fn for each, passing it data.

We check the return of fn each time. If it returns anything other than 0, we break out and return that value.

Device drivers infrastructure

302

Name
device_find_child — device iterator for locating a particular device.

Synopsis

struct device * device_find_child (struct device * parent, void * data,
int (*match) (struct device *dev, void *data));

Arguments

parent parent struct device

data Data to pass to match function

match Callback function to check device

Description

This is similar to the device_for_each_child function above, but it returns a reference to a device
that is 'found' for later use, as determined by the match callback.

The callback should return 0 if the device doesn't match and non-zero if it does. If the callback returns
non-zero and a reference to the current device can be obtained, this function will return to the caller and
not iterate over any more devices.

NOTE

you will need to drop the reference with put_device after use.

Device drivers infrastructure

303

Name
__root_device_register — allocate and register a root device

Synopsis

struct device * __root_device_register (const char * name, struct module
* owner);

Arguments

name root device name

owner owner module of the root device, usually THIS_MODULE

Description

This function allocates a root device and registers it using device_register. In order to free the
returned device, use root_device_unregister.

Root devices are dummy devices which allow other devices to be grouped under /sys/devices. Use this
function to allocate a root device and then use it as the parent of any device which should appear under /
sys/devices/{name}

The /sys/devices/{name} directory will also contain a 'module' symlink which points to the owner direc-
tory in sysfs.

Returns struct device pointer on success, or ERR_PTR on error.

Note

You probably want to use root_device_register.

Device drivers infrastructure

304

Name
root_device_unregister — unregister and free a root device

Synopsis

void root_device_unregister (struct device * dev);

Arguments

dev device going away

Description

This function unregisters and cleans up a device that was created by root_device_register.

Device drivers infrastructure

305

Name
device_create_vargs — creates a device and registers it with sysfs

Synopsis

struct device * device_create_vargs (struct class * class, struct device
* parent, dev_t devt, void * drvdata, const char * fmt, va_list args);

Arguments

class pointer to the struct class that this device should be registered to

parent pointer to the parent struct device of this new device, if any

devt the dev_t for the char device to be added

drvdata the data to be added to the device for callbacks

fmt string for the device's name

args va_list for the device's name

Description

This function can be used by char device classes. A struct device will be created in sysfs, registered to
the specified class.

A “dev” file will be created, showing the dev_t for the device, if the dev_t is not 0,0. If a pointer to a
parent struct device is passed in, the newly created struct device will be a child of that device in sysfs. The
pointer to the struct device will be returned from the call. Any further sysfs files that might be required
can be created using this pointer.

Returns struct device pointer on success, or ERR_PTR on error.

Note

the struct class passed to this function must have previously been created with a call to class_create.

Device drivers infrastructure

306

Name
device_create — creates a device and registers it with sysfs

Synopsis

struct device * device_create (struct class * class, struct device *
parent, dev_t devt, void * drvdata, const char * fmt, ...);

Arguments

class pointer to the struct class that this device should be registered to

parent pointer to the parent struct device of this new device, if any

devt the dev_t for the char device to be added

drvdata the data to be added to the device for callbacks

fmt string for the device's name

... variable arguments

Description

This function can be used by char device classes. A struct device will be created in sysfs, registered to
the specified class.

A “dev” file will be created, showing the dev_t for the device, if the dev_t is not 0,0. If a pointer to a
parent struct device is passed in, the newly created struct device will be a child of that device in sysfs. The
pointer to the struct device will be returned from the call. Any further sysfs files that might be required
can be created using this pointer.

Returns struct device pointer on success, or ERR_PTR on error.

Note

the struct class passed to this function must have previously been created with a call to class_create.

Device drivers infrastructure

307

Name
device_create_with_groups — creates a device and registers it with sysfs

Synopsis

struct device * device_create_with_groups (struct class * class, struct
device * parent, dev_t devt, void * drvdata, const struct attribute_group
** groups, const char * fmt, ...);

Arguments

class pointer to the struct class that this device should be registered to

parent pointer to the parent struct device of this new device, if any

devt the dev_t for the char device to be added

drvdata the data to be added to the device for callbacks

groups NULL-terminated list of attribute groups to be created

fmt string for the device's name

... variable arguments

Description

This function can be used by char device classes. A struct device will be created in sysfs, registered to the
specified class. Additional attributes specified in the groups parameter will also be created automatically.

A “dev” file will be created, showing the dev_t for the device, if the dev_t is not 0,0. If a pointer to a
parent struct device is passed in, the newly created struct device will be a child of that device in sysfs. The
pointer to the struct device will be returned from the call. Any further sysfs files that might be required
can be created using this pointer.

Returns struct device pointer on success, or ERR_PTR on error.

Note

the struct class passed to this function must have previously been created with a call to class_create.

Device drivers infrastructure

308

Name
device_destroy — removes a device that was created with device_create

Synopsis

void device_destroy (struct class * class, dev_t devt);

Arguments

class pointer to the struct class that this device was registered with

devt the dev_t of the device that was previously registered

Description

This call unregisters and cleans up a device that was created with a call to device_create.

Device drivers infrastructure

309

Name
device_rename — renames a device

Synopsis

int device_rename (struct device * dev, const char * new_name);

Arguments

dev the pointer to the struct device to be renamed

new_name the new name of the device

Description

It is the responsibility of the caller to provide mutual exclusion between two different calls of
device_rename on the same device to ensure that new_name is valid and won't conflict with other devices.

Note

Don't call this function. Currently, the networking layer calls this function, but that will change. The fol-
lowing text from Kay Sievers offers

some insight

Renaming devices is racy at many levels, symlinks and other stuff are not replaced atomically, and you
get a “move” uevent, but it's not easy to connect the event to the old and new device. Device nodes are not
renamed at all, there isn't even support for that in the kernel now.

In the meantime, during renaming, your target name might be taken by another driver, creating conflicts.
Or the old name is taken directly after you renamed it -- then you get events for the same DEVPATH,
before you even see the “move” event. It's just a mess, and nothing new should ever rely on kernel device
renaming. Besides that, it's not even implemented now for other things than (driver-core wise very simple)
network devices.

We are currently about to change network renaming in udev to completely disallow renaming of devices
in the same namespace as the kernel uses, because we can't solve the problems properly, that arise with
swapping names of multiple interfaces without races. Means, renaming of eth[0-9]* will only be allowed
to some other name than eth[0-9]*, for the aforementioned reasons.

Make up a “real” name in the driver before you register anything, or add some other attributes for userspace
to find the device, or use udev to add symlinks -- but never rename kernel devices later, it's a complete
mess. We don't even want to get into that and try to implement the missing pieces in the core. We really
have other pieces to fix in the driver core mess. :)

Device drivers infrastructure

310

Name
device_move — moves a device to a new parent

Synopsis

int device_move (struct device * dev, struct device * new_parent, enum
dpm_order dpm_order);

Arguments

dev the pointer to the struct device to be moved

new_parent the new parent of the device (can by NULL)

dpm_order how to reorder the dpm_list

Device drivers infrastructure

311

Name
set_primary_fwnode — Change the primary firmware node of a given device.

Synopsis

void set_primary_fwnode (struct device * dev, struct fwnode_handle *
fwnode);

Arguments

dev Device to handle.

fwnode New primary firmware node of the device.

Description

Set the device's firmware node pointer to fwnode, but if a secondary firmware node of the device is
present, preserve it.

Device drivers infrastructure

312

Name
register_syscore_ops — Register a set of system core operations.

Synopsis

void register_syscore_ops (struct syscore_ops * ops);

Arguments

ops System core operations to register.

Device drivers infrastructure

313

Name
unregister_syscore_ops — Unregister a set of system core operations.

Synopsis

void unregister_syscore_ops (struct syscore_ops * ops);

Arguments

ops System core operations to unregister.

Device drivers infrastructure

314

Name
syscore_suspend — Execute all the registered system core suspend callbacks.

Synopsis

int syscore_suspend (void);

Arguments

void no arguments

Description

This function is executed with one CPU on-line and disabled interrupts.

Device drivers infrastructure

315

Name
syscore_resume — Execute all the registered system core resume callbacks.

Synopsis

void syscore_resume (void);

Arguments

void no arguments

Description

This function is executed with one CPU on-line and disabled interrupts.

Device drivers infrastructure

316

Name
__class_create — create a struct class structure

Synopsis

struct class * __class_create (struct module * owner, const char * name,
struct lock_class_key * key);

Arguments

owner pointer to the module that is to “own” this struct class

name pointer to a string for the name of this class.

key the lock_class_key for this class; used by mutex lock debugging

Description

This is used to create a struct class pointer that can then be used in calls to device_create.

Returns struct class pointer on success, or ERR_PTR on error.

Note, the pointer created here is to be destroyed when finished by making a call to class_destroy.

Device drivers infrastructure

317

Name
class_destroy — destroys a struct class structure

Synopsis

void class_destroy (struct class * cls);

Arguments

cls pointer to the struct class that is to be destroyed

Description

Note, the pointer to be destroyed must have been created with a call to class_create.

Device drivers infrastructure

318

Name
class_dev_iter_init — initialize class device iterator

Synopsis

void class_dev_iter_init (struct class_dev_iter * iter, struct class *
class, struct device * start, const struct device_type * type);

Arguments

iter class iterator to initialize

class the class we wanna iterate over

start the device to start iterating from, if any

type device_type of the devices to iterate over, NULL for all

Description

Initialize class iterator iter such that it iterates over devices of class. If start is set, the list iteration
will start there, otherwise if it is NULL, the iteration starts at the beginning of the list.

Device drivers infrastructure

319

Name
class_dev_iter_next — iterate to the next device

Synopsis

struct device * class_dev_iter_next (struct class_dev_iter * iter);

Arguments

iter class iterator to proceed

Description

Proceed iter to the next device and return it. Returns NULL if iteration is complete.

The returned device is referenced and won't be released till iterator is proceed to the next device or exited.
The caller is free to do whatever it wants to do with the device including calling back into class code.

Device drivers infrastructure

320

Name
class_dev_iter_exit — finish iteration

Synopsis

void class_dev_iter_exit (struct class_dev_iter * iter);

Arguments

iter class iterator to finish

Description

Finish an iteration. Always call this function after iteration is complete whether the iteration ran till the
end or not.

Device drivers infrastructure

321

Name
class_for_each_device — device iterator

Synopsis

int class_for_each_device (struct class * class, struct device * start,
void * data, int (*fn) (struct device *, void *));

Arguments

class the class we're iterating

start the device to start with in the list, if any.

data data for the callback

fn function to be called for each device

Description

Iterate over class's list of devices, and call fn for each, passing it data. If start is set, the list iteration
will start there, otherwise if it is NULL, the iteration starts at the beginning of the list.

We check the return of fn each time. If it returns anything other than 0, we break out and return that value.

fn is allowed to do anything including calling back into class code. There's no locking restriction.

Device drivers infrastructure

322

Name
class_find_device — device iterator for locating a particular device

Synopsis

struct device * class_find_device (struct class * class, struct device *
start, const void * data, int (*match) (struct device *, const void *));

Arguments

class the class we're iterating

start Device to begin with

data data for the match function

match function to check device

Description

This is similar to the class_for_each_dev function above, but it returns a reference to a device that
is 'found' for later use, as determined by the match callback.

The callback should return 0 if the device doesn't match and non-zero if it does. If the callback returns
non-zero, this function will return to the caller and not iterate over any more devices.

Note, you will need to drop the reference with put_device after use.

fn is allowed to do anything including calling back into class code. There's no locking restriction.

Device drivers infrastructure

323

Name
class_compat_register — register a compatibility class

Synopsis

struct class_compat * class_compat_register (const char * name);

Arguments

name the name of the class

Description

Compatibility class are meant as a temporary user-space compatibility workaround when converting a
family of class devices to a bus devices.

Device drivers infrastructure

324

Name
class_compat_unregister — unregister a compatibility class

Synopsis

void class_compat_unregister (struct class_compat * cls);

Arguments

cls the class to unregister

Device drivers infrastructure

325

Name
class_compat_create_link — create a compatibility class device link to a bus device

Synopsis

int class_compat_create_link (struct class_compat * cls, struct device
* dev, struct device * device_link);

Arguments

cls the compatibility class

dev the target bus device

device_link an optional device to which a “device” link should be created

Device drivers infrastructure

326

Name
class_compat_remove_link — remove a compatibility class device link to a bus device

Synopsis

void class_compat_remove_link (struct class_compat * cls, struct device
* dev, struct device * device_link);

Arguments

cls the compatibility class

dev the target bus device

device_link an optional device to which a “device” link was previously created

Device drivers infrastructure

327

Name
unregister_node — unregister a node device

Synopsis

void unregister_node (struct node * node);

Arguments

node node going away

Description

Unregisters a node device node. All the devices on the node must be unregistered before calling this
function.

Device drivers infrastructure

328

Name
request_firmware — send firmware request and wait for it

Synopsis

int request_firmware (const struct firmware ** firmware_p, const char
* name, struct device * device);

Arguments

firmware_p pointer to firmware image

name name of firmware file

device device for which firmware is being loaded

Description

firmware_p will be used to return a firmware image by the name of name for device device.

Should be called from user context where sleeping is allowed.

name will be used as $FIRMWARE in the uevent environment and should be distinctive enough not to be
confused with any other firmware image for this or any other device.

Caller must hold the reference count of device.

The function can be called safely inside device's suspend and resume callback.

Device drivers infrastructure

329

Name
request_firmware_direct — load firmware directly without usermode helper

Synopsis

int request_firmware_direct (const struct firmware ** firmware_p, const
char * name, struct device * device);

Arguments

firmware_p pointer to firmware image

name name of firmware file

device device for which firmware is being loaded

Description

This function works pretty much like request_firmware, but this doesn't fall back to usermode helper
even if the firmware couldn't be loaded directly from fs. Hence it's useful for loading optional firmwares,
which aren't always present, without extra long timeouts of udev.

Device drivers infrastructure

330

Name
release_firmware — release the resource associated with a firmware image

Synopsis

void release_firmware (const struct firmware * fw);

Arguments

fw firmware resource to release

Device drivers infrastructure

331

Name
request_firmware_nowait — asynchronous version of request_firmware

Synopsis

int request_firmware_nowait (struct module * module, bool uevent, const
char * name, struct device * device, gfp_t gfp, void * context, void
(*cont) (const struct firmware *fw, void *context));

Arguments

module module requesting the firmware

uevent sends uevent to copy the firmware image if this flag is non-zero else the firmware copy must
be done manually.

name name of firmware file

device device for which firmware is being loaded

gfp allocation flags

context will be passed over to cont, and fw may be NULL if firmware request fails.

cont function will be called asynchronously when the firmware request is over.

Description

Caller must hold the reference count of device.

Asynchronous variant of request_firmware for user contexts: - sleep for as small periods as possible
since it may increase kernel boot time of built-in device drivers requesting firmware in their ->probe
methods, if gfp is GFP_KERNEL.

- can't sleep at all if gfp is GFP_ATOMIC.

Device drivers infrastructure

332

Name
transport_class_register — register an initial transport class

Synopsis

int transport_class_register (struct transport_class * tclass);

Arguments

tclass a pointer to the transport class structure to be initialised

Description

The transport class contains an embedded class which is used to identify it. The caller should initialise
this structure with zeros and then generic class must have been initialised with the actual transport class
unique name. There's a macro DECLARE_TRANSPORT_CLASS to do this (declared classes still must be
registered).

Returns 0 on success or error on failure.

Device drivers infrastructure

333

Name
transport_class_unregister — unregister a previously registered class

Synopsis

void transport_class_unregister (struct transport_class * tclass);

Arguments

tclass The transport class to unregister

Description

Must be called prior to deallocating the memory for the transport class.

Device drivers infrastructure

334

Name
anon_transport_class_register — register an anonymous class

Synopsis

int anon_transport_class_register (struct anon_transport_class * atc);

Arguments

atc The anon transport class to register

Description

The anonymous transport class contains both a transport class and a container. The idea of an
anonymous class is that it never actually has any device attributes associated with it (and thus
saves on container storage). So it can only be used for triggering events. Use prezero and then use
DECLARE_ANON_TRANSPORT_CLASS to initialise the anon transport class storage.

Device drivers infrastructure

335

Name
anon_transport_class_unregister — unregister an anon class

Synopsis

void anon_transport_class_unregister (struct anon_transport_class *
atc);

Arguments

atc Pointer to the anon transport class to unregister

Description

Must be called prior to deallocating the memory for the anon transport class.

Device drivers infrastructure

336

Name
transport_setup_device — declare a new dev for transport class association but don't make it visible yet.

Synopsis

void transport_setup_device (struct device * dev);

Arguments

dev the generic device representing the entity being added

Description

Usually, dev represents some component in the HBA system (either the HBA itself or a device remote
across the HBA bus). This routine is simply a trigger point to see if any set of transport classes wishes to
associate with the added device. This allocates storage for the class device and initialises it, but does not
yet add it to the system or add attributes to it (you do this with transport_add_device). If you have no need
for a separate setup and add operations, use transport_register_device (see transport_class.h).

Device drivers infrastructure

337

Name
transport_add_device — declare a new dev for transport class association

Synopsis

void transport_add_device (struct device * dev);

Arguments

dev the generic device representing the entity being added

Description

Usually, dev represents some component in the HBA system (either the HBA itself or a device remote
across the HBA bus). This routine is simply a trigger point used to add the device to the system and register
attributes for it.

Device drivers infrastructure

338

Name
transport_configure_device — configure an already set up device

Synopsis

void transport_configure_device (struct device * dev);

Arguments

dev generic device representing device to be configured

Description

The idea of configure is simply to provide a point within the setup process to allow the transport class to
extract information from a device after it has been setup. This is used in SCSI because we have to have a
setup device to begin using the HBA, but after we send the initial inquiry, we use configure to extract the
device parameters. The device need not have been added to be configured.

Device drivers infrastructure

339

Name
transport_remove_device — remove the visibility of a device

Synopsis

void transport_remove_device (struct device * dev);

Arguments

dev generic device to remove

Description

This call removes the visibility of the device (to the user from sysfs), but does not destroy it. To elimi-
nate a device entirely you must also call transport_destroy_device. If you don't need to do remove and
destroy as separate operations, use transport_unregister_device (see transport_class.h) which
will perform both calls for you.

Device drivers infrastructure

340

Name
transport_destroy_device — destroy a removed device

Synopsis

void transport_destroy_device (struct device * dev);

Arguments

dev device to eliminate from the transport class.

Description

This call triggers the elimination of storage associated with the transport classdev. Note: all it really does
is relinquish a reference to the classdev. The memory will not be freed until the last reference goes to
zero. Note also that the classdev retains a reference count on dev, so dev too will remain for as long as
the transport class device remains around.

Device drivers infrastructure

341

Name
device_bind_driver — bind a driver to one device.

Synopsis

int device_bind_driver (struct device * dev);

Arguments

dev device.

Description

Allow manual attachment of a driver to a device. Caller must have already set dev->driver.

Note that this does not modify the bus reference count nor take the bus's rwsem. Please verify those are
accounted for before calling this. (It is ok to call with no other effort from a driver's probe method.)

This function must be called with the device lock held.

Device drivers infrastructure

342

Name
wait_for_device_probe —

Synopsis

void wait_for_device_probe (void);

Arguments

void no arguments

Description

Wait for device probing to be completed.

Device drivers infrastructure

343

Name
device_attach — try to attach device to a driver.

Synopsis

int device_attach (struct device * dev);

Arguments

dev device.

Description

Walk the list of drivers that the bus has and call driver_probe_device for each pair. If a compatible
pair is found, break out and return.

Returns 1 if the device was bound to a driver; 0 if no matching driver was found; -ENODEV if the device
is not registered.

When called for a USB interface, dev->parent lock must be held.

Device drivers infrastructure

344

Name
driver_attach — try to bind driver to devices.

Synopsis

int driver_attach (struct device_driver * drv);

Arguments

drv driver.

Description

Walk the list of devices that the bus has on it and try to match the driver with each one. If
driver_probe_device returns 0 and the dev->driver is set, we've found a compatible pair.

Device drivers infrastructure

345

Name
device_release_driver — manually detach device from driver.

Synopsis

void device_release_driver (struct device * dev);

Arguments

dev device.

Description

Manually detach device from driver. When called for a USB interface, dev->parent lock must be held.

Device drivers infrastructure

346

Name
platform_device_register_resndata — add a platform-level device with resources and platform-specific
data

Synopsis

struct platform_device * platform_device_register_resndata (struct de-
vice * parent, const char * name, int id, const struct resource * res,
unsigned int num, const void * data, size_t size);

Arguments

parent parent device for the device we're adding

name base name of the device we're adding

id instance id

res set of resources that needs to be allocated for the device

num number of resources

data platform specific data for this platform device

size size of platform specific data

Description

Returns struct platform_device pointer on success, or ERR_PTR on error.

Device drivers infrastructure

347

Name
platform_device_register_simple — add a platform-level device and its resources

Synopsis

struct platform_device * platform_device_register_simple (const char *
name, int id, const struct resource * res, unsigned int num);

Arguments

name base name of the device we're adding

id instance id

res set of resources that needs to be allocated for the device

num number of resources

Description

This function creates a simple platform device that requires minimal resource and memory management.
Canned release function freeing memory allocated for the device allows drivers using such devices to be
unloaded without waiting for the last reference to the device to be dropped.

This interface is primarily intended for use with legacy drivers which probe hardware directly. Because
such drivers create sysfs device nodes themselves, rather than letting system infrastructure handle such
device enumeration tasks, they don't fully conform to the Linux driver model. In particular, when such
drivers are built as modules, they can't be “hotplugged”.

Returns struct platform_device pointer on success, or ERR_PTR on error.

Device drivers infrastructure

348

Name
platform_device_register_data — add a platform-level device with platform-specific data

Synopsis

struct platform_device * platform_device_register_data (struct device
* parent, const char * name, int id, const void * data, size_t size);

Arguments

parent parent device for the device we're adding

name base name of the device we're adding

id instance id

data platform specific data for this platform device

size size of platform specific data

Description

This function creates a simple platform device that requires minimal resource and memory management.
Canned release function freeing memory allocated for the device allows drivers using such devices to be
unloaded without waiting for the last reference to the device to be dropped.

Returns struct platform_device pointer on success, or ERR_PTR on error.

Device drivers infrastructure

349

Name
platform_get_resource — get a resource for a device

Synopsis

struct resource * platform_get_resource (struct platform_device * dev,
unsigned int type, unsigned int num);

Arguments

dev platform device

type resource type

num resource index

Device drivers infrastructure

350

Name
platform_get_irq — get an IRQ for a device

Synopsis

int platform_get_irq (struct platform_device * dev, unsigned int num);

Arguments

dev platform device

num IRQ number index

Device drivers infrastructure

351

Name
platform_get_resource_byname — get a resource for a device by name

Synopsis

struct resource * platform_get_resource_byname (struct platform_device
* dev, unsigned int type, const char * name);

Arguments

dev platform device

type resource type

name resource name

Device drivers infrastructure

352

Name
platform_get_irq_byname — get an IRQ for a device by name

Synopsis

int platform_get_irq_byname (struct platform_device * dev, const char
* name);

Arguments

dev platform device

name IRQ name

Device drivers infrastructure

353

Name
platform_add_devices — add a numbers of platform devices

Synopsis

int platform_add_devices (struct platform_device ** devs, int num);

Arguments

devs array of platform devices to add

num number of platform devices in array

Device drivers infrastructure

354

Name
platform_device_put — destroy a platform device

Synopsis

void platform_device_put (struct platform_device * pdev);

Arguments

pdev platform device to free

Description

Free all memory associated with a platform device. This function must _only_ be externally called in error
cases. All other usage is a bug.

Device drivers infrastructure

355

Name
platform_device_alloc — create a platform device

Synopsis

struct platform_device * platform_device_alloc (const char * name, int
id);

Arguments

name base name of the device we're adding

id instance id

Description

Create a platform device object which can have other objects attached to it, and which will have attached
objects freed when it is released.

Device drivers infrastructure

356

Name
platform_device_add_resources — add resources to a platform device

Synopsis

int platform_device_add_resources (struct platform_device * pdev, const
struct resource * res, unsigned int num);

Arguments

pdev platform device allocated by platform_device_alloc to add resources to

res set of resources that needs to be allocated for the device

num number of resources

Description

Add a copy of the resources to the platform device. The memory associated with the resources will be
freed when the platform device is released.

Device drivers infrastructure

357

Name
platform_device_add_data — add platform-specific data to a platform device

Synopsis

int platform_device_add_data (struct platform_device * pdev, const void
* data, size_t size);

Arguments

pdev platform device allocated by platform_device_alloc to add resources to

data platform specific data for this platform device

size size of platform specific data

Description

Add a copy of platform specific data to the platform device's platform_data pointer. The memory associated
with the platform data will be freed when the platform device is released.

Device drivers infrastructure

358

Name
platform_device_add — add a platform device to device hierarchy

Synopsis

int platform_device_add (struct platform_device * pdev);

Arguments

pdev platform device we're adding

Description

This is part 2 of platform_device_register, though may be called separately _iff_ pdev was
allocated by platform_device_alloc.

Device drivers infrastructure

359

Name
platform_device_del — remove a platform-level device

Synopsis

void platform_device_del (struct platform_device * pdev);

Arguments

pdev platform device we're removing

Description

Note that this function will also release all memory- and port-based resources owned by the device (dev-
>resource). This function must _only_ be externally called in error cases. All other usage is a bug.

Device drivers infrastructure

360

Name
platform_device_register — add a platform-level device

Synopsis

int platform_device_register (struct platform_device * pdev);

Arguments

pdev platform device we're adding

Device drivers infrastructure

361

Name
platform_device_unregister — unregister a platform-level device

Synopsis

void platform_device_unregister (struct platform_device * pdev);

Arguments

pdev platform device we're unregistering

Description

Unregistration is done in 2 steps. First we release all resources and remove it from the subsystem, then we
drop reference count by calling platform_device_put.

Device drivers infrastructure

362

Name
platform_device_register_full — add a platform-level device with resources and platform-specific data

Synopsis

struct platform_device * platform_device_register_full (const struct
platform_device_info * pdevinfo);

Arguments

pdevinfo data used to create device

Description

Returns struct platform_device pointer on success, or ERR_PTR on error.

Device drivers infrastructure

363

Name
__platform_driver_register — register a driver for platform-level devices

Synopsis

int __platform_driver_register (struct platform_driver * drv, struct
module * owner);

Arguments

drv platform driver structure

owner owning module/driver

Device drivers infrastructure

364

Name
platform_driver_unregister — unregister a driver for platform-level devices

Synopsis

void platform_driver_unregister (struct platform_driver * drv);

Arguments

drv platform driver structure

Device drivers infrastructure

365

Name
__platform_driver_probe — register driver for non-hotpluggable device

Synopsis

int __platform_driver_probe (struct platform_driver * drv, int (*probe)
(struct platform_device *), struct module * module);

Arguments

drv platform driver structure

probe the driver probe routine, probably from an __init section

module module which will be the owner of the driver

Description

Use this instead of platform_driver_register when you know the device is not hotpluggable
and has already been registered, and you want to remove its run-once probe infrastructure from memory
after the driver has bound to the device.

One typical use for this would be with drivers for controllers integrated into system-on-chip processors,
where the controller devices have been configured as part of board setup.

Note that this is incompatible with deferred probing.

Returns zero if the driver registered and bound to a device, else returns a negative error code and with
the driver not registered.

Device drivers infrastructure

366

Name
__platform_create_bundle — register driver and create corresponding device

Synopsis

struct platform_device * __platform_create_bundle (struct
platform_driver * driver, int (*probe) (struct platform_device *),
struct resource * res, unsigned int n_res, const void * data, size_t
size, struct module * module);

Arguments

driver platform driver structure

probe the driver probe routine, probably from an __init section

res set of resources that needs to be allocated for the device

n_res number of resources

data platform specific data for this platform device

size size of platform specific data

module module which will be the owner of the driver

Description

Use this in legacy-style modules that probe hardware directly and register a single platform device and
corresponding platform driver.

Returns struct platform_device pointer on success, or ERR_PTR on error.

Device drivers infrastructure

367

Name
bus_for_each_dev — device iterator.

Synopsis

int bus_for_each_dev (struct bus_type * bus, struct device * start, void
* data, int (*fn) (struct device *, void *));

Arguments

bus bus type.

start device to start iterating from.

data data for the callback.

fn function to be called for each device.

Description

Iterate over bus's list of devices, and call fn for each, passing it data. If start is not NULL, we use
that device to begin iterating from.

We check the return of fn each time. If it returns anything other than 0, we break out and return that value.

NOTE

The device that returns a non-zero value is not retained in any way, nor is its refcount incremented. If the
caller needs to retain this data, it should do so, and increment the reference count in the supplied callback.

Device drivers infrastructure

368

Name
bus_find_device — device iterator for locating a particular device.

Synopsis

struct device * bus_find_device (struct bus_type * bus, struct device
* start, void * data, int (*match) (struct device *dev, void *data));

Arguments

bus bus type

start Device to begin with

data Data to pass to match function

match Callback function to check device

Description

This is similar to the bus_for_each_dev function above, but it returns a reference to a device that is
'found' for later use, as determined by the match callback.

The callback should return 0 if the device doesn't match and non-zero if it does. If the callback returns
non-zero, this function will return to the caller and not iterate over any more devices.

Device drivers infrastructure

369

Name
bus_find_device_by_name — device iterator for locating a particular device of a specific name

Synopsis

struct device * bus_find_device_by_name (struct bus_type * bus, struct
device * start, const char * name);

Arguments

bus bus type

start Device to begin with

name name of the device to match

Description

This is similar to the bus_find_device function above, but it handles searching by a name automat-
ically, no need to write another strcmp matching function.

Device drivers infrastructure

370

Name
subsys_find_device_by_id — find a device with a specific enumeration number

Synopsis

struct device * subsys_find_device_by_id (struct bus_type * subsys,
unsigned int id, struct device * hint);

Arguments

subsys subsystem

id index 'id' in struct device

hint device to check first

Description

Check the hint's next object and if it is a match return it directly, otherwise, fall back to a full list search.
Either way a reference for the returned object is taken.

Device drivers infrastructure

371

Name
bus_for_each_drv — driver iterator

Synopsis

int bus_for_each_drv (struct bus_type * bus, struct device_driver *
start, void * data, int (*fn) (struct device_driver *, void *));

Arguments

bus bus we're dealing with.

start driver to start iterating on.

data data to pass to the callback.

fn function to call for each driver.

Description

This is nearly identical to the device iterator above. We iterate over each driver that belongs to bus, and
call fn for each. If fn returns anything but 0, we break out and return it. If start is not NULL, we use
it as the head of the list.

NOTE

we don't return the driver that returns a non-zero value, nor do we leave the reference count incremented
for that driver. If the caller needs to know that info, it must set it in the callback. It must also be sure to
increment the refcount so it doesn't disappear before returning to the caller.

Device drivers infrastructure

372

Name
bus_rescan_devices — rescan devices on the bus for possible drivers

Synopsis

int bus_rescan_devices (struct bus_type * bus);

Arguments

bus the bus to scan.

Description

This function will look for devices on the bus with no driver attached and rescan it against existing drivers
to see if it matches any by calling device_attach for the unbound devices.

Device drivers infrastructure

373

Name
device_reprobe — remove driver for a device and probe for a new driver

Synopsis

int device_reprobe (struct device * dev);

Arguments

dev the device to reprobe

Description

This function detaches the attached driver (if any) for the given device and restarts the driver probing
process. It is intended to use if probing criteria changed during a devices lifetime and driver attachment
should change accordingly.

Device drivers infrastructure

374

Name
bus_register — register a driver-core subsystem

Synopsis

int bus_register (struct bus_type * bus);

Arguments

bus bus to register

Description

Once we have that, we register the bus with the kobject infrastructure, then register the children subsystems
it has: the devices and drivers that belong to the subsystem.

Device drivers infrastructure

375

Name
bus_unregister — remove a bus from the system

Synopsis

void bus_unregister (struct bus_type * bus);

Arguments

bus bus.

Description

Unregister the child subsystems and the bus itself. Finally, we call bus_put to release the refcount

Device drivers infrastructure

376

Name
subsys_dev_iter_init — initialize subsys device iterator

Synopsis

void subsys_dev_iter_init (struct subsys_dev_iter * iter, struct
bus_type * subsys, struct device * start, const struct device_type *
type);

Arguments

iter subsys iterator to initialize

subsys the subsys we wanna iterate over

start the device to start iterating from, if any

type device_type of the devices to iterate over, NULL for all

Description

Initialize subsys iterator iter such that it iterates over devices of subsys. If start is set, the list
iteration will start there, otherwise if it is NULL, the iteration starts at the beginning of the list.

Device drivers infrastructure

377

Name
subsys_dev_iter_next — iterate to the next device

Synopsis

struct device * subsys_dev_iter_next (struct subsys_dev_iter * iter);

Arguments

iter subsys iterator to proceed

Description

Proceed iter to the next device and return it. Returns NULL if iteration is complete.

The returned device is referenced and won't be released till iterator is proceed to the next device or exited.
The caller is free to do whatever it wants to do with the device including calling back into subsys code.

Device drivers infrastructure

378

Name
subsys_dev_iter_exit — finish iteration

Synopsis

void subsys_dev_iter_exit (struct subsys_dev_iter * iter);

Arguments

iter subsys iterator to finish

Description

Finish an iteration. Always call this function after iteration is complete whether the iteration ran till the
end or not.

Device drivers infrastructure

379

Name
subsys_system_register — register a subsystem at /sys/devices/system/

Synopsis

int subsys_system_register (struct bus_type * subsys, const struct
attribute_group ** groups);

Arguments

subsys system subsystem

groups default attributes for the root device

Description

All 'system' subsystems have a /sys/devices/system/<name> root device with the name of the subsystem.
The root device can carry subsystem- wide attributes. All registered devices are below this single root
device and are named after the subsystem with a simple enumeration number appended. The registered
devices are not explicitly named; only 'id' in the device needs to be set.

Do not use this interface for anything new, it exists for compatibility with bad ideas only. New subsystems
should use plain subsystems; and add the subsystem-wide attributes should be added to the subsystem
directory itself and not some create fake root-device placed in /sys/devices/system/<name>.

Device drivers infrastructure

380

Name
subsys_virtual_register — register a subsystem at /sys/devices/virtual/

Synopsis

int subsys_virtual_register (struct bus_type * subsys, const struct
attribute_group ** groups);

Arguments

subsys virtual subsystem

groups default attributes for the root device

Description

All 'virtual' subsystems have a /sys/devices/system/<name> root device with the name of the subystem. The
root device can carry subsystem-wide attributes. All registered devices are below this single root device.
There's no restriction on device naming. This is for kernel software constructs which need sysfs interface.

Device Drivers DMA Management

Device drivers infrastructure

381

Name
dma_buf_export — Creates a new dma_buf, and associates an anon file with this buffer, so it can be
exported. Also connect the allocator specific data and ops to the buffer. Additionally, provide a name string
for exporter; useful in debugging.

Synopsis

struct dma_buf * dma_buf_export (const struct dma_buf_export_info *
exp_info);

Arguments

exp_info [in] holds all the export related information provided by the exporter. see struct
dma_buf_export_info for further details.

Description

Returns, on success, a newly created dma_buf object, which wraps the supplied private data and operations
for dma_buf_ops. On either missing ops, or error in allocating struct dma_buf, will return negative error.

Device drivers infrastructure

382

Name
dma_buf_fd — returns a file descriptor for the given dma_buf

Synopsis

int dma_buf_fd (struct dma_buf * dmabuf, int flags);

Arguments

dmabuf [in] pointer to dma_buf for which fd is required.

flags [in] flags to give to fd

Description

On success, returns an associated 'fd'. Else, returns error.

Device drivers infrastructure

383

Name
dma_buf_get — returns the dma_buf structure related to an fd

Synopsis

struct dma_buf * dma_buf_get (int fd);

Arguments

fd [in] fd associated with the dma_buf to be returned

Description

On success, returns the dma_buf structure associated with an fd; uses file's refcounting done by fget to
increase refcount. returns ERR_PTR otherwise.

Device drivers infrastructure

384

Name
dma_buf_put — decreases refcount of the buffer

Synopsis

void dma_buf_put (struct dma_buf * dmabuf);

Arguments

dmabuf [in] buffer to reduce refcount of

Description

Uses file's refcounting done implicitly by fput

Device drivers infrastructure

385

Name
dma_buf_attach — Add the device to dma_buf's attachments list; optionally, calls attach of
dma_buf_ops to allow device-specific attach functionality

Synopsis

struct dma_buf_attachment * dma_buf_attach (struct dma_buf * dmabuf,
struct device * dev);

Arguments

dmabuf [in] buffer to attach device to.

dev [in] device to be attached.

Description

Returns struct dma_buf_attachment * for this attachment; returns ERR_PTR on error.

Device drivers infrastructure

386

Name
dma_buf_detach — Remove the given attachment from dmabuf's attachments list; optionally calls de-
tach of dma_buf_ops for device-specific detach

Synopsis

void dma_buf_detach (struct dma_buf * dmabuf, struct dma_buf_attachment
* attach);

Arguments

dmabuf [in] buffer to detach from.

attach [in] attachment to be detached; is free'd after this call.

Device drivers infrastructure

387

Name
dma_buf_map_attachment — Returns the scatterlist table of the attachment; mapped into _device_ address
space. Is a wrapper for map_dma_buf of the dma_buf_ops.

Synopsis

struct sg_table * dma_buf_map_attachment (struct dma_buf_attachment *
attach, enum dma_data_direction direction);

Arguments

attach [in] attachment whose scatterlist is to be returned

direction [in] direction of DMA transfer

Description

Returns sg_table containing the scatterlist to be returned; returns ERR_PTR on error.

Device drivers infrastructure

388

Name
dma_buf_unmap_attachment — unmaps and decreases usecount of the buffer;might deallocate the scat-
terlist associated. Is a wrapper for unmap_dma_buf of dma_buf_ops.

Synopsis

void dma_buf_unmap_attachment (struct dma_buf_attachment * attach,
struct sg_table * sg_table, enum dma_data_direction direction);

Arguments

attach [in] attachment to unmap buffer from

sg_table [in] scatterlist info of the buffer to unmap

direction [in] direction of DMA transfer

Device drivers infrastructure

389

Name
dma_buf_begin_cpu_access — Must be called before accessing a dma_buf from the cpu in the kernel
context. Calls begin_cpu_access to allow exporter-specific preparations. Coherency is only guaranteed in
the specified range for the specified access direction.

Synopsis

int dma_buf_begin_cpu_access (struct dma_buf * dmabuf, size_t start,
size_t len, enum dma_data_direction direction);

Arguments

dmabuf [in] buffer to prepare cpu access for.

start [in] start of range for cpu access.

len [in] length of range for cpu access.

direction [in] length of range for cpu access.

Description

Can return negative error values, returns 0 on success.

Device drivers infrastructure

390

Name
dma_buf_end_cpu_access — Must be called after accessing a dma_buf from the cpu in the kernel context.
Calls end_cpu_access to allow exporter-specific actions. Coherency is only guaranteed in the specified
range for the specified access direction.

Synopsis

void dma_buf_end_cpu_access (struct dma_buf * dmabuf, size_t start,
size_t len, enum dma_data_direction direction);

Arguments

dmabuf [in] buffer to complete cpu access for.

start [in] start of range for cpu access.

len [in] length of range for cpu access.

direction [in] length of range for cpu access.

Description

This call must always succeed.

Device drivers infrastructure

391

Name
dma_buf_kmap_atomic — Map a page of the buffer object into kernel address space. The same restrictions
as for kmap_atomic and friends apply.

Synopsis

void * dma_buf_kmap_atomic (struct dma_buf * dmabuf, unsigned long
page_num);

Arguments

dmabuf [in] buffer to map page from.

page_num [in] page in PAGE_SIZE units to map.

Description

This call must always succeed, any necessary preparations that might fail need to be done in
begin_cpu_access.

Device drivers infrastructure

392

Name
dma_buf_kunmap_atomic — Unmap a page obtained by dma_buf_kmap_atomic.

Synopsis

void dma_buf_kunmap_atomic (struct dma_buf * dmabuf, unsigned long
page_num, void * vaddr);

Arguments

dmabuf [in] buffer to unmap page from.

page_num [in] page in PAGE_SIZE units to unmap.

vaddr [in] kernel space pointer obtained from dma_buf_kmap_atomic.

Description

This call must always succeed.

Device drivers infrastructure

393

Name
dma_buf_kmap — Map a page of the buffer object into kernel address space. The same restrictions as for
kmap and friends apply.

Synopsis

void * dma_buf_kmap (struct dma_buf * dmabuf, unsigned long page_num);

Arguments

dmabuf [in] buffer to map page from.

page_num [in] page in PAGE_SIZE units to map.

Description

This call must always succeed, any necessary preparations that might fail need to be done in
begin_cpu_access.

Device drivers infrastructure

394

Name
dma_buf_kunmap — Unmap a page obtained by dma_buf_kmap.

Synopsis

void dma_buf_kunmap (struct dma_buf * dmabuf, unsigned long page_num,
void * vaddr);

Arguments

dmabuf [in] buffer to unmap page from.

page_num [in] page in PAGE_SIZE units to unmap.

vaddr [in] kernel space pointer obtained from dma_buf_kmap.

Description

This call must always succeed.

Device drivers infrastructure

395

Name
dma_buf_mmap — Setup up a userspace mmap with the given vma

Synopsis

int dma_buf_mmap (struct dma_buf * dmabuf, struct vm_area_struct * vma,
unsigned long pgoff);

Arguments

dmabuf [in] buffer that should back the vma

vma [in] vma for the mmap

pgoff [in] offset in pages where this mmap should start within the dma-buf buffer.

Description

This function adjusts the passed in vma so that it points at the file of the dma_buf operation. It also adjusts
the starting pgoff and does bounds checking on the size of the vma. Then it calls the exporters mmap
function to set up the mapping.

Can return negative error values, returns 0 on success.

Device drivers infrastructure

396

Name
dma_buf_vmap — Create virtual mapping for the buffer object into kernel address space. Same restrictions
as for vmap and friends apply.

Synopsis

void * dma_buf_vmap (struct dma_buf * dmabuf);

Arguments

dmabuf [in] buffer to vmap

Description

This call may fail due to lack of virtual mapping address space. These calls are optional in drivers. The
intended use for them is for mapping objects linear in kernel space for high use objects. Please attempt to
use kmap/kunmap before thinking about these interfaces.

Returns NULL on error.

Device drivers infrastructure

397

Name
dma_buf_vunmap — Unmap a vmap obtained by dma_buf_vmap.

Synopsis

void dma_buf_vunmap (struct dma_buf * dmabuf, void * vaddr);

Arguments

dmabuf [in] buffer to vunmap

vaddr [in] vmap to vunmap

Device drivers infrastructure

398

Name
fence_context_alloc — allocate an array of fence contexts

Synopsis

unsigned fence_context_alloc (unsigned num);

Arguments

num [in] amount of contexts to allocate

Description

This function will return the first index of the number of fences allocated. The fence context is used for
setting fence->context to a unique number.

Device drivers infrastructure

399

Name
fence_signal_locked — signal completion of a fence

Synopsis

int fence_signal_locked (struct fence * fence);

Arguments

fence the fence to signal

Description

Signal completion for software callbacks on a fence, this will unblock fence_wait calls and run all the
callbacks added with fence_add_callback. Can be called multiple times, but since a fence can only
go from unsignaled to signaled state, it will only be effective the first time.

Unlike fence_signal, this function must be called with fence->lock held.

Device drivers infrastructure

400

Name
fence_signal — signal completion of a fence

Synopsis

int fence_signal (struct fence * fence);

Arguments

fence the fence to signal

Description

Signal completion for software callbacks on a fence, this will unblock fence_wait calls and run all the
callbacks added with fence_add_callback. Can be called multiple times, but since a fence can only
go from unsignaled to signaled state, it will only be effective the first time.

Device drivers infrastructure

401

Name
fence_wait_timeout — sleep until the fence gets signaled or until timeout elapses

Synopsis

signed long fence_wait_timeout (struct fence * fence, bool intr, signed
long timeout);

Arguments

fence [in] the fence to wait on

intr [in] if true, do an interruptible wait

timeout [in] timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT

Description

Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the remaining timeout in jiffies on
success. Other error values may be returned on custom implementations.

Performs a synchronous wait on this fence. It is assumed the caller directly or indirectly (buf-mgr between
reservation and committing) holds a reference to the fence, otherwise the fence might be freed before
return, resulting in undefined behavior.

Device drivers infrastructure

402

Name
fence_enable_sw_signaling — enable signaling on fence

Synopsis

void fence_enable_sw_signaling (struct fence * fence);

Arguments

fence [in] the fence to enable

Description

this will request for sw signaling to be enabled, to make the fence complete as soon as possible

Device drivers infrastructure

403

Name
fence_add_callback — add a callback to be called when the fence is signaled

Synopsis

int fence_add_callback (struct fence * fence, struct fence_cb * cb,
fence_func_t func);

Arguments

fence [in] the fence to wait on

cb [in] the callback to register

func [in] the function to call

Description

cb will be initialized by fence_add_callback, no initialization by the caller is required. Any number of
callbacks can be registered to a fence, but a callback can only be registered to one fence at a time.

Note that the callback can be called from an atomic context. If fence is already signaled, this function will
return -ENOENT (and *not* call the callback)

Add a software callback to the fence. Same restrictions apply to refcount as it does to fence_wait, however
the caller doesn't need to

keep a refcount to fence afterwards

when software access is enabled, the creator of the fence is required to keep the fence alive until after it
signals with fence_signal. The callback itself can be called from irq context.

Device drivers infrastructure

404

Name
fence_remove_callback — remove a callback from the signaling list

Synopsis

bool fence_remove_callback (struct fence * fence, struct fence_cb * cb);

Arguments

fence [in] the fence to wait on

cb [in] the callback to remove

Description

Remove a previously queued callback from the fence. This function returns true if the callback is success-
fully removed, or false if the fence has already been signaled.

WARNING: Cancelling a callback should only be done if you really know what you're doing, since
deadlocks and race conditions could occur all too easily. For this reason, it should only ever be done on
hardware lockup recovery, with a reference held to the fence.

Device drivers infrastructure

405

Name
fence_default_wait — default sleep until the fence gets signaled or until timeout elapses

Synopsis

signed long fence_default_wait (struct fence * fence, bool intr, signed
long timeout);

Arguments

fence [in] the fence to wait on

intr [in] if true, do an interruptible wait

timeout [in] timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT

Description

Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the remaining timeout in jiffies on
success.

Device drivers infrastructure

406

Name
fence_init — Initialize a custom fence.

Synopsis

void fence_init (struct fence * fence, const struct fence_ops * ops,
spinlock_t * lock, unsigned context, unsigned seqno);

Arguments

fence [in] the fence to initialize

ops [in] the fence_ops for operations on this fence

lock [in] the irqsafe spinlock to use for locking this fence

context [in] the execution context this fence is run on

seqno [in] a linear increasing sequence number for this context

Description

Initializes an allocated fence, the caller doesn't have to keep its refcount after committing with this fence,
but it will need to hold a refcount again if fence_ops.enable_signaling gets called. This can be used for
other implementing other types of fence.

context and seqno are used for easy comparison between fences, allowing to check which fence is later
by simply using fence_later.

Device drivers infrastructure

407

Name
/usr/src/linux-4.1.27-24//drivers/dma-buf/seqno-fence.c — Document generation inconsistency

Oops

Warning

The template for this document tried to insert the structured comment from the file /usr/src/
linux-4.1.27-24//drivers/dma-buf/seqno-fence.c at this point, but none was
found. This dummy section is inserted to allow generation to continue.

Device drivers infrastructure

408

Name
struct fence — software synchronization primitive

Synopsis

struct fence {
 struct kref refcount;
 const struct fence_ops * ops;
 struct rcu_head rcu;
 struct list_head cb_list;
 spinlock_t * lock;
 unsigned context;
 unsigned seqno;
 unsigned long flags;
 ktime_t timestamp;
 int status;
};

Members

refcount refcount for this fence

ops fence_ops associated with this fence

rcu used for releasing fence with kfree_rcu

cb_list list of all callbacks to call

lock spin_lock_irqsave used for locking

context execution context this fence belongs to, returned by fence_context_alloc

seqno the sequence number of this fence inside the execution context, can be compared to decide
which fence would be signaled later.

flags A mask of FENCE_FLAG_* defined below

timestamp Timestamp when the fence was signaled.

status Optional, only valid if < 0, must be set before calling fence_signal, indicates that the fence
has completed with an error.

Description

the flags member must be manipulated and read using the appropriate atomic ops (bit_*), so taking the
spinlock will not be needed most of the time.

FENCE_FLAG_SIGNALED_BIT - fence is already signaled FENCE_FLAG_ENABLE_SIGNAL_BIT
- enable_signaling might have been called* FENCE_FLAG_USER_BITS - start of the unused bits, can
be used by the implementer of the fence for its own purposes. Can be used in different ways by different
fence implementers, so do not rely on this.

*) Since atomic bitops are used, this is not guaranteed to be the case. Particularly, if the bit
was set, but fence_signal was called right before this bit was set, it would have been able to

Device drivers infrastructure

409

set the FENCE_FLAG_SIGNALED_BIT, before enable_signaling was called. Adding a check for
FENCE_FLAG_SIGNALED_BIT after setting FENCE_FLAG_ENABLE_SIGNAL_BIT closes this
race, and makes sure that after fence_signal was called, any enable_signaling call will have either been
completed, or never called at all.

Device drivers infrastructure

410

Name
struct fence_cb — callback for fence_add_callback

Synopsis

struct fence_cb {
 struct list_head node;
 fence_func_t func;
};

Members

node used by fence_add_callback to append this struct to fence::cb_list

func fence_func_t to call

Description

This struct will be initialized by fence_add_callback, additional data can be passed along by embedding
fence_cb in another struct.

Device drivers infrastructure

411

Name
struct fence_ops — operations implemented for fence

Synopsis

struct fence_ops {
 const char * (* get_driver_name) (struct fence *fence);
 const char * (* get_timeline_name) (struct fence *fence);
 bool (* enable_signaling) (struct fence *fence);
 bool (* signaled) (struct fence *fence);
 signed long (* wait) (struct fence *fence, bool intr, signed long timeout);
 void (* release) (struct fence *fence);
 int (* fill_driver_data) (struct fence *fence, void *data, int size);
 void (* fence_value_str) (struct fence *fence, char *str, int size);
 void (* timeline_value_str) (struct fence *fence, char *str, int size);
};

Members

get_driver_name returns the driver name.

get_timeline_name return the name of the context this fence belongs to.

enable_signaling enable software signaling of fence.

signaled [optional] peek whether the fence is signaled, can be null.

wait custom wait implementation, or fence_default_wait.

release [optional] called on destruction of fence, can be null

fill_driver_data [optional] callback to fill in free-form debug info Returns amount of bytes
filled, or -errno.

fence_value_str [optional] fills in the value of the fence as a string

timeline_value_str [optional] fills in the current value of the timeline as a string

Notes on enable_signaling

For fence implementations that have the capability for hw->hw signaling, they can implement this op to
enable the necessary irqs, or insert commands into cmdstream, etc. This is called in the first wait or
add_callback path to let the fence implementation know that there is another driver waiting on the
signal (ie. hw->sw case).

This function can be called called from atomic context, but not from irq context, so normal spinlocks can
be used.

A return value of false indicates the fence already passed, or some failure occurred that made it impossible
to enable signaling. True indicates successful enabling.

fence->status may be set in enable_signaling, but only when false is returned.

Calling fence_signal before enable_signaling is called allows for a tiny race window in which
enable_signaling is called during, before, or after fence_signal. To fight this, it is recommended that before

Device drivers infrastructure

412

enable_signaling returns true an extra reference is taken on the fence, to be released when the fence is
signaled. This will mean fence_signal will still be called twice, but the second time will be a noop since
it was already signaled.

Notes on signaled

May set fence->status if returning true.

Notes on wait

Must not be NULL, set to fence_default_wait for default implementation. the fence_default_wait imple-
mentation should work for any fence, as long as enable_signaling works correctly.

Must return -ERESTARTSYS if the wait is intr = true and the wait was interrupted, and remaining jiffies
if fence has signaled, or 0 if wait timed out. Can also return other error values on custom implementations,
which should be treated as if the fence is signaled. For example a hardware lockup could be reported like
that.

Notes on release

Can be NULL, this function allows additional commands to run on destruction of the fence. Can be called
from irq context. If pointer is set to NULL, kfree will get called instead.

Device drivers infrastructure

413

Name
fence_get — increases refcount of the fence

Synopsis

struct fence * fence_get (struct fence * fence);

Arguments

fence [in] fence to increase refcount of

Description

Returns the same fence, with refcount increased by 1.

Device drivers infrastructure

414

Name
fence_get_rcu — get a fence from a reservation_object_list with rcu read lock

Synopsis

struct fence * fence_get_rcu (struct fence * fence);

Arguments

fence [in] fence to increase refcount of

Description

Function returns NULL if no refcount could be obtained, or the fence.

Device drivers infrastructure

415

Name
fence_put — decreases refcount of the fence

Synopsis

void fence_put (struct fence * fence);

Arguments

fence [in] fence to reduce refcount of

Device drivers infrastructure

416

Name
fence_is_signaled_locked — Return an indication if the fence is signaled yet.

Synopsis

bool fence_is_signaled_locked (struct fence * fence);

Arguments

fence [in] the fence to check

Description

Returns true if the fence was already signaled, false if not. Since this function doesn't enable signaling,
it is not guaranteed to ever return true if fence_add_callback, fence_wait or fence_enable_sw_signaling
haven't been called before.

This function requires fence->lock to be held.

Device drivers infrastructure

417

Name
fence_is_signaled — Return an indication if the fence is signaled yet.

Synopsis

bool fence_is_signaled (struct fence * fence);

Arguments

fence [in] the fence to check

Description

Returns true if the fence was already signaled, false if not. Since this function doesn't enable signaling,
it is not guaranteed to ever return true if fence_add_callback, fence_wait or fence_enable_sw_signaling
haven't been called before.

It's recommended for seqno fences to call fence_signal when the operation is complete, it makes it possible
to prevent issues from wraparound between time of issue and time of use by checking the return value of
this function before calling hardware-specific wait instructions.

Device drivers infrastructure

418

Name
fence_later — return the chronologically later fence

Synopsis

struct fence * fence_later (struct fence * f1, struct fence * f2);

Arguments

f1 [in] the first fence from the same context

f2 [in] the second fence from the same context

Description

Returns NULL if both fences are signaled, otherwise the fence that would be signaled last. Both fences
must be from the same context, since a seqno is not re-used across contexts.

Device drivers infrastructure

419

Name
fence_wait — sleep until the fence gets signaled

Synopsis

signed long fence_wait (struct fence * fence, bool intr);

Arguments

fence [in] the fence to wait on

intr [in] if true, do an interruptible wait

Description

This function will return -ERESTARTSYS if interrupted by a signal, or 0 if the fence was signaled. Other
error values may be returned on custom implementations.

Performs a synchronous wait on this fence. It is assumed the caller directly or indirectly holds a reference
to the fence, otherwise the fence might be freed before return, resulting in undefined behavior.

Device drivers infrastructure

420

Name
to_seqno_fence — cast a fence to a seqno_fence

Synopsis

struct seqno_fence * to_seqno_fence (struct fence * fence);

Arguments

fence fence to cast to a seqno_fence

Description

Returns NULL if the fence is not a seqno_fence, or the seqno_fence otherwise.

Device drivers infrastructure

421

Name
seqno_fence_init — initialize a seqno fence

Synopsis

void seqno_fence_init (struct seqno_fence * fence, spinlock_t * lock,
struct dma_buf * sync_buf, uint32_t context, uint32_t seqno_ofs,
uint32_t seqno, enum seqno_fence_condition cond, const struct fence_ops
* ops);

Arguments

fence seqno_fence to initialize

lock pointer to spinlock to use for fence

sync_buf buffer containing the memory location to signal on

context the execution context this fence is a part of

seqno_ofs the offset within sync_buf

seqno the sequence # to signal on

cond fence wait condition

ops the fence_ops for operations on this seqno fence

Description

This function initializes a struct seqno_fence with passed parameters, and takes a reference on sync_buf
which is released on fence destruction.

A seqno_fence is a dma_fence which can complete in software when enable_signaling is called, but it also
completes when (s32)((sync_buf)[seqno_ofs] - seqno) >= 0 is true

The seqno_fence will take a refcount on the sync_buf until it's destroyed, but actual lifetime of sync_buf
may be longer if one of the callers take a reference to it.

Certain hardware have instructions to insert this type of wait condition in the command stream, so no
intervention from software would be needed. This type of fence can be destroyed before completed, how-
ever a reference on the sync_buf dma-buf can be taken. It is encouraged to re-use the same dma-buf for
sync_buf, since mapping or unmapping the sync_buf to the device's vm can be expensive.

It is recommended for creators of seqno_fence to call fence_signal before destruction. This will prevent
possible issues from wraparound at time of issue vs time of check, since users can check fence_is_signaled
before submitting instructions for the hardware to wait on the fence. However, when ops.enable_signaling
is not called, it doesn't have to be done as soon as possible, just before there's any real danger of seqno
wraparound.

Device drivers infrastructure

422

Name
/usr/src/linux-4.1.27-24//drivers/dma-buf/reservation.c — Document generation inconsistency

Oops

Warning

The template for this document tried to insert the structured comment from the file /usr/src/
linux-4.1.27-24//drivers/dma-buf/reservation.c at this point, but none was
found. This dummy section is inserted to allow generation to continue.

Device drivers infrastructure

423

Name
/usr/src/linux-4.1.27-24//include/linux/reservation.h — Document generation inconsistency

Oops

Warning

The template for this document tried to insert the structured comment from the file /usr/
src/linux-4.1.27-24//include/linux/reservation.h at this point, but none
was found. This dummy section is inserted to allow generation to continue.

Device drivers infrastructure

424

Name
dma_alloc_from_coherent — try to allocate memory from the per-device coherent area

Synopsis

int dma_alloc_from_coherent (struct device * dev, ssize_t size,
dma_addr_t * dma_handle, void ** ret);

Arguments

dev device from which we allocate memory

size size of requested memory area

dma_handle This will be filled with the correct dma handle

ret This pointer will be filled with the virtual address to allocated area.

Description

This function should be only called from per-arch dma_alloc_coherent to support allocation from
per-device coherent memory pools.

Returns 0 if dma_alloc_coherent should continue with allocating from generic memory areas, or !0 if
dma_alloc_coherent should return ret.

Device drivers infrastructure

425

Name
dma_release_from_coherent — try to free the memory allocated from per-device coherent memory pool

Synopsis

int dma_release_from_coherent (struct device * dev, int order, void *
vaddr);

Arguments

dev device from which the memory was allocated

order the order of pages allocated

vaddr virtual address of allocated pages

Description

This checks whether the memory was allocated from the per-device coherent memory pool and if so,
releases that memory.

Returns 1 if we correctly released the memory, or 0 if dma_release_coherent should proceed with
releasing memory from generic pools.

Device drivers infrastructure

426

Name
dma_mmap_from_coherent — try to mmap the memory allocated from per-device coherent memory pool
to userspace

Synopsis

int dma_mmap_from_coherent (struct device * dev, struct vm_area_struct
* vma, void * vaddr, size_t size, int * ret);

Arguments

dev device from which the memory was allocated

vma vm_area for the userspace memory

vaddr cpu address returned by dma_alloc_from_coherent

size size of the memory buffer allocated by dma_alloc_from_coherent

ret result from remap_pfn_range

Description

This checks whether the memory was allocated from the per-device coherent memory pool and if so, maps
that memory to the provided vma.

Returns 1 if we correctly mapped the memory, or 0 if the caller should proceed with mapping memory
from generic pools.

Device drivers infrastructure

427

Name
dmam_alloc_coherent — Managed dma_alloc_coherent

Synopsis

void * dmam_alloc_coherent (struct device * dev, size_t size, dma_addr_t
* dma_handle, gfp_t gfp);

Arguments

dev Device to allocate coherent memory for

size Size of allocation

dma_handle Out argument for allocated DMA handle

gfp Allocation flags

Description

Managed dma_alloc_coherent. Memory allocated using this function will be automatically released
on driver detach.

RETURNS

Pointer to allocated memory on success, NULL on failure.

Device drivers infrastructure

428

Name
dmam_free_coherent — Managed dma_free_coherent

Synopsis

void dmam_free_coherent (struct device * dev, size_t size, void * vaddr,
dma_addr_t dma_handle);

Arguments

dev Device to free coherent memory for

size Size of allocation

vaddr Virtual address of the memory to free

dma_handle DMA handle of the memory to free

Description

Managed dma_free_coherent.

Device drivers infrastructure

429

Name
dmam_alloc_noncoherent — Managed dma_alloc_non_coherent

Synopsis

void * dmam_alloc_noncoherent (struct device * dev, size_t size,
dma_addr_t * dma_handle, gfp_t gfp);

Arguments

dev Device to allocate non_coherent memory for

size Size of allocation

dma_handle Out argument for allocated DMA handle

gfp Allocation flags

Description

Managed dma_alloc_non_coherent. Memory allocated using this function will be automatically
released on driver detach.

RETURNS

Pointer to allocated memory on success, NULL on failure.

Device drivers infrastructure

430

Name
dmam_free_noncoherent — Managed dma_free_noncoherent

Synopsis

void dmam_free_noncoherent (struct device * dev, size_t size, void *
vaddr, dma_addr_t dma_handle);

Arguments

dev Device to free noncoherent memory for

size Size of allocation

vaddr Virtual address of the memory to free

dma_handle DMA handle of the memory to free

Description

Managed dma_free_noncoherent.

Device drivers infrastructure

431

Name
dmam_declare_coherent_memory — Managed dma_declare_coherent_memory

Synopsis

int dmam_declare_coherent_memory (struct device * dev, phys_addr_t
phys_addr, dma_addr_t device_addr, size_t size, int flags);

Arguments

dev Device to declare coherent memory for

phys_addr Physical address of coherent memory to be declared

device_addr Device address of coherent memory to be declared

size Size of coherent memory to be declared

flags Flags

Description

Managed dma_declare_coherent_memory.

RETURNS

0 on success, -errno on failure.

Device drivers infrastructure

432

Name
dmam_release_declared_memory — Managed dma_release_declared_memory.

Synopsis

void dmam_release_declared_memory (struct device * dev);

Arguments

dev Device to release declared coherent memory for

Description

Managed dmam_release_declared_memory.

Device Drivers Power Management

Device drivers infrastructure

433

Name
dpm_resume_start — Execute “noirq” and “early” device callbacks.

Synopsis

void dpm_resume_start (pm_message_t state);

Arguments

state PM transition of the system being carried out.

Device drivers infrastructure

434

Name
dpm_resume_end — Execute “resume” callbacks and complete system transition.

Synopsis

void dpm_resume_end (pm_message_t state);

Arguments

state PM transition of the system being carried out.

Description

Execute “resume” callbacks for all devices and complete the PM transition of the system.

Device drivers infrastructure

435

Name
dpm_suspend_end — Execute “late” and “noirq” device suspend callbacks.

Synopsis

int dpm_suspend_end (pm_message_t state);

Arguments

state PM transition of the system being carried out.

Device drivers infrastructure

436

Name
dpm_suspend_start — Prepare devices for PM transition and suspend them.

Synopsis

int dpm_suspend_start (pm_message_t state);

Arguments

state PM transition of the system being carried out.

Description

Prepare all non-sysdev devices for system PM transition and execute “suspend” callbacks for them.

Device drivers infrastructure

437

Name
device_pm_wait_for_dev — Wait for suspend/resume of a device to complete.

Synopsis

int device_pm_wait_for_dev (struct device * subordinate, struct device
* dev);

Arguments

subordinate Device that needs to wait for dev.

dev Device to wait for.

Device drivers infrastructure

438

Name
dpm_for_each_dev — device iterator.

Synopsis

void dpm_for_each_dev (void * data, void (*fn) (struct device *, void
*));

Arguments

data data for the callback.

fn function to be called for each device.

Description

Iterate over devices in dpm_list, and call fn for each device, passing it data.

Device Drivers ACPI Support

Device drivers infrastructure

439

Name
acpi_match_device — Match a struct device against a given list of ACPI IDs

Synopsis

const struct acpi_device_id * acpi_match_device (const struct
acpi_device_id * ids, const struct device * dev);

Arguments

ids Array of struct acpi_device_id object to match against.

dev The device structure to match.

Description

Check if dev has a valid ACPI handle and if there is a struct acpi_device object for that handle and use
that object to match against a given list of device IDs.

Return a pointer to the first matching ID on success or NULL on failure.

Device drivers infrastructure

440

Name
acpi_bus_register_driver — register a driver with the ACPI bus

Synopsis

int acpi_bus_register_driver (struct acpi_driver * driver);

Arguments

driver driver being registered

Description

Registers a driver with the ACPI bus. Searches the namespace for all devices that match the driver's criteria
and binds. Returns zero for success or a negative error status for failure.

Device drivers infrastructure

441

Name
acpi_bus_unregister_driver — unregisters a driver with the ACPI bus

Synopsis

void acpi_bus_unregister_driver (struct acpi_driver * driver);

Arguments

driver driver to unregister

Description

Unregisters a driver with the ACPI bus. Searches the namespace for all devices that match the driver's
criteria and unbinds.

Device drivers infrastructure

442

Name
acpi_bus_scan — Add ACPI device node objects in a given namespace scope.

Synopsis

int acpi_bus_scan (acpi_handle handle);

Arguments

handle Root of the namespace scope to scan.

Description

Scan a given ACPI tree (probably recently hot-plugged) and create and add found devices.

If no devices were found, -ENODEV is returned, but it does not mean that there has been a real error.
There just have been no suitable ACPI objects in the table trunk from which the kernel could create a
device and add an appropriate driver.

Must be called under acpi_scan_lock.

Device drivers infrastructure

443

Name
acpi_bus_trim — Detach scan handlers and drivers from ACPI device objects.

Synopsis

void acpi_bus_trim (struct acpi_device * adev);

Arguments

adev Root of the ACPI namespace scope to walk.

Description

Must be called under acpi_scan_lock.

Device drivers infrastructure

444

Name
create_pnp_modalias — Create hid/cid(s) string for modalias and uevent

Synopsis

int create_pnp_modalias (struct acpi_device * acpi_dev, char * modalias,
int size);

Arguments

acpi_dev ACPI device object.

modalias Buffer to print into.

size Size of the buffer.

Description

Creates hid/cid(s) string needed for modalias and uevent e.g. on a device with hid:IBM0001 and
cid:ACPI0001 you get:

modalias

"acpi:IBM0001:ACPI0001"

Return

0: no _HID and no _CID -EINVAL: output error -ENOMEM: output is truncated

Device drivers infrastructure

445

Name
create_of_modalias — Creates DT compatible string for modalias and uevent

Synopsis

int create_of_modalias (struct acpi_device * acpi_dev, char * modalias,
int size);

Arguments

acpi_dev ACPI device object.

modalias Buffer to print into.

size Size of the buffer.

Expose DT compatible modalias as of

NnameTCcompatible. This function should only be called for devices having PRP0001 in their list of
ACPI/PNP IDs.

Device drivers infrastructure

446

Name
acpi_of_match_device — Match device object using the “compatible” property.

Synopsis

bool acpi_of_match_device (struct acpi_device * adev, const struct
of_device_id * of_match_table);

Arguments

adev ACPI device object to match.

of_match_table List of device IDs to match against.

Description

If dev has an ACPI companion which has the special PRP0001 device ID in its list of identifiers and a
_DSD object with the “compatible” property, use that property to match against the given list of identifiers.

Device drivers infrastructure

447

Name
acpi_scan_drop_device — Drop an ACPI device object.

Synopsis

void acpi_scan_drop_device (acpi_handle handle, void * context);

Arguments

handle Handle of an ACPI namespace node, not used.

context Address of the ACPI device object to drop.

Description

This is invoked by acpi_ns_delete_node during the removal of the ACPI namespace node the de-
vice object pointed to by context is attached to.

The unregistration is carried out asynchronously to avoid running acpi_device_del under the
ACPICA's namespace mutex and the list is used to ensure the correct ordering (the device objects must be
unregistered in the same order in which the corresponding namespace nodes are deleted).

Device drivers PnP support

Device drivers infrastructure

448

Name
pnp_register_protocol — adds a pnp protocol to the pnp layer

Synopsis

int pnp_register_protocol (struct pnp_protocol * protocol);

Arguments

protocol pointer to the corresponding pnp_protocol structure

Ex protocols

ISAPNP, PNPBIOS, etc

Device drivers infrastructure

449

Name
pnp_unregister_protocol — removes a pnp protocol from the pnp layer

Synopsis

void pnp_unregister_protocol (struct pnp_protocol * protocol);

Arguments

protocol pointer to the corresponding pnp_protocol structure

Device drivers infrastructure

450

Name
pnp_request_card_device — Searches for a PnP device under the specified card

Synopsis

struct pnp_dev * pnp_request_card_device (struct pnp_card_link * clink,
const char * id, struct pnp_dev * from);

Arguments

clink pointer to the card link, cannot be NULL

id pointer to a PnP ID structure that explains the rules for finding the device

from Starting place to search from. If NULL it will start from the beginning.

Device drivers infrastructure

451

Name
pnp_release_card_device — call this when the driver no longer needs the device

Synopsis

void pnp_release_card_device (struct pnp_dev * dev);

Arguments

dev pointer to the PnP device structure

Device drivers infrastructure

452

Name
pnp_register_card_driver — registers a PnP card driver with the PnP Layer

Synopsis

int pnp_register_card_driver (struct pnp_card_driver * drv);

Arguments

drv pointer to the driver to register

Device drivers infrastructure

453

Name
pnp_unregister_card_driver — unregisters a PnP card driver from the PnP Layer

Synopsis

void pnp_unregister_card_driver (struct pnp_card_driver * drv);

Arguments

drv pointer to the driver to unregister

Device drivers infrastructure

454

Name
pnp_add_id — adds an EISA id to the specified device

Synopsis

struct pnp_id * pnp_add_id (struct pnp_dev * dev, const char * id);

Arguments

dev pointer to the desired device

id pointer to an EISA id string

Device drivers infrastructure

455

Name
pnp_start_dev — low-level start of the PnP device

Synopsis

int pnp_start_dev (struct pnp_dev * dev);

Arguments

dev pointer to the desired device

Description

assumes that resources have already been allocated

Device drivers infrastructure

456

Name
pnp_stop_dev — low-level disable of the PnP device

Synopsis

int pnp_stop_dev (struct pnp_dev * dev);

Arguments

dev pointer to the desired device

Description

does not free resources

Device drivers infrastructure

457

Name
pnp_activate_dev — activates a PnP device for use

Synopsis

int pnp_activate_dev (struct pnp_dev * dev);

Arguments

dev pointer to the desired device

Description

does not validate or set resources so be careful.

Device drivers infrastructure

458

Name
pnp_disable_dev — disables device

Synopsis

int pnp_disable_dev (struct pnp_dev * dev);

Arguments

dev pointer to the desired device

Description

inform the correct pnp protocol so that resources can be used by other devices

Device drivers infrastructure

459

Name
pnp_is_active — Determines if a device is active based on its current resources

Synopsis

int pnp_is_active (struct pnp_dev * dev);

Arguments

dev pointer to the desired PnP device

Userspace IO devices

Device drivers infrastructure

460

Name
uio_event_notify — trigger an interrupt event

Synopsis

void uio_event_notify (struct uio_info * info);

Arguments

info UIO device capabilities

Device drivers infrastructure

461

Name
__uio_register_device — register a new userspace IO device

Synopsis

int __uio_register_device (struct module * owner, struct device * parent,
struct uio_info * info);

Arguments

owner module that creates the new device

parent parent device

info UIO device capabilities

Description

returns zero on success or a negative error code.

Device drivers infrastructure

462

Name
uio_unregister_device — unregister a industrial IO device

Synopsis

void uio_unregister_device (struct uio_info * info);

Arguments

info UIO device capabilities

Device drivers infrastructure

463

Name
struct uio_mem — description of a UIO memory region

Synopsis

struct uio_mem {
 const char * name;
 phys_addr_t addr;
 resource_size_t size;
 int memtype;
 void __iomem * internal_addr;
 struct uio_map * map;
};

Members

name name of the memory region for identification

addr address of the device's memory (phys_addr is used since addr can be logical, virtu-
al, or physical & phys_addr_t should always be large enough to handle any of the
address types)

size size of IO

memtype type of memory addr points to

internal_addr ioremap-ped version of addr, for driver internal use

map for use by the UIO core only.

Device drivers infrastructure

464

Name
struct uio_port — description of a UIO port region

Synopsis

struct uio_port {
 const char * name;
 unsigned long start;
 unsigned long size;
 int porttype;
 struct uio_portio * portio;
};

Members

name name of the port region for identification

start start of port region

size size of port region

porttype type of port (see UIO_PORT_* below)

portio for use by the UIO core only.

Device drivers infrastructure

465

Name
struct uio_info — UIO device capabilities

Synopsis

struct uio_info {
 struct uio_device * uio_dev;
 const char * name;
 const char * version;
 struct uio_mem mem[MAX_UIO_MAPS];
 struct uio_port port[MAX_UIO_PORT_REGIONS];
 long irq;
 unsigned long irq_flags;
 void * priv;
 irqreturn_t (* handler) (int irq, struct uio_info *dev_info);
 int (* mmap) (struct uio_info *info, struct vm_area_struct *vma);
 int (* open) (struct uio_info *info, struct inode *inode);
 int (* release) (struct uio_info *info, struct inode *inode);
 int (* irqcontrol) (struct uio_info *info, s32 irq_on);
};

Members

uio_dev the UIO device this info belongs to

name device name

version device driver version

mem[MAX_UIO_MAPS] list of mappable memory regions, size==0 for end of list

port[MAX_UIO_PORT_REGIONS] list of port regions, size==0 for end of list

irq interrupt number or UIO_IRQ_CUSTOM

irq_flags flags for request_irq

priv optional private data

handler the device's irq handler

mmap mmap operation for this uio device

open open operation for this uio device

release release operation for this uio device

irqcontrol disable/enable irqs when 0/1 is written to /dev/uioX

466

Chapter 3. Parallel Port Devices

Parallel Port Devices

467

Name
parport_yield — relinquish a parallel port temporarily

Synopsis
int parport_yield (struct pardevice * dev);

Arguments
dev a device on the parallel port

Description
This function relinquishes the port if it would be helpful to other drivers to do so. Afterwards it tries to
reclaim the port using parport_claim, and the return value is the same as for parport_claim. If
it fails, the port is left unclaimed and it is the driver's responsibility to reclaim the port.

The parport_yield and parport_yield_blocking functions are for marking points in the dri-
ver at which other drivers may claim the port and use their devices. Yielding the port is similar to releasing
it and reclaiming it, but is more efficient because no action is taken if there are no other devices needing
the port. In fact, nothing is done even if there are other devices waiting but the current device is still within
its “timeslice”. The default timeslice is half a second, but it can be adjusted via the /proc interface.

Parallel Port Devices

468

Name
parport_yield_blocking — relinquish a parallel port temporarily

Synopsis
int parport_yield_blocking (struct pardevice * dev);

Arguments
dev a device on the parallel port

Description
This function relinquishes the port if it would be helpful to other drivers to do so. Afterwards it tries
to reclaim the port using parport_claim_or_block, and the return value is the same as for
parport_claim_or_block.

Parallel Port Devices

469

Name
parport_wait_event — wait for an event on a parallel port

Synopsis
int parport_wait_event (struct parport * port, signed long timeout);

Arguments
port port to wait on

timeout time to wait (in jiffies)

Description
This function waits for up to timeout jiffies for an interrupt to occur on a parallel port. If the port timeout
is set to zero, it returns immediately.

If an interrupt occurs before the timeout period elapses, this function returns zero immediately. If it times
out, it returns one. An error code less than zero indicates an error (most likely a pending signal), and the
calling code should finish what it's doing as soon as it can.

Parallel Port Devices

470

Name
parport_wait_peripheral — wait for status lines to change in 35ms

Synopsis
int parport_wait_peripheral (struct parport * port, unsigned char mask,
unsigned char result);

Arguments
port port to watch

mask status lines to watch

result desired values of chosen status lines

Description
This function waits until the masked status lines have the desired values, or until 35ms have elapsed (see
IEEE 1284-1994 page 24 to 25 for why this value in particular is hardcoded). The mask and result
parameters are bitmasks, with the bits defined by the constants in parport.h: PARPORT_STATUS_BUSY,
and so on.

The port is polled quickly to start off with, in anticipation of a fast response from the peripheral. This
fast polling time is configurable (using /proc), and defaults to 500usec. If the timeout for this port (see
parport_set_timeout) is zero, the fast polling time is 35ms, and this function does not call sched-
ule.

If the timeout for this port is non-zero, after the fast polling fails it uses parport_wait_event to wait
for up to 10ms, waking up if an interrupt occurs.

Parallel Port Devices

471

Name
parport_negotiate — negotiate an IEEE 1284 mode

Synopsis
int parport_negotiate (struct parport * port, int mode);

Arguments
port port to use

mode mode to negotiate to

Description
Use this to negotiate to a particular IEEE 1284 transfer mode. The mode parameter should be one of the
constants in parport.h starting IEEE1284_MODE_xxx.

The return value is 0 if the peripheral has accepted the negotiation to the mode specified, -1 if the peripheral
is not IEEE 1284 compliant (or not present), or 1 if the peripheral has rejected the negotiation.

Parallel Port Devices

472

Name
parport_write — write a block of data to a parallel port

Synopsis
ssize_t parport_write (struct parport * port, const void * buffer,
size_t len);

Arguments
port port to write to

buffer data buffer (in kernel space)

len number of bytes of data to transfer

Description
This will write up to len bytes of buffer to the port specified, using the IEEE 1284 transfer mode most
recently negotiated to (using parport_negotiate), as long as that mode supports forward transfers
(host to peripheral).

It is the caller's responsibility to ensure that the first len bytes of buffer are valid.

This function returns the number of bytes transferred (if zero or positive), or else an error code.

Parallel Port Devices

473

Name
parport_read — read a block of data from a parallel port

Synopsis
ssize_t parport_read (struct parport * port, void * buffer, size_t len);

Arguments
port port to read from

buffer data buffer (in kernel space)

len number of bytes of data to transfer

Description
This will read up to len bytes of buffer to the port specified, using the IEEE 1284 transfer mode most
recently negotiated to (using parport_negotiate), as long as that mode supports reverse transfers
(peripheral to host).

It is the caller's responsibility to ensure that the first len bytes of buffer are available to write to.

This function returns the number of bytes transferred (if zero or positive), or else an error code.

Parallel Port Devices

474

Name
parport_set_timeout — set the inactivity timeout for a device

Synopsis
long parport_set_timeout (struct pardevice * dev, long inactivity);

Arguments
dev device on a port

inactivity inactivity timeout (in jiffies)

Description
This sets the inactivity timeout for a particular device on a port. This affects functions like
parport_wait_peripheral. The special value 0 means not to call schedule while dealing with
this device.

The return value is the previous inactivity timeout.

Any callers of parport_wait_event for this device are woken up.

Parallel Port Devices

475

Name
parport_register_driver — register a parallel port device driver

Synopsis
int parport_register_driver (struct parport_driver * drv);

Arguments
drv structure describing the driver

Description
This can be called by a parallel port device driver in order to receive notifications about ports being found
in the system, as well as ports no longer available.

The drv structure is allocated by the caller and must not be deallocated until after calling
parport_unregister_driver.

The driver's attach function may block. The port that attach is given will be valid for the duration of
the callback, but if the driver wants to take a copy of the pointer it must call parport_get_port to do
so. Calling parport_register_device on that port will do this for you.

The driver's detach function may block. The port that detach is given will be valid for the duration
of the callback, but if the driver wants to take a copy of the pointer it must call parport_get_port
to do so.

Returns 0 on success. Currently it always succeeds.

Parallel Port Devices

476

Name
parport_unregister_driver — deregister a parallel port device driver

Synopsis
void parport_unregister_driver (struct parport_driver * drv);

Arguments
drv structure describing the driver that was given to parport_register_driver

Description
This should be called by a parallel port device driver that has registered itself using
parport_register_driver when it is about to be unloaded.

When it returns, the driver's attach routine will no longer be called, and for each port that attach was
called for, the detach routine will have been called.

All the driver's attach and detach calls are guaranteed to have finished by the time this function
returns.

Parallel Port Devices

477

Name
parport_get_port — increment a port's reference count

Synopsis
struct parport * parport_get_port (struct parport * port);

Arguments
port the port

Description
This ensures that a struct parport pointer remains valid until the matching parport_put_port call.

Parallel Port Devices

478

Name
parport_put_port — decrement a port's reference count

Synopsis
void parport_put_port (struct parport * port);

Arguments
port the port

Description
This should be called once for each call to parport_get_port, once the port is no longer needed.

Parallel Port Devices

479

Name
parport_register_port — register a parallel port

Synopsis
struct parport * parport_register_port (unsigned long base, int irq,
int dma, struct parport_operations * ops);

Arguments
base base I/O address

irq IRQ line

dma DMA channel

ops pointer to the port driver's port operations structure

Description
When a parallel port (lowlevel) driver finds a port that should be made available to parallel port device
drivers, it should call parport_register_port. The base, irq, and dma parameters are for the
convenience of port drivers, and for ports where they aren't meaningful needn't be set to anything special.
They can be altered afterwards by adjusting the relevant members of the parport structure that is returned
and represents the port. They should not be tampered with after calling parport_announce_port, however.

If there are parallel port device drivers in the system that have registered themselves using
parport_register_driver, they are not told about the port at this time; that is done by
parport_announce_port.

The ops structure is allocated by the caller, and must not be deallocated before calling
parport_remove_port.

If there is no memory to allocate a new parport structure, this function will return NULL.

Parallel Port Devices

480

Name
parport_announce_port — tell device drivers about a parallel port

Synopsis
void parport_announce_port (struct parport * port);

Arguments
port parallel port to announce

Description
After a port driver has registered a parallel port with parport_register_port, and performed any necessary
initialisation or adjustments, it should call parport_announce_port in order to notify all device
drivers that have called parport_register_driver. Their attach functions will be called, with
port as the parameter.

Parallel Port Devices

481

Name
parport_remove_port — deregister a parallel port

Synopsis
void parport_remove_port (struct parport * port);

Arguments
port parallel port to deregister

Description
When a parallel port driver is forcibly unloaded, or a parallel port becomes inaccessible, the port driver
must call this function in order to deal with device drivers that still want to use it.

The parport structure associated with the port has its operations structure replaced with one containing
'null' operations that return errors or just don't do anything.

Any drivers that have registered themselves using parport_register_driver are notified that the
port is no longer accessible by having their detach routines called with port as the parameter.

Parallel Port Devices

482

Name
parport_register_device — register a device on a parallel port

Synopsis
struct pardevice * parport_register_device (struct parport * port, const
char * name, int (*pf) (void *), void (*kf) (void *), void (*irq_func)
(void *), int flags, void * handle);

Arguments
port port to which the device is attached

name a name to refer to the device

pf preemption callback

kf kick callback (wake-up)

irq_func interrupt handler

flags registration flags

handle data for callback functions

Description
This function, called by parallel port device drivers, declares that a device is connected to a port, and tells
the system all it needs to know.

The name is allocated by the caller and must not be deallocated until the caller calls
parport_unregister_device for that device.

The preemption callback function, pf, is called when this device driver has claimed access to the port but
another device driver wants to use it. It is given handle as its parameter, and should return zero if it is
willing for the system to release the port to another driver on its behalf. If it wants to keep control of the
port it should return non-zero, and no action will be taken. It is good manners for the driver to try to release
the port at the earliest opportunity after its preemption callback rejects a preemption attempt. Note that if
a preemption callback is happy for preemption to go ahead, there is no need to release the port; it is done
automatically. This function may not block, as it may be called from interrupt context. If the device driver
does not support preemption, pf can be NULL.

The wake-up (“kick”) callback function, kf, is called when the port is available to be claimed for exclusive
access; that is, parport_claim is guaranteed to succeed when called from inside the wake-up callback
function. If the driver wants to claim the port it should do so; otherwise, it need not take any action. This
function may not block, as it may be called from interrupt context. If the device driver does not want to
be explicitly invited to claim the port in this way, kf can be NULL.

The interrupt handler, irq_func, is called when an interrupt arrives from the parallel port. Note that if a
device driver wants to use interrupts it should use parport_enable_irq, and can also check the irq
member of the parport structure representing the port.

The parallel port (lowlevel) driver is the one that has called request_irq and whose interrupt handler
is called first. This handler does whatever needs to be done to the hardware to acknowledge the interrupt

Parallel Port Devices

483

(for PC-style ports there is nothing special to be done). It then tells the IEEE 1284 code about the interrupt,
which may involve reacting to an IEEE 1284 event depending on the current IEEE 1284 phase. After this,
it calls irq_func. Needless to say, irq_func will be called from interrupt context, and may not block.

The PARPORT_DEV_EXCL flag is for preventing port sharing, and so should only be used when sharing
the port with other device drivers is impossible and would lead to incorrect behaviour. Use it sparingly!
Normally, flags will be zero.

This function returns a pointer to a structure that represents the device on the port, or NULL if there is not
enough memory to allocate space for that structure.

Parallel Port Devices

484

Name
parport_unregister_device — deregister a device on a parallel port

Synopsis
void parport_unregister_device (struct pardevice * dev);

Arguments
dev pointer to structure representing device

Description
This undoes the effect of parport_register_device.

Parallel Port Devices

485

Name
parport_find_number — find a parallel port by number

Synopsis
struct parport * parport_find_number (int number);

Arguments
number parallel port number

Description
This returns the parallel port with the specified number, or NULL if there is none.

There is an implicit parport_get_port done already; to throw away the reference to the port that
parport_find_number gives you, use parport_put_port.

Parallel Port Devices

486

Name
parport_find_base — find a parallel port by base address

Synopsis
struct parport * parport_find_base (unsigned long base);

Arguments
base base I/O address

Description
This returns the parallel port with the specified base address, or NULL if there is none.

There is an implicit parport_get_port done already; to throw away the reference to the port that
parport_find_base gives you, use parport_put_port.

Parallel Port Devices

487

Name
parport_claim — claim access to a parallel port device

Synopsis
int parport_claim (struct pardevice * dev);

Arguments
dev pointer to structure representing a device on the port

Description
This function will not block and so can be used from interrupt context. If parport_claim succeeds in
claiming access to the port it returns zero and the port is available to use. It may fail (returning non-zero)
if the port is in use by another driver and that driver is not willing to relinquish control of the port.

Parallel Port Devices

488

Name
parport_claim_or_block — claim access to a parallel port device

Synopsis
int parport_claim_or_block (struct pardevice * dev);

Arguments
dev pointer to structure representing a device on the port

Description
This behaves like parport_claim, but will block if necessary to wait for the port to be free. A return
value of 1 indicates that it slept; 0 means that it succeeded without needing to sleep. A negative error code
indicates failure.

Parallel Port Devices

489

Name
parport_release — give up access to a parallel port device

Synopsis
void parport_release (struct pardevice * dev);

Arguments
dev pointer to structure representing parallel port device

Description
This function cannot fail, but it should not be called without the port claimed. Similarly, if the port is
already claimed you should not try claiming it again.

Parallel Port Devices

490

Name
parport_open — find a device by canonical device number

Synopsis
struct pardevice * parport_open (int devnum, const char * name);

Arguments
devnum canonical device number

name name to associate with the device

Description
This function is similar to parport_register_device, except that it locates a device by its number
rather than by the port it is attached to.

All parameters except for devnum are the same as for parport_register_device. The return value
is the same as for parport_register_device.

Parallel Port Devices

491

Name
parport_close — close a device opened with parport_open

Synopsis
void parport_close (struct pardevice * dev);

Arguments
dev device to close

Description
This is to parport_open as parport_unregister_device is to
parport_register_device.

492

Chapter 4. Message-based devices
Fusion message devices

Message-based devices

493

Name
mpt_register — Register protocol-specific main callback handler.

Synopsis

u8 mpt_register (MPT_CALLBACK cbfunc, MPT_DRIVER_CLASS dclass, char *
func_name);

Arguments

cbfunc callback function pointer

dclass Protocol driver's class (MPT_DRIVER_CLASS enum value)

func_name call function's name

Description

This routine is called by a protocol-specific driver (SCSI host, LAN, SCSI target) to register its reply
callback routine. Each protocol-specific driver must do this before it will be able to use any IOC resources,
such as obtaining request frames.

NOTES

The SCSI protocol driver currently calls this routine thrice in order to register separate callbacks; one for
“normal” SCSI IO; one for MptScsiTaskMgmt requests; one for Scan/DV requests.

Returns u8 valued “handle” in the range (and S.O.D. order) {N,...,7,6,5,...,1} if successful. A return value
of MPT_MAX_PROTOCOL_DRIVERS (including zero!) should be considered an error by the caller.

Message-based devices

494

Name
mpt_deregister — Deregister a protocol drivers resources.

Synopsis

void mpt_deregister (u8 cb_idx);

Arguments

cb_idx previously registered callback handle

Description

Each protocol-specific driver should call this routine when its module is unloaded.

Message-based devices

495

Name
mpt_event_register — Register protocol-specific event callback handler.

Synopsis

int mpt_event_register (u8 cb_idx, MPT_EVHANDLER ev_cbfunc);

Arguments

cb_idx previously registered (via mpt_register) callback handle

ev_cbfunc callback function

Description

This routine can be called by one or more protocol-specific drivers if/when they choose to be notified of
MPT events.

Returns 0 for success.

Message-based devices

496

Name
mpt_event_deregister — Deregister protocol-specific event callback handler

Synopsis

void mpt_event_deregister (u8 cb_idx);

Arguments

cb_idx previously registered callback handle

Description

Each protocol-specific driver should call this routine when it does not (or can no longer) handle events,
or when its module is unloaded.

Message-based devices

497

Name
mpt_reset_register — Register protocol-specific IOC reset handler.

Synopsis

int mpt_reset_register (u8 cb_idx, MPT_RESETHANDLER reset_func);

Arguments

cb_idx previously registered (via mpt_register) callback handle

reset_func reset function

Description

This routine can be called by one or more protocol-specific drivers if/when they choose to be notified of
IOC resets.

Returns 0 for success.

Message-based devices

498

Name
mpt_reset_deregister — Deregister protocol-specific IOC reset handler.

Synopsis

void mpt_reset_deregister (u8 cb_idx);

Arguments

cb_idx previously registered callback handle

Description

Each protocol-specific driver should call this routine when it does not (or can no longer) handle IOC reset
handling, or when its module is unloaded.

Message-based devices

499

Name
mpt_device_driver_register — Register device driver hooks

Synopsis

int mpt_device_driver_register (struct mpt_pci_driver * dd_cbfunc, u8
cb_idx);

Arguments

dd_cbfunc driver callbacks struct

cb_idx MPT protocol driver index

Message-based devices

500

Name
mpt_device_driver_deregister — DeRegister device driver hooks

Synopsis

void mpt_device_driver_deregister (u8 cb_idx);

Arguments

cb_idx MPT protocol driver index

Message-based devices

501

Name
mpt_get_msg_frame — Obtain an MPT request frame from the pool

Synopsis

MPT_FRAME_HDR* mpt_get_msg_frame (u8 cb_idx, MPT_ADAPTER * ioc);

Arguments

cb_idx Handle of registered MPT protocol driver

ioc Pointer to MPT adapter structure

Description

Obtain an MPT request frame from the pool (of 1024) that are allocated per MPT adapter.

Returns pointer to a MPT request frame or NULL if none are available or IOC is not active.

Message-based devices

502

Name
mpt_put_msg_frame — Send a protocol-specific MPT request frame to an IOC

Synopsis

void mpt_put_msg_frame (u8 cb_idx, MPT_ADAPTER * ioc, MPT_FRAME_HDR *
mf);

Arguments

cb_idx Handle of registered MPT protocol driver

ioc Pointer to MPT adapter structure

mf Pointer to MPT request frame

Description

This routine posts an MPT request frame to the request post FIFO of a specific MPT adapter.

Message-based devices

503

Name
mpt_put_msg_frame_hi_pri — Send a hi-pri protocol-specific MPT request frame

Synopsis

void mpt_put_msg_frame_hi_pri (u8 cb_idx, MPT_ADAPTER * ioc,
MPT_FRAME_HDR * mf);

Arguments

cb_idx Handle of registered MPT protocol driver

ioc Pointer to MPT adapter structure

mf Pointer to MPT request frame

Description

Send a protocol-specific MPT request frame to an IOC using hi-priority request queue.

This routine posts an MPT request frame to the request post FIFO of a specific MPT adapter.

Message-based devices

504

Name
mpt_free_msg_frame — Place MPT request frame back on FreeQ.

Synopsis

void mpt_free_msg_frame (MPT_ADAPTER * ioc, MPT_FRAME_HDR * mf);

Arguments

ioc Pointer to MPT adapter structure

mf Pointer to MPT request frame

Description

This routine places a MPT request frame back on the MPT adapter's FreeQ.

Message-based devices

505

Name
mpt_send_handshake_request — Send MPT request via doorbell handshake method.

Synopsis

int mpt_send_handshake_request (u8 cb_idx, MPT_ADAPTER * ioc, int re-
qBytes, u32 * req, int sleepFlag);

Arguments

cb_idx Handle of registered MPT protocol driver

ioc Pointer to MPT adapter structure

reqBytes Size of the request in bytes

req Pointer to MPT request frame

sleepFlag Use schedule if CAN_SLEEP else use udelay.

Description

This routine is used exclusively to send MptScsiTaskMgmt requests since they are required to be sent via
doorbell handshake.

NOTE

It is the callers responsibility to byte-swap fields in the request which are greater than 1 byte in size.

Returns 0 for success, non-zero for failure.

Message-based devices

506

Name
mpt_verify_adapter — Given IOC identifier, set pointer to its adapter structure.

Synopsis

int mpt_verify_adapter (int iocid, MPT_ADAPTER ** iocpp);

Arguments

iocid IOC unique identifier (integer)

iocpp Pointer to pointer to IOC adapter

Description

Given a unique IOC identifier, set pointer to the associated MPT adapter structure.

Returns iocid and sets iocpp if iocid is found. Returns -1 if iocid is not found.

Message-based devices

507

Name
mpt_attach — Install a PCI intelligent MPT adapter.

Synopsis

int mpt_attach (struct pci_dev * pdev, const struct pci_device_id * id);

Arguments

pdev Pointer to pci_dev structure

id PCI device ID information

Description

This routine performs all the steps necessary to bring the IOC of a MPT adapter to a OPERATIONAL
state. This includes registering memory regions, registering the interrupt, and allocating request and reply
memory pools.

This routine also pre-fetches the LAN MAC address of a Fibre Channel MPT adapter.

Returns 0 for success, non-zero for failure.

TODO

Add support for polled controllers

Message-based devices

508

Name
mpt_detach — Remove a PCI intelligent MPT adapter.

Synopsis

void mpt_detach (struct pci_dev * pdev);

Arguments

pdev Pointer to pci_dev structure

Message-based devices

509

Name
mpt_suspend — Fusion MPT base driver suspend routine.

Synopsis

int mpt_suspend (struct pci_dev * pdev, pm_message_t state);

Arguments

pdev Pointer to pci_dev structure

state new state to enter

Message-based devices

510

Name
mpt_resume — Fusion MPT base driver resume routine.

Synopsis

int mpt_resume (struct pci_dev * pdev);

Arguments

pdev Pointer to pci_dev structure

Message-based devices

511

Name
mpt_GetIocState — Get the current state of a MPT adapter.

Synopsis

u32 mpt_GetIocState (MPT_ADAPTER * ioc, int cooked);

Arguments

ioc Pointer to MPT_ADAPTER structure

cooked Request raw or cooked IOC state

Description

Returns all IOC Doorbell register bits if cooked==0, else just the Doorbell bits in
MPI_IOC_STATE_MASK.

Message-based devices

512

Name
mpt_alloc_fw_memory — allocate firmware memory

Synopsis

int mpt_alloc_fw_memory (MPT_ADAPTER * ioc, int size);

Arguments

ioc Pointer to MPT_ADAPTER structure

size total FW bytes

Description

If memory has already been allocated, the same (cached) value is returned.

Return 0 if successful, or non-zero for failure

Message-based devices

513

Name
mpt_free_fw_memory — free firmware memory

Synopsis

void mpt_free_fw_memory (MPT_ADAPTER * ioc);

Arguments

ioc Pointer to MPT_ADAPTER structure

Description

If alt_img is NULL, delete from ioc structure. Else, delete a secondary image in same format.

Message-based devices

514

Name
mptbase_sas_persist_operation — Perform operation on SAS Persistent Table

Synopsis

int mptbase_sas_persist_operation (MPT_ADAPTER * ioc, u8
persist_opcode);

Arguments

ioc Pointer to MPT_ADAPTER structure

persist_opcode see below

Description

MPI_SAS_OP_CLEAR_NOT_PRESENT - Free all persist TargetID mappings for devices not currently
present. MPI_SAS_OP_CLEAR_ALL_PERSISTENT - Clear al persist TargetID mappings

NOTE

Don't use not this function during interrupt time.

Returns 0 for success, non-zero error

Message-based devices

515

Name
mpt_raid_phys_disk_pg0 — returns phys disk page zero

Synopsis

int mpt_raid_phys_disk_pg0 (MPT_ADAPTER * ioc, u8 phys_disk_num,
RaidPhysDiskPage0_t * phys_disk);

Arguments

ioc Pointer to a Adapter Structure

phys_disk_num io unit unique phys disk num generated by the ioc

phys_disk requested payload data returned

Return

0 on success -EFAULT if read of config page header fails or data pointer not NULL -ENOMEM if pci_alloc
failed

Message-based devices

516

Name
mpt_raid_phys_disk_get_num_paths — returns number paths associated to this phys_num

Synopsis

int mpt_raid_phys_disk_get_num_paths (MPT_ADAPTER * ioc, u8
phys_disk_num);

Arguments

ioc Pointer to a Adapter Structure

phys_disk_num io unit unique phys disk num generated by the ioc

Return

returns number paths

Message-based devices

517

Name
mpt_raid_phys_disk_pg1 — returns phys disk page 1

Synopsis

int mpt_raid_phys_disk_pg1 (MPT_ADAPTER * ioc, u8 phys_disk_num,
RaidPhysDiskPage1_t * phys_disk);

Arguments

ioc Pointer to a Adapter Structure

phys_disk_num io unit unique phys disk num generated by the ioc

phys_disk requested payload data returned

Return

0 on success -EFAULT if read of config page header fails or data pointer not NULL -ENOMEM if pci_alloc
failed

Message-based devices

518

Name
mpt_findImVolumes — Identify IDs of hidden disks and RAID Volumes

Synopsis

int mpt_findImVolumes (MPT_ADAPTER * ioc);

Arguments

ioc Pointer to a Adapter Strucutre

Return

0 on success -EFAULT if read of config page header fails or data pointer not NULL -ENOMEM if pci_alloc
failed

Message-based devices

519

Name
mpt_config — Generic function to issue config message

Synopsis

int mpt_config (MPT_ADAPTER * ioc, CONFIGPARMS * pCfg);

Arguments

ioc Pointer to an adapter structure

pCfg Pointer to a configuration structure. Struct contains action, page address, direction, physical ad-
dress and pointer to a configuration page header Page header is updated.

Description

Returns 0 for success -EPERM if not allowed due to ISR context -EAGAIN if no msg frames currently
available -EFAULT for non-successful reply or no reply (timeout)

Message-based devices

520

Name
mpt_print_ioc_summary — Write ASCII summary of IOC to a buffer.

Synopsis

void mpt_print_ioc_summary (MPT_ADAPTER * ioc, char * buffer, int *
size, int len, int showlan);

Arguments

ioc Pointer to MPT_ADAPTER structure

buffer Pointer to buffer where IOC summary info should be written

size Pointer to number of bytes we wrote (set by this routine)

len Offset at which to start writing in buffer

showlan Display LAN stuff?

Description

This routine writes (english readable) ASCII text, which represents a summary of IOC information, to a
buffer.

Message-based devices

521

Name
mpt_set_taskmgmt_in_progress_flag — set flags associated with task management

Synopsis

int mpt_set_taskmgmt_in_progress_flag (MPT_ADAPTER * ioc);

Arguments

ioc Pointer to MPT_ADAPTER structure

Description

Returns 0 for SUCCESS or -1 if FAILED.

If -1 is return, then it was not possible to set the flags

Message-based devices

522

Name
mpt_clear_taskmgmt_in_progress_flag — clear flags associated with task management

Synopsis

void mpt_clear_taskmgmt_in_progress_flag (MPT_ADAPTER * ioc);

Arguments

ioc Pointer to MPT_ADAPTER structure

Message-based devices

523

Name
mpt_halt_firmware — Halts the firmware if it is operational and panic the kernel

Synopsis

void mpt_halt_firmware (MPT_ADAPTER * ioc);

Arguments

ioc Pointer to MPT_ADAPTER structure

Message-based devices

524

Name
mpt_Soft_Hard_ResetHandler — Try less expensive reset

Synopsis

int mpt_Soft_Hard_ResetHandler (MPT_ADAPTER * ioc, int sleepFlag);

Arguments

ioc Pointer to MPT_ADAPTER structure

sleepFlag Indicates if sleep or schedule must be called.

Description

Returns 0 for SUCCESS or -1 if FAILED. Try for softreset first, only if it fails go for expensive HardReset.

Message-based devices

525

Name
mpt_HardResetHandler — Generic reset handler

Synopsis

int mpt_HardResetHandler (MPT_ADAPTER * ioc, int sleepFlag);

Arguments

ioc Pointer to MPT_ADAPTER structure

sleepFlag Indicates if sleep or schedule must be called.

Description

Issues SCSI Task Management call based on input arg values. If TaskMgmt fails, returns associated SCSI
request.

Remark

_HardResetHandler can be invoked from an interrupt thread (timer) or a non-interrupt thread. In the former,
must not call schedule.

Note

A return of -1 is a FATAL error case, as it means a FW reload/initialization failed.

Returns 0 for SUCCESS or -1 if FAILED.

Message-based devices

526

Name
mpt_get_cb_idx — obtain cb_idx for registered driver

Synopsis

u8 mpt_get_cb_idx (MPT_DRIVER_CLASS dclass);

Arguments

dclass class driver enum

Description

Returns cb_idx, or zero means it wasn't found

Message-based devices

527

Name
mpt_is_discovery_complete — determine if discovery has completed

Synopsis

int mpt_is_discovery_complete (MPT_ADAPTER * ioc);

Arguments

ioc per adatper instance

Description

Returns 1 when discovery completed, else zero.

Message-based devices

528

Name
mpt_remove_dead_ioc_func — kthread context to remove dead ioc

Synopsis

int mpt_remove_dead_ioc_func (void * arg);

Arguments

arg input argument, used to derive ioc

Description

Return 0 if controller is removed from pci subsystem. Return -1 for other case.

Message-based devices

529

Name
mpt_fault_reset_work — work performed on workq after ioc fault

Synopsis

void mpt_fault_reset_work (struct work_struct * work);

Arguments

work input argument, used to derive ioc

Message-based devices

530

Name
mpt_interrupt — MPT adapter (IOC) specific interrupt handler.

Synopsis

irqreturn_t mpt_interrupt (int irq, void * bus_id);

Arguments

irq irq number (not used)

bus_id bus identifier cookie == pointer to MPT_ADAPTER structure

Description

This routine is registered via the request_irq kernel API call, and handles all interrupts generated
from a specific MPT adapter (also referred to as a IO Controller or IOC). This routine must clear the
interrupt from the adapter and does so by reading the reply FIFO. Multiple replies may be processed per
single call to this routine.

This routine handles register-level access of the adapter but dispatches (calls) a protocol-specific callback
routine to handle the protocol-specific details of the MPT request completion.

Message-based devices

531

Name
mptbase_reply — MPT base driver's callback routine

Synopsis

int mptbase_reply (MPT_ADAPTER * ioc, MPT_FRAME_HDR * req, MPT_FRAME_HDR
* reply);

Arguments

ioc Pointer to MPT_ADAPTER structure

req Pointer to original MPT request frame

reply Pointer to MPT reply frame (NULL if TurboReply)

Description

MPT base driver's callback routine; all base driver “internal” request/reply processing is routed here. Cur-
rently used for EventNotification and EventAck handling.

Returns 1 indicating original alloc'd request frame ptr should be freed, or 0 if it shouldn't.

Message-based devices

532

Name
mpt_add_sge — Place a simple 32 bit SGE at address pAddr.

Synopsis

void mpt_add_sge (void * pAddr, u32 flagslength, dma_addr_t dma_addr);

Arguments

pAddr virtual address for SGE

flagslength SGE flags and data transfer length

dma_addr Physical address

Description

This routine places a MPT request frame back on the MPT adapter's FreeQ.

Message-based devices

533

Name
mpt_add_sge_64bit — Place a simple 64 bit SGE at address pAddr.

Synopsis

void mpt_add_sge_64bit (void * pAddr, u32 flagslength, dma_addr_t
dma_addr);

Arguments

pAddr virtual address for SGE

flagslength SGE flags and data transfer length

dma_addr Physical address

Description

This routine places a MPT request frame back on the MPT adapter's FreeQ.

Message-based devices

534

Name
mpt_add_sge_64bit_1078 — Place a simple 64 bit SGE at address pAddr (1078 workaround).

Synopsis

void mpt_add_sge_64bit_1078 (void * pAddr, u32 flagslength, dma_addr_t
dma_addr);

Arguments

pAddr virtual address for SGE

flagslength SGE flags and data transfer length

dma_addr Physical address

Description

This routine places a MPT request frame back on the MPT adapter's FreeQ.

Message-based devices

535

Name
mpt_add_chain — Place a 32 bit chain SGE at address pAddr.

Synopsis

void mpt_add_chain (void * pAddr, u8 next, u16 length, dma_addr_t
dma_addr);

Arguments

pAddr virtual address for SGE

next nextChainOffset value (u32's)

length length of next SGL segment

dma_addr Physical address

Message-based devices

536

Name
mpt_add_chain_64bit — Place a 64 bit chain SGE at address pAddr.

Synopsis

void mpt_add_chain_64bit (void * pAddr, u8 next, u16 length, dma_addr_t
dma_addr);

Arguments

pAddr virtual address for SGE

next nextChainOffset value (u32's)

length length of next SGL segment

dma_addr Physical address

Message-based devices

537

Name
mpt_host_page_access_control — control the IOC's Host Page Buffer access

Synopsis

int mpt_host_page_access_control (MPT_ADAPTER * ioc, u8
access_control_value, int sleepFlag);

Arguments

ioc Pointer to MPT adapter structure

access_control_value define bits below

sleepFlag Specifies whether the process can sleep

Description

Provides mechanism for the host driver to control the IOC's Host Page Buffer access.

Access Control Value - bits[15:12] 0h Reserved 1h En-
able Access { MPI_DB_HPBAC_ENABLE_ACCESS } 2h Disable Access
{ MPI_DB_HPBAC_DISABLE_ACCESS } 3h Free Buffer { MPI_DB_HPBAC_FREE_BUFFER }

Returns 0 for success, non-zero for failure.

Message-based devices

538

Name
mpt_host_page_alloc — allocate system memory for the fw

Synopsis

int mpt_host_page_alloc (MPT_ADAPTER * ioc, pIOCInit_t ioc_init);

Arguments

ioc Pointer to pointer to IOC adapter

ioc_init Pointer to ioc init config page

Description

If we already allocated memory in past, then resend the same pointer. Returns 0 for success, non-zero
for failure.

Message-based devices

539

Name
mpt_get_product_name — returns product string

Synopsis

const char* mpt_get_product_name (u16 vendor, u16 device, u8 revision);

Arguments

vendor pci vendor id

device pci device id

revision pci revision id

Description

Returns product string displayed when driver loads, in /proc/mpt/summary and /sysfs/class/scsi_host/
host<X>/version_product

Message-based devices

540

Name
mpt_mapresources — map in memory mapped io

Synopsis

int mpt_mapresources (MPT_ADAPTER * ioc);

Arguments

ioc Pointer to pointer to IOC adapter

Message-based devices

541

Name
mpt_do_ioc_recovery — Initialize or recover MPT adapter.

Synopsis

int mpt_do_ioc_recovery (MPT_ADAPTER * ioc, u32 reason, int sleepFlag);

Arguments

ioc Pointer to MPT adapter structure

reason Event word / reason

sleepFlag Use schedule if CAN_SLEEP else use udelay.

Description

This routine performs all the steps necessary to bring the IOC to a OPERATIONAL state.

This routine also pre-fetches the LAN MAC address of a Fibre Channel MPT adapter.

Returns

0 for success -1 if failed to get board READY -2 if READY but IOCFacts Failed -3 if READY
but PrimeIOCFifos Failed -4 if READY but IOCInit Failed -5 if failed to enable_device and/or
request_selected_regions -6 if failed to upload firmware

Message-based devices

542

Name
mpt_detect_bound_ports — Search for matching PCI bus/dev_function

Synopsis

void mpt_detect_bound_ports (MPT_ADAPTER * ioc, struct pci_dev * pdev);

Arguments

ioc Pointer to MPT adapter structure

pdev Pointer to (struct pci_dev) structure

Description

Search for PCI bus/dev_function which matches PCI bus/dev_function (+/-1) for newly discovered 929,
929X, 1030 or 1035.

If match on PCI dev_function +/-1 is found, bind the two MPT adapters using alt_ioc pointer fields in
their MPT_ADAPTER structures.

Message-based devices

543

Name
mpt_adapter_disable — Disable misbehaving MPT adapter.

Synopsis

void mpt_adapter_disable (MPT_ADAPTER * ioc);

Arguments

ioc Pointer to MPT adapter structure

Message-based devices

544

Name
mpt_adapter_dispose — Free all resources associated with an MPT adapter

Synopsis

void mpt_adapter_dispose (MPT_ADAPTER * ioc);

Arguments

ioc Pointer to MPT adapter structure

Description

This routine unregisters h/w resources and frees all alloc'd memory associated with a MPT adapter struc-
ture.

Message-based devices

545

Name
MptDisplayIocCapabilities — Disply IOC's capabilities.

Synopsis

void MptDisplayIocCapabilities (MPT_ADAPTER * ioc);

Arguments

ioc Pointer to MPT adapter structure

Message-based devices

546

Name
MakeIocReady — Get IOC to a READY state, using KickStart if needed.

Synopsis

int MakeIocReady (MPT_ADAPTER * ioc, int force, int sleepFlag);

Arguments

ioc Pointer to MPT_ADAPTER structure

force Force hard KickStart of IOC

sleepFlag Specifies whether the process can sleep

Returns

1 - DIAG reset and READY 0 - READY initially OR soft reset and READY -1 - Any failure on KickStart
-2 - Msg Unit Reset Failed -3 - IO Unit Reset Failed -4 - IOC owned by a PEER

Message-based devices

547

Name
GetIocFacts — Send IOCFacts request to MPT adapter.

Synopsis

int GetIocFacts (MPT_ADAPTER * ioc, int sleepFlag, int reason);

Arguments

ioc Pointer to MPT_ADAPTER structure

sleepFlag Specifies whether the process can sleep

reason If recovery, only update facts.

Description

Returns 0 for success, non-zero for failure.

Message-based devices

548

Name
GetPortFacts — Send PortFacts request to MPT adapter.

Synopsis

int GetPortFacts (MPT_ADAPTER * ioc, int portnum, int sleepFlag);

Arguments

ioc Pointer to MPT_ADAPTER structure

portnum Port number

sleepFlag Specifies whether the process can sleep

Description

Returns 0 for success, non-zero for failure.

Message-based devices

549

Name
SendIocInit — Send IOCInit request to MPT adapter.

Synopsis

int SendIocInit (MPT_ADAPTER * ioc, int sleepFlag);

Arguments

ioc Pointer to MPT_ADAPTER structure

sleepFlag Specifies whether the process can sleep

Description

Send IOCInit followed by PortEnable to bring IOC to OPERATIONAL state.

Returns 0 for success, non-zero for failure.

Message-based devices

550

Name
SendPortEnable — Send PortEnable request to MPT adapter port.

Synopsis

int SendPortEnable (MPT_ADAPTER * ioc, int portnum, int sleepFlag);

Arguments

ioc Pointer to MPT_ADAPTER structure

portnum Port number to enable

sleepFlag Specifies whether the process can sleep

Description

Send PortEnable to bring IOC to OPERATIONAL state.

Returns 0 for success, non-zero for failure.

Message-based devices

551

Name
mpt_do_upload — Construct and Send FWUpload request to MPT adapter port.

Synopsis

int mpt_do_upload (MPT_ADAPTER * ioc, int sleepFlag);

Arguments

ioc Pointer to MPT_ADAPTER structure

sleepFlag Specifies whether the process can sleep

Description

Returns 0 for success, >0 for handshake failure <0 for fw upload failure.

Remark

If bound IOC and a successful FWUpload was performed on the bound IOC, the second image is discarded
and memory is free'd. Both channels must upload to prevent IOC from running in degraded mode.

Message-based devices

552

Name
mpt_downloadboot — DownloadBoot code

Synopsis

int mpt_downloadboot (MPT_ADAPTER * ioc, MpiFwHeader_t * pFwHeader, int
sleepFlag);

Arguments

ioc Pointer to MPT_ADAPTER structure

pFwHeader Pointer to firmware header info

sleepFlag Specifies whether the process can sleep

Description

FwDownloadBoot requires Programmed IO access.

Returns 0 for success -1 FW Image size is 0 -2 No valid cached_fw Pointer <0 for fw upload failure.

Message-based devices

553

Name
KickStart — Perform hard reset of MPT adapter.

Synopsis

int KickStart (MPT_ADAPTER * ioc, int force, int sleepFlag);

Arguments

ioc Pointer to MPT_ADAPTER structure

force Force hard reset

sleepFlag Specifies whether the process can sleep

Description

This routine places MPT adapter in diagnostic mode via the WriteSequence register, and then performs a
hard reset of adapter via the Diagnostic register.

Inputs

sleepflag - CAN_SLEEP (non-interrupt thread) or NO_SLEEP (interrupt thread, use mdelay) force - 1 if
doorbell active, board fault state board operational, IOC_RECOVERY or IOC_BRINGUP and there is
an alt_ioc. 0 else

Returns

1 - hard reset, READY 0 - no reset due to History bit, READY -1 - no reset due to History bit but not
READY OR reset but failed to come READY -2 - no reset, could not enter DIAG mode -3 - reset but
bad FW bit

Message-based devices

554

Name
mpt_diag_reset — Perform hard reset of the adapter.

Synopsis

int mpt_diag_reset (MPT_ADAPTER * ioc, int ignore, int sleepFlag);

Arguments

ioc Pointer to MPT_ADAPTER structure

ignore Set if to honor and clear to ignore the reset history bit

sleepFlag CAN_SLEEP if called in a non-interrupt thread, else set to NO_SLEEP (use mdelay in-
stead)

Description

This routine places the adapter in diagnostic mode via the WriteSequence register and then performs a hard
reset of adapter via the Diagnostic register. Adapter should be in ready state upon successful completion.

Returns

1 hard reset successful 0 no reset performed because reset history bit set -2 enabling diagnostic mode failed
-3 diagnostic reset failed

Message-based devices

555

Name
SendIocReset — Send IOCReset request to MPT adapter.

Synopsis

int SendIocReset (MPT_ADAPTER * ioc, u8 reset_type, int sleepFlag);

Arguments

ioc Pointer to MPT_ADAPTER structure

reset_type reset type, expected values are MPI_FUNCTION_IOC_MESSAGE_UNIT_RESET or
MPI_FUNCTION_IO_UNIT_RESET

sleepFlag Specifies whether the process can sleep

Description

Send IOCReset request to the MPT adapter.

Returns 0 for success, non-zero for failure.

Message-based devices

556

Name
initChainBuffers — Allocate memory for and initialize chain buffers

Synopsis

int initChainBuffers (MPT_ADAPTER * ioc);

Arguments

ioc Pointer to MPT_ADAPTER structure

Description

Allocates memory for and initializes chain buffers, chain buffer control arrays and spinlock.

Message-based devices

557

Name
PrimeIocFifos — Initialize IOC request and reply FIFOs.

Synopsis

int PrimeIocFifos (MPT_ADAPTER * ioc);

Arguments

ioc Pointer to MPT_ADAPTER structure

Description

This routine allocates memory for the MPT reply and request frame pools (if necessary), and primes the
IOC reply FIFO with reply frames.

Returns 0 for success, non-zero for failure.

Message-based devices

558

Name
mpt_handshake_req_reply_wait — Send MPT request to and receive reply from IOC via doorbell hand-
shake method.

Synopsis

int mpt_handshake_req_reply_wait (MPT_ADAPTER * ioc, int reqBytes, u32
* req, int replyBytes, u16 * u16reply, int maxwait, int sleepFlag);

Arguments

ioc Pointer to MPT_ADAPTER structure

reqBytes Size of the request in bytes

req Pointer to MPT request frame

replyBytes Expected size of the reply in bytes

u16reply Pointer to area where reply should be written

maxwait Max wait time for a reply (in seconds)

sleepFlag Specifies whether the process can sleep

NOTES

It is the callers responsibility to byte-swap fields in the request which are greater than 1 byte in size. It is
also the callers responsibility to byte-swap response fields which are greater than 1 byte in size.

Returns 0 for success, non-zero for failure.

Message-based devices

559

Name
WaitForDoorbellAck — Wait for IOC doorbell handshake acknowledge

Synopsis

int WaitForDoorbellAck (MPT_ADAPTER * ioc, int howlong, int sleepFlag);

Arguments

ioc Pointer to MPT_ADAPTER structure

howlong How long to wait (in seconds)

sleepFlag Specifies whether the process can sleep

Description

This routine waits (up to ~2 seconds max) for IOC doorbell handshake ACKnowledge, indicated by the
IOP_DOORBELL_STATUS bit in its IntStatus register being clear.

Returns a negative value on failure, else wait loop count.

Message-based devices

560

Name
WaitForDoorbellInt — Wait for IOC to set its doorbell interrupt bit

Synopsis

int WaitForDoorbellInt (MPT_ADAPTER * ioc, int howlong, int sleepFlag);

Arguments

ioc Pointer to MPT_ADAPTER structure

howlong How long to wait (in seconds)

sleepFlag Specifies whether the process can sleep

Description

This routine waits (up to ~2 seconds max) for IOC doorbell interrupt
(MPI_HIS_DOORBELL_INTERRUPT) to be set in the IntStatus register.

Returns a negative value on failure, else wait loop count.

Message-based devices

561

Name
WaitForDoorbellReply — Wait for and capture an IOC handshake reply.

Synopsis

int WaitForDoorbellReply (MPT_ADAPTER * ioc, int howlong, int sleep-
Flag);

Arguments

ioc Pointer to MPT_ADAPTER structure

howlong How long to wait (in seconds)

sleepFlag Specifies whether the process can sleep

Description

This routine polls the IOC for a handshake reply, 16 bits at a time. Reply is cached to IOC private area
large enough to hold a maximum of 128 bytes of reply data.

Returns a negative value on failure, else size of reply in WORDS.

Message-based devices

562

Name
GetLanConfigPages — Fetch LANConfig pages.

Synopsis

int GetLanConfigPages (MPT_ADAPTER * ioc);

Arguments

ioc Pointer to MPT_ADAPTER structure

Return

0 for success -ENOMEM if no memory available -EPERM if not allowed due to ISR context -EAGAIN
if no msg frames currently available -EFAULT for non-successful reply or no reply (timeout)

Message-based devices

563

Name
GetIoUnitPage2 — Retrieve BIOS version and boot order information.

Synopsis

int GetIoUnitPage2 (MPT_ADAPTER * ioc);

Arguments

ioc Pointer to MPT_ADAPTER structure

Returns

0 for success -ENOMEM if no memory available -EPERM if not allowed due to ISR context -EAGAIN
if no msg frames currently available -EFAULT for non-successful reply or no reply (timeout)

Message-based devices

564

Name
mpt_GetScsiPortSettings — read SCSI Port Page 0 and 2

Synopsis

int mpt_GetScsiPortSettings (MPT_ADAPTER * ioc, int portnum);

Arguments

ioc Pointer to a Adapter Strucutre

portnum IOC port number

Return

-EFAULT if read of config page header fails or if no nvram If read of SCSI Port Page 0 fails, NVRAM
= MPT_HOST_NVRAM_INVALID (0xFFFFFFFF)

Adapter settings

async, narrow Return 1 If read of SCSI Port Page 2 fails, Adapter settings valid NVRAM =
MPT_HOST_NVRAM_INVALID (0xFFFFFFFF) Return 1 Else Both valid Return 0 CHECK - what type
of locking mechanisms should be used????

Message-based devices

565

Name
mpt_readScsiDevicePageHeaders — save version and length of SDP1

Synopsis

int mpt_readScsiDevicePageHeaders (MPT_ADAPTER * ioc, int portnum);

Arguments

ioc Pointer to a Adapter Strucutre

portnum IOC port number

Return

-EFAULT if read of config page header fails or 0 if success.

Message-based devices

566

Name
mpt_inactive_raid_list_free — This clears this link list.

Synopsis

void mpt_inactive_raid_list_free (MPT_ADAPTER * ioc);

Arguments

ioc pointer to per adapter structure

Message-based devices

567

Name
mpt_inactive_raid_volumes — sets up link list of phy_disk_nums for devices belonging in an inactive
volume

Synopsis

void mpt_inactive_raid_volumes (MPT_ADAPTER * ioc, u8 channel, u8 id);

Arguments

ioc pointer to per adapter structure

channel volume channel

id volume target id

Message-based devices

568

Name
SendEventNotification — Send EventNotification (on or off) request to adapter

Synopsis

int SendEventNotification (MPT_ADAPTER * ioc, u8 EvSwitch, int sleep-
Flag);

Arguments

ioc Pointer to MPT_ADAPTER structure

EvSwitch Event switch flags

sleepFlag Specifies whether the process can sleep

Message-based devices

569

Name
SendEventAck — Send EventAck request to MPT adapter.

Synopsis

int SendEventAck (MPT_ADAPTER * ioc, EventNotificationReply_t * evnp);

Arguments

ioc Pointer to MPT_ADAPTER structure

evnp Pointer to original EventNotification request

Message-based devices

570

Name
mpt_ioc_reset — Base cleanup for hard reset

Synopsis

int mpt_ioc_reset (MPT_ADAPTER * ioc, int reset_phase);

Arguments

ioc Pointer to the adapter structure

reset_phase Indicates pre- or post-reset functionality

Remark

Frees resources with internally generated commands.

Message-based devices

571

Name
procmpt_create — Create MPT_PROCFS_MPTBASEDIR entries.

Synopsis

int procmpt_create (void);

Arguments

void no arguments

Description

Returns 0 for success, non-zero for failure.

Message-based devices

572

Name
procmpt_destroy — Tear down MPT_PROCFS_MPTBASEDIR entries.

Synopsis

void procmpt_destroy (void);

Arguments

void no arguments

Description

Returns 0 for success, non-zero for failure.

Message-based devices

573

Name
mpt_SoftResetHandler — Issues a less expensive reset

Synopsis

int mpt_SoftResetHandler (MPT_ADAPTER * ioc, int sleepFlag);

Arguments

ioc Pointer to MPT_ADAPTER structure

sleepFlag Indicates if sleep or schedule must be called.

Description

Returns 0 for SUCCESS or -1 if FAILED.

Message Unit Reset - instructs the IOC to reset the Reply Post and Free FIFO's. All the Message Frames
on Reply Free FIFO are discarded. All posted buffers are freed, and event notification is turned off. IOC
doesn't reply to any outstanding request. This will transfer IOC to READY state.

Message-based devices

574

Name
ProcessEventNotification — Route EventNotificationReply to all event handlers

Synopsis

int ProcessEventNotification (MPT_ADAPTER * ioc,
EventNotificationReply_t * pEventReply, int * evHandlers);

Arguments

ioc Pointer to MPT_ADAPTER structure

pEventReply Pointer to EventNotification reply frame

evHandlers Pointer to integer, number of event handlers

Description

Routes a received EventNotificationReply to all currently registered event handlers. Returns sum of event
handlers return values.

Message-based devices

575

Name
mpt_fc_log_info — Log information returned from Fibre Channel IOC.

Synopsis

void mpt_fc_log_info (MPT_ADAPTER * ioc, u32 log_info);

Arguments

ioc Pointer to MPT_ADAPTER structure

log_info U32 LogInfo reply word from the IOC

Description

Refer to lsi/mpi_log_fc.h.

Message-based devices

576

Name
mpt_spi_log_info — Log information returned from SCSI Parallel IOC.

Synopsis

void mpt_spi_log_info (MPT_ADAPTER * ioc, u32 log_info);

Arguments

ioc Pointer to MPT_ADAPTER structure

log_info U32 LogInfo word from the IOC

Description

Refer to lsi/sp_log.h.

Message-based devices

577

Name
mpt_sas_log_info — Log information returned from SAS IOC.

Synopsis

void mpt_sas_log_info (MPT_ADAPTER * ioc, u32 log_info, u8 cb_idx);

Arguments

ioc Pointer to MPT_ADAPTER structure

log_info U32 LogInfo reply word from the IOC

cb_idx callback function's handle

Description

Refer to lsi/mpi_log_sas.h.

Message-based devices

578

Name
mpt_iocstatus_info_config — IOCSTATUS information for config pages

Synopsis

void mpt_iocstatus_info_config (MPT_ADAPTER * ioc, u32 ioc_status,
MPT_FRAME_HDR * mf);

Arguments

ioc Pointer to MPT_ADAPTER structure

ioc_status U32 IOCStatus word from IOC

mf Pointer to MPT request frame

Description

Refer to lsi/mpi.h.

Message-based devices

579

Name
mpt_iocstatus_info — IOCSTATUS information returned from IOC.

Synopsis

void mpt_iocstatus_info (MPT_ADAPTER * ioc, u32 ioc_status,
MPT_FRAME_HDR * mf);

Arguments

ioc Pointer to MPT_ADAPTER structure

ioc_status U32 IOCStatus word from IOC

mf Pointer to MPT request frame

Description

Refer to lsi/mpi.h.

Message-based devices

580

Name
fusion_init — Fusion MPT base driver initialization routine.

Synopsis

int fusion_init (void);

Arguments

void no arguments

Description

Returns 0 for success, non-zero for failure.

Message-based devices

581

Name
fusion_exit — Perform driver unload cleanup.

Synopsis

void __exit fusion_exit (void);

Arguments

void no arguments

Description

This routine frees all resources associated with each MPT adapter and removes all
MPT_PROCFS_MPTBASEDIR entries.

Message-based devices

582

Name
mptscsih_info — Return information about MPT adapter

Synopsis

const char * mptscsih_info (struct Scsi_Host * SChost);

Arguments

SChost Pointer to Scsi_Host structure

Description

(linux scsi_host_template.info routine)

Returns pointer to buffer where information was written.

Message-based devices

583

Name
mptscsih_qcmd — Primary Fusion MPT SCSI initiator IO start routine.

Synopsis

int mptscsih_qcmd (struct scsi_cmnd * SCpnt);

Arguments

SCpnt Pointer to scsi_cmnd structure

Description

(linux scsi_host_template.queuecommand routine) This is the primary SCSI IO start routine. Create a MPI
SCSIIORequest from a linux scsi_cmnd request and send it to the IOC.

Returns 0. (rtn value discarded by linux scsi mid-layer)

Message-based devices

584

Name
mptscsih_IssueTaskMgmt — Generic send Task Management function.

Synopsis

int mptscsih_IssueTaskMgmt (MPT_SCSI_HOST * hd, u8 type, u8 channel, u8
id, u64 lun, int ctx2abort, ulong timeout);

Arguments

hd Pointer to MPT_SCSI_HOST structure

type Task Management type

channel channel number for task management

id Logical Target ID for reset (if appropriate)

lun Logical Unit for reset (if appropriate)

ctx2abort Context for the task to be aborted (if appropriate)

timeout timeout for task management control

Remark

_HardResetHandler can be invoked from an interrupt thread (timer) or a non-interrupt thread. In the former,
must not call schedule.

Not all fields are meaningfull for all task types.

Returns 0 for SUCCESS, or FAILED.

Message-based devices

585

Name
mptscsih_abort — Abort linux scsi_cmnd routine, new_eh variant

Synopsis

int mptscsih_abort (struct scsi_cmnd * SCpnt);

Arguments

SCpnt Pointer to scsi_cmnd structure, IO to be aborted

Description

(linux scsi_host_template.eh_abort_handler routine)

Returns SUCCESS or FAILED.

Message-based devices

586

Name
mptscsih_dev_reset — Perform a SCSI TARGET_RESET! new_eh variant

Synopsis

int mptscsih_dev_reset (struct scsi_cmnd * SCpnt);

Arguments

SCpnt Pointer to scsi_cmnd structure, IO which reset is due to

Description

(linux scsi_host_template.eh_dev_reset_handler routine)

Returns SUCCESS or FAILED.

Message-based devices

587

Name
mptscsih_bus_reset — Perform a SCSI BUS_RESET! new_eh variant

Synopsis

int mptscsih_bus_reset (struct scsi_cmnd * SCpnt);

Arguments

SCpnt Pointer to scsi_cmnd structure, IO which reset is due to

Description

(linux scsi_host_template.eh_bus_reset_handler routine)

Returns SUCCESS or FAILED.

Message-based devices

588

Name
mptscsih_host_reset — Perform a SCSI host adapter RESET (new_eh variant)

Synopsis

int mptscsih_host_reset (struct scsi_cmnd * SCpnt);

Arguments

SCpnt Pointer to scsi_cmnd structure, IO which reset is due to

Description

(linux scsi_host_template.eh_host_reset_handler routine)

Returns SUCCESS or FAILED.

Message-based devices

589

Name
mptscsih_taskmgmt_complete — Registered with Fusion MPT base driver

Synopsis

int mptscsih_taskmgmt_complete (MPT_ADAPTER * ioc, MPT_FRAME_HDR * mf,
MPT_FRAME_HDR * mr);

Arguments

ioc Pointer to MPT_ADAPTER structure

mf Pointer to SCSI task mgmt request frame

mr Pointer to SCSI task mgmt reply frame

Description

This routine is called from mptbase.c::mpt_interrupt at the completion of any SCSI task man-
agement request. This routine is registered with the MPT (base) driver at driver load/init time via the
mpt_register API call.

Returns 1 indicating alloc'd request frame ptr should be freed.

Message-based devices

590

Name
mptscsih_get_scsi_lookup — retrieves scmd entry

Synopsis

struct scsi_cmnd * mptscsih_get_scsi_lookup (MPT_ADAPTER * ioc, int i);

Arguments

ioc Pointer to MPT_ADAPTER structure

i index into the array

Description

Returns the scsi_cmd pointer

Message-based devices

591

Name
mptscsih_info_scsiio — debug print info on reply frame

Synopsis

void mptscsih_info_scsiio (MPT_ADAPTER * ioc, struct scsi_cmnd * sc,
SCSIIOReply_t * pScsiReply);

Arguments

ioc Pointer to MPT_ADAPTER structure

sc original scsi cmnd pointer

pScsiReply Pointer to MPT reply frame

Description

MPT_DEBUG_REPLY needs to be enabled to obtain this info

Refer to lsi/mpi.h.

Message-based devices

592

Name
mptscsih_getclear_scsi_lookup — retrieves and clears scmd entry from ScsiLookup[] array list

Synopsis

struct scsi_cmnd * mptscsih_getclear_scsi_lookup (MPT_ADAPTER * ioc,
int i);

Arguments

ioc Pointer to MPT_ADAPTER structure

i index into the array

Description

Returns the scsi_cmd pointer

Message-based devices

593

Name
mptscsih_set_scsi_lookup — write a scmd entry into the ScsiLookup[] array list

Synopsis

void mptscsih_set_scsi_lookup (MPT_ADAPTER * ioc, int i, struct
scsi_cmnd * scmd);

Arguments

ioc Pointer to MPT_ADAPTER structure

i index into the array

scmd scsi_cmnd pointer

Message-based devices

594

Name
SCPNT_TO_LOOKUP_IDX — searches for a given scmd in the ScsiLookup[] array list

Synopsis

int SCPNT_TO_LOOKUP_IDX (MPT_ADAPTER * ioc, struct scsi_cmnd * sc);

Arguments

ioc Pointer to MPT_ADAPTER structure

sc scsi_cmnd pointer

Message-based devices

595

Name
mptscsih_get_completion_code — get completion code from MPT request

Synopsis

int mptscsih_get_completion_code (MPT_ADAPTER * ioc, MPT_FRAME_HDR *
req, MPT_FRAME_HDR * reply);

Arguments

ioc Pointer to MPT_ADAPTER structure

req Pointer to original MPT request frame

reply Pointer to MPT reply frame (NULL if TurboReply)

Message-based devices

596

Name
mptscsih_do_cmd — Do internal command.

Synopsis

int mptscsih_do_cmd (MPT_SCSI_HOST * hd, INTERNAL_CMD * io);

Arguments

hd MPT_SCSI_HOST pointer

io INTERNAL_CMD pointer.

Description

Issue the specified internally generated command and do command specific cleanup. For bus scan / DV
only.

NOTES

If command is Inquiry and status is good, initialize a target structure, save the data

Remark

Single threaded access only.

Return

< 0 if an illegal command or no resources

0 if good

> 0 if command complete but some type of completion error.

Message-based devices

597

Name
mptscsih_synchronize_cache — Send SYNCHRONIZE_CACHE to all disks.

Synopsis

void mptscsih_synchronize_cache (MPT_SCSI_HOST * hd, VirtDevice * vde-
vice);

Arguments

hd Pointer to a SCSI HOST structure

vdevice virtual target device

Description

Uses the ISR, but with special processing. MUST be single-threaded.

Message-based devices

598

Name
mptctl_syscall_down — Down the MPT adapter syscall semaphore.

Synopsis

int mptctl_syscall_down (MPT_ADAPTER * ioc, int nonblock);

Arguments

ioc Pointer to MPT adapter

nonblock boolean, non-zero if O_NONBLOCK is set

Description

All of the ioctl commands can potentially sleep, which is illegal with a spinlock held, thus we perform
mutual exclusion here.

Returns negative errno on error, or zero for success.

Message-based devices

599

Name
mptspi_setTargetNegoParms — Update the target negotiation parameters

Synopsis

void mptspi_setTargetNegoParms (MPT_SCSI_HOST * hd, VirtTarget * target,
struct scsi_device * sdev);

Arguments

hd Pointer to a SCSI Host Structure

target per target private data

sdev SCSI device

Description

Update the target negotiation parameters based on the the Inquiry data, adapter capabilities, and NVRAM
settings.

Message-based devices

600

Name
mptspi_writeIOCPage4 — write IOC Page 4

Synopsis

int mptspi_writeIOCPage4 (MPT_SCSI_HOST * hd, u8 channel, u8 id);

Arguments

hd Pointer to a SCSI Host Structure

channel channel number

id write IOC Page4 for this ID & Bus

Return

-EAGAIN if unable to obtain a Message Frame or 0 if success.

Remark

We do not wait for a return, write pages sequentially.

Message-based devices

601

Name
mptspi_initTarget — Target, LUN alloc/free functionality.

Synopsis

void mptspi_initTarget (MPT_SCSI_HOST * hd, VirtTarget * vtarget, struct
scsi_device * sdev);

Arguments

hd Pointer to MPT_SCSI_HOST structure

vtarget per target private data

sdev SCSI device

NOTE

It's only SAFE to call this routine if data points to sane & valid STANDARD INQUIRY data!

Allocate and initialize memory for this target. Save inquiry data.

Message-based devices

602

Name
mptspi_is_raid — Determines whether target is belonging to volume

Synopsis

int mptspi_is_raid (struct _MPT_SCSI_HOST * hd, u32 id);

Arguments

hd Pointer to a SCSI HOST structure

id target device id

Return

non-zero = true zero = false

Message-based devices

603

Name
mptspi_print_write_nego — negotiation parameters debug info that is being sent

Synopsis

void mptspi_print_write_nego (struct _MPT_SCSI_HOST * hd, struct
scsi_target * starget, u32 ii);

Arguments

hd Pointer to a SCSI HOST structure

starget SCSI target

ii negotiation parameters

Message-based devices

604

Name
mptspi_print_read_nego — negotiation parameters debug info that is being read

Synopsis

void mptspi_print_read_nego (struct _MPT_SCSI_HOST * hd, struct
scsi_target * starget, u32 ii);

Arguments

hd Pointer to a SCSI HOST structure

starget SCSI target

ii negotiation parameters

Message-based devices

605

Name
mptspi_init — Register MPT adapter(s) as SCSI host(s) with SCSI mid-layer.

Synopsis

int mptspi_init (void);

Arguments

void no arguments

Description

Returns 0 for success, non-zero for failure.

Message-based devices

606

Name
mptspi_exit — Unregisters MPT adapter(s)

Synopsis

void __exit mptspi_exit (void);

Arguments

void no arguments

Message-based devices

607

Name
mptfc_init — Register MPT adapter(s) as SCSI host(s) with SCSI mid-layer.

Synopsis

int mptfc_init (void);

Arguments

void no arguments

Description

Returns 0 for success, non-zero for failure.

Message-based devices

608

Name
mptfc_remove — Remove fc infrastructure for devices

Synopsis

void mptfc_remove (struct pci_dev * pdev);

Arguments

pdev Pointer to pci_dev structure

Message-based devices

609

Name
mptfc_exit — Unregisters MPT adapter(s)

Synopsis

void __exit mptfc_exit (void);

Arguments

void no arguments

Message-based devices

610

Name
lan_reply — Handle all data sent from the hardware.

Synopsis

int lan_reply (MPT_ADAPTER * ioc, MPT_FRAME_HDR * mf, MPT_FRAME_HDR *
reply);

Arguments

ioc Pointer to MPT_ADAPTER structure

mf Pointer to original MPT request frame (NULL if TurboReply)

reply Pointer to MPT reply frame

Description

Returns 1 indicating original alloc'd request frame ptr should be freed, or 0 if it shouldn't.

611

Chapter 5. Sound Devices

Sound Devices

612

Name
snd_printk — printk wrapper

Synopsis
snd_printk (fmt, args...);

Arguments
fmt format string

args... variable arguments

Description
Works like printk but prints the file and the line of the caller when configured with
CONFIG_SND_VERBOSE_PRINTK.

Sound Devices

613

Name
snd_printd — debug printk

Synopsis
snd_printd (fmt, args...);

Arguments
fmt format string

args... variable arguments

Description
Works like snd_printk for debugging purposes. Ignored when CONFIG_SND_DEBUG is not set.

Sound Devices

614

Name
snd_BUG — give a BUG warning message and stack trace

Synopsis
snd_BUG (void);

Arguments
None

Description

Calls WARN if CONFIG_SND_DEBUG is set. Ignored when CONFIG_SND_DEBUG is not set.

Sound Devices

615

Name
snd_printd_ratelimit —

Synopsis
snd_printd_ratelimit (void);

Arguments
None

Sound Devices

616

Name
snd_BUG_ON — debugging check macro

Synopsis
snd_BUG_ON (cond);

Arguments
cond condition to evaluate

Description
Has the same behavior as WARN_ON when CONFIG_SND_DEBUG is set, otherwise just evaluates the
conditional and returns the value.

Sound Devices

617

Name
snd_printdd — debug printk

Synopsis
snd_printdd (format, args...);

Arguments
format format string

args... variable arguments

Description
Works like snd_printk for debugging purposes. Ignored when CONFIG_SND_DEBUG_VERBOSE
is not set.

Sound Devices

618

Name
register_sound_special_device — register a special sound node

Synopsis
int register_sound_special_device (const struct file_operations * fops,
int unit, struct device * dev);

Arguments
fops File operations for the driver

unit Unit number to allocate

dev device pointer

Description
Allocate a special sound device by minor number from the sound subsystem.

Return
The allocated number is returned on success. On failure, a negative error code is returned.

Sound Devices

619

Name
register_sound_mixer — register a mixer device

Synopsis
int register_sound_mixer (const struct file_operations * fops, int dev);

Arguments
fops File operations for the driver

dev Unit number to allocate

Description
Allocate a mixer device. Unit is the number of the mixer requested. Pass -1 to request the next free mixer
unit.

Return
On success, the allocated number is returned. On failure, a negative error code is returned.

Sound Devices

620

Name
register_sound_midi — register a midi device

Synopsis
int register_sound_midi (const struct file_operations * fops, int dev);

Arguments
fops File operations for the driver

dev Unit number to allocate

Description
Allocate a midi device. Unit is the number of the midi device requested. Pass -1 to request the next free
midi unit.

Return
On success, the allocated number is returned. On failure, a negative error code is returned.

Sound Devices

621

Name
register_sound_dsp — register a DSP device

Synopsis
int register_sound_dsp (const struct file_operations * fops, int dev);

Arguments
fops File operations for the driver

dev Unit number to allocate

Description
Allocate a DSP device. Unit is the number of the DSP requested. Pass -1 to request the next free DSP unit.

This function allocates both the audio and dsp device entries together and will always allocate them as a
matching pair - eg dsp3/audio3

Return
On success, the allocated number is returned. On failure, a negative error code is returned.

Sound Devices

622

Name
unregister_sound_special — unregister a special sound device

Synopsis
void unregister_sound_special (int unit);

Arguments
unit unit number to allocate

Description
Release a sound device that was allocated with register_sound_special. The unit passed is the
return value from the register function.

Sound Devices

623

Name
unregister_sound_mixer — unregister a mixer

Synopsis
void unregister_sound_mixer (int unit);

Arguments
unit unit number to allocate

Description
Release a sound device that was allocated with register_sound_mixer. The unit passed is the return
value from the register function.

Sound Devices

624

Name
unregister_sound_midi — unregister a midi device

Synopsis
void unregister_sound_midi (int unit);

Arguments
unit unit number to allocate

Description
Release a sound device that was allocated with register_sound_midi. The unit passed is the return
value from the register function.

Sound Devices

625

Name
unregister_sound_dsp — unregister a DSP device

Synopsis
void unregister_sound_dsp (int unit);

Arguments
unit unit number to allocate

Description
Release a sound device that was allocated with register_sound_dsp. The unit passed is the return
value from the register function.

Both of the allocated units are released together automatically.

Sound Devices

626

Name
snd_pcm_stream_linked — Check whether the substream is linked with others

Synopsis
int snd_pcm_stream_linked (struct snd_pcm_substream * substream);

Arguments
substream substream to check

Description
Returns true if the given substream is being linked with others.

Sound Devices

627

Name
snd_pcm_stream_lock_irqsave — Lock the PCM stream

Synopsis
snd_pcm_stream_lock_irqsave (substream, flags);

Arguments
substream PCM substream

flags irq flags

Description
This locks the PCM stream like snd_pcm_stream_lock but with the local IRQ (only when nonatomic
is false). In nonatomic case, this is identical as snd_pcm_stream_lock.

Sound Devices

628

Name
snd_pcm_group_for_each_entry — iterate over the linked substreams

Synopsis
snd_pcm_group_for_each_entry (s, substream);

Arguments
s the iterator

substream the substream

Description
Iterate over the all linked substreams to the given substream. When substream isn't linked with any
others, this gives returns substream itself once.

Sound Devices

629

Name
snd_pcm_running — Check whether the substream is in a running state

Synopsis
int snd_pcm_running (struct snd_pcm_substream * substream);

Arguments
substream substream to check

Description
Returns true if the given substream is in the state RUNNING, or in the state DRAINING for playback.

Sound Devices

630

Name
bytes_to_samples — Unit conversion of the size from bytes to samples

Synopsis
ssize_t bytes_to_samples (struct snd_pcm_runtime * runtime, ssize_t
size);

Arguments
runtime PCM runtime instance

size size in bytes

Sound Devices

631

Name
bytes_to_frames — Unit conversion of the size from bytes to frames

Synopsis
snd_pcm_sframes_t bytes_to_frames (struct snd_pcm_runtime * runtime,
ssize_t size);

Arguments
runtime PCM runtime instance

size size in bytes

Sound Devices

632

Name
samples_to_bytes — Unit conversion of the size from samples to bytes

Synopsis
ssize_t samples_to_bytes (struct snd_pcm_runtime * runtime, ssize_t
size);

Arguments
runtime PCM runtime instance

size size in samples

Sound Devices

633

Name
frames_to_bytes — Unit conversion of the size from frames to bytes

Synopsis
ssize_t frames_to_bytes (struct snd_pcm_runtime * runtime,
snd_pcm_sframes_t size);

Arguments
runtime PCM runtime instance

size size in frames

Sound Devices

634

Name
frame_aligned — Check whether the byte size is aligned to frames

Synopsis
int frame_aligned (struct snd_pcm_runtime * runtime, ssize_t bytes);

Arguments
runtime PCM runtime instance

bytes size in bytes

Sound Devices

635

Name
snd_pcm_lib_buffer_bytes — Get the buffer size of the current PCM in bytes

Synopsis
size_t snd_pcm_lib_buffer_bytes (struct snd_pcm_substream * substream);

Arguments
substream PCM substream

Sound Devices

636

Name
snd_pcm_lib_period_bytes — Get the period size of the current PCM in bytes

Synopsis
size_t snd_pcm_lib_period_bytes (struct snd_pcm_substream * substream);

Arguments
substream PCM substream

Sound Devices

637

Name
snd_pcm_playback_avail — Get the available (writable) space for playback

Synopsis
snd_pcm_uframes_t snd_pcm_playback_avail (struct snd_pcm_runtime * run-
time);

Arguments
runtime PCM runtime instance

Description
Result is between 0 ... (boundary - 1)

Sound Devices

638

Name
snd_pcm_capture_avail — Get the available (readable) space for capture

Synopsis
snd_pcm_uframes_t snd_pcm_capture_avail (struct snd_pcm_runtime * run-
time);

Arguments
runtime PCM runtime instance

Description
Result is between 0 ... (boundary - 1)

Sound Devices

639

Name
snd_pcm_playback_hw_avail — Get the queued space for playback

Synopsis
snd_pcm_sframes_t snd_pcm_playback_hw_avail (struct snd_pcm_runtime *
runtime);

Arguments
runtime PCM runtime instance

Sound Devices

640

Name
snd_pcm_capture_hw_avail — Get the free space for capture

Synopsis
snd_pcm_sframes_t snd_pcm_capture_hw_avail (struct snd_pcm_runtime *
runtime);

Arguments
runtime PCM runtime instance

Sound Devices

641

Name
snd_pcm_playback_ready — check whether the playback buffer is available

Synopsis
int snd_pcm_playback_ready (struct snd_pcm_substream * substream);

Arguments
substream the pcm substream instance

Description
Checks whether enough free space is available on the playback buffer.

Return
Non-zero if available, or zero if not.

Sound Devices

642

Name
snd_pcm_capture_ready — check whether the capture buffer is available

Synopsis
int snd_pcm_capture_ready (struct snd_pcm_substream * substream);

Arguments
substream the pcm substream instance

Description
Checks whether enough capture data is available on the capture buffer.

Return
Non-zero if available, or zero if not.

Sound Devices

643

Name
snd_pcm_playback_data — check whether any data exists on the playback buffer

Synopsis
int snd_pcm_playback_data (struct snd_pcm_substream * substream);

Arguments
substream the pcm substream instance

Description
Checks whether any data exists on the playback buffer.

Return
Non-zero if any data exists, or zero if not. If stop_threshold is bigger or equal to boundary, then this
function returns always non-zero.

Sound Devices

644

Name
snd_pcm_playback_empty — check whether the playback buffer is empty

Synopsis
int snd_pcm_playback_empty (struct snd_pcm_substream * substream);

Arguments
substream the pcm substream instance

Description
Checks whether the playback buffer is empty.

Return
Non-zero if empty, or zero if not.

Sound Devices

645

Name
snd_pcm_capture_empty — check whether the capture buffer is empty

Synopsis
int snd_pcm_capture_empty (struct snd_pcm_substream * substream);

Arguments
substream the pcm substream instance

Description
Checks whether the capture buffer is empty.

Return
Non-zero if empty, or zero if not.

Sound Devices

646

Name
snd_pcm_trigger_done — Mark the master substream

Synopsis
void snd_pcm_trigger_done (struct snd_pcm_substream * substream, struct
snd_pcm_substream * master);

Arguments
substream the pcm substream instance

master the linked master substream

Description
When multiple substreams of the same card are linked and the hardware supports the single-shot operation,
the driver calls this in the loop in snd_pcm_group_for_each_entry for marking the substream as
“done”. Then most of trigger operations are performed only to the given master substream.

The trigger_master mark is cleared at timestamp updates at the end of trigger operations.

Sound Devices

647

Name
params_channels — Get the number of channels from the hw params

Synopsis
unsigned int params_channels (const struct snd_pcm_hw_params * p);

Arguments
p hw params

Sound Devices

648

Name
params_rate — Get the sample rate from the hw params

Synopsis
unsigned int params_rate (const struct snd_pcm_hw_params * p);

Arguments
p hw params

Sound Devices

649

Name
params_period_size — Get the period size (in frames) from the hw params

Synopsis
unsigned int params_period_size (const struct snd_pcm_hw_params * p);

Arguments
p hw params

Sound Devices

650

Name
params_periods — Get the number of periods from the hw params

Synopsis
unsigned int params_periods (const struct snd_pcm_hw_params * p);

Arguments
p hw params

Sound Devices

651

Name
params_buffer_size — Get the buffer size (in frames) from the hw params

Synopsis
unsigned int params_buffer_size (const struct snd_pcm_hw_params * p);

Arguments
p hw params

Sound Devices

652

Name
params_buffer_bytes — Get the buffer size (in bytes) from the hw params

Synopsis
unsigned int params_buffer_bytes (const struct snd_pcm_hw_params * p);

Arguments
p hw params

Sound Devices

653

Name
snd_pcm_format_cpu_endian — Check the PCM format is CPU-endian

Synopsis
int snd_pcm_format_cpu_endian (snd_pcm_format_t format);

Arguments
format the format to check

Return
1 if the given PCM format is CPU-endian, 0 if opposite, or a negative error code if endian not specified.

Sound Devices

654

Name
snd_pcm_set_runtime_buffer — Set the PCM runtime buffer

Synopsis
void snd_pcm_set_runtime_buffer (struct snd_pcm_substream * substream,
struct snd_dma_buffer * bufp);

Arguments
substream PCM substream to set

bufp the buffer information, NULL to clear

Description
Copy the buffer information to runtime->dma_buffer when bufp is non-NULL. Otherwise it clears the
current buffer information.

Sound Devices

655

Name
snd_pcm_gettime — Fill the timespec depending on the timestamp mode

Synopsis
void snd_pcm_gettime (struct snd_pcm_runtime * runtime, struct timespec
* tv);

Arguments
runtime PCM runtime instance

tv timespec to fill

Sound Devices

656

Name
snd_pcm_lib_alloc_vmalloc_buffer — allocate virtual DMA buffer

Synopsis
int snd_pcm_lib_alloc_vmalloc_buffer (struct snd_pcm_substream * sub-
stream, size_t size);

Arguments
substream the substream to allocate the buffer to

size the requested buffer size, in bytes

Description
Allocates the PCM substream buffer using vmalloc, i.e., the memory is contiguous in kernel virtual
space, but not in physical memory. Use this if the buffer is accessed by kernel code but not by device DMA.

Return
1 if the buffer was changed, 0 if not changed, or a negative error code.

Sound Devices

657

Name
snd_pcm_lib_alloc_vmalloc_32_buffer — allocate 32-bit-addressable buffer

Synopsis
int snd_pcm_lib_alloc_vmalloc_32_buffer (struct snd_pcm_substream *
substream, size_t size);

Arguments
substream the substream to allocate the buffer to

size the requested buffer size, in bytes

Description
This function works like snd_pcm_lib_alloc_vmalloc_buffer, but uses vmalloc_32, i.e.,
the pages are allocated from 32-bit-addressable memory.

Return
1 if the buffer was changed, 0 if not changed, or a negative error code.

Sound Devices

658

Name
snd_pcm_sgbuf_get_addr — Get the DMA address at the corresponding offset

Synopsis
dma_addr_t snd_pcm_sgbuf_get_addr (struct snd_pcm_substream * sub-
stream, unsigned int ofs);

Arguments
substream PCM substream

ofs byte offset

Sound Devices

659

Name
snd_pcm_sgbuf_get_ptr — Get the virtual address at the corresponding offset

Synopsis
void * snd_pcm_sgbuf_get_ptr (struct snd_pcm_substream * substream,
unsigned int ofs);

Arguments
substream PCM substream

ofs byte offset

Sound Devices

660

Name
snd_pcm_sgbuf_get_chunk_size — Compute the max size that fits within the contig. page from the given
size

Synopsis
unsigned int snd_pcm_sgbuf_get_chunk_size (struct snd_pcm_substream *
substream, unsigned int ofs, unsigned int size);

Arguments
substream PCM substream

ofs byte offset

size byte size to examine

Sound Devices

661

Name
snd_pcm_mmap_data_open — increase the mmap counter

Synopsis
void snd_pcm_mmap_data_open (struct vm_area_struct * area);

Arguments
area VMA

Description
PCM mmap callback should handle this counter properly

Sound Devices

662

Name
snd_pcm_mmap_data_close — decrease the mmap counter

Synopsis
void snd_pcm_mmap_data_close (struct vm_area_struct * area);

Arguments
area VMA

Description
PCM mmap callback should handle this counter properly

Sound Devices

663

Name
snd_pcm_limit_isa_dma_size — Get the max size fitting with ISA DMA transfer

Synopsis
void snd_pcm_limit_isa_dma_size (int dma, size_t * max);

Arguments
dma DMA number

max pointer to store the max size

Sound Devices

664

Name
snd_pcm_stream_str — Get a string naming the direction of a stream

Synopsis
const char * snd_pcm_stream_str (struct snd_pcm_substream * substream);

Arguments
substream the pcm substream instance

Return
A string naming the direction of the stream.

Sound Devices

665

Name
snd_pcm_chmap_substream — get the PCM substream assigned to the given chmap info

Synopsis
struct snd_pcm_substream * snd_pcm_chmap_substream (struct
snd_pcm_chmap * info, unsigned int idx);

Arguments
info chmap information

idx the substream number index

Sound Devices

666

Name
pcm_format_to_bits — Strong-typed conversion of pcm_format to bitwise

Synopsis
u64 pcm_format_to_bits (snd_pcm_format_t pcm_format);

Arguments
pcm_format PCM format

Sound Devices

667

Name
snd_pcm_format_name — Return a name string for the given PCM format

Synopsis
const char * snd_pcm_format_name (snd_pcm_format_t format);

Arguments
format PCM format

Sound Devices

668

Name
snd_pcm_new_stream — create a new PCM stream

Synopsis
int snd_pcm_new_stream (struct snd_pcm * pcm, int stream, int
substream_count);

Arguments
pcm the pcm instance

stream the stream direction, SNDRV_PCM_STREAM_XXX

substream_count the number of substreams

Description
Creates a new stream for the pcm. The corresponding stream on the pcm must have been empty before
calling this, i.e. zero must be given to the argument of snd_pcm_new.

Return
Zero if successful, or a negative error code on failure.

Sound Devices

669

Name
snd_pcm_new — create a new PCM instance

Synopsis
int snd_pcm_new (struct snd_card * card, const char * id, int device,
int playback_count, int capture_count, struct snd_pcm ** rpcm);

Arguments
card the card instance

id the id string

device the device index (zero based)

playback_count the number of substreams for playback

capture_count the number of substreams for capture

rpcm the pointer to store the new pcm instance

Description
Creates a new PCM instance.

The pcm operators have to be set afterwards to the new instance via snd_pcm_set_ops.

Return
Zero if successful, or a negative error code on failure.

Sound Devices

670

Name
snd_pcm_new_internal — create a new internal PCM instance

Synopsis
int snd_pcm_new_internal (struct snd_card * card, const char * id, int
device, int playback_count, int capture_count, struct snd_pcm ** rpcm);

Arguments
card the card instance

id the id string

device the device index (zero based - shared with normal PCMs)

playback_count the number of substreams for playback

capture_count the number of substreams for capture

rpcm the pointer to store the new pcm instance

Description
Creates a new internal PCM instance with no userspace device or procfs entries. This is used by ASoC
Back End PCMs in order to create a PCM that will only be used internally by kernel drivers. i.e. it cannot
be opened by userspace. It provides existing ASoC components drivers with a substream and access to
any private data.

The pcm operators have to be set afterwards to the new instance via snd_pcm_set_ops.

Return
Zero if successful, or a negative error code on failure.

Sound Devices

671

Name
snd_pcm_notify — Add/remove the notify list

Synopsis
int snd_pcm_notify (struct snd_pcm_notify * notify, int nfree);

Arguments
notify PCM notify list

nfree 0 = register, 1 = unregister

Description
This adds the given notifier to the global list so that the callback is called for each registered PCM devices.
This exists only for PCM OSS emulation, so far.

Sound Devices

672

Name
snd_device_new — create an ALSA device component

Synopsis
int snd_device_new (struct snd_card * card, enum snd_device_type type,
void * device_data, struct snd_device_ops * ops);

Arguments
card the card instance

type the device type, SNDRV_DEV_XXX

device_data the data pointer of this device

ops the operator table

Description
Creates a new device component for the given data pointer. The device will be assigned to the card and
managed together by the card.

The data pointer plays a role as the identifier, too, so the pointer address must be unique and unchanged.

Return
Zero if successful, or a negative error code on failure.

Sound Devices

673

Name
snd_device_disconnect — disconnect the device

Synopsis
void snd_device_disconnect (struct snd_card * card, void * device_data);

Arguments
card the card instance

device_data the data pointer to disconnect

Description
Turns the device into the disconnection state, invoking dev_disconnect callback, if the device was already
registered.

Usually called from snd_card_disconnect.

Return
Zero if successful, or a negative error code on failure or if the device not found.

Sound Devices

674

Name
snd_device_free — release the device from the card

Synopsis
void snd_device_free (struct snd_card * card, void * device_data);

Arguments
card the card instance

device_data the data pointer to release

Description
Removes the device from the list on the card and invokes the callbacks, dev_disconnect and dev_free,
corresponding to the state. Then release the device.

Sound Devices

675

Name
snd_device_register — register the device

Synopsis
int snd_device_register (struct snd_card * card, void * device_data);

Arguments
card the card instance

device_data the data pointer to register

Description
Registers the device which was already created via snd_device_new. Usually this is called from
snd_card_register, but it can be called later if any new devices are created after invocation of
snd_card_register.

Return
Zero if successful, or a negative error code on failure or if the device not found.

Sound Devices

676

Name
snd_iprintf — printf on the procfs buffer

Synopsis
int snd_iprintf (struct snd_info_buffer * buffer, const char * fmt, ...);

Arguments
buffer the procfs buffer

fmt the printf format

... variable arguments

Description
Outputs the string on the procfs buffer just like printf.

Return
The size of output string, or a negative error code.

Sound Devices

677

Name
snd_info_get_line — read one line from the procfs buffer

Synopsis
int snd_info_get_line (struct snd_info_buffer * buffer, char * line,
int len);

Arguments
buffer the procfs buffer

line the buffer to store

len the max. buffer size

Description
Reads one line from the buffer and stores the string.

Return
Zero if successful, or 1 if error or EOF.

Sound Devices

678

Name
snd_info_get_str — parse a string token

Synopsis
const char * snd_info_get_str (char * dest, const char * src, int len);

Arguments
dest the buffer to store the string token

src the original string

len the max. length of token - 1

Description
Parses the original string and copy a token to the given string buffer.

Return
The updated pointer of the original string so that it can be used for the next call.

Sound Devices

679

Name
snd_info_create_module_entry — create an info entry for the given module

Synopsis
struct snd_info_entry * snd_info_create_module_entry (struct module *
module, const char * name, struct snd_info_entry * parent);

Arguments
module the module pointer

name the file name

parent the parent directory

Description
Creates a new info entry and assigns it to the given module.

Return
The pointer of the new instance, or NULL on failure.

Sound Devices

680

Name
snd_info_create_card_entry — create an info entry for the given card

Synopsis
struct snd_info_entry * snd_info_create_card_entry (struct snd_card *
card, const char * name, struct snd_info_entry * parent);

Arguments
card the card instance

name the file name

parent the parent directory

Description
Creates a new info entry and assigns it to the given card.

Return
The pointer of the new instance, or NULL on failure.

Sound Devices

681

Name
snd_card_proc_new — create an info entry for the given card

Synopsis
int snd_card_proc_new (struct snd_card * card, const char * name, struct
snd_info_entry ** entryp);

Arguments
card the card instance

name the file name

entryp the pointer to store the new info entry

Description
Creates a new info entry and assigns it to the given card. Unlike snd_info_create_card_entry,
this function registers the info entry as an ALSA device component, so that it can be unregistered/released
without explicit call. Also, you don't have to register this entry via snd_info_register, since this
will be registered by snd_card_register automatically.

The parent is assumed as card->proc_root.

For releasing this entry, use snd_device_free instead of snd_info_free_entry.

Return
Zero if successful, or a negative error code on failure.

Sound Devices

682

Name
snd_info_free_entry — release the info entry

Synopsis
void snd_info_free_entry (struct snd_info_entry * entry);

Arguments
entry the info entry

Description
Releases the info entry. Don't call this after registered.

Sound Devices

683

Name
snd_info_register — register the info entry

Synopsis
int snd_info_register (struct snd_info_entry * entry);

Arguments
entry the info entry

Description
Registers the proc info entry.

Return
Zero if successful, or a negative error code on failure.

Sound Devices

684

Name
snd_rawmidi_receive — receive the input data from the device

Synopsis
int snd_rawmidi_receive (struct snd_rawmidi_substream * substream, const
unsigned char * buffer, int count);

Arguments
substream the rawmidi substream

buffer the buffer pointer

count the data size to read

Description
Reads the data from the internal buffer.

Return
The size of read data, or a negative error code on failure.

Sound Devices

685

Name
snd_rawmidi_transmit_empty — check whether the output buffer is empty

Synopsis
int snd_rawmidi_transmit_empty (struct snd_rawmidi_substream * sub-
stream);

Arguments
substream the rawmidi substream

Return
1 if the internal output buffer is empty, 0 if not.

Sound Devices

686

Name
__snd_rawmidi_transmit_peek — copy data from the internal buffer

Synopsis
int __snd_rawmidi_transmit_peek (struct snd_rawmidi_substream * sub-
stream, unsigned char * buffer, int count);

Arguments
substream the rawmidi substream

buffer the buffer pointer

count data size to transfer

Description
This is a variant of snd_rawmidi_transmit_peek without spinlock.

Sound Devices

687

Name
snd_rawmidi_transmit_peek — copy data from the internal buffer

Synopsis
int snd_rawmidi_transmit_peek (struct snd_rawmidi_substream * sub-
stream, unsigned char * buffer, int count);

Arguments
substream the rawmidi substream

buffer the buffer pointer

count data size to transfer

Description
Copies data from the internal output buffer to the given buffer.

Call this in the interrupt handler when the midi output is ready, and call
snd_rawmidi_transmit_ack after the transmission is finished.

Return
The size of copied data, or a negative error code on failure.

Sound Devices

688

Name
__snd_rawmidi_transmit_ack — acknowledge the transmission

Synopsis
int __snd_rawmidi_transmit_ack (struct snd_rawmidi_substream * sub-
stream, int count);

Arguments
substream the rawmidi substream

count the transferred count

Description
This is a variant of __snd_rawmidi_transmit_ack without spinlock.

Sound Devices

689

Name
snd_rawmidi_transmit_ack — acknowledge the transmission

Synopsis
int snd_rawmidi_transmit_ack (struct snd_rawmidi_substream * substream,
int count);

Arguments
substream the rawmidi substream

count the transferred count

Description
Advances the hardware pointer for the internal output buffer with the given size and updates the condition.
Call after the transmission is finished.

Return
The advanced size if successful, or a negative error code on failure.

Sound Devices

690

Name
snd_rawmidi_transmit — copy from the buffer to the device

Synopsis
int snd_rawmidi_transmit (struct snd_rawmidi_substream * substream, un-
signed char * buffer, int count);

Arguments
substream the rawmidi substream

buffer the buffer pointer

count the data size to transfer

Description
Copies data from the buffer to the device and advances the pointer.

Return
The copied size if successful, or a negative error code on failure.

Sound Devices

691

Name
snd_rawmidi_new — create a rawmidi instance

Synopsis
int snd_rawmidi_new (struct snd_card * card, char * id, int device, int
output_count, int input_count, struct snd_rawmidi ** rrawmidi);

Arguments
card the card instance

id the id string

device the device index

output_count the number of output streams

input_count the number of input streams

rrawmidi the pointer to store the new rawmidi instance

Description
Creates a new rawmidi instance. Use snd_rawmidi_set_ops to set the operators to the new instance.

Return
Zero if successful, or a negative error code on failure.

Sound Devices

692

Name
snd_rawmidi_set_ops — set the rawmidi operators

Synopsis
void snd_rawmidi_set_ops (struct snd_rawmidi * rmidi, int stream, struct
snd_rawmidi_ops * ops);

Arguments
rmidi the rawmidi instance

stream the stream direction, SNDRV_RAWMIDI_STREAM_XXX

ops the operator table

Description
Sets the rawmidi operators for the given stream direction.

Sound Devices

693

Name
snd_request_card — try to load the card module

Synopsis
void snd_request_card (int card);

Arguments
card the card number

Description
Tries to load the module “snd-card-X” for the given card number via request_module. Returns immediately
if already loaded.

Sound Devices

694

Name
snd_lookup_minor_data — get user data of a registered device

Synopsis
void * snd_lookup_minor_data (unsigned int minor, int type);

Arguments
minor the minor number

type device type (SNDRV_DEVICE_TYPE_XXX)

Description
Checks that a minor device with the specified type is registered, and returns its user data pointer.

This function increments the reference counter of the card instance if an associated instance with the given
minor number and type is found. The caller must call snd_card_unref appropriately later.

Return
The user data pointer if the specified device is found. NULL otherwise.

Sound Devices

695

Name
snd_register_device — Register the ALSA device file for the card

Synopsis
int snd_register_device (int type, struct snd_card * card, int dev,
const struct file_operations * f_ops, void * private_data, struct device
* device);

Arguments
type the device type, SNDRV_DEVICE_TYPE_XXX

card the card instance

dev the device index

f_ops the file operations

private_data user pointer for f_ops->open

device the device to register

Description
Registers an ALSA device file for the given card. The operators have to be set in reg parameter.

Return
Zero if successful, or a negative error code on failure.

Sound Devices

696

Name
snd_unregister_device — unregister the device on the given card

Synopsis
int snd_unregister_device (struct device * dev);

Arguments
dev the device instance

Description
Unregisters the device file already registered via snd_register_device.

Return
Zero if successful, or a negative error code on failure.

Sound Devices

697

Name
copy_to_user_fromio — copy data from mmio-space to user-space

Synopsis
int copy_to_user_fromio (void __user * dst, const volatile void __iomem
* src, size_t count);

Arguments
dst the destination pointer on user-space

src the source pointer on mmio

count the data size to copy in bytes

Description
Copies the data from mmio-space to user-space.

Return
Zero if successful, or non-zero on failure.

Sound Devices

698

Name
copy_from_user_toio — copy data from user-space to mmio-space

Synopsis
int copy_from_user_toio (volatile void __iomem * dst, const void __user
* src, size_t count);

Arguments
dst the destination pointer on mmio-space

src the source pointer on user-space

count the data size to copy in bytes

Description
Copies the data from user-space to mmio-space.

Return
Zero if successful, or non-zero on failure.

Sound Devices

699

Name
snd_pcm_lib_preallocate_free_for_all — release all pre-allocated buffers on the pcm

Synopsis
int snd_pcm_lib_preallocate_free_for_all (struct snd_pcm * pcm);

Arguments
pcm the pcm instance

Description
Releases all the pre-allocated buffers on the given pcm.

Return
Zero if successful, or a negative error code on failure.

Sound Devices

700

Name
snd_pcm_lib_preallocate_pages — pre-allocation for the given DMA type

Synopsis
int snd_pcm_lib_preallocate_pages (struct snd_pcm_substream * sub-
stream, int type, struct device * data, size_t size, size_t max);

Arguments
substream the pcm substream instance

type DMA type (SNDRV_DMA_TYPE_*)

data DMA type dependent data

size the requested pre-allocation size in bytes

max the max. allowed pre-allocation size

Description
Do pre-allocation for the given DMA buffer type.

Return
Zero if successful, or a negative error code on failure.

Sound Devices

701

Name
snd_pcm_lib_preallocate_pages_for_all — pre-allocation for continuous memory type (all substreams)

Synopsis
int snd_pcm_lib_preallocate_pages_for_all (struct snd_pcm * pcm, int
type, void * data, size_t size, size_t max);

Arguments
pcm the pcm instance

type DMA type (SNDRV_DMA_TYPE_*)

data DMA type dependent data

size the requested pre-allocation size in bytes

max the max. allowed pre-allocation size

Description
Do pre-allocation to all substreams of the given pcm for the specified DMA type.

Return
Zero if successful, or a negative error code on failure.

Sound Devices

702

Name
snd_pcm_sgbuf_ops_page — get the page struct at the given offset

Synopsis
struct page * snd_pcm_sgbuf_ops_page (struct snd_pcm_substream * sub-
stream, unsigned long offset);

Arguments
substream the pcm substream instance

offset the buffer offset

Description
Used as the page callback of PCM ops.

Return
The page struct at the given buffer offset. NULL on failure.

Sound Devices

703

Name
snd_pcm_lib_malloc_pages — allocate the DMA buffer

Synopsis
int snd_pcm_lib_malloc_pages (struct snd_pcm_substream * substream,
size_t size);

Arguments
substream the substream to allocate the DMA buffer to

size the requested buffer size in bytes

Description
Allocates the DMA buffer on the BUS type given earlier to
snd_pcm_lib_preallocate_xxx_pages.

Return
1 if the buffer is changed, 0 if not changed, or a negative code on failure.

Sound Devices

704

Name
snd_pcm_lib_free_pages — release the allocated DMA buffer.

Synopsis
int snd_pcm_lib_free_pages (struct snd_pcm_substream * substream);

Arguments
substream the substream to release the DMA buffer

Description
Releases the DMA buffer allocated via snd_pcm_lib_malloc_pages.

Return
Zero if successful, or a negative error code on failure.

Sound Devices

705

Name
snd_pcm_lib_free_vmalloc_buffer — free vmalloc buffer

Synopsis
int snd_pcm_lib_free_vmalloc_buffer (struct snd_pcm_substream * sub-
stream);

Arguments
substream the substream with a buffer allocated by snd_pcm_lib_alloc_vmalloc_buffer

Return
Zero if successful, or a negative error code on failure.

Sound Devices

706

Name
snd_pcm_lib_get_vmalloc_page — map vmalloc buffer offset to page struct

Synopsis
struct page * snd_pcm_lib_get_vmalloc_page (struct snd_pcm_substream *
substream, unsigned long offset);

Arguments
substream the substream with a buffer allocated by snd_pcm_lib_alloc_vmalloc_buffer

offset offset in the buffer

Description
This function is to be used as the page callback in the PCM ops.

Return
The page struct, or NULL on failure.

Sound Devices

707

Name
snd_device_initialize — Initialize struct device for sound devices

Synopsis
void snd_device_initialize (struct device * dev, struct snd_card * card);

Arguments
dev device to initialize

card card to assign, optional

Sound Devices

708

Name
snd_card_new — create and initialize a soundcard structure

Synopsis
int snd_card_new (struct device * parent, int idx, const char * xid,
struct module * module, int extra_size, struct snd_card ** card_ret);

Arguments
parent the parent device object

idx card index (address) [0 ... (SNDRV_CARDS-1)]

xid card identification (ASCII string)

module top level module for locking

extra_size allocate this extra size after the main soundcard structure

card_ret the pointer to store the created card instance

Description
Creates and initializes a soundcard structure.

The function allocates snd_card instance via kzalloc with the given space for the driver to use freely. The
allocated struct is stored in the given card_ret pointer.

Return
Zero if successful or a negative error code.

Sound Devices

709

Name
snd_card_disconnect — disconnect all APIs from the file-operations (user space)

Synopsis
int snd_card_disconnect (struct snd_card * card);

Arguments
card soundcard structure

Description
Disconnects all APIs from the file-operations (user space).

Return
Zero, otherwise a negative error code.

Note
The current implementation replaces all active file->f_op with special dummy file operations (they do
nothing except release).

Sound Devices

710

Name
snd_card_free_when_closed — Disconnect the card, free it later eventually

Synopsis
int snd_card_free_when_closed (struct snd_card * card);

Arguments
card soundcard structure

Description
Unlike snd_card_free, this function doesn't try to release the card resource immediately, but tries to
disconnect at first. When the card is still in use, the function returns before freeing the resources. The card
resources will be freed when the refcount gets to zero.

Sound Devices

711

Name
snd_card_free — frees given soundcard structure

Synopsis
int snd_card_free (struct snd_card * card);

Arguments
card soundcard structure

Description
This function releases the soundcard structure and the all assigned devices automatically. That is, you don't
have to release the devices by yourself.

This function waits until the all resources are properly released.

Return
Zero. Frees all associated devices and frees the control interface associated to given soundcard.

Sound Devices

712

Name
snd_card_set_id — set card identification name

Synopsis
void snd_card_set_id (struct snd_card * card, const char * nid);

Arguments
card soundcard structure

nid new identification string

Description
This function sets the card identification and checks for name collisions.

Sound Devices

713

Name
snd_card_add_dev_attr — Append a new sysfs attribute group to card

Synopsis
int snd_card_add_dev_attr (struct snd_card * card, const struct
attribute_group * group);

Arguments
card card instance

group attribute group to append

Sound Devices

714

Name
snd_card_register — register the soundcard

Synopsis
int snd_card_register (struct snd_card * card);

Arguments
card soundcard structure

Description
This function registers all the devices assigned to the soundcard. Until calling this, the ALSA control in-
terface is blocked from the external accesses. Thus, you should call this function at the end of the initial-
ization of the card.

Return
Zero otherwise a negative error code if the registration failed.

Sound Devices

715

Name
snd_component_add — add a component string

Synopsis
int snd_component_add (struct snd_card * card, const char * component);

Arguments
card soundcard structure

component the component id string

Description
This function adds the component id string to the supported list. The component can be referred from the
alsa-lib.

Return
Zero otherwise a negative error code.

Sound Devices

716

Name
snd_card_file_add — add the file to the file list of the card

Synopsis
int snd_card_file_add (struct snd_card * card, struct file * file);

Arguments
card soundcard structure

file file pointer

Description
This function adds the file to the file linked-list of the card. This linked-list is used to keep tracking the
connection state, and to avoid the release of busy resources by hotplug.

Return
zero or a negative error code.

Sound Devices

717

Name
snd_card_file_remove — remove the file from the file list

Synopsis
int snd_card_file_remove (struct snd_card * card, struct file * file);

Arguments
card soundcard structure

file file pointer

Description
This function removes the file formerly added to the card via snd_card_file_add function. If all files
are removed and snd_card_free_when_closed was called beforehand, it processes the pending
release of resources.

Return
Zero or a negative error code.

Sound Devices

718

Name
snd_power_wait — wait until the power-state is changed.

Synopsis
int snd_power_wait (struct snd_card * card, unsigned int power_state);

Arguments
card soundcard structure

power_state expected power state

Description
Waits until the power-state is changed.

Return
Zero if successful, or a negative error code.

Note
the power lock must be active before call.

Sound Devices

719

Name
snd_dma_program — program an ISA DMA transfer

Synopsis
void snd_dma_program (unsigned long dma, unsigned long addr, unsigned
int size, unsigned short mode);

Arguments
dma the dma number

addr the physical address of the buffer

size the DMA transfer size

mode the DMA transfer mode, DMA_MODE_XXX

Description
Programs an ISA DMA transfer for the given buffer.

Sound Devices

720

Name
snd_dma_disable — stop the ISA DMA transfer

Synopsis
void snd_dma_disable (unsigned long dma);

Arguments
dma the dma number

Description
Stops the ISA DMA transfer.

Sound Devices

721

Name
snd_dma_pointer — return the current pointer to DMA transfer buffer in bytes

Synopsis
unsigned int snd_dma_pointer (unsigned long dma, unsigned int size);

Arguments
dma the dma number

size the dma transfer size

Return
The current pointer in DMA transfer buffer in bytes.

Sound Devices

722

Name
snd_ctl_notify — Send notification to user-space for a control change

Synopsis
void snd_ctl_notify (struct snd_card * card, unsigned int mask, struct
snd_ctl_elem_id * id);

Arguments
card the card to send notification

mask the event mask, SNDRV_CTL_EVENT_*

id the ctl element id to send notification

Description
This function adds an event record with the given id and mask, appends to the list and wakes up the user-
space for notification. This can be called in the atomic context.

Sound Devices

723

Name
snd_ctl_new1 — create a control instance from the template

Synopsis
struct snd_kcontrol * snd_ctl_new1 (const struct snd_kcontrol_new *
ncontrol, void * private_data);

Arguments
ncontrol the initialization record

private_data the private data to set

Description
Allocates a new struct snd_kcontrol instance and initialize from the given template. When the access field
of ncontrol is 0, it's assumed as READWRITE access. When the count field is 0, it's assumes as one.

Return
The pointer of the newly generated instance, or NULL on failure.

Sound Devices

724

Name
snd_ctl_free_one — release the control instance

Synopsis
void snd_ctl_free_one (struct snd_kcontrol * kcontrol);

Arguments
kcontrol the control instance

Description
Releases the control instance created via snd_ctl_new or snd_ctl_new1. Don't call this after the
control was added to the card.

Sound Devices

725

Name
snd_ctl_add — add the control instance to the card

Synopsis
int snd_ctl_add (struct snd_card * card, struct snd_kcontrol * kcontrol);

Arguments
card the card instance

kcontrol the control instance to add

Description
Adds the control instance created via snd_ctl_new or snd_ctl_new1 to the given card. Assigns also
an unique numid used for fast search.

It frees automatically the control which cannot be added.

Return
Zero if successful, or a negative error code on failure.

Sound Devices

726

Name
snd_ctl_replace — replace the control instance of the card

Synopsis
int snd_ctl_replace (struct snd_card * card, struct snd_kcontrol *
kcontrol, bool add_on_replace);

Arguments
card the card instance

kcontrol the control instance to replace

add_on_replace add the control if not already added

Description
Replaces the given control. If the given control does not exist and the add_on_replace flag is set, the control
is added. If the control exists, it is destroyed first.

It frees automatically the control which cannot be added or replaced.

Return
Zero if successful, or a negative error code on failure.

Sound Devices

727

Name
snd_ctl_remove — remove the control from the card and release it

Synopsis
int snd_ctl_remove (struct snd_card * card, struct snd_kcontrol * kcon-
trol);

Arguments
card the card instance

kcontrol the control instance to remove

Description
Removes the control from the card and then releases the instance. You don't need to call
snd_ctl_free_one. You must be in the write lock - down_write(card->controls_rwsem).

Return
0 if successful, or a negative error code on failure.

Sound Devices

728

Name
snd_ctl_remove_id — remove the control of the given id and release it

Synopsis
int snd_ctl_remove_id (struct snd_card * card, struct snd_ctl_elem_id
* id);

Arguments
card the card instance

id the control id to remove

Description
Finds the control instance with the given id, removes it from the card list and releases it.

Return
0 if successful, or a negative error code on failure.

Sound Devices

729

Name
snd_ctl_activate_id — activate/inactivate the control of the given id

Synopsis
int snd_ctl_activate_id (struct snd_card * card, struct snd_ctl_elem_id
* id, int active);

Arguments
card the card instance

id the control id to activate/inactivate

active non-zero to activate

Description
Finds the control instance with the given id, and activate or inactivate the control together with notification,
if changed. The given ID data is filled with full information.

Return
0 if unchanged, 1 if changed, or a negative error code on failure.

Sound Devices

730

Name
snd_ctl_rename_id — replace the id of a control on the card

Synopsis
int snd_ctl_rename_id (struct snd_card * card, struct snd_ctl_elem_id
* src_id, struct snd_ctl_elem_id * dst_id);

Arguments
card the card instance

src_id the old id

dst_id the new id

Description
Finds the control with the old id from the card, and replaces the id with the new one.

Return
Zero if successful, or a negative error code on failure.

Sound Devices

731

Name
snd_ctl_find_numid — find the control instance with the given number-id

Synopsis
struct snd_kcontrol * snd_ctl_find_numid (struct snd_card * card, un-
signed int numid);

Arguments
card the card instance

numid the number-id to search

Description
Finds the control instance with the given number-id from the card.

The caller must down card->controls_rwsem before calling this function (if the race condition can happen).

Return
The pointer of the instance if found, or NULL if not.

Sound Devices

732

Name
snd_ctl_find_id — find the control instance with the given id

Synopsis
struct snd_kcontrol * snd_ctl_find_id (struct snd_card * card, struct
snd_ctl_elem_id * id);

Arguments
card the card instance

id the id to search

Description
Finds the control instance with the given id from the card.

The caller must down card->controls_rwsem before calling this function (if the race condition can happen).

Return
The pointer of the instance if found, or NULL if not.

Sound Devices

733

Name
snd_ctl_register_ioctl — register the device-specific control-ioctls

Synopsis
int snd_ctl_register_ioctl (snd_kctl_ioctl_func_t fcn);

Arguments
fcn ioctl callback function

Description
called from each device manager like pcm.c, hwdep.c, etc.

Sound Devices

734

Name
snd_ctl_register_ioctl_compat — register the device-specific 32bit compat control-ioctls

Synopsis
int snd_ctl_register_ioctl_compat (snd_kctl_ioctl_func_t fcn);

Arguments
fcn ioctl callback function

Sound Devices

735

Name
snd_ctl_unregister_ioctl — de-register the device-specific control-ioctls

Synopsis
int snd_ctl_unregister_ioctl (snd_kctl_ioctl_func_t fcn);

Arguments
fcn ioctl callback function to unregister

Sound Devices

736

Name
snd_ctl_unregister_ioctl_compat — de-register the device-specific compat 32bit control-ioctls

Synopsis
int snd_ctl_unregister_ioctl_compat (snd_kctl_ioctl_func_t fcn);

Arguments
fcn ioctl callback function to unregister

Sound Devices

737

Name
snd_ctl_boolean_mono_info — Helper function for a standard boolean info callback with a mono channel

Synopsis
int snd_ctl_boolean_mono_info (struct snd_kcontrol * kcontrol, struct
snd_ctl_elem_info * uinfo);

Arguments
kcontrol the kcontrol instance

uinfo info to store

Description
This is a function that can be used as info callback for a standard boolean control with a single mono
channel.

Sound Devices

738

Name
snd_ctl_boolean_stereo_info — Helper function for a standard boolean info callback with stereo two chan-
nels

Synopsis
int snd_ctl_boolean_stereo_info (struct snd_kcontrol * kcontrol, struct
snd_ctl_elem_info * uinfo);

Arguments
kcontrol the kcontrol instance

uinfo info to store

Description
This is a function that can be used as info callback for a standard boolean control with stereo two channels.

Sound Devices

739

Name
snd_ctl_enum_info — fills the info structure for an enumerated control

Synopsis
int snd_ctl_enum_info (struct snd_ctl_elem_info * info, unsigned int
channels, unsigned int items, const char *const names[]);

Arguments
info the structure to be filled

channels the number of the control's channels; often one

items the number of control values; also the size of names

names[] an array containing the names of all control values

Description
Sets all required fields in info to their appropriate values. If the control's accessibility is not the default
(readable and writable), the caller has to fill info->access.

Return
Zero.

Sound Devices

740

Name
snd_pcm_set_ops — set the PCM operators

Synopsis
void snd_pcm_set_ops (struct snd_pcm * pcm, int direction, const struct
snd_pcm_ops * ops);

Arguments
pcm the pcm instance

direction stream direction, SNDRV_PCM_STREAM_XXX

ops the operator table

Description
Sets the given PCM operators to the pcm instance.

Sound Devices

741

Name
snd_pcm_set_sync — set the PCM sync id

Synopsis
void snd_pcm_set_sync (struct snd_pcm_substream * substream);

Arguments
substream the pcm substream

Description
Sets the PCM sync identifier for the card.

Sound Devices

742

Name
snd_interval_refine — refine the interval value of configurator

Synopsis
int snd_interval_refine (struct snd_interval * i, const struct
snd_interval * v);

Arguments
i the interval value to refine

v the interval value to refer to

Description
Refines the interval value with the reference value. The interval is changed to the range satisfying both
intervals. The interval status (min, max, integer, etc.) are evaluated.

Return
Positive if the value is changed, zero if it's not changed, or a negative error code.

Sound Devices

743

Name
snd_interval_ratnum — refine the interval value

Synopsis
int snd_interval_ratnum (struct snd_interval * i, unsigned int
rats_count, struct snd_ratnum * rats, unsigned int * nump, unsigned
int * denp);

Arguments
i interval to refine

rats_count number of ratnum_t

rats ratnum_t array

nump pointer to store the resultant numerator

denp pointer to store the resultant denominator

Return
Positive if the value is changed, zero if it's not changed, or a negative error code.

Sound Devices

744

Name
snd_interval_list — refine the interval value from the list

Synopsis
int snd_interval_list (struct snd_interval * i, unsigned int count,
const unsigned int * list, unsigned int mask);

Arguments
i the interval value to refine

count the number of elements in the list

list the value list

mask the bit-mask to evaluate

Description
Refines the interval value from the list. When mask is non-zero, only the elements corresponding to bit
1 are evaluated.

Return
Positive if the value is changed, zero if it's not changed, or a negative error code.

Sound Devices

745

Name
snd_interval_ranges — refine the interval value from the list of ranges

Synopsis
int snd_interval_ranges (struct snd_interval * i, unsigned int count,
const struct snd_interval * ranges, unsigned int mask);

Arguments
i the interval value to refine

count the number of elements in the list of ranges

ranges the ranges list

mask the bit-mask to evaluate

Description
Refines the interval value from the list of ranges. When mask is non-zero, only the elements corresponding
to bit 1 are evaluated.

Return
Positive if the value is changed, zero if it's not changed, or a negative error code.

Sound Devices

746

Name
snd_pcm_hw_rule_add — add the hw-constraint rule

Synopsis
int snd_pcm_hw_rule_add (struct snd_pcm_runtime * runtime, unsigned int
cond, int var, snd_pcm_hw_rule_func_t func, void * private, int dep,
...);

Arguments
runtime the pcm runtime instance

cond condition bits

var the variable to evaluate

func the evaluation function

private the private data pointer passed to function

dep the dependent variables

... variable arguments

Return
Zero if successful, or a negative error code on failure.

Sound Devices

747

Name
snd_pcm_hw_constraint_mask64 — apply the given bitmap mask constraint

Synopsis
int snd_pcm_hw_constraint_mask64 (struct snd_pcm_runtime * runtime,
snd_pcm_hw_param_t var, u_int64_t mask);

Arguments
runtime PCM runtime instance

var hw_params variable to apply the mask

mask the 64bit bitmap mask

Description
Apply the constraint of the given bitmap mask to a 64-bit mask parameter.

Return
Zero if successful, or a negative error code on failure.

Sound Devices

748

Name
snd_pcm_hw_constraint_integer — apply an integer constraint to an interval

Synopsis
int snd_pcm_hw_constraint_integer (struct snd_pcm_runtime * runtime,
snd_pcm_hw_param_t var);

Arguments
runtime PCM runtime instance

var hw_params variable to apply the integer constraint

Description
Apply the constraint of integer to an interval parameter.

Return
Positive if the value is changed, zero if it's not changed, or a negative error code.

Sound Devices

749

Name
snd_pcm_hw_constraint_minmax — apply a min/max range constraint to an interval

Synopsis
int snd_pcm_hw_constraint_minmax (struct snd_pcm_runtime * runtime,
snd_pcm_hw_param_t var, unsigned int min, unsigned int max);

Arguments
runtime PCM runtime instance

var hw_params variable to apply the range

min the minimal value

max the maximal value

Description
Apply the min/max range constraint to an interval parameter.

Return
Positive if the value is changed, zero if it's not changed, or a negative error code.

Sound Devices

750

Name
snd_pcm_hw_constraint_list — apply a list of constraints to a parameter

Synopsis
int snd_pcm_hw_constraint_list (struct snd_pcm_runtime * run-
time, unsigned int cond, snd_pcm_hw_param_t var, const struct
snd_pcm_hw_constraint_list * l);

Arguments
runtime PCM runtime instance

cond condition bits

var hw_params variable to apply the list constraint

l list

Description
Apply the list of constraints to an interval parameter.

Return
Zero if successful, or a negative error code on failure.

Sound Devices

751

Name
snd_pcm_hw_constraint_ranges — apply list of range constraints to a parameter

Synopsis
int snd_pcm_hw_constraint_ranges (struct snd_pcm_runtime * run-
time, unsigned int cond, snd_pcm_hw_param_t var, const struct
snd_pcm_hw_constraint_ranges * r);

Arguments
runtime PCM runtime instance

cond condition bits

var hw_params variable to apply the list of range constraints

r ranges

Description
Apply the list of range constraints to an interval parameter.

Return
Zero if successful, or a negative error code on failure.

Sound Devices

752

Name
snd_pcm_hw_constraint_ratnums — apply ratnums constraint to a parameter

Synopsis
int snd_pcm_hw_constraint_ratnums (struct snd_pcm_runtime * run-
time, unsigned int cond, snd_pcm_hw_param_t var, struct
snd_pcm_hw_constraint_ratnums * r);

Arguments
runtime PCM runtime instance

cond condition bits

var hw_params variable to apply the ratnums constraint

r struct snd_ratnums constriants

Return
Zero if successful, or a negative error code on failure.

Sound Devices

753

Name
snd_pcm_hw_constraint_ratdens — apply ratdens constraint to a parameter

Synopsis
int snd_pcm_hw_constraint_ratdens (struct snd_pcm_runtime * run-
time, unsigned int cond, snd_pcm_hw_param_t var, struct
snd_pcm_hw_constraint_ratdens * r);

Arguments
runtime PCM runtime instance

cond condition bits

var hw_params variable to apply the ratdens constraint

r struct snd_ratdens constriants

Return
Zero if successful, or a negative error code on failure.

Sound Devices

754

Name
snd_pcm_hw_constraint_msbits — add a hw constraint msbits rule

Synopsis
int snd_pcm_hw_constraint_msbits (struct snd_pcm_runtime * runtime, un-
signed int cond, unsigned int width, unsigned int msbits);

Arguments
runtime PCM runtime instance

cond condition bits

width sample bits width

msbits msbits width

Description
This constraint will set the number of most significant bits (msbits) if a sample format with the specified
width has been select. If width is set to 0 the msbits will be set for any sample format with a width larger
than the specified msbits.

Return
Zero if successful, or a negative error code on failure.

Sound Devices

755

Name
snd_pcm_hw_constraint_step — add a hw constraint step rule

Synopsis
int snd_pcm_hw_constraint_step (struct snd_pcm_runtime * runtime, un-
signed int cond, snd_pcm_hw_param_t var, unsigned long step);

Arguments
runtime PCM runtime instance

cond condition bits

var hw_params variable to apply the step constraint

step step size

Return
Zero if successful, or a negative error code on failure.

Sound Devices

756

Name
snd_pcm_hw_constraint_pow2 — add a hw constraint power-of-2 rule

Synopsis
int snd_pcm_hw_constraint_pow2 (struct snd_pcm_runtime * runtime, un-
signed int cond, snd_pcm_hw_param_t var);

Arguments
runtime PCM runtime instance

cond condition bits

var hw_params variable to apply the power-of-2 constraint

Return
Zero if successful, or a negative error code on failure.

Sound Devices

757

Name
snd_pcm_hw_rule_noresample — add a rule to allow disabling hw resampling

Synopsis
int snd_pcm_hw_rule_noresample (struct snd_pcm_runtime * runtime, un-
signed int base_rate);

Arguments
runtime PCM runtime instance

base_rate the rate at which the hardware does not resample

Return
Zero if successful, or a negative error code on failure.

Sound Devices

758

Name
snd_pcm_hw_param_value — return params field var value

Synopsis
int snd_pcm_hw_param_value (const struct snd_pcm_hw_params * params,
snd_pcm_hw_param_t var, int * dir);

Arguments
params the hw_params instance

var parameter to retrieve

dir pointer to the direction (-1,0,1) or NULL

Return
The value for field var if it's fixed in configuration space defined by params. -EINVAL otherwise.

Sound Devices

759

Name
snd_pcm_hw_param_first — refine config space and return minimum value

Synopsis
int snd_pcm_hw_param_first (struct snd_pcm_substream * pcm, struct
snd_pcm_hw_params * params, snd_pcm_hw_param_t var, int * dir);

Arguments
pcm PCM instance

params the hw_params instance

var parameter to retrieve

dir pointer to the direction (-1,0,1) or NULL

Description
Inside configuration space defined by params remove from var all values > minimum. Reduce config-
uration space accordingly.

Return
The minimum, or a negative error code on failure.

Sound Devices

760

Name
snd_pcm_hw_param_last — refine config space and return maximum value

Synopsis
int snd_pcm_hw_param_last (struct snd_pcm_substream * pcm, struct
snd_pcm_hw_params * params, snd_pcm_hw_param_t var, int * dir);

Arguments
pcm PCM instance

params the hw_params instance

var parameter to retrieve

dir pointer to the direction (-1,0,1) or NULL

Description
Inside configuration space defined by params remove from var all values < maximum. Reduce config-
uration space accordingly.

Return
The maximum, or a negative error code on failure.

Sound Devices

761

Name
snd_pcm_lib_ioctl — a generic PCM ioctl callback

Synopsis
int snd_pcm_lib_ioctl (struct snd_pcm_substream * substream, unsigned
int cmd, void * arg);

Arguments
substream the pcm substream instance

cmd ioctl command

arg ioctl argument

Description
Processes the generic ioctl commands for PCM. Can be passed as the ioctl callback for PCM ops.

Return
Zero if successful, or a negative error code on failure.

Sound Devices

762

Name
snd_pcm_period_elapsed — update the pcm status for the next period

Synopsis
void snd_pcm_period_elapsed (struct snd_pcm_substream * substream);

Arguments
substream the pcm substream instance

Description
This function is called from the interrupt handler when the PCM has processed the period size. It will
update the current pointer, wake up sleepers, etc.

Even if more than one periods have elapsed since the last call, you have to call this only once.

Sound Devices

763

Name
snd_pcm_add_chmap_ctls — create channel-mapping control elements

Synopsis
int snd_pcm_add_chmap_ctls (struct snd_pcm * pcm, int stream, con-
st struct snd_pcm_chmap_elem * chmap, int max_channels, unsigned long
private_value, struct snd_pcm_chmap ** info_ret);

Arguments
pcm the assigned PCM instance

stream stream direction

chmap channel map elements (for query)

max_channels the max number of channels for the stream

private_value the value passed to each kcontrol's private_value field

info_ret store struct snd_pcm_chmap instance if non-NULL

Description
Create channel-mapping control elements assigned to the given PCM stream(s).

Return
Zero if successful, or a negative error value.

Sound Devices

764

Name
snd_hwdep_new — create a new hwdep instance

Synopsis
int snd_hwdep_new (struct snd_card * card, char * id, int device, struct
snd_hwdep ** rhwdep);

Arguments
card the card instance

id the id string

device the device index (zero-based)

rhwdep the pointer to store the new hwdep instance

Description
Creates a new hwdep instance with the given index on the card. The callbacks (hwdep->ops) must be set
on the returned instance after this call manually by the caller.

Return
Zero if successful, or a negative error code on failure.

Sound Devices

765

Name
snd_pcm_stream_lock — Lock the PCM stream

Synopsis
void snd_pcm_stream_lock (struct snd_pcm_substream * substream);

Arguments
substream PCM substream

Description
This locks the PCM stream's spinlock or mutex depending on the nonatomic flag of the given substream.
This also takes the global link rw lock (or rw sem), too, for avoiding the race with linked streams.

Sound Devices

766

Name
snd_pcm_stream_unlock — Unlock the PCM stream

Synopsis
void snd_pcm_stream_unlock (struct snd_pcm_substream * substream);

Arguments
substream PCM substream

Description
This unlocks the PCM stream that has been locked via snd_pcm_stream_lock.

Sound Devices

767

Name
snd_pcm_stream_lock_irq — Lock the PCM stream

Synopsis
void snd_pcm_stream_lock_irq (struct snd_pcm_substream * substream);

Arguments
substream PCM substream

Description
This locks the PCM stream like snd_pcm_stream_lock and disables the local IRQ (only when
nonatomic is false). In nonatomic case, this is identical as snd_pcm_stream_lock.

Sound Devices

768

Name
snd_pcm_stream_unlock_irq — Unlock the PCM stream

Synopsis
void snd_pcm_stream_unlock_irq (struct snd_pcm_substream * substream);

Arguments
substream PCM substream

Description
This is a counter-part of snd_pcm_stream_lock_irq.

Sound Devices

769

Name
snd_pcm_stream_unlock_irqrestore — Unlock the PCM stream

Synopsis
void snd_pcm_stream_unlock_irqrestore (struct snd_pcm_substream * sub-
stream, unsigned long flags);

Arguments
substream PCM substream

flags irq flags

Description
This is a counter-part of snd_pcm_stream_lock_irqsave.

Sound Devices

770

Name
snd_pcm_stop — try to stop all running streams in the substream group

Synopsis
int snd_pcm_stop (struct snd_pcm_substream * substream, snd_pcm_state_t
state);

Arguments
substream the PCM substream instance

state PCM state after stopping the stream

Description
The state of each stream is then changed to the given state unconditionally.

Return
Zero if successful, or a negative error code.

Sound Devices

771

Name
snd_pcm_stop_xrun — stop the running streams as XRUN

Synopsis
int snd_pcm_stop_xrun (struct snd_pcm_substream * substream);

Arguments
substream the PCM substream instance

Description
This stops the given running substream (and all linked substreams) as XRUN. Unlike snd_pcm_stop,
this function takes the substream lock by itself.

Return
Zero if successful, or a negative error code.

Sound Devices

772

Name
snd_pcm_suspend — trigger SUSPEND to all linked streams

Synopsis
int snd_pcm_suspend (struct snd_pcm_substream * substream);

Arguments
substream the PCM substream

Description
After this call, all streams are changed to SUSPENDED state.

Return
Zero if successful (or substream is NULL), or a negative error code.

Sound Devices

773

Name
snd_pcm_suspend_all — trigger SUSPEND to all substreams in the given pcm

Synopsis
int snd_pcm_suspend_all (struct snd_pcm * pcm);

Arguments
pcm the PCM instance

Description
After this call, all streams are changed to SUSPENDED state.

Return
Zero if successful (or pcm is NULL), or a negative error code.

Sound Devices

774

Name
snd_pcm_lib_default_mmap — Default PCM data mmap function

Synopsis
int snd_pcm_lib_default_mmap (struct snd_pcm_substream * substream,
struct vm_area_struct * area);

Arguments
substream PCM substream

area VMA

Description
This is the default mmap handler for PCM data. When mmap pcm_ops is NULL, this function is invoked
implicitly.

Sound Devices

775

Name
snd_pcm_lib_mmap_iomem — Default PCM data mmap function for I/O mem

Synopsis
int snd_pcm_lib_mmap_iomem (struct snd_pcm_substream * substream, struct
vm_area_struct * area);

Arguments
substream PCM substream

area VMA

Description
When your hardware uses the iomapped pages as the hardware buffer and wants to mmap it, pass this
function as mmap pcm_ops. Note that this is supposed to work only on limited architectures.

Sound Devices

776

Name
snd_malloc_pages — allocate pages with the given size

Synopsis
void * snd_malloc_pages (size_t size, gfp_t gfp_flags);

Arguments
size the size to allocate in bytes

gfp_flags the allocation conditions, GFP_XXX

Description
Allocates the physically contiguous pages with the given size.

Return
The pointer of the buffer, or NULL if no enough memory.

Sound Devices

777

Name
snd_free_pages — release the pages

Synopsis
void snd_free_pages (void * ptr, size_t size);

Arguments
ptr the buffer pointer to release

size the allocated buffer size

Description
Releases the buffer allocated via snd_malloc_pages.

Sound Devices

778

Name
snd_dma_alloc_pages — allocate the buffer area according to the given type

Synopsis
int snd_dma_alloc_pages (int type, struct device * device, size_t size,
struct snd_dma_buffer * dmab);

Arguments
type the DMA buffer type

device the device pointer

size the buffer size to allocate

dmab buffer allocation record to store the allocated data

Description
Calls the memory-allocator function for the corresponding buffer type.

Return
Zero if the buffer with the given size is allocated successfully, otherwise a negative value on error.

Sound Devices

779

Name
snd_dma_alloc_pages_fallback — allocate the buffer area according to the given type with fallback

Synopsis
int snd_dma_alloc_pages_fallback (int type, struct device * device,
size_t size, struct snd_dma_buffer * dmab);

Arguments
type the DMA buffer type

device the device pointer

size the buffer size to allocate

dmab buffer allocation record to store the allocated data

Description
Calls the memory-allocator function for the corresponding buffer type. When no space is left, this function
reduces the size and tries to allocate again. The size actually allocated is stored in res_size argument.

Return
Zero if the buffer with the given size is allocated successfully, otherwise a negative value on error.

Sound Devices

780

Name
snd_dma_free_pages — release the allocated buffer

Synopsis
void snd_dma_free_pages (struct snd_dma_buffer * dmab);

Arguments
dmab the buffer allocation record to release

Description
Releases the allocated buffer via snd_dma_alloc_pages.

781

Chapter 6. 16x50 UART Driver

16x50 UART Driver

782

Name
uart_update_timeout — update per-port FIFO timeout.

Synopsis
void uart_update_timeout (struct uart_port * port, unsigned int cflag,
unsigned int baud);

Arguments
port uart_port structure describing the port

cflag termios cflag value

baud speed of the port

Description
Set the port FIFO timeout value. The cflag value should reflect the actual hardware settings.

16x50 UART Driver

783

Name
uart_get_baud_rate — return baud rate for a particular port

Synopsis
unsigned int uart_get_baud_rate (struct uart_port * port, struct
ktermios * termios, struct ktermios * old, unsigned int min, unsigned
int max);

Arguments
port uart_port structure describing the port in question.

termios desired termios settings.

old old termios (or NULL)

min minimum acceptable baud rate

max maximum acceptable baud rate

Description
Decode the termios structure into a numeric baud rate, taking account of the magic 38400 baud rate (with
spd_* flags), and mapping the B0 rate to 9600 baud.

If the new baud rate is invalid, try the old termios setting. If it's still invalid, we try 9600 baud.

Update the termios structure to reflect the baud rate we're actually going to be using. Don't do this for
the case where B0 is requested (“hang up”).

16x50 UART Driver

784

Name
uart_get_divisor — return uart clock divisor

Synopsis
unsigned int uart_get_divisor (struct uart_port * port, unsigned int
baud);

Arguments
port uart_port structure describing the port.

baud desired baud rate

Description
Calculate the uart clock divisor for the port.

16x50 UART Driver

785

Name
uart_console_write — write a console message to a serial port

Synopsis
void uart_console_write (struct uart_port * port, const char * s, un-
signed int count, void (*putchar) (struct uart_port *, int));

Arguments
port the port to write the message

s array of characters

count number of characters in string to write

putchar function to write character to port

16x50 UART Driver

786

Name
uart_parse_earlycon — Parse earlycon options

Synopsis
int uart_parse_earlycon (char * p, unsigned char * iotype, unsigned long
* addr, char ** options);

Arguments
p ptr to 2nd field (ie., just beyond '<name>,')

iotype ptr for decoded iotype (out)

addr ptr for decoded mapbase/iobase (out)

options ptr for <options> field; NULL if not present (out)

Description
Decodes earlycon kernel command line parameters of the form earlycon=<name>,io|mmio|
mmio32,<addr>,<options> console=<name>,io|mmio|mmio32,<addr>,<options>

The optional form earlycon=<name>,0x<addr>,<options> console=<name>,0x<addr>,<options> is also
accepted; the returned iotype will be UPIO_MEM.

Returns 0 on success or -EINVAL on failure

16x50 UART Driver

787

Name
uart_parse_options — Parse serial port baud/parity/bits/flow control.

Synopsis
void uart_parse_options (char * options, int * baud, int * parity, int
* bits, int * flow);

Arguments
options pointer to option string

baud pointer to an 'int' variable for the baud rate.

parity pointer to an 'int' variable for the parity.

bits pointer to an 'int' variable for the number of data bits.

flow pointer to an 'int' variable for the flow control character.

Description
uart_parse_options decodes a string containing the serial console options. The format of the string is
<baud><parity><bits><flow>,

eg
115200n8r

16x50 UART Driver

788

Name
uart_set_options — setup the serial console parameters

Synopsis
int uart_set_options (struct uart_port * port, struct console * co, int
baud, int parity, int bits, int flow);

Arguments
port pointer to the serial ports uart_port structure

co console pointer

baud baud rate

parity parity character - 'n' (none), 'o' (odd), 'e' (even)

bits number of data bits

flow flow control character - 'r' (rts)

16x50 UART Driver

789

Name
uart_register_driver — register a driver with the uart core layer

Synopsis
int uart_register_driver (struct uart_driver * drv);

Arguments
drv low level driver structure

Description
Register a uart driver with the core driver. We in turn register with the tty layer, and initialise the core
driver per-port state.

We have a proc file in /proc/tty/driver which is named after the normal driver.

drv->port should be NULL, and the per-port structures should be registered using uart_add_one_port after
this call has succeeded.

16x50 UART Driver

790

Name
uart_unregister_driver — remove a driver from the uart core layer

Synopsis
void uart_unregister_driver (struct uart_driver * drv);

Arguments
drv low level driver structure

Description
Remove all references to a driver from the core driver. The low level driver must have removed all its
ports via the uart_remove_one_port if it registered them with uart_add_one_port. (ie, drv-
>port == NULL)

16x50 UART Driver

791

Name
uart_add_one_port — attach a driver-defined port structure

Synopsis
int uart_add_one_port (struct uart_driver * drv, struct uart_port *
uport);

Arguments
drv pointer to the uart low level driver structure for this port

uport uart port structure to use for this port.

Description
This allows the driver to register its own uart_port structure with the core driver. The main purpose is to
allow the low level uart drivers to expand uart_port, rather than having yet more levels of structures.

16x50 UART Driver

792

Name
uart_remove_one_port — detach a driver defined port structure

Synopsis
int uart_remove_one_port (struct uart_driver * drv, struct uart_port
* uport);

Arguments
drv pointer to the uart low level driver structure for this port

uport uart port structure for this port

Description
This unhooks (and hangs up) the specified port structure from the core driver. No further calls will be
made to the low-level code for this port.

16x50 UART Driver

793

Name
uart_handle_dcd_change — handle a change of carrier detect state

Synopsis
void uart_handle_dcd_change (struct uart_port * uport, unsigned int
status);

Arguments
uport uart_port structure for the open port

status new carrier detect status, nonzero if active

Description
Caller must hold uport->lock

16x50 UART Driver

794

Name
uart_handle_cts_change — handle a change of clear-to-send state

Synopsis
void uart_handle_cts_change (struct uart_port * uport, unsigned int
status);

Arguments
uport uart_port structure for the open port

status new clear to send status, nonzero if active

Description
Caller must hold uport->lock

16x50 UART Driver

795

Name
uart_insert_char — push a char to the uart layer

Synopsis
void uart_insert_char (struct uart_port * port, unsigned int status,
unsigned int overrun, unsigned int ch, unsigned int flag);

Arguments
port corresponding port

status state of the serial port RX buffer (LSR for 8250)

overrun mask of overrun bits in status

ch character to push

flag flag for the character (see TTY_NORMAL and friends)

Description

User is responsible to call tty_flip_buffer_push when they are done with insertion.

16x50 UART Driver

796

Name
serial8250_get_port — retrieve struct uart_8250_port

Synopsis
struct uart_8250_port * serial8250_get_port (int line);

Arguments
line serial line number

Description
This function retrieves struct uart_8250_port for the specific line. This struct *must* *not* be used to
perform a 8250 or serial core operation which is not accessible otherwise. Its only purpose is to make
the struct accessible to the runtime-pm callbacks for context suspend/restore. The lock assumption made
here is none because runtime-pm suspend/resume callbacks should not be invoked if there is any operation
performed on the port.

16x50 UART Driver

797

Name
serial8250_suspend_port — suspend one serial port

Synopsis
void serial8250_suspend_port (int line);

Arguments
line serial line number

Description
Suspend one serial port.

16x50 UART Driver

798

Name
serial8250_resume_port — resume one serial port

Synopsis
void serial8250_resume_port (int line);

Arguments
line serial line number

Description
Resume one serial port.

16x50 UART Driver

799

Name
serial8250_register_8250_port — register a serial port

Synopsis
int serial8250_register_8250_port (struct uart_8250_port * up);

Arguments
up serial port template

Description
Configure the serial port specified by the request. If the port exists and is in use, it is hung up and unreg-
istered first.

The port is then probed and if necessary the IRQ is autodetected If this fails an error is returned.

On success the port is ready to use and the line number is returned.

16x50 UART Driver

800

Name
serial8250_unregister_port — remove a 16x50 serial port at runtime

Synopsis
void serial8250_unregister_port (int line);

Arguments
line serial line number

Description
Remove one serial port. This may not be called from interrupt context. We hand the port back to the our
control.

801

Chapter 7. Frame Buffer Library
The frame buffer drivers depend heavily on four data structures. These structures are declared in in-
clude/linux/fb.h. They are fb_info, fb_var_screeninfo, fb_fix_screeninfo and fb_monospecs. The last three
can be made available to and from userland.

fb_info defines the current state of a particular video card. Inside fb_info, there exists a fb_ops structure
which is a collection of needed functions to make fbdev and fbcon work. fb_info is only visible to the
kernel.

fb_var_screeninfo is used to describe the features of a video card that are user defined. With
fb_var_screeninfo, things such as depth and the resolution may be defined.

The next structure is fb_fix_screeninfo. This defines the properties of a card that are created when a mode
is set and can't be changed otherwise. A good example of this is the start of the frame buffer memory. This
"locks" the address of the frame buffer memory, so that it cannot be changed or moved.

The last structure is fb_monospecs. In the old API, there was little importance for fb_monospecs. This
allowed for forbidden things such as setting a mode of 800x600 on a fix frequency monitor. With the new
API, fb_monospecs prevents such things, and if used correctly, can prevent a monitor from being cooked.
fb_monospecs will not be useful until kernels 2.5.x.

Frame Buffer Memory

Frame Buffer Library

802

Name
register_framebuffer — registers a frame buffer device

Synopsis

int register_framebuffer (struct fb_info * fb_info);

Arguments

fb_info frame buffer info structure

Description

Registers a frame buffer device fb_info.

Returns negative errno on error, or zero for success.

Frame Buffer Library

803

Name
unregister_framebuffer — releases a frame buffer device

Synopsis

int unregister_framebuffer (struct fb_info * fb_info);

Arguments

fb_info frame buffer info structure

Description

Unregisters a frame buffer device fb_info.

Returns negative errno on error, or zero for success.

This function will also notify the framebuffer console to release the driver.

This is meant to be called within a driver's module_exit function. If this is called outside
module_exit, ensure that the driver implements fb_open and fb_release to check that no process-
es are using the device.

Frame Buffer Library

804

Name
fb_set_suspend — low level driver signals suspend

Synopsis

void fb_set_suspend (struct fb_info * info, int state);

Arguments

info framebuffer affected

state 0 = resuming, !=0 = suspending

Description

This is meant to be used by low level drivers to signal suspend/resume to the core & clients. It must be
called with the console semaphore held

Frame Buffer Colormap

Frame Buffer Library

805

Name
fb_dealloc_cmap — deallocate a colormap

Synopsis

void fb_dealloc_cmap (struct fb_cmap * cmap);

Arguments

cmap frame buffer colormap structure

Description

Deallocates a colormap that was previously allocated with fb_alloc_cmap.

Frame Buffer Library

806

Name
fb_copy_cmap — copy a colormap

Synopsis

int fb_copy_cmap (const struct fb_cmap * from, struct fb_cmap * to);

Arguments

from frame buffer colormap structure

to frame buffer colormap structure

Description

Copy contents of colormap from from to to.

Frame Buffer Library

807

Name
fb_set_cmap — set the colormap

Synopsis

int fb_set_cmap (struct fb_cmap * cmap, struct fb_info * info);

Arguments

cmap frame buffer colormap structure

info frame buffer info structure

Description

Sets the colormap cmap for a screen of device info.

Returns negative errno on error, or zero on success.

Frame Buffer Library

808

Name
fb_default_cmap — get default colormap

Synopsis

const struct fb_cmap * fb_default_cmap (int len);

Arguments

len size of palette for a depth

Description

Gets the default colormap for a specific screen depth. len is the size of the palette for a particular screen
depth.

Returns pointer to a frame buffer colormap structure.

Frame Buffer Library

809

Name
fb_invert_cmaps — invert all defaults colormaps

Synopsis

void fb_invert_cmaps (void);

Arguments

void no arguments

Description

Invert all default colormaps.

Frame Buffer Video Mode Database

Frame Buffer Library

810

Name
fb_try_mode — test a video mode

Synopsis

int fb_try_mode (struct fb_var_screeninfo * var, struct fb_info * info,
const struct fb_videomode * mode, unsigned int bpp);

Arguments

var frame buffer user defined part of display

info frame buffer info structure

mode frame buffer video mode structure

bpp color depth in bits per pixel

Description

Tries a video mode to test it's validity for device info.

Returns 1 on success.

Frame Buffer Library

811

Name
fb_delete_videomode — removed videomode entry from modelist

Synopsis

void fb_delete_videomode (const struct fb_videomode * mode, struct
list_head * head);

Arguments

mode videomode to remove

head struct list_head of modelist

NOTES

Will remove all matching mode entries

Frame Buffer Library

812

Name
fb_find_mode — finds a valid video mode

Synopsis

int fb_find_mode (struct fb_var_screeninfo * var, struct fb_info * info,
const char * mode_option, const struct fb_videomode * db, unsigned
int dbsize, const struct fb_videomode * default_mode, unsigned int
default_bpp);

Arguments

var frame buffer user defined part of display

info frame buffer info structure

mode_option string video mode to find

db video mode database

dbsize size of db

default_mode default video mode to fall back to

default_bpp default color depth in bits per pixel

Description

Finds a suitable video mode, starting with the specified mode in mode_option with fallback to
default_mode. If default_mode fails, all modes in the video mode database will be tried.

Valid mode specifiers for mode_option:

<xres>x<yres>[M][R][-<bpp>][@<refresh>][i][m] or <name>[-<bpp>][@<refresh>]

with <xres>, <yres>, <bpp> and <refresh> decimal numbers and <name> a string.

If 'M' is present after yres (and before refresh/bpp if present), the function will compute the timings using
VESA(tm) Coordinated Video Timings (CVT). If 'R' is present after 'M', will compute with reduced blank-
ing (for flatpanels). If 'i' is present, compute interlaced mode. If 'm' is present, add margins equal to 1.8%
of xres rounded down to 8 pixels, and 1.8% of yres. The char 'i' and 'm' must be after 'M' and 'R'. Example:

1024x768MR-860m - Reduced blank with margins at 60Hz.

NOTE

The passed struct var is _not_ cleared! This allows you to supply values for e.g. the grayscale and
accel_flags fields.

Returns zero for failure, 1 if using specified mode_option, 2 if using specified mode_option with
an ignored refresh rate, 3 if default mode is used, 4 if fall back to any valid mode.

Frame Buffer Library

813

Name
fb_var_to_videomode — convert fb_var_screeninfo to fb_videomode

Synopsis

void fb_var_to_videomode (struct fb_videomode * mode, const struct
fb_var_screeninfo * var);

Arguments

mode pointer to struct fb_videomode

var pointer to struct fb_var_screeninfo

Frame Buffer Library

814

Name
fb_videomode_to_var — convert fb_videomode to fb_var_screeninfo

Synopsis

void fb_videomode_to_var (struct fb_var_screeninfo * var, const struct
fb_videomode * mode);

Arguments

var pointer to struct fb_var_screeninfo

mode pointer to struct fb_videomode

Frame Buffer Library

815

Name
fb_mode_is_equal — compare 2 videomodes

Synopsis

int fb_mode_is_equal (const struct fb_videomode * mode1, const struct
fb_videomode * mode2);

Arguments

mode1 first videomode

mode2 second videomode

RETURNS

1 if equal, 0 if not

Frame Buffer Library

816

Name
fb_find_best_mode — find best matching videomode

Synopsis

const struct fb_videomode * fb_find_best_mode (const struct
fb_var_screeninfo * var, struct list_head * head);

Arguments

var pointer to struct fb_var_screeninfo

head pointer to struct list_head of modelist

RETURNS

struct fb_videomode, NULL if none found

IMPORTANT

This function assumes that all modelist entries in info->modelist are valid.

NOTES

Finds best matching videomode which has an equal or greater dimension than var->xres and var->yres. If
more than 1 videomode is found, will return the videomode with the highest refresh rate

Frame Buffer Library

817

Name
fb_find_nearest_mode — find closest videomode

Synopsis

const struct fb_videomode * fb_find_nearest_mode (const struct
fb_videomode * mode, struct list_head * head);

Arguments

mode pointer to struct fb_videomode

head pointer to modelist

Description

Finds best matching videomode, smaller or greater in dimension. If more than 1 videomode is found, will
return the videomode with the closest refresh rate.

Frame Buffer Library

818

Name
fb_match_mode — find a videomode which exactly matches the timings in var

Synopsis

const struct fb_videomode * fb_match_mode (const struct
fb_var_screeninfo * var, struct list_head * head);

Arguments

var pointer to struct fb_var_screeninfo

head pointer to struct list_head of modelist

RETURNS

struct fb_videomode, NULL if none found

Frame Buffer Library

819

Name
fb_add_videomode — adds videomode entry to modelist

Synopsis

int fb_add_videomode (const struct fb_videomode * mode, struct list_head
* head);

Arguments

mode videomode to add

head struct list_head of modelist

NOTES

Will only add unmatched mode entries

Frame Buffer Library

820

Name
fb_destroy_modelist — destroy modelist

Synopsis

void fb_destroy_modelist (struct list_head * head);

Arguments

head struct list_head of modelist

Frame Buffer Library

821

Name
fb_videomode_to_modelist — convert mode array to mode list

Synopsis

void fb_videomode_to_modelist (const struct fb_videomode * modedb, int
num, struct list_head * head);

Arguments

modedb array of struct fb_videomode

num number of entries in array

head struct list_head of modelist

Frame Buffer Macintosh Video Mode Database

Frame Buffer Library

822

Name
mac_vmode_to_var — converts vmode/cmode pair to var structure

Synopsis

int mac_vmode_to_var (int vmode, int cmode, struct fb_var_screeninfo
* var);

Arguments

vmode MacOS video mode

cmode MacOS color mode

var frame buffer video mode structure

Description

Converts a MacOS vmode/cmode pair to a frame buffer video mode structure.

Returns negative errno on error, or zero for success.

Frame Buffer Library

823

Name
mac_map_monitor_sense — Convert monitor sense to vmode

Synopsis

int mac_map_monitor_sense (int sense);

Arguments

sense Macintosh monitor sense number

Description

Converts a Macintosh monitor sense number to a MacOS vmode number.

Returns MacOS vmode video mode number.

Frame Buffer Library

824

Name
mac_find_mode — find a video mode

Synopsis

int mac_find_mode (struct fb_var_screeninfo * var, struct fb_info *
info, const char * mode_option, unsigned int default_bpp);

Arguments

var frame buffer user defined part of display

info frame buffer info structure

mode_option video mode name (see mac_modedb[])

default_bpp default color depth in bits per pixel

Description

Finds a suitable video mode. Tries to set mode specified by mode_option. If the name of the wanted
mode begins with 'mac', the Mac video mode database will be used, otherwise it will fall back to the
standard video mode database.

Note

Function marked as __init and can only be used during system boot.

Returns error code from fb_find_mode (see fb_find_mode function).

Frame Buffer Fonts
Refer to the file lib/fonts/fonts.c for more information.

825

Chapter 8. Input Subsystem
Input core

Input Subsystem

826

Name
struct input_value — input value representation

Synopsis

struct input_value {
 __u16 type;
 __u16 code;
 __s32 value;
};

Members

type type of value (EV_KEY, EV_ABS, etc)

code the value code

value the value

Input Subsystem

827

Name
struct input_dev — represents an input device

Synopsis

struct input_dev {
 const char * name;
 const char * phys;
 const char * uniq;
 struct input_id id;
 unsigned long propbit[BITS_TO_LONGS(INPUT_PROP_CNT)];
 unsigned long evbit[BITS_TO_LONGS(EV_CNT)];
 unsigned long keybit[BITS_TO_LONGS(KEY_CNT)];
 unsigned long relbit[BITS_TO_LONGS(REL_CNT)];
 unsigned long absbit[BITS_TO_LONGS(ABS_CNT)];
 unsigned long mscbit[BITS_TO_LONGS(MSC_CNT)];
 unsigned long ledbit[BITS_TO_LONGS(LED_CNT)];
 unsigned long sndbit[BITS_TO_LONGS(SND_CNT)];
 unsigned long ffbit[BITS_TO_LONGS(FF_CNT)];
 unsigned long swbit[BITS_TO_LONGS(SW_CNT)];
 unsigned int hint_events_per_packet;
 unsigned int keycodemax;
 unsigned int keycodesize;
 void * keycode;
 int (* setkeycode) (struct input_dev *dev,const struct input_keymap_entry *ke,unsigned int *old_keycode);
 int (* getkeycode) (struct input_dev *dev,struct input_keymap_entry *ke);
 struct ff_device * ff;
 unsigned int repeat_key;
 struct timer_list timer;
 int rep[REP_CNT];
 struct input_mt * mt;
 struct input_absinfo * absinfo;
 unsigned long key[BITS_TO_LONGS(KEY_CNT)];
 unsigned long led[BITS_TO_LONGS(LED_CNT)];
 unsigned long snd[BITS_TO_LONGS(SND_CNT)];
 unsigned long sw[BITS_TO_LONGS(SW_CNT)];
 int (* open) (struct input_dev *dev);
 void (* close) (struct input_dev *dev);
 int (* flush) (struct input_dev *dev, struct file *file);
 int (* event) (struct input_dev *dev, unsigned int type, unsigned int code, int value);
 struct input_handle __rcu * grab;
 spinlock_t event_lock;
 struct mutex mutex;
 unsigned int users;
 bool going_away;
 struct device dev;
 struct list_head h_list;
 struct list_head node;
 unsigned int num_vals;
 unsigned int max_vals;
 struct input_value * vals;
 bool devres_managed;

Input Subsystem

828

};

Members

name name of the device

phys physical path to the device in the system hierarchy

uniq unique identification code for the device (if device has it)

id id of the device (struct input_id)

propbit[BITS_TO_LONGS(INPUT_PROP_CNT)]bitmap of device properties and quirks

evbit[BITS_TO_LONGS(EV_CNT)] bitmap of types of events supported by the device (EV_KEY,
EV_REL, etc.)

keybit[BITS_TO_LONGS(KEY_CNT)]bitmap of keys/buttons this device has

relbit[BITS_TO_LONGS(REL_CNT)]bitmap of relative axes for the device

absbit[BITS_TO_LONGS(ABS_CNT)]bitmap of absolute axes for the device

mscbit[BITS_TO_LONGS(MSC_CNT)]bitmap of miscellaneous events supported by the device

ledbit[BITS_TO_LONGS(LED_CNT)]bitmap of leds present on the device

sndbit[BITS_TO_LONGS(SND_CNT)]bitmap of sound effects supported by the device

ffbit[BITS_TO_LONGS(FF_CNT)] bitmap of force feedback effects supported by the device

swbit[BITS_TO_LONGS(SW_CNT)]bitmap of switches present on the device

hint_events_per_packet average number of events generated by the device in a packet (be-
tween EV_SYN/SYN_REPORT events). Used by event handlers
to estimate size of the buffer needed to hold events.

keycodemax size of keycode table

keycodesize size of elements in keycode table

keycode map of scancodes to keycodes for this device

setkeycode optional method to alter current keymap, used to implement sparse
keymaps. If not supplied default mechanism will be used. The
method is being called while holding event_lock and thus must not
sleep

getkeycode optional legacy method to retrieve current keymap.

ff force feedback structure associated with the device if device sup-
ports force feedback effects

repeat_key stores key code of the last key pressed; used to implement software
autorepeat

timer timer for software autorepeat

Input Subsystem

829

rep[REP_CNT] current values for autorepeat parameters (delay, rate)

mt pointer to multitouch state

absinfo array of struct input_absinfo elements holding information about
absolute axes (current value, min, max, flat, fuzz, resolution)

key[BITS_TO_LONGS(KEY_CNT)] reflects current state of device's keys/buttons

led[BITS_TO_LONGS(LED_CNT)] reflects current state of device's LEDs

snd[BITS_TO_LONGS(SND_CNT)] reflects current state of sound effects

sw[BITS_TO_LONGS(SW_CNT)] reflects current state of device's switches

open this method is called when the very first user calls
input_open_device. The driver must prepare the device to
start generating events (start polling thread, request an IRQ, submit
URB, etc.)

close this method is called when the very last user calls
input_close_device.

flush purges the device. Most commonly used to get rid of force feedback
effects loaded into the device when disconnecting from it

event event handler for events sent _to_ the device, like EV_LED or
EV_SND. The device is expected to carry out the requested ac-
tion (turn on a LED, play sound, etc.) The call is protected by
event_lock and must not sleep

grab input handle that currently has the device grabbed (via EVIOC-
GRAB ioctl). When a handle grabs a device it becomes sole recip-
ient for all input events coming from the device

event_lock this spinlock is is taken when input core receives and processes a
new event for the device (in input_event). Code that accesses
and/or modifies parameters of a device (such as keymap or absmin,
absmax, absfuzz, etc.) after device has been registered with input
core must take this lock.

mutex serializes calls to open, close and flush methods

users stores number of users (input handlers) that opened this device. It is
used by input_open_device and input_close_device
to make sure that dev->open is only called when the first user
opens device and dev->close is called when the very last user
closes the device

going_away marks devices that are in a middle of unregistering and causes
input_open_device*() fail with -ENODEV.

dev driver model's view of this device

h_list list of input handles associated with the device. When accessing the
list dev->mutex must be held

Input Subsystem

830

node used to place the device onto input_dev_list

num_vals number of values queued in the current frame

max_vals maximum number of values queued in a frame

vals array of values queued in the current frame

devres_managed indicates that devices is managed with devres framework and needs
not be explicitly unregistered or freed.

Input Subsystem

831

Name
struct input_handler — implements one of interfaces for input devices

Synopsis

struct input_handler {
 void * private;
 void (* event) (struct input_handle *handle, unsigned int type, unsigned int code, int value);
 void (* events) (struct input_handle *handle,const struct input_value *vals, unsigned int count);
 bool (* filter) (struct input_handle *handle, unsigned int type, unsigned int code, int value);
 bool (* match) (struct input_handler *handler, struct input_dev *dev);
 int (* connect) (struct input_handler *handler, struct input_dev *dev, const struct input_device_id *id);
 void (* disconnect) (struct input_handle *handle);
 void (* start) (struct input_handle *handle);
 bool legacy_minors;
 int minor;
 const char * name;
 const struct input_device_id * id_table;
 struct list_head h_list;
 struct list_head node;
};

Members

private driver-specific data

event event handler. This method is being called by input core with interrupts disabled and
dev->event_lock spinlock held and so it may not sleep

events event sequence handler. This method is being called by input core with interrupts
disabled and dev->event_lock spinlock held and so it may not sleep

filter similar to event; separates normal event handlers from “filters”.

match called after comparing device's id with handler's id_table to perform fine-grained
matching between device and handler

connect called when attaching a handler to an input device

disconnect disconnects a handler from input device

start starts handler for given handle. This function is called by input core right after con-
nect method and also when a process that “grabbed” a device releases it

legacy_minors set to true by drivers using legacy minor ranges

minor beginning of range of 32 legacy minors for devices this driver can provide

name name of the handler, to be shown in /proc/bus/input/handlers

id_table pointer to a table of input_device_ids this driver can handle

h_list list of input handles associated with the handler

node for placing the driver onto input_handler_list

Input Subsystem

832

Description

Input handlers attach to input devices and create input handles. There are likely several handlers attached
to any given input device at the same time. All of them will get their copy of input event generated by
the device.

The very same structure is used to implement input filters. Input core allows filters to run first and will not
pass event to regular handlers if any of the filters indicate that the event should be filtered (by returning
true from their filter method).

Note that input core serializes calls to connect and disconnect methods.

Input Subsystem

833

Name
struct input_handle — links input device with an input handler

Synopsis

struct input_handle {
 void * private;
 int open;
 const char * name;
 struct input_dev * dev;
 struct input_handler * handler;
 struct list_head d_node;
 struct list_head h_node;
};

Members

private handler-specific data

open counter showing whether the handle is 'open', i.e. should deliver events from its device

name name given to the handle by handler that created it

dev input device the handle is attached to

handler handler that works with the device through this handle

d_node used to put the handle on device's list of attached handles

h_node used to put the handle on handler's list of handles from which it gets events

Input Subsystem

834

Name
input_set_events_per_packet — tell handlers about the driver event rate

Synopsis

void input_set_events_per_packet (struct input_dev * dev, int n_events);

Arguments

dev the input device used by the driver

n_events the average number of events between calls to input_sync

Description

If the event rate sent from a device is unusually large, use this function to set the expected event rate.
This will allow handlers to set up an appropriate buffer size for the event stream, in order to minimize
information loss.

Input Subsystem

835

Name
struct ff_device — force-feedback part of an input device

Synopsis

struct ff_device {
 int (* upload) (struct input_dev *dev, struct ff_effect *effect,struct ff_effect *old);
 int (* erase) (struct input_dev *dev, int effect_id);
 int (* playback) (struct input_dev *dev, int effect_id, int value);
 void (* set_gain) (struct input_dev *dev, u16 gain);
 void (* set_autocenter) (struct input_dev *dev, u16 magnitude);
 void (* destroy) (struct ff_device *);
 void * private;
 unsigned long ffbit[BITS_TO_LONGS(FF_CNT)];
 struct mutex mutex;
 int max_effects;
 struct ff_effect * effects;
 struct file * effect_owners[];
};

Members

upload Called to upload an new effect into device

erase Called to erase an effect from device

playback Called to request device to start playing specified effect

set_gain Called to set specified gain

set_autocenter Called to auto-center device

destroy called by input core when parent input device is being destroyed

private driver-specific data, will be freed automatically

ffbit[BITS_TO_LONGS(FF_CNT)] bitmap of force feedback capabilities truly supported by device (not
emulated like ones in input_dev->ffbit)

mutex mutex for serializing access to the device

max_effects maximum number of effects supported by device

effects pointer to an array of effects currently loaded into device

effect_owners[] array of effect owners; when file handle owning an effect gets
closed the effect is automatically erased

Description

Every force-feedback device must implement upload and playback methods; erase is option-
al. set_gain and set_autocenter need only be implemented if driver sets up FF_GAIN and
FF_AUTOCENTER bits.

Input Subsystem

836

Note that playback, set_gain and set_autocenter are called with dev->event_lock spinlock
held and interrupts off and thus may not sleep.

Input Subsystem

837

Name
input_event — report new input event

Synopsis

void input_event (struct input_dev * dev, unsigned int type, unsigned
int code, int value);

Arguments

dev device that generated the event

type type of the event

code event code

value value of the event

Description

This function should be used by drivers implementing various input devices to report input events. See
also input_inject_event.

NOTE

input_event may be safely used right after input device was allocated with
input_allocate_device, even before it is registered with input_register_device, but the
event will not reach any of the input handlers. Such early invocation of input_event may be used to
'seed' initial state of a switch or initial position of absolute axis, etc.

Input Subsystem

838

Name
input_inject_event — send input event from input handler

Synopsis

void input_inject_event (struct input_handle * handle, unsigned int
type, unsigned int code, int value);

Arguments

handle input handle to send event through

type type of the event

code event code

value value of the event

Description

Similar to input_event but will ignore event if device is “grabbed” and handle injecting event is not
the one that owns the device.

Input Subsystem

839

Name
input_alloc_absinfo — allocates array of input_absinfo structs

Synopsis

void input_alloc_absinfo (struct input_dev * dev);

Arguments

dev the input device emitting absolute events

Description

If the absinfo struct the caller asked for is already allocated, this functions will not do anything.

Input Subsystem

840

Name
input_grab_device — grabs device for exclusive use

Synopsis

int input_grab_device (struct input_handle * handle);

Arguments

handle input handle that wants to own the device

Description

When a device is grabbed by an input handle all events generated by the device are delivered only to this
handle. Also events injected by other input handles are ignored while device is grabbed.

Input Subsystem

841

Name
input_release_device — release previously grabbed device

Synopsis

void input_release_device (struct input_handle * handle);

Arguments

handle input handle that owns the device

Description

Releases previously grabbed device so that other input handles can start receiving input events. Upon
release all handlers attached to the device have their start method called so they have a change to
synchronize device state with the rest of the system.

Input Subsystem

842

Name
input_open_device — open input device

Synopsis

int input_open_device (struct input_handle * handle);

Arguments

handle handle through which device is being accessed

Description

This function should be called by input handlers when they want to start receive events from given input
device.

Input Subsystem

843

Name
input_close_device — close input device

Synopsis

void input_close_device (struct input_handle * handle);

Arguments

handle handle through which device is being accessed

Description

This function should be called by input handlers when they want to stop receive events from given input
device.

Input Subsystem

844

Name
input_scancode_to_scalar — converts scancode in struct input_keymap_entry

Synopsis

int input_scancode_to_scalar (const struct input_keymap_entry * ke,
unsigned int * scancode);

Arguments

ke keymap entry containing scancode to be converted.

scancode pointer to the location where converted scancode should be stored.

Description

This function is used to convert scancode stored in struct keymap_entry into scalar form understood by
legacy keymap handling methods. These methods expect scancodes to be represented as 'unsigned int'.

Input Subsystem

845

Name
input_get_keycode — retrieve keycode currently mapped to a given scancode

Synopsis

int input_get_keycode (struct input_dev * dev, struct input_keymap_entry
* ke);

Arguments

dev input device which keymap is being queried

ke keymap entry

Description

This function should be called by anyone interested in retrieving current keymap. Presently evdev handlers
use it.

Input Subsystem

846

Name
input_set_keycode — attribute a keycode to a given scancode

Synopsis

int input_set_keycode (struct input_dev * dev, const struct
input_keymap_entry * ke);

Arguments

dev input device which keymap is being updated

ke new keymap entry

Description

This function should be called by anyone needing to update current keymap. Presently keyboard and evdev
handlers use it.

Input Subsystem

847

Name
input_reset_device — reset/restore the state of input device

Synopsis

void input_reset_device (struct input_dev * dev);

Arguments

dev input device whose state needs to be reset

Description

This function tries to reset the state of an opened input device and bring internal state and state if the
hardware in sync with each other. We mark all keys as released, restore LED state, repeat rate, etc.

Input Subsystem

848

Name
input_allocate_device — allocate memory for new input device

Synopsis

struct input_dev * input_allocate_device (void);

Arguments

void no arguments

Description

Returns prepared struct input_dev or NULL.

NOTE

Use input_free_device to free devices that have not been registered;
input_unregister_device should be used for already registered devices.

Input Subsystem

849

Name
devm_input_allocate_device — allocate managed input device

Synopsis

struct input_dev * devm_input_allocate_device (struct device * dev);

Arguments

dev device owning the input device being created

Description

Returns prepared struct input_dev or NULL.

Managed input devices do not need to be explicitly unregistered or freed as it will be done automatically
when owner device unbinds from its driver (or binding fails). Once managed input device is allocated,
it is ready to be set up and registered in the same fashion as regular input device. There are no special
devm_input_device_[un]register variants, regular ones work with both managed and unmanaged de-
vices, should you need them. In most cases however, managed input device need not be explicitly unreg-
istered or freed.

NOTE

the owner device is set up as parent of input device and users should not override it.

Input Subsystem

850

Name
input_free_device — free memory occupied by input_dev structure

Synopsis

void input_free_device (struct input_dev * dev);

Arguments

dev input device to free

Description

This function should only be used if input_register_device was not called yet or if it failed. Once
device was registered use input_unregister_device and memory will be freed once last reference
to the device is dropped.

Device should be allocated by input_allocate_device.

NOTE

If there are references to the input device then memory will not be freed until last reference is dropped.

Input Subsystem

851

Name
input_set_capability — mark device as capable of a certain event

Synopsis

void input_set_capability (struct input_dev * dev, unsigned int type,
unsigned int code);

Arguments

dev device that is capable of emitting or accepting event

type type of the event (EV_KEY, EV_REL, etc...)

code event code

Description

In addition to setting up corresponding bit in appropriate capability bitmap the function also adjusts dev-
>evbit.

Input Subsystem

852

Name
input_register_device — register device with input core

Synopsis

int input_register_device (struct input_dev * dev);

Arguments

dev device to be registered

Description

This function registers device with input core. The device must be allocated with
input_allocate_device and all it's capabilities set up before registering. If function fails the de-
vice must be freed with input_free_device. Once device has been successfully registered it can
be unregistered with input_unregister_device; input_free_device should not be called in
this case.

Note that this function is also used to register managed input devices (ones allocated with
devm_input_allocate_device). Such managed input devices need not be explicitly unregistered
or freed, their tear down is controlled by the devres infrastructure. It is also worth noting that tear down of
managed input devices is internally a 2-step process: registered managed input device is first unregistered,
but stays in memory and can still handle input_event calls (although events will not be delivered
anywhere). The freeing of managed input device will happen later, when devres stack is unwound to the
point where device allocation was made.

Input Subsystem

853

Name
input_unregister_device — unregister previously registered device

Synopsis

void input_unregister_device (struct input_dev * dev);

Arguments

dev device to be unregistered

Description

This function unregisters an input device. Once device is unregistered the caller should not try to access
it as it may get freed at any moment.

Input Subsystem

854

Name
input_register_handler — register a new input handler

Synopsis

int input_register_handler (struct input_handler * handler);

Arguments

handler handler to be registered

Description

This function registers a new input handler (interface) for input devices in the system and attaches it to all
input devices that are compatible with the handler.

Input Subsystem

855

Name
input_unregister_handler — unregisters an input handler

Synopsis

void input_unregister_handler (struct input_handler * handler);

Arguments

handler handler to be unregistered

Description

This function disconnects a handler from its input devices and removes it from lists of known handlers.

Input Subsystem

856

Name
input_handler_for_each_handle — handle iterator

Synopsis

int input_handler_for_each_handle (struct input_handler * handler, void
* data, int (*fn) (struct input_handle *, void *));

Arguments

handler input handler to iterate

data data for the callback

fn function to be called for each handle

Description

Iterate over bus's list of devices, and call fn for each, passing it data and stop when fn returns a non-
zero value. The function is using RCU to traverse the list and therefore may be usind in atonic contexts.
The fn callback is invoked from RCU critical section and thus must not sleep.

Input Subsystem

857

Name
input_register_handle — register a new input handle

Synopsis

int input_register_handle (struct input_handle * handle);

Arguments

handle handle to register

Description

This function puts a new input handle onto device's and handler's lists so that events can flow through it
once it is opened using input_open_device.

This function is supposed to be called from handler's connect method.

Input Subsystem

858

Name
input_unregister_handle — unregister an input handle

Synopsis

void input_unregister_handle (struct input_handle * handle);

Arguments

handle handle to unregister

Description

This function removes input handle from device's and handler's lists.

This function is supposed to be called from handler's disconnect method.

Input Subsystem

859

Name
input_get_new_minor — allocates a new input minor number

Synopsis

int input_get_new_minor (int legacy_base, unsigned int legacy_num, bool
allow_dynamic);

Arguments

legacy_base beginning or the legacy range to be searched

legacy_num size of legacy range

allow_dynamic whether we can also take ID from the dynamic range

Description

This function allocates a new device minor for from input major namespace. Caller can request legacy
minor by specifying legacy_base and legacy_num parameters and whether ID can be allocated from
dynamic range if there are no free IDs in legacy range.

Input Subsystem

860

Name
input_free_minor — release previously allocated minor

Synopsis

void input_free_minor (unsigned int minor);

Arguments

minor minor to be released

Description

This function releases previously allocated input minor so that it can be reused later.

Input Subsystem

861

Name
input_ff_upload — upload effect into force-feedback device

Synopsis

int input_ff_upload (struct input_dev * dev, struct ff_effect * effect,
struct file * file);

Arguments

dev input device

effect effect to be uploaded

file owner of the effect

Input Subsystem

862

Name
input_ff_erase — erase a force-feedback effect from device

Synopsis

int input_ff_erase (struct input_dev * dev, int effect_id, struct file
* file);

Arguments

dev input device to erase effect from

effect_id id of the ffect to be erased

file purported owner of the request

Description

This function erases a force-feedback effect from specified device. The effect will only be erased if it was
uploaded through the same file handle that is requesting erase.

Input Subsystem

863

Name
input_ff_event — generic handler for force-feedback events

Synopsis

int input_ff_event (struct input_dev * dev, unsigned int type, unsigned
int code, int value);

Arguments

dev input device to send the effect to

type event type (anything but EV_FF is ignored)

code event code

value event value

Input Subsystem

864

Name
input_ff_create — create force-feedback device

Synopsis

int input_ff_create (struct input_dev * dev, unsigned int max_effects);

Arguments

dev input device supporting force-feedback

max_effects maximum number of effects supported by the device

Description

This function allocates all necessary memory for a force feedback portion of an input device and installs
all default handlers. dev->ffbit should be already set up before calling this function. Once ff device is
created you need to setup its upload, erase, playback and other handlers before registering input device

Input Subsystem

865

Name
input_ff_destroy — frees force feedback portion of input device

Synopsis

void input_ff_destroy (struct input_dev * dev);

Arguments

dev input device supporting force feedback

Description

This function is only needed in error path as input core will automatically free force feedback structures
when device is destroyed.

Input Subsystem

866

Name
input_ff_create_memless — create memoryless force-feedback device

Synopsis

int input_ff_create_memless (struct input_dev * dev, void * data, int
(*play_effect) (struct input_dev *, void *, struct ff_effect *));

Arguments

dev input device supporting force-feedback

data driver-specific data to be passed into play_effect

play_effect driver-specific method for playing FF effect

Multitouch Library

Input Subsystem

867

Name
struct input_mt_slot — represents the state of an input MT slot

Synopsis

struct input_mt_slot {
 int abs[ABS_MT_LAST - ABS_MT_FIRST + 1];
 unsigned int frame;
 unsigned int key;
};

Members

abs[ABS_MT_LAST -
ABS_MT_FIRST + 1]

holds current values of ABS_MT axes for this slot

frame last frame at which input_mt_report_slot_state was
called

key optional driver designation of this slot

Input Subsystem

868

Name
struct input_mt — state of tracked contacts

Synopsis

struct input_mt {
 int trkid;
 int num_slots;
 int slot;
 unsigned int flags;
 unsigned int frame;
 int * red;
 struct input_mt_slot slots[];
};

Members

trkid stores MT tracking ID for the next contact

num_slots number of MT slots the device uses

slot MT slot currently being transmitted

flags input_mt operation flags

frame increases every time input_mt_sync_frame is called

red reduced cost matrix for in-kernel tracking

slots[] array of slots holding current values of tracked contacts

Input Subsystem

869

Name
struct input_mt_pos — contact position

Synopsis

struct input_mt_pos {
 s16 x;
 s16 y;
};

Members

x horizontal coordinate

y vertical coordinate

Input Subsystem

870

Name
input_mt_init_slots — initialize MT input slots

Synopsis

int input_mt_init_slots (struct input_dev * dev, unsigned int num_slots,
unsigned int flags);

Arguments

dev input device supporting MT events and finger tracking

num_slots number of slots used by the device

flags mt tasks to handle in core

Description

This function allocates all necessary memory for MT slot handling in the input device, prepares the
ABS_MT_SLOT and ABS_MT_TRACKING_ID events for use and sets up appropriate buffers. Depend-
ing on the flags set, it also performs pointer emulation and frame synchronization.

May be called repeatedly. Returns -EINVAL if attempting to reinitialize with a different number of slots.

Input Subsystem

871

Name
input_mt_destroy_slots — frees the MT slots of the input device

Synopsis

void input_mt_destroy_slots (struct input_dev * dev);

Arguments

dev input device with allocated MT slots

Description

This function is only needed in error path as the input core will automatically free the MT slots when the
device is destroyed.

Input Subsystem

872

Name
input_mt_report_slot_state — report contact state

Synopsis

void input_mt_report_slot_state (struct input_dev * dev, unsigned int
tool_type, bool active);

Arguments

dev input device with allocated MT slots

tool_type the tool type to use in this slot

active true if contact is active, false otherwise

Description

Reports a contact via ABS_MT_TRACKING_ID, and optionally ABS_MT_TOOL_TYPE. If active is
true and the slot is currently inactive, or if the tool type is changed, a new tracking id is assigned to the
slot. The tool type is only reported if the corresponding absbit field is set.

Input Subsystem

873

Name
input_mt_report_finger_count — report contact count

Synopsis

void input_mt_report_finger_count (struct input_dev * dev, int count);

Arguments

dev input device with allocated MT slots

count the number of contacts

Description

Reports the contact count via BTN_TOOL_FINGER, BTN_TOOL_DOUBLETAP,
BTN_TOOL_TRIPLETAP and BTN_TOOL_QUADTAP.

The input core ensures only the KEY events already setup for this device will produce output.

Input Subsystem

874

Name
input_mt_report_pointer_emulation — common pointer emulation

Synopsis

void input_mt_report_pointer_emulation (struct input_dev * dev, bool
use_count);

Arguments

dev input device with allocated MT slots

use_count report number of active contacts as finger count

Description

Performs legacy pointer emulation via BTN_TOUCH, ABS_X, ABS_Y and ABS_PRESSURE. Touchpad
finger count is emulated if use_count is true.

The input core ensures only the KEY and ABS axes already setup for this device will produce output.

Input Subsystem

875

Name
input_mt_drop_unused — Inactivate slots not seen in this frame

Synopsis

void input_mt_drop_unused (struct input_dev * dev);

Arguments

dev input device with allocated MT slots

Description

Lift all slots not seen since the last call to this function.

Input Subsystem

876

Name
input_mt_sync_frame — synchronize mt frame

Synopsis

void input_mt_sync_frame (struct input_dev * dev);

Arguments

dev input device with allocated MT slots

Description

Close the frame and prepare the internal state for a new one. Depending on the flags, marks unused slots
as inactive and performs pointer emulation.

Input Subsystem

877

Name
input_mt_assign_slots — perform a best-match assignment

Synopsis

int input_mt_assign_slots (struct input_dev * dev, int * slots, const
struct input_mt_pos * pos, int num_pos, int dmax);

Arguments

dev input device with allocated MT slots

slots the slot assignment to be filled

pos the position array to match

num_pos number of positions

dmax maximum ABS_MT_POSITION displacement (zero for infinite)

Description

Performs a best match against the current contacts and returns the slot assignment list. New contacts are
assigned to unused slots.

The assignments are balanced so that all coordinate displacements are below the euclidian distance dmax.
If no such assignment can be found, some contacts are assigned to unused slots.

Returns zero on success, or negative error in case of failure.

Input Subsystem

878

Name
input_mt_get_slot_by_key — return slot matching key

Synopsis

int input_mt_get_slot_by_key (struct input_dev * dev, int key);

Arguments

dev input device with allocated MT slots

key the key of the sought slot

Description

Returns the slot of the given key, if it exists, otherwise set the key on the first unused slot and return.

If no available slot can be found, -1 is returned. Note that for this function to work properly,
input_mt_sync_frame has to be called at each frame.

Polled input devices

Input Subsystem

879

Name
struct input_polled_dev — simple polled input device

Synopsis

struct input_polled_dev {
 void * private;
 void (* open) (struct input_polled_dev *dev);
 void (* close) (struct input_polled_dev *dev);
 void (* poll) (struct input_polled_dev *dev);
 unsigned int poll_interval;
 unsigned int poll_interval_max;
 unsigned int poll_interval_min;
 struct input_dev * input;
};

Members

private private driver data.

open driver-supplied method that prepares device for polling (enabled the device
and maybe flushes device state).

close driver-supplied method that is called when device is no longer being polled.
Used to put device into low power mode.

poll driver-supplied method that polls the device and posts input events (manda-
tory).

poll_interval specifies how often the poll method should be called. Defaults to 500 msec
unless overridden when registering the device.

poll_interval_max specifies upper bound for the poll interval. Defaults to the initial value of
poll_interval.

poll_interval_min specifies lower bound for the poll interval. Defaults to 0.

input input device structure associated with the polled device. Must be properly ini-
tialized by the driver (id, name, phys, bits).

Description

Polled input device provides a skeleton for supporting simple input devices that do not raise interrupts but
have to be periodically scanned or polled to detect changes in their state.

Input Subsystem

880

Name
input_allocate_polled_device — allocate memory for polled device

Synopsis

struct input_polled_dev * input_allocate_polled_device (void);

Arguments

void no arguments

Description

The function allocates memory for a polled device and also for an input device associated with this polled
device.

Input Subsystem

881

Name
devm_input_allocate_polled_device — allocate managed polled device

Synopsis

struct input_polled_dev * devm_input_allocate_polled_device (struct de-
vice * dev);

Arguments

dev device owning the polled device being created

Description

Returns prepared struct input_polled_dev or NULL.

Managed polled input devices do not need to be explicitly unregistered or freed as it will be done automat-
ically when owner device unbinds from * its driver (or binding fails). Once such managed polled device is
allocated, it is ready to be set up and registered in the same fashion as regular polled input devices (using
input_register_polled_device function).

If you want to manually unregister and free such managed polled devices, it can be still done by call-
ing input_unregister_polled_device and input_free_polled_device, although it is
rarely needed.

NOTE

the owner device is set up as parent of input device and users should not override it.

Input Subsystem

882

Name
input_free_polled_device — free memory allocated for polled device

Synopsis

void input_free_polled_device (struct input_polled_dev * dev);

Arguments

dev device to free

Description

The function frees memory allocated for polling device and drops reference to the associated input device.

Input Subsystem

883

Name
input_register_polled_device — register polled device

Synopsis

int input_register_polled_device (struct input_polled_dev * dev);

Arguments

dev device to register

Description

The function registers previously initialized polled input device with input layer. The device should be
allocated with call to input_allocate_polled_device. Callers should also set up poll method
and set up capabilities (id, name, phys, bits) of the corresponding input_dev structure.

Input Subsystem

884

Name
input_unregister_polled_device — unregister polled device

Synopsis

void input_unregister_polled_device (struct input_polled_dev * dev);

Arguments

dev device to unregister

Description

The function unregisters previously registered polled input device from input layer. Polling is stopped and
device is ready to be freed with call to input_free_polled_device.

Matrix keyboars/keypads

Input Subsystem

885

Name
struct matrix_keymap_data — keymap for matrix keyboards

Synopsis

struct matrix_keymap_data {
 const uint32_t * keymap;
 unsigned int keymap_size;
};

Members

keymap pointer to array of uint32 values encoded with KEY macro representing keymap

keymap_size number of entries (initialized) in this keymap

Description

This structure is supposed to be used by platform code to supply keymaps to drivers that implement ma-
trix-like keypads/keyboards.

Input Subsystem

886

Name
struct matrix_keypad_platform_data — platform-dependent keypad data

Synopsis

struct matrix_keypad_platform_data {
 const struct matrix_keymap_data * keymap_data;
 const unsigned int * row_gpios;
 const unsigned int * col_gpios;
 unsigned int num_row_gpios;
 unsigned int num_col_gpios;
 unsigned int col_scan_delay_us;
 unsigned int debounce_ms;
 unsigned int clustered_irq;
 unsigned int clustered_irq_flags;
 bool active_low;
 bool wakeup;
 bool no_autorepeat;
};

Members

keymap_data pointer to matrix_keymap_data

row_gpios pointer to array of gpio numbers representing rows

col_gpios pointer to array of gpio numbers reporesenting colums

num_row_gpios actual number of row gpios used by device

num_col_gpios actual number of col gpios used by device

col_scan_delay_us delay, measured in microseconds, that is needed before we can keypad after
activating column gpio

debounce_ms debounce interval in milliseconds

clustered_irq may be specified if interrupts of all row/column GPIOs are bundled to one
single irq

clustered_irq_flags flags that are needed for the clustered irq

active_low gpio polarity

wakeup controls whether the device should be set up as wakeup source

no_autorepeat disable key autorepeat

Description

This structure represents platform-specific data that use used by matrix_keypad driver to perform proper
initialization.

Input Subsystem

887

Name
matrix_keypad_parse_of_params — Read parameters from matrix-keypad node

Synopsis

int matrix_keypad_parse_of_params (struct device * dev, unsigned int *
rows, unsigned int * cols);

Arguments

dev Device containing of_node

rows Returns number of matrix rows

cols Returns number of matrix columns return 0 if OK, <0 on error

Sparse keymap support

Input Subsystem

888

Name
struct key_entry — keymap entry for use in sparse keymap

Synopsis

struct key_entry {
 int type;
 u32 code;
 union {unnamed_union};
};

Members

type Type of the key entry (KE_KEY, KE_SW, KE_VSW, KE_END); drivers are
allowed to extend the list with their own private definitions.

code Device-specific data identifying the button/switch

{unnamed_union} anonymous

Description

This structure defines an entry in a sparse keymap used by some input devices for which traditional ta-
ble-based approach is not suitable.

Input Subsystem

889

Name
sparse_keymap_entry_from_scancode — perform sparse keymap lookup

Synopsis

struct key_entry * sparse_keymap_entry_from_scancode (struct input_dev
* dev, unsigned int code);

Arguments

dev Input device using sparse keymap

code Scan code

Description

This function is used to perform struct key_entry lookup in an input device using sparse keymap.

Input Subsystem

890

Name
sparse_keymap_entry_from_keycode — perform sparse keymap lookup

Synopsis

struct key_entry * sparse_keymap_entry_from_keycode (struct input_dev
* dev, unsigned int keycode);

Arguments

dev Input device using sparse keymap

keycode Key code

Description

This function is used to perform struct key_entry lookup in an input device using sparse keymap.

Input Subsystem

891

Name
sparse_keymap_setup — set up sparse keymap for an input device

Synopsis

int sparse_keymap_setup (struct input_dev * dev, const struct key_entry
* keymap, int (*setup) (struct input_dev *, struct key_entry *));

Arguments

dev Input device

keymap Keymap in form of array of key_entry structures ending with KE_END type entry

setup Function that can be used to adjust keymap entries depending on device's deeds, may be NULL

Description

The function calculates size and allocates copy of the original keymap after which sets up input device
event bits appropriately. Before destroying input device allocated keymap should be freed with a call to
sparse_keymap_free.

Input Subsystem

892

Name
sparse_keymap_free — free memory allocated for sparse keymap

Synopsis

void sparse_keymap_free (struct input_dev * dev);

Arguments

dev Input device using sparse keymap

Description

This function is used to free memory allocated by sparse keymap in an input device that was set up by
sparse_keymap_setup.

NOTE

It is safe to cal this function while input device is still registered (however the drivers should care not to
try to use freed keymap and thus have to shut off interrupts/polling before freeing the keymap).

Input Subsystem

893

Name
sparse_keymap_report_entry — report event corresponding to given key entry

Synopsis

void sparse_keymap_report_entry (struct input_dev * dev, const struct
key_entry * ke, unsigned int value, bool autorelease);

Arguments

dev Input device for which event should be reported

ke key entry describing event

value Value that should be reported (ignored by KE_SW entries)

autorelease Signals whether release event should be emitted for KE_KEY entries right after report-
ing press event, ignored by all other entries

Description

This function is used to report input event described by given struct key_entry.

Input Subsystem

894

Name
sparse_keymap_report_event — report event corresponding to given scancode

Synopsis

bool sparse_keymap_report_event (struct input_dev * dev, unsigned int
code, unsigned int value, bool autorelease);

Arguments

dev Input device using sparse keymap

code Scan code

value Value that should be reported (ignored by KE_SW entries)

autorelease Signals whether release event should be emitted for KE_KEY entries right after report-
ing press event, ignored by all other entries

Description

This function is used to perform lookup in an input device using sparse keymap and report corresponding
event. Returns true if lookup was successful and false otherwise.

895

Chapter 9. Serial Peripheral Interface
(SPI)

SPI is the "Serial Peripheral Interface", widely used with embedded systems because it is a simple and
efficient interface: basically a multiplexed shift register. Its three signal wires hold a clock (SCK, often in
the range of 1-20 MHz), a "Master Out, Slave In" (MOSI) data line, and a "Master In, Slave Out" (MISO)
data line. SPI is a full duplex protocol; for each bit shifted out the MOSI line (one per clock) another is
shifted in on the MISO line. Those bits are assembled into words of various sizes on the way to and from
system memory. An additional chipselect line is usually active-low (nCS); four signals are normally used
for each peripheral, plus sometimes an interrupt.

The SPI bus facilities listed here provide a generalized interface to declare SPI busses and devices, manage
them according to the standard Linux driver model, and perform input/output operations. At this time, only
"master" side interfaces are supported, where Linux talks to SPI peripherals and does not implement such
a peripheral itself. (Interfaces to support implementing SPI slaves would necessarily look different.)

The programming interface is structured around two kinds of driver, and two kinds of device. A "Controller
Driver" abstracts the controller hardware, which may be as simple as a set of GPIO pins or as complex as
a pair of FIFOs connected to dual DMA engines on the other side of the SPI shift register (maximizing
throughput). Such drivers bridge between whatever bus they sit on (often the platform bus) and SPI, and
expose the SPI side of their device as a struct spi_master. SPI devices are children of that master, repre-
sented as a struct spi_device and manufactured from struct spi_board_info descriptors which are usually
provided by board-specific initialization code. A struct spi_driver is called a "Protocol Driver", and is
bound to a spi_device using normal driver model calls.

The I/O model is a set of queued messages. Protocol drivers submit one or more struct spi_message ob-
jects, which are processed and completed asynchronously. (There are synchronous wrappers, however.)
Messages are built from one or more struct spi_transfer objects, each of which wraps a full duplex SPI
transfer. A variety of protocol tweaking options are needed, because different chips adopt very different
policies for how they use the bits transferred with SPI.

Serial Peripheral Interface (SPI)

896

Name
struct spi_device — Master side proxy for an SPI slave device

Synopsis

struct spi_device {
 struct device dev;
 struct spi_master * master;
 u32 max_speed_hz;
 u8 chip_select;
 u8 bits_per_word;
 u16 mode;
#define SPI_CPHA 0x01
#define SPI_CPOL 0x02
#define SPI_MODE_0 (0|0)
#define SPI_MODE_1 (0|SPI_CPHA)
#define SPI_MODE_2 (SPI_CPOL|0)
#define SPI_MODE_3 (SPI_CPOL|SPI_CPHA)
#define SPI_CS_HIGH 0x04
#define SPI_LSB_FIRST 0x08
#define SPI_3WIRE 0x10
#define SPI_LOOP 0x20
#define SPI_NO_CS 0x40
#define SPI_READY 0x80
#define SPI_TX_DUAL 0x100
#define SPI_TX_QUAD 0x200
#define SPI_RX_DUAL 0x400
#define SPI_RX_QUAD 0x800
 int irq;
 void * controller_state;
 void * controller_data;
 char modalias[SPI_NAME_SIZE];
 int cs_gpio;
};

Members
dev Driver model representation of the device.

master SPI controller used with the device.

max_speed_hz Maximum clock rate to be used with this chip (on this board); may be
changed by the device's driver. The spi_transfer.speed_hz can over-
ride this for each transfer.

chip_select Chipselect, distinguishing chips handled by master.

bits_per_word Data transfers involve one or more words; word sizes like eight or
12 bits are common. In-memory wordsizes are powers of two bytes
(e.g. 20 bit samples use 32 bits). This may be changed by the device's
driver, or left at the default (0) indicating protocol words are eight
bit bytes. The spi_transfer.bits_per_word can override this for each
transfer.

Serial Peripheral Interface (SPI)

897

mode The spi mode defines how data is clocked out and in. This may be
changed by the device's driver. The “active low” default for chipse-
lect mode can be overridden (by specifying SPI_CS_HIGH) as can
the “MSB first” default for each word in a transfer (by specifying
SPI_LSB_FIRST).

irq Negative, or the number passed to request_irq to receive inter-
rupts from this device.

controller_state Controller's runtime state

controller_data Board-specific definitions for controller, such as FIFO initialization
parameters; from board_info.controller_data

modalias[SPI_NAME_SIZE] Name of the driver to use with this device, or an alias for that name.
This appears in the sysfs “modalias” attribute for driver coldplug-
ging, and in uevents used for hotplugging

cs_gpio gpio number of the chipselect line (optional, -ENOENT when when
not using a GPIO line)

Description
A spi_device is used to interchange data between an SPI slave (usually a discrete chip) and CPU
memory.

In dev, the platform_data is used to hold information about this device that's meaningful to the device's
protocol driver, but not to its controller. One example might be an identifier for a chip variant with slightly
different functionality; another might be information about how this particular board wires the chip's pins.

Serial Peripheral Interface (SPI)

898

Name
struct spi_driver — Host side “protocol” driver

Synopsis

struct spi_driver {
 const struct spi_device_id * id_table;
 int (* probe) (struct spi_device *spi);
 int (* remove) (struct spi_device *spi);
 void (* shutdown) (struct spi_device *spi);
 struct device_driver driver;
};

Members
id_table List of SPI devices supported by this driver

probe Binds this driver to the spi device. Drivers can verify that the device is actually present, and
may need to configure characteristics (such as bits_per_word) which weren't needed for the
initial configuration done during system setup.

remove Unbinds this driver from the spi device

shutdown Standard shutdown callback used during system state transitions such as powerdown/halt
and kexec

driver SPI device drivers should initialize the name and owner field of this structure.

Description
This represents the kind of device driver that uses SPI messages to interact with the hardware at the other
end of a SPI link. It's called a “protocol” driver because it works through messages rather than talking
directly to SPI hardware (which is what the underlying SPI controller driver does to pass those messages).
These protocols are defined in the specification for the device(s) supported by the driver.

As a rule, those device protocols represent the lowest level interface supported by a driver, and it will sup-
port upper level interfaces too. Examples of such upper levels include frameworks like MTD, networking,
MMC, RTC, filesystem character device nodes, and hardware monitoring.

Serial Peripheral Interface (SPI)

899

Name
spi_unregister_driver — reverse effect of spi_register_driver

Synopsis
void spi_unregister_driver (struct spi_driver * sdrv);

Arguments
sdrv the driver to unregister

Context
can sleep

Serial Peripheral Interface (SPI)

900

Name
module_spi_driver — Helper macro for registering a SPI driver

Synopsis
module_spi_driver (__spi_driver);

Arguments
__spi_driver spi_driver struct

Description
Helper macro for SPI drivers which do not do anything special in module init/exit. This eliminates a lot
of boilerplate. Each module may only use this macro once, and calling it replaces module_init and
module_exit

Serial Peripheral Interface (SPI)

901

Name
struct spi_master — interface to SPI master controller

Synopsis

struct spi_master {
 struct device dev;
 struct list_head list;
 s16 bus_num;
 u16 num_chipselect;
 u16 dma_alignment;
 u16 mode_bits;
 u32 bits_per_word_mask;
#define SPI_BPW_MASK(bits) BIT((bits) - 1)
#define SPI_BIT_MASK(bits) (((bits) == 32) ? ~0U : (BIT(bits) - 1))
#define SPI_BPW_RANGE_MASK(min# max) (SPI_BIT_MASK(max) - SPI_BIT_MASK(min - 1))
 u32 min_speed_hz;
 u32 max_speed_hz;
 u16 flags;
#define SPI_MASTER_HALF_DUPLEX BIT(0)
#define SPI_MASTER_NO_RX BIT(1)
#define SPI_MASTER_NO_TX BIT(2)
#define SPI_MASTER_MUST_RX BIT(3)
#define SPI_MASTER_MUST_TX BIT(4)
 spinlock_t bus_lock_spinlock;
 struct mutex bus_lock_mutex;
 bool bus_lock_flag;
 int (* setup) (struct spi_device *spi);
 int (* transfer) (struct spi_device *spi,struct spi_message *mesg);
 void (* cleanup) (struct spi_device *spi);
 bool (* can_dma) (struct spi_master *master,struct spi_device *spi,struct spi_transfer *xfer);
 bool queued;
 struct kthread_worker kworker;
 struct task_struct * kworker_task;
 struct kthread_work pump_messages;
 spinlock_t queue_lock;
 struct list_head queue;
 struct spi_message * cur_msg;
 bool idling;
 bool busy;
 bool running;
 bool rt;
 bool auto_runtime_pm;
 bool cur_msg_prepared;
 bool cur_msg_mapped;
 struct completion xfer_completion;
 size_t max_dma_len;
 int (* prepare_transfer_hardware) (struct spi_master *master);
 int (* transfer_one_message) (struct spi_master *master,struct spi_message *mesg);
 int (* unprepare_transfer_hardware) (struct spi_master *master);
 int (* prepare_message) (struct spi_master *master,struct spi_message *message);
 int (* unprepare_message) (struct spi_master *master,struct spi_message *message);

Serial Peripheral Interface (SPI)

902

 void (* set_cs) (struct spi_device *spi, bool enable);
 int (* transfer_one) (struct spi_master *master, struct spi_device *spi,struct spi_transfer *transfer);
 void (* handle_err) (struct spi_master *master,struct spi_message *message);
 int * cs_gpios;
 struct dma_chan * dma_tx;
 struct dma_chan * dma_rx;
 void * dummy_rx;
 void * dummy_tx;
};

Members
dev device interface to this driver

list link with the global spi_master list

bus_num board-specific (and often SOC-specific) identifier for a given SPI
controller.

num_chipselect chipselects are used to distinguish individual SPI slaves, and are
numbered from zero to num_chipselects. each slave has a chipselect
signal, but it's common that not every chipselect is connected to a
slave.

dma_alignment SPI controller constraint on DMA buffers alignment.

mode_bits flags understood by this controller driver

bits_per_word_mask A mask indicating which values of bits_per_word are supported
by the driver. Bit n indicates that a bits_per_word n+1 is support-
ed. If set, the SPI core will reject any transfer with an unsupported
bits_per_word. If not set, this value is simply ignored, and it's up to
the individual driver to perform any validation.

min_speed_hz Lowest supported transfer speed

max_speed_hz Highest supported transfer speed

flags other constraints relevant to this driver

bus_lock_spinlock spinlock for SPI bus locking

bus_lock_mutex mutex for SPI bus locking

bus_lock_flag indicates that the SPI bus is locked for exclusive use

setup updates the device mode and clocking records used by a device's
SPI controller; protocol code may call this. This must fail if an un-
recognized or unsupported mode is requested. It's always safe to
call this unless transfers are pending on the device whose settings
are being modified.

transfer adds a message to the controller's transfer queue.

cleanup frees controller-specific state

can_dma determine whether this master supports DMA

Serial Peripheral Interface (SPI)

903

queued whether this master is providing an internal message queue

kworker thread struct for message pump

kworker_task pointer to task for message pump kworker thread

pump_messages work struct for scheduling work to the message pump

queue_lock spinlock to syncronise access to message queue

queue message queue

cur_msg the currently in-flight message

idling the device is entering idle state

busy message pump is busy

running message pump is running

rt whether this queue is set to run as a realtime task

auto_runtime_pm the core should ensure a runtime PM reference is held while the
hardware is prepared, using the parent device for the spidev

cur_msg_prepared spi_prepare_message was called for the currently in-flight message

cur_msg_mapped message has been mapped for DMA

xfer_completion used by core transfer_one_message

max_dma_len Maximum length of a DMA transfer for the device.

prepare_transfer_hardware a message will soon arrive from the queue so the subsystem requests
the driver to prepare the transfer hardware by issuing this call

transfer_one_message the subsystem calls the driver to transfer a single mes-
sage while queuing transfers that arrive in the meantime.
When the driver is finished with this message, it must call
spi_finalize_current_message so the subsystem can is-
sue the next message

unprepare_transfer_hardware there are currently no more messages on the queue so the subsystem
notifies the driver that it may relax the hardware by issuing this call

prepare_message set up the controller to transfer a single message, for example doing
DMA mapping. Called from threaded context.

unprepare_message undo any work done by prepare_message.

set_cs set the logic level of the chip select line. May be called from inter-
rupt context.

transfer_one transfer a single spi_transfer. - return 0 if the transfer is
finished, - return 1 if the transfer is still in progress.
When the driver is finished with this transfer it must
call spi_finalize_current_transfer so the subsys-
tem can issue the next transfer. Note: transfer_one and

Serial Peripheral Interface (SPI)

904

transfer_one_message are mutually exclusive; when both are set,
the generic subsystem does not call your transfer_one callback.

handle_err the subsystem calls the driver to handle an error that occurs in the
generic implementation of transfer_one_message.

cs_gpios Array of GPIOs to use as chip select lines; one per CS number. Any
individual value may be -ENOENT for CS lines that are not GPIOs
(driven by the SPI controller itself).

dma_tx DMA transmit channel

dma_rx DMA receive channel

dummy_rx dummy receive buffer for full-duplex devices

dummy_tx dummy transmit buffer for full-duplex devices

Description
Each SPI master controller can communicate with one or more spi_device children. These make a
small bus, sharing MOSI, MISO and SCK signals but not chip select signals. Each device may be config-
ured to use a different clock rate, since those shared signals are ignored unless the chip is selected.

The driver for an SPI controller manages access to those devices through a queue of spi_message transac-
tions, copying data between CPU memory and an SPI slave device. For each such message it queues, it
calls the message's completion function when the transaction completes.

Serial Peripheral Interface (SPI)

905

Name
struct spi_transfer — a read/write buffer pair

Synopsis

struct spi_transfer {
 const void * tx_buf;
 void * rx_buf;
 unsigned len;
 dma_addr_t tx_dma;
 dma_addr_t rx_dma;
 struct sg_table tx_sg;
 struct sg_table rx_sg;
 unsigned cs_change:1;
 unsigned tx_nbits:3;
 unsigned rx_nbits:3;
#define SPI_NBITS_SINGLE 0x01
#define SPI_NBITS_DUAL 0x02
#define SPI_NBITS_QUAD 0x04
 u8 bits_per_word;
 u16 delay_usecs;
 u32 speed_hz;
 struct list_head transfer_list;
};

Members
tx_buf data to be written (dma-safe memory), or NULL

rx_buf data to be read (dma-safe memory), or NULL

len size of rx and tx buffers (in bytes)

tx_dma DMA address of tx_buf, if spi_message.is_dma_mapped

rx_dma DMA address of rx_buf, if spi_message.is_dma_mapped

tx_sg Scatterlist for transmit, currently not for client use

rx_sg Scatterlist for receive, currently not for client use

cs_change affects chipselect after this transfer completes

tx_nbits number of bits used for writing. If 0 the default (SPI_NBITS_SINGLE) is used.

rx_nbits number of bits used for reading. If 0 the default (SPI_NBITS_SINGLE) is used.

bits_per_word select a bits_per_word other than the device default for this transfer. If 0 the default
(from spi_device) is used.

delay_usecs microseconds to delay after this transfer before (optionally) changing the chipselect
status, then starting the next transfer or completing this spi_message.

Serial Peripheral Interface (SPI)

906

speed_hz Select a speed other than the device default for this transfer. If 0 the default (from
spi_device) is used.

transfer_list transfers are sequenced through spi_message.transfers

Description
SPI transfers always write the same number of bytes as they read. Protocol drivers should always provide
rx_buf and/or tx_buf. In some cases, they may also want to provide DMA addresses for the data being
transferred; that may reduce overhead, when the underlying driver uses dma.

If the transmit buffer is null, zeroes will be shifted out while filling rx_buf. If the receive buffer is null,
the data shifted in will be discarded. Only “len” bytes shift out (or in). It's an error to try to shift out a
partial word. (For example, by shifting out three bytes with word size of sixteen or twenty bits; the former
uses two bytes per word, the latter uses four bytes.)

In-memory data values are always in native CPU byte order, translated from the wire byte order (big-
endian except with SPI_LSB_FIRST). So for example when bits_per_word is sixteen, buffers are 2N bytes
long (len = 2N) and hold N sixteen bit words in CPU byte order.

When the word size of the SPI transfer is not a power-of-two multiple of eight bits, those in-memory
words include extra bits. In-memory words are always seen by protocol drivers as right-justified, so the
undefined (rx) or unused (tx) bits are always the most significant bits.

All SPI transfers start with the relevant chipselect active. Normally it stays selected until after the last
transfer in a message. Drivers can affect the chipselect signal using cs_change.

(i) If the transfer isn't the last one in the message, this flag is used to make the chipselect briefly go inactive
in the middle of the message. Toggling chipselect in this way may be needed to terminate a chip command,
letting a single spi_message perform all of group of chip transactions together.

(ii) When the transfer is the last one in the message, the chip may stay selected until the next transfer. On
multi-device SPI busses with nothing blocking messages going to other devices, this is just a performance
hint; starting a message to another device deselects this one. But in other cases, this can be used to ensure
correctness. Some devices need protocol transactions to be built from a series of spi_message submissions,
where the content of one message is determined by the results of previous messages and where the whole
transaction ends when the chipselect goes intactive.

When SPI can transfer in 1x,2x or 4x. It can get this transfer information from device through tx_nbits
and rx_nbits. In Bi-direction, these two should both be set. User can set transfer mode with
SPI_NBITS_SINGLE(1x) SPI_NBITS_DUAL(2x) and SPI_NBITS_QUAD(4x) to support these three
transfer.

The code that submits an spi_message (and its spi_transfers) to the lower layers is responsible for managing
its memory. Zero-initialize every field you don't set up explicitly, to insulate against future API updates.
After you submit a message and its transfers, ignore them until its completion callback.

Serial Peripheral Interface (SPI)

907

Name
struct spi_message — one multi-segment SPI transaction

Synopsis

struct spi_message {
 struct list_head transfers;
 struct spi_device * spi;
 unsigned is_dma_mapped:1;
 void (* complete) (void *context);
 void * context;
 unsigned frame_length;
 unsigned actual_length;
 int status;
 struct list_head queue;
 void * state;
};

Members
transfers list of transfer segments in this transaction

spi SPI device to which the transaction is queued

is_dma_mapped if true, the caller provided both dma and cpu virtual addresses for each transfer buffer

complete called to report transaction completions

context the argument to complete when it's called

frame_length the total number of bytes in the message

actual_length the total number of bytes that were transferred in all successful segments

status zero for success, else negative errno

queue for use by whichever driver currently owns the message

state for use by whichever driver currently owns the message

Description
A spi_message is used to execute an atomic sequence of data transfers, each represented by a struct
spi_transfer. The sequence is “atomic” in the sense that no other spi_message may use that SPI bus until
that sequence completes. On some systems, many such sequences can execute as as single programmed
DMA transfer. On all systems, these messages are queued, and might complete after transactions to other
devices. Messages sent to a given spi_device are always executed in FIFO order.

The code that submits an spi_message (and its spi_transfers) to the lower layers is responsible for managing
its memory. Zero-initialize every field you don't set up explicitly, to insulate against future API updates.
After you submit a message and its transfers, ignore them until its completion callback.

Serial Peripheral Interface (SPI)

908

Name
spi_message_init_with_transfers — Initialize spi_message and append transfers

Synopsis
void spi_message_init_with_transfers (struct spi_message * m, struct
spi_transfer * xfers, unsigned int num_xfers);

Arguments
m spi_message to be initialized

xfers An array of spi transfers

num_xfers Number of items in the xfer array

Description
This function initializes the given spi_message and adds each spi_transfer in the given array to the message.

Serial Peripheral Interface (SPI)

909

Name
spi_write — SPI synchronous write

Synopsis
int spi_write (struct spi_device * spi, const void * buf, size_t len);

Arguments
spi device to which data will be written

buf data buffer

len data buffer size

Context
can sleep

Description
This writes the buffer and returns zero or a negative error code. Callable only from contexts that can sleep.

Serial Peripheral Interface (SPI)

910

Name
spi_read — SPI synchronous read

Synopsis
int spi_read (struct spi_device * spi, void * buf, size_t len);

Arguments
spi device from which data will be read

buf data buffer

len data buffer size

Context
can sleep

Description
This reads the buffer and returns zero or a negative error code. Callable only from contexts that can sleep.

Serial Peripheral Interface (SPI)

911

Name
spi_sync_transfer — synchronous SPI data transfer

Synopsis
int spi_sync_transfer (struct spi_device * spi, struct spi_transfer *
xfers, unsigned int num_xfers);

Arguments
spi device with which data will be exchanged

xfers An array of spi_transfers

num_xfers Number of items in the xfer array

Context
can sleep

Description
Does a synchronous SPI data transfer of the given spi_transfer array.

For more specific semantics see spi_sync.

It returns zero on success, else a negative error code.

Serial Peripheral Interface (SPI)

912

Name
spi_w8r8 — SPI synchronous 8 bit write followed by 8 bit read

Synopsis
ssize_t spi_w8r8 (struct spi_device * spi, u8 cmd);

Arguments
spi device with which data will be exchanged

cmd command to be written before data is read back

Context
can sleep

Description
This returns the (unsigned) eight bit number returned by the device, or else a negative error code. Callable
only from contexts that can sleep.

Serial Peripheral Interface (SPI)

913

Name
spi_w8r16 — SPI synchronous 8 bit write followed by 16 bit read

Synopsis
ssize_t spi_w8r16 (struct spi_device * spi, u8 cmd);

Arguments
spi device with which data will be exchanged

cmd command to be written before data is read back

Context
can sleep

Description
This returns the (unsigned) sixteen bit number returned by the device, or else a negative error code. Callable
only from contexts that can sleep.

The number is returned in wire-order, which is at least sometimes big-endian.

Serial Peripheral Interface (SPI)

914

Name
spi_w8r16be — SPI synchronous 8 bit write followed by 16 bit big-endian read

Synopsis
ssize_t spi_w8r16be (struct spi_device * spi, u8 cmd);

Arguments
spi device with which data will be exchanged

cmd command to be written before data is read back

Context
can sleep

Description
This returns the (unsigned) sixteen bit number returned by the device in cpu endianness, or else a negative
error code. Callable only from contexts that can sleep.

This function is similar to spi_w8r16, with the exception that it will convert the read 16 bit data word from
big-endian to native endianness.

Serial Peripheral Interface (SPI)

915

Name
struct spi_board_info — board-specific template for a SPI device

Synopsis

struct spi_board_info {
 char modalias[SPI_NAME_SIZE];
 const void * platform_data;
 void * controller_data;
 int irq;
 u32 max_speed_hz;
 u16 bus_num;
 u16 chip_select;
 u16 mode;
};

Members
modalias[SPI_NAME_SIZE] Initializes spi_device.modalias; identifies the driver.

platform_data Initializes spi_device.platform_data; the particular data stored there
is driver-specific.

controller_data Initializes spi_device.controller_data; some controllers need hints
about hardware setup, e.g. for DMA.

irq Initializes spi_device.irq; depends on how the board is wired.

max_speed_hz Initializes spi_device.max_speed_hz; based on limits from the chip
datasheet and board-specific signal quality issues.

bus_num Identifies which spi_master parents the spi_device; unused by
spi_new_device, and otherwise depends on board wiring.

chip_select Initializes spi_device.chip_select; depends on how the board is
wired.

mode Initializes spi_device.mode; based on the chip datasheet, board
wiring (some devices support both 3WIRE and standard modes), and
possibly presence of an inverter in the chipselect path.

Description
When adding new SPI devices to the device tree, these structures serve as a partial device template. They
hold information which can't always be determined by drivers. Information that probe can establish (such
as the default transfer wordsize) is not included here.

These structures are used in two places. Their primary role is to be stored in tables of board-specific
device descriptors, which are declared early in board initialization and then used (much later) to populate
a controller's device tree after the that controller's driver initializes. A secondary (and atypical) role is as
a parameter to spi_new_device call, which happens after those controller drivers are active in some
dynamic board configuration models.

Serial Peripheral Interface (SPI)

916

Name
spi_register_board_info — register SPI devices for a given board

Synopsis
int spi_register_board_info (struct spi_board_info const * info, un-
signed n);

Arguments
info array of chip descriptors

n how many descriptors are provided

Context
can sleep

Description
Board-specific early init code calls this (probably during arch_initcall) with segments of the SPI device
table. Any device nodes are created later, after the relevant parent SPI controller (bus_num) is defined. We
keep this table of devices forever, so that reloading a controller driver will not make Linux forget about
these hard-wired devices.

Other code can also call this, e.g. a particular add-on board might provide SPI devices through its expansion
connector, so code initializing that board would naturally declare its SPI devices.

The board info passed can safely be __initdata ... but be careful of any embedded pointers (platform_data,
etc), they're copied as-is.

Serial Peripheral Interface (SPI)

917

Name
spi_register_driver — register a SPI driver

Synopsis
int spi_register_driver (struct spi_driver * sdrv);

Arguments
sdrv the driver to register

Context
can sleep

Serial Peripheral Interface (SPI)

918

Name
spi_alloc_device — Allocate a new SPI device

Synopsis
struct spi_device * spi_alloc_device (struct spi_master * master);

Arguments
master Controller to which device is connected

Context
can sleep

Description
Allows a driver to allocate and initialize a spi_device without registering it immediately. This allows a
driver to directly fill the spi_device with device parameters before calling spi_add_device on it.

Caller is responsible to call spi_add_device on the returned spi_device structure to add it to the SPI
master. If the caller needs to discard the spi_device without adding it, then it should call spi_dev_put
on it.

Returns a pointer to the new device, or NULL.

Serial Peripheral Interface (SPI)

919

Name
spi_add_device — Add spi_device allocated with spi_alloc_device

Synopsis
int spi_add_device (struct spi_device * spi);

Arguments
spi spi_device to register

Description
Companion function to spi_alloc_device. Devices allocated with spi_alloc_device can be added onto the
spi bus with this function.

Returns 0 on success; negative errno on failure

Serial Peripheral Interface (SPI)

920

Name
spi_new_device — instantiate one new SPI device

Synopsis
struct spi_device * spi_new_device (struct spi_master * master, struct
spi_board_info * chip);

Arguments
master Controller to which device is connected

chip Describes the SPI device

Context
can sleep

Description
On typical mainboards, this is purely internal; and it's not needed after board init creates the hard-wired
devices. Some development platforms may not be able to use spi_register_board_info though, and this is
exported so that for example a USB or parport based adapter driver could add devices (which it would
learn about out-of-band).

Returns the new device, or NULL.

Serial Peripheral Interface (SPI)

921

Name
spi_finalize_current_transfer — report completion of a transfer

Synopsis
void spi_finalize_current_transfer (struct spi_master * master);

Arguments
master the master reporting completion

Description
Called by SPI drivers using the core transfer_one_message implementation to notify it that the
current interrupt driven transfer has finished and the next one may be scheduled.

Serial Peripheral Interface (SPI)

922

Name
spi_get_next_queued_message — called by driver to check for queued messages

Synopsis
struct spi_message * spi_get_next_queued_message (struct spi_master *
master);

Arguments
master the master to check for queued messages

Description
If there are more messages in the queue, the next message is returned from this call.

Serial Peripheral Interface (SPI)

923

Name
spi_finalize_current_message — the current message is complete

Synopsis
void spi_finalize_current_message (struct spi_master * master);

Arguments
master the master to return the message to

Description
Called by the driver to notify the core that the message in the front of the queue is complete and can be
removed from the queue.

Serial Peripheral Interface (SPI)

924

Name
spi_alloc_master — allocate SPI master controller

Synopsis
struct spi_master * spi_alloc_master (struct device * dev, unsigned
size);

Arguments
dev the controller, possibly using the platform_bus

size how much zeroed driver-private data to allocate; the pointer to this memory is in the driver_data
field of the returned device, accessible with spi_master_get_devdata.

Context
can sleep

Description
This call is used only by SPI master controller drivers, which are the only ones directly touching chip
registers. It's how they allocate an spi_master structure, prior to calling spi_register_master.

This must be called from context that can sleep. It returns the SPI master structure on success, else NULL.

The caller is responsible for assigning the bus number and initializing the master's methods before calling
spi_register_master; and (after errors adding the device) calling spi_master_put to prevent
a memory leak.

Serial Peripheral Interface (SPI)

925

Name
spi_register_master — register SPI master controller

Synopsis
int spi_register_master (struct spi_master * master);

Arguments
master initialized master, originally from spi_alloc_master

Context
can sleep

Description
SPI master controllers connect to their drivers using some non-SPI bus, such as the platform bus. The final
stage of probe in that code includes calling spi_register_master to hook up to this SPI bus glue.

SPI controllers use board specific (often SOC specific) bus numbers, and board-specific addressing for SPI
devices combines those numbers with chip select numbers. Since SPI does not directly support dynamic
device identification, boards need configuration tables telling which chip is at which address.

This must be called from context that can sleep. It returns zero on success, else a negative error
code (dropping the master's refcount). After a successful return, the caller is responsible for calling
spi_unregister_master.

Serial Peripheral Interface (SPI)

926

Name
devm_spi_register_master — register managed SPI master controller

Synopsis
int devm_spi_register_master (struct device * dev, struct spi_master
* master);

Arguments
dev device managing SPI master

master initialized master, originally from spi_alloc_master

Context
can sleep

Description
Register a SPI device as with spi_register_master which will automatically be unregister

Serial Peripheral Interface (SPI)

927

Name
spi_unregister_master — unregister SPI master controller

Synopsis
void spi_unregister_master (struct spi_master * master);

Arguments
master the master being unregistered

Context
can sleep

Description
This call is used only by SPI master controller drivers, which are the only ones directly touching chip
registers.

This must be called from context that can sleep.

Serial Peripheral Interface (SPI)

928

Name
spi_busnum_to_master — look up master associated with bus_num

Synopsis
struct spi_master * spi_busnum_to_master (u16 bus_num);

Arguments
bus_num the master's bus number

Context
can sleep

Description
This call may be used with devices that are registered after arch init time. It returns a refcounted pointer
to the relevant spi_master (which the caller must release), or NULL if there is no such master registered.

Serial Peripheral Interface (SPI)

929

Name
spi_setup — setup SPI mode and clock rate

Synopsis
int spi_setup (struct spi_device * spi);

Arguments
spi the device whose settings are being modified

Context
can sleep, and no requests are queued to the device

Description
SPI protocol drivers may need to update the transfer mode if the device doesn't work with its default. They
may likewise need to update clock rates or word sizes from initial values. This function changes those
settings, and must be called from a context that can sleep. Except for SPI_CS_HIGH, which takes effect
immediately, the changes take effect the next time the device is selected and data is transferred to or from
it. When this function returns, the spi device is deselected.

Note that this call will fail if the protocol driver specifies an option that the underlying controller or its
driver does not support. For example, not all hardware supports wire transfers using nine bit words, LSB-
first wire encoding, or active-high chipselects.

Serial Peripheral Interface (SPI)

930

Name
spi_async — asynchronous SPI transfer

Synopsis
int spi_async (struct spi_device * spi, struct spi_message * message);

Arguments
spi device with which data will be exchanged

message describes the data transfers, including completion callback

Context
any (irqs may be blocked, etc)

Description
This call may be used in_irq and other contexts which can't sleep, as well as from task contexts which
can sleep.

The completion callback is invoked in a context which can't sleep. Before that invocation, the value of
message->status is undefined. When the callback is issued, message->status holds either zero (to indicate
complete success) or a negative error code. After that callback returns, the driver which issued the transfer
request may deallocate the associated memory; it's no longer in use by any SPI core or controller driver
code.

Note that although all messages to a spi_device are handled in FIFO order, messages may go to different
devices in other orders. Some device might be higher priority, or have various “hard” access time require-
ments, for example.

On detection of any fault during the transfer, processing of the entire message is aborted, and the device is
deselected. Until returning from the associated message completion callback, no other spi_message queued
to that device will be processed. (This rule applies equally to all the synchronous transfer calls, which are
wrappers around this core asynchronous primitive.)

Serial Peripheral Interface (SPI)

931

Name
spi_async_locked — version of spi_async with exclusive bus usage

Synopsis
int spi_async_locked (struct spi_device * spi, struct spi_message *
message);

Arguments
spi device with which data will be exchanged

message describes the data transfers, including completion callback

Context
any (irqs may be blocked, etc)

Description
This call may be used in_irq and other contexts which can't sleep, as well as from task contexts which
can sleep.

The completion callback is invoked in a context which can't sleep. Before that invocation, the value of
message->status is undefined. When the callback is issued, message->status holds either zero (to indicate
complete success) or a negative error code. After that callback returns, the driver which issued the transfer
request may deallocate the associated memory; it's no longer in use by any SPI core or controller driver
code.

Note that although all messages to a spi_device are handled in FIFO order, messages may go to different
devices in other orders. Some device might be higher priority, or have various “hard” access time require-
ments, for example.

On detection of any fault during the transfer, processing of the entire message is aborted, and the device is
deselected. Until returning from the associated message completion callback, no other spi_message queued
to that device will be processed. (This rule applies equally to all the synchronous transfer calls, which are
wrappers around this core asynchronous primitive.)

Serial Peripheral Interface (SPI)

932

Name
spi_sync — blocking/synchronous SPI data transfers

Synopsis
int spi_sync (struct spi_device * spi, struct spi_message * message);

Arguments
spi device with which data will be exchanged

message describes the data transfers

Context
can sleep

Description
This call may only be used from a context that may sleep. The sleep is non-interruptible, and has no
timeout. Low-overhead controller drivers may DMA directly into and out of the message buffers.

Note that the SPI device's chip select is active during the message, and then is normally disabled between
messages. Drivers for some frequently-used devices may want to minimize costs of selecting a chip, by
leaving it selected in anticipation that the next message will go to the same chip. (That may increase power
usage.)

Also, the caller is guaranteeing that the memory associated with the message will not be freed before this
call returns.

It returns zero on success, else a negative error code.

Serial Peripheral Interface (SPI)

933

Name
spi_sync_locked — version of spi_sync with exclusive bus usage

Synopsis
int spi_sync_locked (struct spi_device * spi, struct spi_message *
message);

Arguments
spi device with which data will be exchanged

message describes the data transfers

Context
can sleep

Description
This call may only be used from a context that may sleep. The sleep is non-interruptible, and has no
timeout. Low-overhead controller drivers may DMA directly into and out of the message buffers.

This call should be used by drivers that require exclusive access to the SPI bus. It has to be preceded by
a spi_bus_lock call. The SPI bus must be released by a spi_bus_unlock call when the exclusive access
is over.

It returns zero on success, else a negative error code.

Serial Peripheral Interface (SPI)

934

Name
spi_bus_lock — obtain a lock for exclusive SPI bus usage

Synopsis
int spi_bus_lock (struct spi_master * master);

Arguments
master SPI bus master that should be locked for exclusive bus access

Context
can sleep

Description
This call may only be used from a context that may sleep. The sleep is non-interruptible, and has no timeout.

This call should be used by drivers that require exclusive access to the SPI bus. The SPI bus must be
released by a spi_bus_unlock call when the exclusive access is over. Data transfer must be done by
spi_sync_locked and spi_async_locked calls when the SPI bus lock is held.

It returns zero on success, else a negative error code.

Serial Peripheral Interface (SPI)

935

Name
spi_bus_unlock — release the lock for exclusive SPI bus usage

Synopsis
int spi_bus_unlock (struct spi_master * master);

Arguments
master SPI bus master that was locked for exclusive bus access

Context
can sleep

Description
This call may only be used from a context that may sleep. The sleep is non-interruptible, and has no timeout.

This call releases an SPI bus lock previously obtained by an spi_bus_lock call.

It returns zero on success, else a negative error code.

Serial Peripheral Interface (SPI)

936

Name
spi_write_then_read — SPI synchronous write followed by read

Synopsis
int spi_write_then_read (struct spi_device * spi, const void * txbuf,
unsigned n_tx, void * rxbuf, unsigned n_rx);

Arguments
spi device with which data will be exchanged

txbuf data to be written (need not be dma-safe)

n_tx size of txbuf, in bytes

rxbuf buffer into which data will be read (need not be dma-safe)

n_rx size of rxbuf, in bytes

Context
can sleep

Description
This performs a half duplex MicroWire style transaction with the device, sending txbuf and then reading
rxbuf. The return value is zero for success, else a negative errno status code. This call may only be used
from a context that may sleep.

Parameters to this routine are always copied using a small buffer; portable code should never use this for
more than 32 bytes. Performance-sensitive or bulk transfer code should instead use spi_{async,sync}()
calls with dma-safe buffers.

937

Chapter 10. I2C and SMBus Subsystem
I2C (or without fancy typography, "I2C") is an acronym for the "Inter-IC" bus, a simple bus protocol which
is widely used where low data rate communications suffice. Since it's also a licensed trademark, some
vendors use another name (such as "Two-Wire Interface", TWI) for the same bus. I2C only needs two
signals (SCL for clock, SDA for data), conserving board real estate and minimizing signal quality issues.
Most I2C devices use seven bit addresses, and bus speeds of up to 400 kHz; there's a high speed extension
(3.4 MHz) that's not yet found wide use. I2C is a multi-master bus; open drain signaling is used to arbitrate
between masters, as well as to handshake and to synchronize clocks from slower clients.

The Linux I2C programming interfaces support only the master side of bus interactions, not the slave side.
The programming interface is structured around two kinds of driver, and two kinds of device. An I2C
"Adapter Driver" abstracts the controller hardware; it binds to a physical device (perhaps a PCI device or
platform_device) and exposes a struct i2c_adapter representing each I2C bus segment it manages. On each
I2C bus segment will be I2C devices represented by a struct i2c_client. Those devices will be bound to a
struct i2c_driver, which should follow the standard Linux driver model. (At this writing, a legacy model
is more widely used.) There are functions to perform various I2C protocol operations; at this writing all
such functions are usable only from task context.

The System Management Bus (SMBus) is a sibling protocol. Most SMBus systems are also I2C confor-
mant. The electrical constraints are tighter for SMBus, and it standardizes particular protocol messages
and idioms. Controllers that support I2C can also support most SMBus operations, but SMBus controllers
don't support all the protocol options that an I2C controller will. There are functions to perform various
SMBus protocol operations, either using I2C primitives or by issuing SMBus commands to i2c_adapter
devices which don't support those I2C operations.

I2C and SMBus Subsystem

938

Name
struct i2c_driver — represent an I2C device driver

Synopsis

struct i2c_driver {
 unsigned int class;
 int (* attach_adapter) (struct i2c_adapter *);
 int (* probe) (struct i2c_client *, const struct i2c_device_id *);
 int (* remove) (struct i2c_client *);
 void (* shutdown) (struct i2c_client *);
 void (* alert) (struct i2c_client *, unsigned int data);
 int (* command) (struct i2c_client *client, unsigned int cmd, void *arg);
 struct device_driver driver;
 const struct i2c_device_id * id_table;
 int (* detect) (struct i2c_client *, struct i2c_board_info *);
 const unsigned short * address_list;
 struct list_head clients;
};

Members
class What kind of i2c device we instantiate (for detect)

attach_adapter Callback for bus addition (deprecated)

probe Callback for device binding

remove Callback for device unbinding

shutdown Callback for device shutdown

alert Alert callback, for example for the SMBus alert protocol

command Callback for bus-wide signaling (optional)

driver Device driver model driver

id_table List of I2C devices supported by this driver

detect Callback for device detection

address_list The I2C addresses to probe (for detect)

clients List of detected clients we created (for i2c-core use only)

Description
The driver.owner field should be set to the module owner of this driver. The driver.name field should be
set to the name of this driver.

For automatic device detection, both detect and address_list must be defined. class should also
be set, otherwise only devices forced with module parameters will be created. The detect function must fill

I2C and SMBus Subsystem

939

at least the name field of the i2c_board_info structure it is handed upon successful detection, and possibly
also the flags field.

If detect is missing, the driver will still work fine for enumerated devices. Detected devices simply
won't be supported. This is expected for the many I2C/SMBus devices which can't be detected reliably,
and the ones which can always be enumerated in practice.

The i2c_client structure which is handed to the detect callback is not a real i2c_client. It is initialized
just enough so that you can call i2c_smbus_read_byte_data and friends on it. Don't do anything else with
it. In particular, calling dev_dbg and friends on it is not allowed.

I2C and SMBus Subsystem

940

Name
struct i2c_client — represent an I2C slave device

Synopsis

struct i2c_client {
 unsigned short flags;
 unsigned short addr;
 char name[I2C_NAME_SIZE];
 struct i2c_adapter * adapter;
 struct device dev;
 int irq;
 struct list_head detected;
#if IS_ENABLED(CONFIG_I2C_SLAVE)
 i2c_slave_cb_t slave_cb;
#endif
};

Members
flags I2C_CLIENT_TEN indicates the device uses a ten bit chip address;

I2C_CLIENT_PEC indicates it uses SMBus Packet Error Checking

addr Address used on the I2C bus connected to the parent adapter.

name[I2C_NAME_SIZE] Indicates the type of the device, usually a chip name that's generic enough
to hide second-sourcing and compatible revisions.

adapter manages the bus segment hosting this I2C device

dev Driver model device node for the slave.

irq indicates the IRQ generated by this device (if any)

detected member of an i2c_driver.clients list or i2c-core's userspace_devices list

slave_cb Callback when I2C slave mode of an adapter is used. The adapter calls it
to pass on slave events to the slave driver.

Description
An i2c_client identifies a single device (i.e. chip) connected to an i2c bus. The behaviour exposed to Linux
is defined by the driver managing the device.

I2C and SMBus Subsystem

941

Name
struct i2c_board_info — template for device creation

Synopsis

struct i2c_board_info {
 char type[I2C_NAME_SIZE];
 unsigned short flags;
 unsigned short addr;
 void * platform_data;
 struct dev_archdata * archdata;
 struct device_node * of_node;
 struct fwnode_handle * fwnode;
 int irq;
};

Members
type[I2C_NAME_SIZE] chip type, to initialize i2c_client.name

flags to initialize i2c_client.flags

addr stored in i2c_client.addr

platform_data stored in i2c_client.dev.platform_data

archdata copied into i2c_client.dev.archdata

of_node pointer to OpenFirmware device node

fwnode device node supplied by the platform firmware

irq stored in i2c_client.irq

Description
I2C doesn't actually support hardware probing, although controllers and devices may be able to use
I2C_SMBUS_QUICK to tell whether or not there's a device at a given address. Drivers commonly need
more information than that, such as chip type, configuration, associated IRQ, and so on.

i2c_board_info is used to build tables of information listing I2C devices that are present. This
information is used to grow the driver model tree. For mainboards this is done statically using
i2c_register_board_info; bus numbers identify adapters that aren't yet available. For add-on
boards, i2c_new_device does this dynamically with the adapter already known.

I2C and SMBus Subsystem

942

Name
I2C_BOARD_INFO — macro used to list an i2c device and its address

Synopsis
I2C_BOARD_INFO (dev_type, dev_addr);

Arguments
dev_type identifies the device type

dev_addr the device's address on the bus.

Description
This macro initializes essential fields of a struct i2c_board_info, declaring what has been provided on a
particular board. Optional fields (such as associated irq, or device-specific platform_data) are provided
using conventional syntax.

I2C and SMBus Subsystem

943

Name
struct i2c_algorithm — represent I2C transfer method

Synopsis

struct i2c_algorithm {
 int (* master_xfer) (struct i2c_adapter *adap, struct i2c_msg *msgs,int num);
 int (* smbus_xfer) (struct i2c_adapter *adap, u16 addr,unsigned short flags, char read_write,u8 command, int size, union i2c_smbus_data *data);
 u32 (* functionality) (struct i2c_adapter *);
#if IS_ENABLED(CONFIG_I2C_SLAVE)
 int (* reg_slave) (struct i2c_client *client);
 int (* unreg_slave) (struct i2c_client *client);
#endif
};

Members
master_xfer Issue a set of i2c transactions to the given I2C adapter defined by the msgs array,

with num messages available to transfer via the adapter specified by adap.

smbus_xfer Issue smbus transactions to the given I2C adapter. If this is not present, then the bus
layer will try and convert the SMBus calls into I2C transfers instead.

functionality Return the flags that this algorithm/adapter pair supports from the I2C_FUNC_*
flags.

reg_slave Register given client to I2C slave mode of this adapter

unreg_slave Unregister given client from I2C slave mode of this adapter

The following structs are for those who like to imple-
ment new bus drivers

i2c_algorithm is the interface to a class of hardware solutions which can be addressed using the same bus
algorithms - i.e. bit-banging or the PCF8584 to name two of the most common.

The return codes from the master_xfer field should indicate the type of error code that occurred during
the transfer, as documented in the kernel Documentation file Documentation/i2c/fault-codes.

I2C and SMBus Subsystem

944

Name
struct i2c_bus_recovery_info — I2C bus recovery information

Synopsis

struct i2c_bus_recovery_info {
 int (* recover_bus) (struct i2c_adapter *);
 int (* get_scl) (struct i2c_adapter *);
 void (* set_scl) (struct i2c_adapter *, int val);
 int (* get_sda) (struct i2c_adapter *);
 void (* prepare_recovery) (struct i2c_adapter *);
 void (* unprepare_recovery) (struct i2c_adapter *);
 int scl_gpio;
 int sda_gpio;
};

Members
recover_bus Recover routine. Either pass driver's recover_bus routine, or

i2c_generic_scl_recovery or
i2c_generic_gpio_recovery.

get_scl This gets current value of SCL line. Mandatory for generic SCL recovery.
Used internally for generic GPIO recovery.

set_scl This sets/clears SCL line. Mandatory for generic SCL recovery. Used inter-
nally for generic GPIO recovery.

get_sda This gets current value of SDA line. Optional for generic SCL recovery.
Used internally, if sda_gpio is a valid GPIO, for generic GPIO recovery.

prepare_recovery This will be called before starting recovery. Platform may configure padmux
here for SDA/SCL line or something else they want.

unprepare_recovery This will be called after completing recovery. Platform may configure pad-
mux here for SDA/SCL line or something else they want.

scl_gpio gpio number of the SCL line. Only required for GPIO recovery.

sda_gpio gpio number of the SDA line. Only required for GPIO recovery.

I2C and SMBus Subsystem

945

Name
struct i2c_adapter_quirks — describe flaws of an i2c adapter

Synopsis

struct i2c_adapter_quirks {
 u64 flags;
 int max_num_msgs;
 u16 max_write_len;
 u16 max_read_len;
 u16 max_comb_1st_msg_len;
 u16 max_comb_2nd_msg_len;
};

Members
flags see I2C_AQ_* for possible flags and read below

max_num_msgs maximum number of messages per transfer

max_write_len maximum length of a write message

max_read_len maximum length of a read message

max_comb_1st_msg_len maximum length of the first msg in a combined message

max_comb_2nd_msg_len maximum length of the second msg in a combined message

Note about combined messages
Some I2C controllers can only send one message per transfer, plus something called combined mes-
sage or write-then-read. This is (usually) a small write message followed by a read message and barely
enough to access register based devices like EEPROMs. There is a flag to support this mode. It implies
max_num_msg = 2 and does the length checks with max_comb_*_len because combined message mode
usually has its own limitations. Because of HW implementations, some controllers can actually do write-
then-anything or other variants. To support that, write-then-read has been broken out into smaller bits like
write-first and read-second which can be combined as needed.

I2C and SMBus Subsystem

946

Name
module_i2c_driver — Helper macro for registering a I2C driver

Synopsis
module_i2c_driver (__i2c_driver);

Arguments
__i2c_driver i2c_driver struct

Description
Helper macro for I2C drivers which do not do anything special in module init/exit. This eliminates a lot
of boilerplate. Each module may only use this macro once, and calling it replaces module_init and
module_exit

I2C and SMBus Subsystem

947

Name
i2c_register_board_info — statically declare I2C devices

Synopsis
int i2c_register_board_info (int busnum, struct i2c_board_info const *
info, unsigned len);

Arguments
busnum identifies the bus to which these devices belong

info vector of i2c device descriptors

len how many descriptors in the vector; may be zero to reserve the specified bus number.

Description
Systems using the Linux I2C driver stack can declare tables of board info while they initialize. This should
be done in board-specific init code near arch_initcall time, or equivalent, before any I2C adapter
driver is registered. For example, mainboard init code could define several devices, as could the init code
for each daughtercard in a board stack.

The I2C devices will be created later, after the adapter for the relevant bus has been registered. After that
moment, standard driver model tools are used to bind “new style” I2C drivers to the devices. The bus
number for any device declared using this routine is not available for dynamic allocation.

The board info passed can safely be __initdata, but be careful of embedded pointers (for platform_data,
functions, etc) since that won't be copied.

I2C and SMBus Subsystem

948

Name
i2c_verify_client — return parameter as i2c_client, or NULL

Synopsis
struct i2c_client * i2c_verify_client (struct device * dev);

Arguments
dev device, probably from some driver model iterator

Description
When traversing the driver model tree, perhaps using driver model iterators like
device_for_each_child(), you can't assume very much about the nodes you find. Use this function
to avoid oopses caused by wrongly treating some non-I2C device as an i2c_client.

I2C and SMBus Subsystem

949

Name
i2c_lock_adapter — Get exclusive access to an I2C bus segment

Synopsis
void i2c_lock_adapter (struct i2c_adapter * adapter);

Arguments
adapter Target I2C bus segment

I2C and SMBus Subsystem

950

Name
i2c_unlock_adapter — Release exclusive access to an I2C bus segment

Synopsis
void i2c_unlock_adapter (struct i2c_adapter * adapter);

Arguments
adapter Target I2C bus segment

I2C and SMBus Subsystem

951

Name
i2c_new_device — instantiate an i2c device

Synopsis
struct i2c_client * i2c_new_device (struct i2c_adapter * adap, struct
i2c_board_info const * info);

Arguments
adap the adapter managing the device

info describes one I2C device; bus_num is ignored

Context
can sleep

Description
Create an i2c device. Binding is handled through driver model probe/remove methods. A driver may
be bound to this device when we return from this function, or any later moment (e.g. maybe hotplugging
will load the driver module). This call is not appropriate for use by mainboard initialization logic, which
usually runs during an arch_initcall long before any i2c_adapter could exist.

This returns the new i2c client, which may be saved for later use with i2c_unregister_device; or
NULL to indicate an error.

I2C and SMBus Subsystem

952

Name
i2c_unregister_device — reverse effect of i2c_new_device

Synopsis
void i2c_unregister_device (struct i2c_client * client);

Arguments
client value returned from i2c_new_device

Context
can sleep

I2C and SMBus Subsystem

953

Name
i2c_new_dummy — return a new i2c device bound to a dummy driver

Synopsis
struct i2c_client * i2c_new_dummy (struct i2c_adapter * adapter, u16
address);

Arguments
adapter the adapter managing the device

address seven bit address to be used

Context
can sleep

Description
This returns an I2C client bound to the “dummy” driver, intended for use with devices that consume
multiple addresses. Examples of such chips include various EEPROMS (like 24c04 and 24c08 models).

These dummy devices have two main uses. First, most I2C and SMBus calls except i2c_transfer
need a client handle; the dummy will be that handle. And second, this prevents the specified address from
being bound to a different driver.

This returns the new i2c client, which should be saved for later use with i2c_unregister_device;
or NULL to indicate an error.

I2C and SMBus Subsystem

954

Name
i2c_verify_adapter — return parameter as i2c_adapter or NULL

Synopsis
struct i2c_adapter * i2c_verify_adapter (struct device * dev);

Arguments
dev device, probably from some driver model iterator

Description
When traversing the driver model tree, perhaps using driver model iterators like
device_for_each_child(), you can't assume very much about the nodes you find. Use this function
to avoid oopses caused by wrongly treating some non-I2C device as an i2c_adapter.

I2C and SMBus Subsystem

955

Name
i2c_add_adapter — declare i2c adapter, use dynamic bus number

Synopsis
int i2c_add_adapter (struct i2c_adapter * adapter);

Arguments
adapter the adapter to add

Context
can sleep

Description
This routine is used to declare an I2C adapter when its bus number doesn't matter or when its bus number is
specified by an dt alias. Examples of bases when the bus number doesn't matter: I2C adapters dynamically
added by USB links or PCI plugin cards.

When this returns zero, a new bus number was allocated and stored in adap->nr, and the specified adapter
became available for clients. Otherwise, a negative errno value is returned.

I2C and SMBus Subsystem

956

Name
i2c_add_numbered_adapter — declare i2c adapter, use static bus number

Synopsis
int i2c_add_numbered_adapter (struct i2c_adapter * adap);

Arguments
adap the adapter to register (with adap->nr initialized)

Context
can sleep

Description
This routine is used to declare an I2C adapter when its bus number matters. For example, use it for
I2C adapters from system-on-chip CPUs, or otherwise built in to the system's mainboard, and where
i2c_board_info is used to properly configure I2C devices.

If the requested bus number is set to -1, then this function will behave identically to i2c_add_adapter, and
will dynamically assign a bus number.

If no devices have pre-been declared for this bus, then be sure to register the adapter before any dynamically
allocated ones. Otherwise the required bus ID may not be available.

When this returns zero, the specified adapter became available for clients using the bus number provided in
adap->nr. Also, the table of I2C devices pre-declared using i2c_register_board_info is scanned,
and the appropriate driver model device nodes are created. Otherwise, a negative errno value is returned.

I2C and SMBus Subsystem

957

Name
i2c_del_adapter — unregister I2C adapter

Synopsis
void i2c_del_adapter (struct i2c_adapter * adap);

Arguments
adap the adapter being unregistered

Context
can sleep

Description
This unregisters an I2C adapter which was previously registered by i2c_add_adapter or
i2c_add_numbered_adapter.

I2C and SMBus Subsystem

958

Name
i2c_del_driver — unregister I2C driver

Synopsis
void i2c_del_driver (struct i2c_driver * driver);

Arguments
driver the driver being unregistered

Context
can sleep

I2C and SMBus Subsystem

959

Name
i2c_use_client — increments the reference count of the i2c client structure

Synopsis
struct i2c_client * i2c_use_client (struct i2c_client * client);

Arguments
client the client being referenced

Description
Each live reference to a client should be refcounted. The driver model does that automatically as part of
driver binding, so that most drivers don't

need to do this explicitly
they hold a reference until they're unbound from the device.

A pointer to the client with the incremented reference counter is returned.

I2C and SMBus Subsystem

960

Name
i2c_release_client — release a use of the i2c client structure

Synopsis
void i2c_release_client (struct i2c_client * client);

Arguments
client the client being no longer referenced

Description
Must be called when a user of a client is finished with it.

I2C and SMBus Subsystem

961

Name
__i2c_transfer — unlocked flavor of i2c_transfer

Synopsis
int __i2c_transfer (struct i2c_adapter * adap, struct i2c_msg * msgs,
int num);

Arguments
adap Handle to I2C bus

msgs One or more messages to execute before STOP is issued to terminate the operation; each message
begins with a START.

num Number of messages to be executed.

Description
Returns negative errno, else the number of messages executed.

Adapter lock must be held when calling this function. No debug logging takes place. adap->al-
go->master_xfer existence isn't checked.

I2C and SMBus Subsystem

962

Name
i2c_transfer — execute a single or combined I2C message

Synopsis
int i2c_transfer (struct i2c_adapter * adap, struct i2c_msg * msgs,
int num);

Arguments
adap Handle to I2C bus

msgs One or more messages to execute before STOP is issued to terminate the operation; each message
begins with a START.

num Number of messages to be executed.

Description
Returns negative errno, else the number of messages executed.

Note that there is no requirement that each message be sent to the same slave address, although that is
the most common model.

I2C and SMBus Subsystem

963

Name
i2c_master_send — issue a single I2C message in master transmit mode

Synopsis
int i2c_master_send (const struct i2c_client * client, const char *
buf, int count);

Arguments
client Handle to slave device

buf Data that will be written to the slave

count How many bytes to write, must be less than 64k since msg.len is u16

Description
Returns negative errno, or else the number of bytes written.

I2C and SMBus Subsystem

964

Name
i2c_master_recv — issue a single I2C message in master receive mode

Synopsis
int i2c_master_recv (const struct i2c_client * client, char * buf, int
count);

Arguments
client Handle to slave device

buf Where to store data read from slave

count How many bytes to read, must be less than 64k since msg.len is u16

Description
Returns negative errno, or else the number of bytes read.

I2C and SMBus Subsystem

965

Name
i2c_smbus_read_byte — SMBus “receive byte” protocol

Synopsis
s32 i2c_smbus_read_byte (const struct i2c_client * client);

Arguments
client Handle to slave device

Description
This executes the SMBus “receive byte” protocol, returning negative errno else the byte received from
the device.

I2C and SMBus Subsystem

966

Name
i2c_smbus_write_byte — SMBus “send byte” protocol

Synopsis
s32 i2c_smbus_write_byte (const struct i2c_client * client, u8 value);

Arguments
client Handle to slave device

value Byte to be sent

Description
This executes the SMBus “send byte” protocol, returning negative errno else zero on success.

I2C and SMBus Subsystem

967

Name
i2c_smbus_read_byte_data — SMBus “read byte” protocol

Synopsis
s32 i2c_smbus_read_byte_data (const struct i2c_client * client, u8 com-
mand);

Arguments
client Handle to slave device

command Byte interpreted by slave

Description
This executes the SMBus “read byte” protocol, returning negative errno else a data byte received from
the device.

I2C and SMBus Subsystem

968

Name
i2c_smbus_write_byte_data — SMBus “write byte” protocol

Synopsis
s32 i2c_smbus_write_byte_data (const struct i2c_client * client, u8
command, u8 value);

Arguments
client Handle to slave device

command Byte interpreted by slave

value Byte being written

Description
This executes the SMBus “write byte” protocol, returning negative errno else zero on success.

I2C and SMBus Subsystem

969

Name
i2c_smbus_read_word_data — SMBus “read word” protocol

Synopsis
s32 i2c_smbus_read_word_data (const struct i2c_client * client, u8 com-
mand);

Arguments
client Handle to slave device

command Byte interpreted by slave

Description
This executes the SMBus “read word” protocol, returning negative errno else a 16-bit unsigned “word”
received from the device.

I2C and SMBus Subsystem

970

Name
i2c_smbus_write_word_data — SMBus “write word” protocol

Synopsis
s32 i2c_smbus_write_word_data (const struct i2c_client * client, u8
command, u16 value);

Arguments
client Handle to slave device

command Byte interpreted by slave

value 16-bit “word” being written

Description
This executes the SMBus “write word” protocol, returning negative errno else zero on success.

I2C and SMBus Subsystem

971

Name
i2c_smbus_read_block_data — SMBus “block read” protocol

Synopsis
s32 i2c_smbus_read_block_data (const struct i2c_client * client, u8
command, u8 * values);

Arguments
client Handle to slave device

command Byte interpreted by slave

values Byte array into which data will be read; big enough to hold the data returned by the slave.
SMBus allows at most 32 bytes.

Description
This executes the SMBus “block read” protocol, returning negative errno else the number of data bytes
in the slave's response.

Note that using this function requires that the client's adapter support the
I2C_FUNC_SMBUS_READ_BLOCK_DATA functionality. Not all adapter drivers support this; its em-
ulation through I2C messaging relies on a specific mechanism (I2C_M_RECV_LEN) which may not be
implemented.

I2C and SMBus Subsystem

972

Name
i2c_smbus_write_block_data — SMBus “block write” protocol

Synopsis
s32 i2c_smbus_write_block_data (const struct i2c_client * client, u8
command, u8 length, const u8 * values);

Arguments
client Handle to slave device

command Byte interpreted by slave

length Size of data block; SMBus allows at most 32 bytes

values Byte array which will be written.

Description
This executes the SMBus “block write” protocol, returning negative errno else zero on success.

I2C and SMBus Subsystem

973

Name
i2c_smbus_xfer — execute SMBus protocol operations

Synopsis
s32 i2c_smbus_xfer (struct i2c_adapter * adapter, u16 addr, un-
signed short flags, char read_write, u8 command, int protocol, union
i2c_smbus_data * data);

Arguments
adapter Handle to I2C bus

addr Address of SMBus slave on that bus

flags I2C_CLIENT_* flags (usually zero or I2C_CLIENT_PEC)

read_write I2C_SMBUS_READ or I2C_SMBUS_WRITE

command Byte interpreted by slave, for protocols which use such bytes

protocol SMBus protocol operation to execute, such as I2C_SMBUS_PROC_CALL

data Data to be read or written

Description
This executes an SMBus protocol operation, and returns a negative errno code else zero on success.

974

Chapter 11. High Speed Synchronous
Serial Interface (HSI)

High Speed Synchronous Serial Interface (HSI) is a serial interface mainly used for connecting application
engines (APE) with cellular modem engines (CMT) in cellular handsets. HSI provides multiplexing for
up to 16 logical channels, low-latency and full duplex communication.

High Speed Synchro-
nous Serial Interface (HSI)

975

Name
struct hsi_channel — channel resource used by the hsi clients

Synopsis

struct hsi_channel {
 unsigned int id;
 const char * name;
};

Members
id Channel number

name Channel name

High Speed Synchro-
nous Serial Interface (HSI)

976

Name
struct hsi_config — Configuration for RX/TX HSI modules

Synopsis

struct hsi_config {
 unsigned int mode;
 struct hsi_channel * channels;
 unsigned int num_channels;
 unsigned int num_hw_channels;
 unsigned int speed;
 union {unnamed_union};
};

Members
mode Bit transmission mode (STREAM or FRAME)

channels Channel resources used by the client

num_channels Number of channel resources

num_hw_channels Number of channels the transceiver is configured for [1..16]

speed Max bit transmission speed (Kbit/s)

{unnamed_union} anonymous

High Speed Synchro-
nous Serial Interface (HSI)

977

Name
struct hsi_board_info — HSI client board info

Synopsis

struct hsi_board_info {
 const char * name;
 unsigned int hsi_id;
 unsigned int port;
 struct hsi_config tx_cfg;
 struct hsi_config rx_cfg;
 void * platform_data;
 struct dev_archdata * archdata;
};

Members
name Name for the HSI device

hsi_id HSI controller id where the client sits

port Port number in the controller where the client sits

tx_cfg HSI TX configuration

rx_cfg HSI RX configuration

platform_data Platform related data

archdata Architecture-dependent device data

High Speed Synchro-
nous Serial Interface (HSI)

978

Name
struct hsi_client — HSI client attached to an HSI port

Synopsis

struct hsi_client {
 struct device device;
 struct hsi_config tx_cfg;
 struct hsi_config rx_cfg;
};

Members
device Driver model representation of the device

tx_cfg HSI TX configuration

rx_cfg HSI RX configuration

High Speed Synchro-
nous Serial Interface (HSI)

979

Name
struct hsi_client_driver — Driver associated to an HSI client

Synopsis

struct hsi_client_driver {
 struct device_driver driver;
};

Members
driver Driver model representation of the driver

High Speed Synchro-
nous Serial Interface (HSI)

980

Name
struct hsi_msg — HSI message descriptor

Synopsis

struct hsi_msg {
 struct list_head link;
 struct hsi_client * cl;
 struct sg_table sgt;
 void * context;
 void (* complete) (struct hsi_msg *msg);
 void (* destructor) (struct hsi_msg *msg);
 int status;
 unsigned int actual_len;
 unsigned int channel;
 unsigned int ttype:1;
 unsigned int break_frame:1;
};

Members
link Free to use by the current descriptor owner

cl HSI device client that issues the transfer

sgt Head of the scatterlist array

context Client context data associated to the transfer

complete Transfer completion callback

destructor Destructor to free resources when flushing

status Status of the transfer when completed

actual_len Actual length of data transferred on completion

channel Channel were to TX/RX the message

ttype Transfer type (TX if set, RX otherwise)

break_frame if true HSI will send/receive a break frame. Data buffers are ignored in the request.

High Speed Synchro-
nous Serial Interface (HSI)

981

Name
struct hsi_port — HSI port device

Synopsis

struct hsi_port {
 struct device device;
 struct hsi_config tx_cfg;
 struct hsi_config rx_cfg;
 unsigned int num;
 unsigned int shared:1;
 int claimed;
 struct mutex lock;
 int (* async) (struct hsi_msg *msg);
 int (* setup) (struct hsi_client *cl);
 int (* flush) (struct hsi_client *cl);
 int (* start_tx) (struct hsi_client *cl);
 int (* stop_tx) (struct hsi_client *cl);
 int (* release) (struct hsi_client *cl);
 struct atomic_notifier_head n_head;
};

Members
device Driver model representation of the device

tx_cfg Current TX path configuration

rx_cfg Current RX path configuration

num Port number

shared Set when port can be shared by different clients

claimed Reference count of clients which claimed the port

lock Serialize port claim

async Asynchronous transfer callback

setup Callback to set the HSI client configuration

flush Callback to clean the HW state and destroy all pending transfers

start_tx Callback to inform that a client wants to TX data

stop_tx Callback to inform that a client no longer wishes to TX data

release Callback to inform that a client no longer uses the port

n_head Notifier chain for signaling port events to the clients.

High Speed Synchro-
nous Serial Interface (HSI)

982

Name
struct hsi_controller — HSI controller device

Synopsis

struct hsi_controller {
 struct device device;
 struct module * owner;
 unsigned int id;
 unsigned int num_ports;
 struct hsi_port ** port;
};

Members
device Driver model representation of the device

owner Pointer to the module owning the controller

id HSI controller ID

num_ports Number of ports in the HSI controller

port Array of HSI ports

High Speed Synchro-
nous Serial Interface (HSI)

983

Name
hsi_id — Get HSI controller ID associated to a client

Synopsis
unsigned int hsi_id (struct hsi_client * cl);

Arguments
cl Pointer to a HSI client

Description
Return the controller id where the client is attached to

High Speed Synchro-
nous Serial Interface (HSI)

984

Name
hsi_port_id — Gets the port number a client is attached to

Synopsis
unsigned int hsi_port_id (struct hsi_client * cl);

Arguments
cl Pointer to HSI client

Description
Return the port number associated to the client

High Speed Synchro-
nous Serial Interface (HSI)

985

Name
hsi_setup — Configure the client's port

Synopsis
int hsi_setup (struct hsi_client * cl);

Arguments
cl Pointer to the HSI client

Description
When sharing ports, clients should either relay on a single client setup or have the same setup for all of
them.

Return -errno on failure, 0 on success

High Speed Synchro-
nous Serial Interface (HSI)

986

Name
hsi_flush — Flush all pending transactions on the client's port

Synopsis
int hsi_flush (struct hsi_client * cl);

Arguments
cl Pointer to the HSI client

Description
This function will destroy all pending hsi_msg in the port and reset the HW port so it is ready to receive
and transmit from a clean state.

Return -errno on failure, 0 on success

High Speed Synchro-
nous Serial Interface (HSI)

987

Name
hsi_async_read — Submit a read transfer

Synopsis
int hsi_async_read (struct hsi_client * cl, struct hsi_msg * msg);

Arguments
cl Pointer to the HSI client

msg HSI message descriptor of the transfer

Description
Return -errno on failure, 0 on success

High Speed Synchro-
nous Serial Interface (HSI)

988

Name
hsi_async_write — Submit a write transfer

Synopsis
int hsi_async_write (struct hsi_client * cl, struct hsi_msg * msg);

Arguments
cl Pointer to the HSI client

msg HSI message descriptor of the transfer

Description
Return -errno on failure, 0 on success

High Speed Synchro-
nous Serial Interface (HSI)

989

Name
hsi_start_tx — Signal the port that the client wants to start a TX

Synopsis
int hsi_start_tx (struct hsi_client * cl);

Arguments
cl Pointer to the HSI client

Description
Return -errno on failure, 0 on success

High Speed Synchro-
nous Serial Interface (HSI)

990

Name
hsi_stop_tx — Signal the port that the client no longer wants to transmit

Synopsis
int hsi_stop_tx (struct hsi_client * cl);

Arguments
cl Pointer to the HSI client

Description
Return -errno on failure, 0 on success

High Speed Synchro-
nous Serial Interface (HSI)

991

Name
hsi_port_unregister_clients — Unregister an HSI port

Synopsis
void hsi_port_unregister_clients (struct hsi_port * port);

Arguments
port The HSI port to unregister

High Speed Synchro-
nous Serial Interface (HSI)

992

Name
hsi_unregister_controller — Unregister an HSI controller

Synopsis
void hsi_unregister_controller (struct hsi_controller * hsi);

Arguments
hsi The HSI controller to register

High Speed Synchro-
nous Serial Interface (HSI)

993

Name
hsi_register_controller — Register an HSI controller and its ports

Synopsis
int hsi_register_controller (struct hsi_controller * hsi);

Arguments
hsi The HSI controller to register

Description
Returns -errno on failure, 0 on success.

High Speed Synchro-
nous Serial Interface (HSI)

994

Name
hsi_register_client_driver — Register an HSI client to the HSI bus

Synopsis
int hsi_register_client_driver (struct hsi_client_driver * drv);

Arguments
drv HSI client driver to register

Description
Returns -errno on failure, 0 on success.

High Speed Synchro-
nous Serial Interface (HSI)

995

Name
hsi_put_controller — Free an HSI controller

Synopsis
void hsi_put_controller (struct hsi_controller * hsi);

Arguments
hsi Pointer to the HSI controller to freed

Description
HSI controller drivers should only use this function if they need to free their allocated hsi_controller
structures before a successful call to hsi_register_controller. Other use is not allowed.

High Speed Synchro-
nous Serial Interface (HSI)

996

Name
hsi_alloc_controller — Allocate an HSI controller and its ports

Synopsis
struct hsi_controller * hsi_alloc_controller (unsigned int n_ports,
gfp_t flags);

Arguments
n_ports Number of ports on the HSI controller

flags Kernel allocation flags

Description
Return NULL on failure or a pointer to an hsi_controller on success.

High Speed Synchro-
nous Serial Interface (HSI)

997

Name
hsi_free_msg — Free an HSI message

Synopsis
void hsi_free_msg (struct hsi_msg * msg);

Arguments
msg Pointer to the HSI message

Description
Client is responsible to free the buffers pointed by the scatterlists.

High Speed Synchro-
nous Serial Interface (HSI)

998

Name
hsi_alloc_msg — Allocate an HSI message

Synopsis
struct hsi_msg * hsi_alloc_msg (unsigned int nents, gfp_t flags);

Arguments
nents Number of memory entries

flags Kernel allocation flags

Description
nents can be 0. This mainly makes sense for read transfer. In that case, HSI drivers will call the complete
callback when there is data to be read without consuming it.

Return NULL on failure or a pointer to an hsi_msg on success.

High Speed Synchro-
nous Serial Interface (HSI)

999

Name
hsi_async — Submit an HSI transfer to the controller

Synopsis
int hsi_async (struct hsi_client * cl, struct hsi_msg * msg);

Arguments
cl HSI client sending the transfer

msg The HSI transfer passed to controller

Description
The HSI message must have the channel, ttype, complete and destructor fields set beforehand. If nents >
0 then the client has to initialize also the scatterlists to point to the buffers to write to or read from.

HSI controllers relay on pre-allocated buffers from their clients and they do not allocate buffers on their
own.

Once the HSI message transfer finishes, the HSI controller calls the complete callback with the status and
actual_len fields of the HSI message updated. The complete callback can be called before returning from
hsi_async.

Returns -errno on failure or 0 on success

High Speed Synchro-
nous Serial Interface (HSI)

1000

Name
hsi_claim_port — Claim the HSI client's port

Synopsis
int hsi_claim_port (struct hsi_client * cl, unsigned int share);

Arguments
cl HSI client that wants to claim its port

share Flag to indicate if the client wants to share the port or not.

Description
Returns -errno on failure, 0 on success.

High Speed Synchro-
nous Serial Interface (HSI)

1001

Name
hsi_release_port — Release the HSI client's port

Synopsis
void hsi_release_port (struct hsi_client * cl);

Arguments
cl HSI client which previously claimed its port

High Speed Synchro-
nous Serial Interface (HSI)

1002

Name
hsi_register_port_event — Register a client to receive port events

Synopsis
int hsi_register_port_event (struct hsi_client * cl, void (*handler)
(struct hsi_client *, unsigned long));

Arguments
cl HSI client that wants to receive port events

handler Event handler callback

Description
Clients should register a callback to be able to receive events from the ports. Registration should happen
after claiming the port. The handler can be called in interrupt context.

Returns -errno on error, or 0 on success.

High Speed Synchro-
nous Serial Interface (HSI)

1003

Name
hsi_unregister_port_event — Stop receiving port events for a client

Synopsis
int hsi_unregister_port_event (struct hsi_client * cl);

Arguments
cl HSI client that wants to stop receiving port events

Description
Clients should call this function before releasing their associated port.

Returns -errno on error, or 0 on success.

High Speed Synchro-
nous Serial Interface (HSI)

1004

Name
hsi_event — Notifies clients about port events

Synopsis
int hsi_event (struct hsi_port * port, unsigned long event);

Arguments
port Port where the event occurred

event The event type

Description
Clients should not be concerned about wake line behavior. However, due to a race condition in HSI HW
protocol, clients need to be notified about wake line changes, so they can implement a workaround for it.

Events
HSI_EVENT_START_RX - Incoming wake line high HSI_EVENT_STOP_RX - Incoming wake line
down

Returns -errno on error, or 0 on success.

High Speed Synchro-
nous Serial Interface (HSI)

1005

Name
hsi_get_channel_id_by_name — acquire channel id by channel name

Synopsis
int hsi_get_channel_id_by_name (struct hsi_client * cl, char * name);

Arguments
cl HSI client, which uses the channel

name name the channel is known under

Description
Clients can call this function to get the hsi channel ids similar to requesting IRQs or GPIOs by name. This
function assumes the same channel configuration is used for RX and TX.

Returns -errno on error or channel id on success.

	Linux Device Drivers
	Table of Contents
	Chapter 1. Driver Basics
	Driver Entry and Exit points
	module_init
	module_exit

	Atomic and pointer manipulation
	atomic_read
	atomic_set
	atomic_add
	atomic_sub
	atomic_sub_and_test
	atomic_inc
	atomic_dec
	atomic_dec_and_test
	atomic_inc_and_test
	atomic_add_negative
	atomic_add_return
	atomic_sub_return
	__atomic_add_unless
	atomic_inc_short

	Delaying, scheduling, and timer routines
	struct cputime
	struct task_cputime
	struct thread_group_cputimer
	pid_alive
	is_global_init
	task_nice
	is_idle_task
	threadgroup_lock
	threadgroup_unlock
	wake_up_process
	preempt_notifier_register
	preempt_notifier_unregister
	preempt_schedule_context
	sched_setscheduler
	yield
	yield_to
	cpupri_find
	cpupri_set
	cpupri_init
	cpupri_cleanup
	get_sd_load_idx
	update_sg_lb_stats
	update_sd_pick_busiest
	update_sd_lb_stats
	check_asym_packing
	fix_small_imbalance
	calculate_imbalance
	find_busiest_group
	DECLARE_COMPLETION
	DECLARE_COMPLETION_ONSTACK
	init_completion
	reinit_completion
	__round_jiffies
	__round_jiffies_relative
	round_jiffies
	round_jiffies_relative
	__round_jiffies_up
	__round_jiffies_up_relative
	round_jiffies_up
	round_jiffies_up_relative
	set_timer_slack
	init_timer_key
	mod_timer_pending
	mod_timer
	mod_timer_pinned
	add_timer
	add_timer_on
	del_timer
	try_to_del_timer_sync
	del_timer_sync
	schedule_timeout
	msleep
	msleep_interruptible
	usleep_range

	Wait queues and Wake events
	wait_event
	wait_event_freezable
	wait_event_timeout
	wait_event_cmd
	wait_event_interruptible
	wait_event_interruptible_timeout
	wait_event_hrtimeout
	wait_event_interruptible_hrtimeout
	wait_event_interruptible_locked
	wait_event_interruptible_locked_irq
	wait_event_interruptible_exclusive_locked
	wait_event_interruptible_exclusive_locked_irq
	wait_event_killable
	wait_event_lock_irq_cmd
	wait_event_lock_irq
	wait_event_interruptible_lock_irq_cmd
	wait_event_interruptible_lock_irq
	wait_event_interruptible_lock_irq_timeout
	wait_on_bit
	wait_on_bit_io
	wait_on_bit_timeout
	wait_on_bit_action
	wait_on_bit_lock
	wait_on_bit_lock_io
	wait_on_bit_lock_action
	wait_on_atomic_t
	__wake_up
	__wake_up_sync_key
	finish_wait
	abort_exclusive_wait
	wake_up_bit
	wake_up_atomic_t

	High-resolution timers
	ktime_set
	ktime_equal
	ktime_compare
	ktime_after
	ktime_before
	ktime_to_timespec_cond
	ktime_to_timespec64_cond
	struct hrtimer
	struct hrtimer_sleeper
	struct hrtimer_clock_base
	hrtimer_forward
	hrtimer_start_range_ns
	hrtimer_start
	hrtimer_try_to_cancel
	hrtimer_cancel
	hrtimer_get_remaining
	hrtimer_init
	hrtimer_get_res
	schedule_hrtimeout_range
	schedule_hrtimeout

	Workqueues and Kevents
	queue_work_on
	queue_delayed_work_on
	mod_delayed_work_on
	flush_workqueue
	drain_workqueue
	flush_work
	cancel_work_sync
	flush_delayed_work
	cancel_delayed_work
	cancel_delayed_work_sync
	flush_scheduled_work
	execute_in_process_context
	destroy_workqueue
	workqueue_set_max_active
	workqueue_congested
	work_busy
	work_on_cpu

	Internal Functions
	wait_task_stopped
	task_set_jobctl_pending
	task_clear_jobctl_trapping
	task_clear_jobctl_pending
	task_participate_group_stop
	ptrace_trap_notify
	do_notify_parent_cldstop
	do_signal_stop
	do_jobctl_trap
	signal_delivered
	sys_restart_syscall
	set_current_blocked
	sys_rt_sigprocmask
	sys_rt_sigpending
	do_sigtimedwait
	sys_rt_sigtimedwait
	sys_kill
	sys_tgkill
	sys_tkill
	sys_rt_sigqueueinfo
	sys_sigpending
	sys_sigprocmask
	sys_rt_sigaction
	sys_rt_sigsuspend
	kthread_run
	kthread_should_stop
	kthread_freezable_should_stop
	kthread_create_on_node
	kthread_bind
	kthread_stop
	kthread_worker_fn
	queue_kthread_work
	flush_kthread_work
	flush_kthread_worker

	Kernel objects manipulation
	kobject_get_path
	kobject_set_name
	kobject_init
	kobject_add
	kobject_init_and_add
	kobject_rename
	kobject_del
	kobject_get
	kobject_put
	kobject_create_and_add
	kset_register
	kset_unregister
	kset_create_and_add

	Kernel utility functions
	upper_32_bits
	lower_32_bits
	might_sleep
	reciprocal_scale
	kstrtoul
	kstrtol
	trace_printk
	trace_puts
	min_not_zero
	clamp
	clamp_t
	clamp_val
	container_of
	printk
	console_lock
	console_trylock
	console_unlock
	console_conditional_schedule
	printk_timed_ratelimit
	kmsg_dump_register
	kmsg_dump_unregister
	kmsg_dump_get_line
	kmsg_dump_get_buffer
	kmsg_dump_rewind
	printk_hash
	printk_dev_hash
	panic
	add_taint
	/usr/src/linux-4.1.27-24//kernel/sys.c
	init_srcu_struct
	cleanup_srcu_struct
	synchronize_srcu
	synchronize_srcu_expedited
	srcu_barrier
	srcu_batches_completed
	rcu_idle_enter
	rcu_idle_exit
	rcu_is_watching
	synchronize_sched
	synchronize_rcu_bh
	get_state_synchronize_rcu
	cond_synchronize_rcu
	synchronize_sched_expedited
	rcu_barrier_bh
	rcu_barrier_sched
	synchronize_rcu
	synchronize_rcu_expedited
	rcu_barrier
	rcu_expedite_gp
	rcu_unexpedite_gp
	rcu_read_lock_held
	rcu_read_lock_bh_held
	init_rcu_head_on_stack
	destroy_rcu_head_on_stack
	synchronize_rcu_tasks
	rcu_barrier_tasks

	Device Resource Management
	devres_alloc
	devres_for_each_res
	devres_free
	devres_add
	devres_find
	devres_get
	devres_remove
	devres_destroy
	devres_release
	devres_open_group
	devres_close_group
	devres_remove_group
	devres_release_group
	devm_add_action
	devm_remove_action
	devm_kmalloc
	devm_kstrdup
	devm_kvasprintf
	devm_kasprintf
	devm_kfree
	devm_kmemdup
	devm_get_free_pages
	devm_free_pages

	Chapter 2. Device drivers infrastructure
	The Basic Device Driver-Model Structures
	struct bus_type
	struct device_driver
	struct subsys_interface
	struct class
	struct device
	module_driver

	Device Drivers Base
	driver_init
	driver_for_each_device
	driver_find_device
	driver_create_file
	driver_remove_file
	driver_register
	driver_unregister
	driver_find
	dev_driver_string
	device_create_file
	device_remove_file
	device_remove_file_self
	device_create_bin_file
	device_remove_bin_file
	device_initialize
	dev_set_name
	device_add
	device_register
	get_device
	put_device
	device_del
	device_unregister
	device_for_each_child
	device_find_child
	__root_device_register
	root_device_unregister
	device_create_vargs
	device_create
	device_create_with_groups
	device_destroy
	device_rename
	device_move
	set_primary_fwnode
	register_syscore_ops
	unregister_syscore_ops
	syscore_suspend
	syscore_resume
	__class_create
	class_destroy
	class_dev_iter_init
	class_dev_iter_next
	class_dev_iter_exit
	class_for_each_device
	class_find_device
	class_compat_register
	class_compat_unregister
	class_compat_create_link
	class_compat_remove_link
	unregister_node
	request_firmware
	request_firmware_direct
	release_firmware
	request_firmware_nowait
	transport_class_register
	transport_class_unregister
	anon_transport_class_register
	anon_transport_class_unregister
	transport_setup_device
	transport_add_device
	transport_configure_device
	transport_remove_device
	transport_destroy_device
	device_bind_driver
	wait_for_device_probe
	device_attach
	driver_attach
	device_release_driver
	platform_device_register_resndata
	platform_device_register_simple
	platform_device_register_data
	platform_get_resource
	platform_get_irq
	platform_get_resource_byname
	platform_get_irq_byname
	platform_add_devices
	platform_device_put
	platform_device_alloc
	platform_device_add_resources
	platform_device_add_data
	platform_device_add
	platform_device_del
	platform_device_register
	platform_device_unregister
	platform_device_register_full
	__platform_driver_register
	platform_driver_unregister
	__platform_driver_probe
	__platform_create_bundle
	bus_for_each_dev
	bus_find_device
	bus_find_device_by_name
	subsys_find_device_by_id
	bus_for_each_drv
	bus_rescan_devices
	device_reprobe
	bus_register
	bus_unregister
	subsys_dev_iter_init
	subsys_dev_iter_next
	subsys_dev_iter_exit
	subsys_system_register
	subsys_virtual_register

	Device Drivers DMA Management
	dma_buf_export
	dma_buf_fd
	dma_buf_get
	dma_buf_put
	dma_buf_attach
	dma_buf_detach
	dma_buf_map_attachment
	dma_buf_unmap_attachment
	dma_buf_begin_cpu_access
	dma_buf_end_cpu_access
	dma_buf_kmap_atomic
	dma_buf_kunmap_atomic
	dma_buf_kmap
	dma_buf_kunmap
	dma_buf_mmap
	dma_buf_vmap
	dma_buf_vunmap
	fence_context_alloc
	fence_signal_locked
	fence_signal
	fence_wait_timeout
	fence_enable_sw_signaling
	fence_add_callback
	fence_remove_callback
	fence_default_wait
	fence_init
	/usr/src/linux-4.1.27-24//drivers/dma-buf/seqno-fence.c
	struct fence
	struct fence_cb
	struct fence_ops
	fence_get
	fence_get_rcu
	fence_put
	fence_is_signaled_locked
	fence_is_signaled
	fence_later
	fence_wait
	to_seqno_fence
	seqno_fence_init
	/usr/src/linux-4.1.27-24//drivers/dma-buf/reservation.c
	/usr/src/linux-4.1.27-24//include/linux/reservation.h
	dma_alloc_from_coherent
	dma_release_from_coherent
	dma_mmap_from_coherent
	dmam_alloc_coherent
	dmam_free_coherent
	dmam_alloc_noncoherent
	dmam_free_noncoherent
	dmam_declare_coherent_memory
	dmam_release_declared_memory

	Device Drivers Power Management
	dpm_resume_start
	dpm_resume_end
	dpm_suspend_end
	dpm_suspend_start
	device_pm_wait_for_dev
	dpm_for_each_dev

	Device Drivers ACPI Support
	acpi_match_device
	acpi_bus_register_driver
	acpi_bus_unregister_driver
	acpi_bus_scan
	acpi_bus_trim
	create_pnp_modalias
	create_of_modalias
	acpi_of_match_device
	acpi_scan_drop_device

	Device drivers PnP support
	pnp_register_protocol
	pnp_unregister_protocol
	pnp_request_card_device
	pnp_release_card_device
	pnp_register_card_driver
	pnp_unregister_card_driver
	pnp_add_id
	pnp_start_dev
	pnp_stop_dev
	pnp_activate_dev
	pnp_disable_dev
	pnp_is_active

	Userspace IO devices
	uio_event_notify
	__uio_register_device
	uio_unregister_device
	struct uio_mem
	struct uio_port
	struct uio_info

	Chapter 3. Parallel Port Devices
	parport_yield
	parport_yield_blocking
	parport_wait_event
	parport_wait_peripheral
	parport_negotiate
	parport_write
	parport_read
	parport_set_timeout
	parport_register_driver
	parport_unregister_driver
	parport_get_port
	parport_put_port
	parport_register_port
	parport_announce_port
	parport_remove_port
	parport_register_device
	parport_unregister_device
	parport_find_number
	parport_find_base
	parport_claim
	parport_claim_or_block
	parport_release
	parport_open
	parport_close

	Chapter 4. Message-based devices
	Fusion message devices
	mpt_register
	mpt_deregister
	mpt_event_register
	mpt_event_deregister
	mpt_reset_register
	mpt_reset_deregister
	mpt_device_driver_register
	mpt_device_driver_deregister
	mpt_get_msg_frame
	mpt_put_msg_frame
	mpt_put_msg_frame_hi_pri
	mpt_free_msg_frame
	mpt_send_handshake_request
	mpt_verify_adapter
	mpt_attach
	mpt_detach
	mpt_suspend
	mpt_resume
	mpt_GetIocState
	mpt_alloc_fw_memory
	mpt_free_fw_memory
	mptbase_sas_persist_operation
	mpt_raid_phys_disk_pg0
	mpt_raid_phys_disk_get_num_paths
	mpt_raid_phys_disk_pg1
	mpt_findImVolumes
	mpt_config
	mpt_print_ioc_summary
	mpt_set_taskmgmt_in_progress_flag
	mpt_clear_taskmgmt_in_progress_flag
	mpt_halt_firmware
	mpt_Soft_Hard_ResetHandler
	mpt_HardResetHandler
	mpt_get_cb_idx
	mpt_is_discovery_complete
	mpt_remove_dead_ioc_func
	mpt_fault_reset_work
	mpt_interrupt
	mptbase_reply
	mpt_add_sge
	mpt_add_sge_64bit
	mpt_add_sge_64bit_1078
	mpt_add_chain
	mpt_add_chain_64bit
	mpt_host_page_access_control
	mpt_host_page_alloc
	mpt_get_product_name
	mpt_mapresources
	mpt_do_ioc_recovery
	mpt_detect_bound_ports
	mpt_adapter_disable
	mpt_adapter_dispose
	MptDisplayIocCapabilities
	MakeIocReady
	GetIocFacts
	GetPortFacts
	SendIocInit
	SendPortEnable
	mpt_do_upload
	mpt_downloadboot
	KickStart
	mpt_diag_reset
	SendIocReset
	initChainBuffers
	PrimeIocFifos
	mpt_handshake_req_reply_wait
	WaitForDoorbellAck
	WaitForDoorbellInt
	WaitForDoorbellReply
	GetLanConfigPages
	GetIoUnitPage2
	mpt_GetScsiPortSettings
	mpt_readScsiDevicePageHeaders
	mpt_inactive_raid_list_free
	mpt_inactive_raid_volumes
	SendEventNotification
	SendEventAck
	mpt_ioc_reset
	procmpt_create
	procmpt_destroy
	mpt_SoftResetHandler
	ProcessEventNotification
	mpt_fc_log_info
	mpt_spi_log_info
	mpt_sas_log_info
	mpt_iocstatus_info_config
	mpt_iocstatus_info
	fusion_init
	fusion_exit
	mptscsih_info
	mptscsih_qcmd
	mptscsih_IssueTaskMgmt
	mptscsih_abort
	mptscsih_dev_reset
	mptscsih_bus_reset
	mptscsih_host_reset
	mptscsih_taskmgmt_complete
	mptscsih_get_scsi_lookup
	mptscsih_info_scsiio
	mptscsih_getclear_scsi_lookup
	mptscsih_set_scsi_lookup
	SCPNT_TO_LOOKUP_IDX
	mptscsih_get_completion_code
	mptscsih_do_cmd
	mptscsih_synchronize_cache
	mptctl_syscall_down
	mptspi_setTargetNegoParms
	mptspi_writeIOCPage4
	mptspi_initTarget
	mptspi_is_raid
	mptspi_print_write_nego
	mptspi_print_read_nego
	mptspi_init
	mptspi_exit
	mptfc_init
	mptfc_remove
	mptfc_exit
	lan_reply

	Chapter 5. Sound Devices
	snd_printk
	snd_printd
	snd_BUG
	snd_printd_ratelimit
	snd_BUG_ON
	snd_printdd
	register_sound_special_device
	register_sound_mixer
	register_sound_midi
	register_sound_dsp
	unregister_sound_special
	unregister_sound_mixer
	unregister_sound_midi
	unregister_sound_dsp
	snd_pcm_stream_linked
	snd_pcm_stream_lock_irqsave
	snd_pcm_group_for_each_entry
	snd_pcm_running
	bytes_to_samples
	bytes_to_frames
	samples_to_bytes
	frames_to_bytes
	frame_aligned
	snd_pcm_lib_buffer_bytes
	snd_pcm_lib_period_bytes
	snd_pcm_playback_avail
	snd_pcm_capture_avail
	snd_pcm_playback_hw_avail
	snd_pcm_capture_hw_avail
	snd_pcm_playback_ready
	snd_pcm_capture_ready
	snd_pcm_playback_data
	snd_pcm_playback_empty
	snd_pcm_capture_empty
	snd_pcm_trigger_done
	params_channels
	params_rate
	params_period_size
	params_periods
	params_buffer_size
	params_buffer_bytes
	snd_pcm_format_cpu_endian
	snd_pcm_set_runtime_buffer
	snd_pcm_gettime
	snd_pcm_lib_alloc_vmalloc_buffer
	snd_pcm_lib_alloc_vmalloc_32_buffer
	snd_pcm_sgbuf_get_addr
	snd_pcm_sgbuf_get_ptr
	snd_pcm_sgbuf_get_chunk_size
	snd_pcm_mmap_data_open
	snd_pcm_mmap_data_close
	snd_pcm_limit_isa_dma_size
	snd_pcm_stream_str
	snd_pcm_chmap_substream
	pcm_format_to_bits
	snd_pcm_format_name
	snd_pcm_new_stream
	snd_pcm_new
	snd_pcm_new_internal
	snd_pcm_notify
	snd_device_new
	snd_device_disconnect
	snd_device_free
	snd_device_register
	snd_iprintf
	snd_info_get_line
	snd_info_get_str
	snd_info_create_module_entry
	snd_info_create_card_entry
	snd_card_proc_new
	snd_info_free_entry
	snd_info_register
	snd_rawmidi_receive
	snd_rawmidi_transmit_empty
	__snd_rawmidi_transmit_peek
	snd_rawmidi_transmit_peek
	__snd_rawmidi_transmit_ack
	snd_rawmidi_transmit_ack
	snd_rawmidi_transmit
	snd_rawmidi_new
	snd_rawmidi_set_ops
	snd_request_card
	snd_lookup_minor_data
	snd_register_device
	snd_unregister_device
	copy_to_user_fromio
	copy_from_user_toio
	snd_pcm_lib_preallocate_free_for_all
	snd_pcm_lib_preallocate_pages
	snd_pcm_lib_preallocate_pages_for_all
	snd_pcm_sgbuf_ops_page
	snd_pcm_lib_malloc_pages
	snd_pcm_lib_free_pages
	snd_pcm_lib_free_vmalloc_buffer
	snd_pcm_lib_get_vmalloc_page
	snd_device_initialize
	snd_card_new
	snd_card_disconnect
	snd_card_free_when_closed
	snd_card_free
	snd_card_set_id
	snd_card_add_dev_attr
	snd_card_register
	snd_component_add
	snd_card_file_add
	snd_card_file_remove
	snd_power_wait
	snd_dma_program
	snd_dma_disable
	snd_dma_pointer
	snd_ctl_notify
	snd_ctl_new1
	snd_ctl_free_one
	snd_ctl_add
	snd_ctl_replace
	snd_ctl_remove
	snd_ctl_remove_id
	snd_ctl_activate_id
	snd_ctl_rename_id
	snd_ctl_find_numid
	snd_ctl_find_id
	snd_ctl_register_ioctl
	snd_ctl_register_ioctl_compat
	snd_ctl_unregister_ioctl
	snd_ctl_unregister_ioctl_compat
	snd_ctl_boolean_mono_info
	snd_ctl_boolean_stereo_info
	snd_ctl_enum_info
	snd_pcm_set_ops
	snd_pcm_set_sync
	snd_interval_refine
	snd_interval_ratnum
	snd_interval_list
	snd_interval_ranges
	snd_pcm_hw_rule_add
	snd_pcm_hw_constraint_mask64
	snd_pcm_hw_constraint_integer
	snd_pcm_hw_constraint_minmax
	snd_pcm_hw_constraint_list
	snd_pcm_hw_constraint_ranges
	snd_pcm_hw_constraint_ratnums
	snd_pcm_hw_constraint_ratdens
	snd_pcm_hw_constraint_msbits
	snd_pcm_hw_constraint_step
	snd_pcm_hw_constraint_pow2
	snd_pcm_hw_rule_noresample
	snd_pcm_hw_param_value
	snd_pcm_hw_param_first
	snd_pcm_hw_param_last
	snd_pcm_lib_ioctl
	snd_pcm_period_elapsed
	snd_pcm_add_chmap_ctls
	snd_hwdep_new
	snd_pcm_stream_lock
	snd_pcm_stream_unlock
	snd_pcm_stream_lock_irq
	snd_pcm_stream_unlock_irq
	snd_pcm_stream_unlock_irqrestore
	snd_pcm_stop
	snd_pcm_stop_xrun
	snd_pcm_suspend
	snd_pcm_suspend_all
	snd_pcm_lib_default_mmap
	snd_pcm_lib_mmap_iomem
	snd_malloc_pages
	snd_free_pages
	snd_dma_alloc_pages
	snd_dma_alloc_pages_fallback
	snd_dma_free_pages

	Chapter 6. 16x50 UART Driver
	uart_update_timeout
	uart_get_baud_rate
	uart_get_divisor
	uart_console_write
	uart_parse_earlycon
	uart_parse_options
	uart_set_options
	uart_register_driver
	uart_unregister_driver
	uart_add_one_port
	uart_remove_one_port
	uart_handle_dcd_change
	uart_handle_cts_change
	uart_insert_char
	serial8250_get_port
	serial8250_suspend_port
	serial8250_resume_port
	serial8250_register_8250_port
	serial8250_unregister_port

	Chapter 7. Frame Buffer Library
	Frame Buffer Memory
	register_framebuffer
	unregister_framebuffer
	fb_set_suspend

	Frame Buffer Colormap
	fb_dealloc_cmap
	fb_copy_cmap
	fb_set_cmap
	fb_default_cmap
	fb_invert_cmaps

	Frame Buffer Video Mode Database
	fb_try_mode
	fb_delete_videomode
	fb_find_mode
	fb_var_to_videomode
	fb_videomode_to_var
	fb_mode_is_equal
	fb_find_best_mode
	fb_find_nearest_mode
	fb_match_mode
	fb_add_videomode
	fb_destroy_modelist
	fb_videomode_to_modelist

	Frame Buffer Macintosh Video Mode Database
	mac_vmode_to_var
	mac_map_monitor_sense
	mac_find_mode

	Frame Buffer Fonts

	Chapter 8. Input Subsystem
	Input core
	struct input_value
	struct input_dev
	struct input_handler
	struct input_handle
	input_set_events_per_packet
	struct ff_device
	input_event
	input_inject_event
	input_alloc_absinfo
	input_grab_device
	input_release_device
	input_open_device
	input_close_device
	input_scancode_to_scalar
	input_get_keycode
	input_set_keycode
	input_reset_device
	input_allocate_device
	devm_input_allocate_device
	input_free_device
	input_set_capability
	input_register_device
	input_unregister_device
	input_register_handler
	input_unregister_handler
	input_handler_for_each_handle
	input_register_handle
	input_unregister_handle
	input_get_new_minor
	input_free_minor
	input_ff_upload
	input_ff_erase
	input_ff_event
	input_ff_create
	input_ff_destroy
	input_ff_create_memless

	Multitouch Library
	struct input_mt_slot
	struct input_mt
	struct input_mt_pos
	input_mt_init_slots
	input_mt_destroy_slots
	input_mt_report_slot_state
	input_mt_report_finger_count
	input_mt_report_pointer_emulation
	input_mt_drop_unused
	input_mt_sync_frame
	input_mt_assign_slots
	input_mt_get_slot_by_key

	Polled input devices
	struct input_polled_dev
	input_allocate_polled_device
	devm_input_allocate_polled_device
	input_free_polled_device
	input_register_polled_device
	input_unregister_polled_device

	Matrix keyboars/keypads
	struct matrix_keymap_data
	struct matrix_keypad_platform_data
	matrix_keypad_parse_of_params

	Sparse keymap support
	struct key_entry
	sparse_keymap_entry_from_scancode
	sparse_keymap_entry_from_keycode
	sparse_keymap_setup
	sparse_keymap_free
	sparse_keymap_report_entry
	sparse_keymap_report_event

	Chapter 9. Serial Peripheral Interface (SPI)
	struct spi_device
	struct spi_driver
	spi_unregister_driver
	module_spi_driver
	struct spi_master
	struct spi_transfer
	struct spi_message
	spi_message_init_with_transfers
	spi_write
	spi_read
	spi_sync_transfer
	spi_w8r8
	spi_w8r16
	spi_w8r16be
	struct spi_board_info
	spi_register_board_info
	spi_register_driver
	spi_alloc_device
	spi_add_device
	spi_new_device
	spi_finalize_current_transfer
	spi_get_next_queued_message
	spi_finalize_current_message
	spi_alloc_master
	spi_register_master
	devm_spi_register_master
	spi_unregister_master
	spi_busnum_to_master
	spi_setup
	spi_async
	spi_async_locked
	spi_sync
	spi_sync_locked
	spi_bus_lock
	spi_bus_unlock
	spi_write_then_read

	Chapter 10. I2C and SMBus Subsystem
	struct i2c_driver
	struct i2c_client
	struct i2c_board_info
	I2C_BOARD_INFO
	struct i2c_algorithm
	struct i2c_bus_recovery_info
	struct i2c_adapter_quirks
	module_i2c_driver
	i2c_register_board_info
	i2c_verify_client
	i2c_lock_adapter
	i2c_unlock_adapter
	i2c_new_device
	i2c_unregister_device
	i2c_new_dummy
	i2c_verify_adapter
	i2c_add_adapter
	i2c_add_numbered_adapter
	i2c_del_adapter
	i2c_del_driver
	i2c_use_client
	i2c_release_client
	__i2c_transfer
	i2c_transfer
	i2c_master_send
	i2c_master_recv
	i2c_smbus_read_byte
	i2c_smbus_write_byte
	i2c_smbus_read_byte_data
	i2c_smbus_write_byte_data
	i2c_smbus_read_word_data
	i2c_smbus_write_word_data
	i2c_smbus_read_block_data
	i2c_smbus_write_block_data
	i2c_smbus_xfer

	Chapter 11. High Speed Synchronous Serial Interface (HSI)
	struct hsi_channel
	struct hsi_config
	struct hsi_board_info
	struct hsi_client
	struct hsi_client_driver
	struct hsi_msg
	struct hsi_port
	struct hsi_controller
	hsi_id
	hsi_port_id
	hsi_setup
	hsi_flush
	hsi_async_read
	hsi_async_write
	hsi_start_tx
	hsi_stop_tx
	hsi_port_unregister_clients
	hsi_unregister_controller
	hsi_register_controller
	hsi_register_client_driver
	hsi_put_controller
	hsi_alloc_controller
	hsi_free_msg
	hsi_alloc_msg
	hsi_async
	hsi_claim_port
	hsi_release_port
	hsi_register_port_event
	hsi_unregister_port_event
	hsi_event
	hsi_get_channel_id_by_name

