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Chapter 1. Introduction

Welcome, to Rusty's Remarkably Unreliable Guide to Kernel Locking issues. This document describes
the locking systemsin the Linux Kernel in 2.6.

With the wide availability of HyperThreading, and preemption in the Linux Kernel, everyone hacking on
the kernel needs to know the fundamentals of concurrency and locking for SMP.




Chapter 2. The Problem With
Concurrency

(Skip thisif you know what a Race Condition is).

In anormal program, you can increment a counter like so:
very_i mportant _count ++;

Thisiswhat they would expect to happen:

Table 2.1. Expected Results

Instance 1 Instance 2

read very_important_count (5)
add 1 (6)
write very_important_count (6)

read very_important_count (6)
add 1 (7)
write very_important_count (7)

Thisiswhat might happen:

Table 2.2. Possible Results

Instance 1 Instance 2

read very_important_count (5)

read very_important_count (5)

add 1 (6)

add 1 (6)

write very_important_count (6)

write very_important_count (6)

Race Conditions and Critical Regions

This overlap, where the result depends on the relative timing of multiple tasks, is called arace condition.
The piece of code containing the concurrency issueis called acritical region. And especially since Linux
starting running on SMP machines, they became one of the mgjor issues in kernel design and implemen-
tation.

Preemption can have the same effect, even if there is only one CPU: by preempting one task during the
critical region, we have exactly the same race condition. In this case the thread which preempts might run
the critical region itself.




The Problem With Concurrency

The solution isto recognize when these simultaneous accesses occur, and use locks to make sure that only
one instance can enter the critical region at any time. There are many friendly primitives in the Linux
kernel to help you do this. And then there are the unfriendly primitives, but I'll pretend they don't exist.




Chapter 3. Locking in the Linux Kernel

If 1 could give you one piece of advice: never sleep with anyone crazier than yourself. But if | had to give
you advice on locking: keep it simple.

Be reluctant to introduce new locks.

Strangely enough, thislast oneisthe exact reverse of my advice when you have slept with someone crazier
than yourself. And you should think about getting a big dog.

Two Main Types of Kernel Locks: Spinlocks
and Mutexes

There are two main types of kernel locks. The fundamental type is the spinlock (i ncl ude/ asm
spi nl ock. h), which isavery simple single-holder lock: if you can't get the spinlock, you keep trying
(spinning) until you can. Spinlocks are very small and fast, and can be used anywhere.

The second type is a mutex (i ncl ude/ | i nux/ nut ex. h): it is like a spinlock, but you may block
holding amutex. If you can't lock amutex, your task will suspend itself, and be woken up when the mutex
isreleased. This meansthe CPU can do something else while you are waiting. There are many caseswhen
you simply can't sleep (see Chapter 10, What Functions Are Safe To Call From Interrupts?), and so have
to use a spinlock instead.

Neither type of lock isrecursive: see the section called “Deadlock: Simple and Advanced”.

Locks and Uniprocessor Kernels

For kernels compiled without CONFIG_SMP, and without CONFIG_PREEMPT spinlocks do not exist
at al. Thisis an excellent design decision: when no-one else can run at the same time, there is no reason
to have alock.

If the kernel is compiled without CONFIG_SMP, but CONFIG_PREEMPT is set, then spinlocks simply
disable preemption, whichissufficient to prevent any races. For most purposes, we can think of preemption
as equivaent to SMP, and not worry about it separately.

Y ou should always test your locking code with CONFIG_SMP and CONFIG_PREEMPT enabled, even
if you don't have an SMP test box, because it will still catch some kinds of locking bugs.

Mutexes still exist, because they are required for synchronization between user contexts, as we will see
below.

Locking Only In User Context

If you have a data structure which is only ever accessed from user context, then you can use a simple
mutex (i ncl ude/ | i nux/ mut ex. h) to protect it. Thisisthe most trivial case: you initialize the mutex.
Thenyou can call mut ex_| ock_i nterrupti bl e() to grab the mutex, and nut ex_unl ock() to
releaseit. Thereisalsoamut ex_| ock() , which should be avoided, becauseit will not return if asignal
isreceived.

Example:net/ netfilter/ nf_sockopt. c alowsregistration of new set sockopt () andget -
sockopt () cals, withnf _regi st er _sockopt () . Registration and de-registration are only done




Locking in the Linux Kernel

on module load and unload (and boot time, where there is no concurrency), and the list of regis-
trations is only consulted for an unknown set sockopt () or get sockopt () system cal. The
nf _sockopt _nut ex isperfect to protect this, especially since the setsockopt and getsockopt calls may
well deep.

Locking Between User Context and Softirgs

If a softirq shares data with user context, you have two problems. Firstly, the current user context can
be interrupted by a softirg, and secondly, the critical region could be entered from another CPU. Thisis
wherespi n_I| ock_bh() (i ncl ude/ I'i nux/ spi nl ock. h)isused. It disables softirgs on that CPU,
then grabs the lock. spi n_unl ock_bh() does the reverse. (The ' bh' suffix is a historical reference
to "Bottom Halves', the old name for software interrupts. It should really be called spin_lock_softirq()'
in a perfect world).

Note that you can also use spi n_I ock_irq() orspin_|l ock _irqgsave() here which stop hard-
ware interrupts as well: see Chapter 4, Hard |RQ Context.

This works perfectly for UP as well: the spin lock vanishes, and this macro simply becomes
| ocal _bh_di sabl e() (i ncl ude/linux/interrupt.h), which protects you from the softirq
being run.

Locking Between User Context and Tasklets

Thisis exactly the same as above, because tasklets are actually run from a softirg.

Locking Between User Context and Timers

This, too, is exactly the same as above, because timers are actually run from a softirg. From a locking
point of view, tasklets and timers are identical.

Locking Between Tasklets/Timers

Sometimes atasklet or timer might want to share data with another tasklet or timer.

The Same Tasklet/Timer

Sinceatasklet isnever run ontwo CPUs at once, you don't need to worry about your tasklet being reentrant
(running twice at once), even on SMP.

Different Tasklets/Timers

If another tasklet/timer wants to share data with your tasklet or timer , you will both need to use
spi n_l ock() and spi n_unl ock() calls. spi n_| ock_bh() isunnecessary here, as you are a-
ready in atasklet, and none will be run on the same CPU.

Locking Between Softirgs

Often a softirg might want to share data with itself or atasklet/timer.
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The Same Softirq

The same softirg can run on the other CPUs:. you can use aper-CPU array (seethe section called “ Per-CPU
Data’) for better performance. If you're going so far as to use a softirg, you probably care about scalable
performance enough to justify the extra complexity.

You'll needtousespi n_| ock() andspi n_unl ock() for shared data.

Different Softirgs

You'll needtousespi n_I ock() andspi n_unl ock() for shared data, whether it be atimer, tasklet,
different softirq or the same or another softirg: any of them could be running on a different CPU.




Chapter 4. Hard IRQ Context

Hardware interrupts usually communicate with atasklet or softirg. Frequently thisinvolves putting work
in a queue, which the softirq will take out.

Locking Between Hard IRQ and Softirgs/
Tasklets

If ahardware irq handler shares data with a softirg, you have two concerns. Firstly, the softirq processing
can beinterrupted by ahardwareinterrupt, and secondly, the critical region could be entered by ahardware
interrupt on another CPU. Thisiswherespi n_| ock_i rq() isused. It is defined to disable interrupts
on that cpu, then grab thelock. spi n_unl ock_i rq() doesthereverse.

Theirqhandler doesnottousespi n_I| ock_i r q() , because the softirg cannot run while theirg handler
isrunning: it can usespi n_I ock() , whichisdlightly faster. The only exception would be if a different
hardware irq handler uses the same lock: spi n_I ock_i r q() will stop that from interrupting us.

This works perfectly for UP as well: the spin lock vanishes, and this macro simply becomes
| ocal _irqg_di sabl e() (i ncl ude/ asm snp. h), which protects you from the softirg/tasklet/BH
being run.

spi n_l ock_irqgsave() (i ncl ude/li nux/ spi nl ock. h)isavariant which saveswhether inter-
rupts were on or off in aflags word, which is passed to spi n_unl ock_i r qrest or e() . Thismeans
that the same code can be used inside an hard irq handler (where interrupts are already off) and in softirgs
(where theirg disabling is required).

Note that softirgs (and hence tasklets and timers) are run on return from hardware interrupts, so

spi n_l ock_irq() asostopsthese. Inthat sense, spi n_| ock_i r gsave() isthemost general and
powerful locking function.

Locking Between Two Hard IRQ Handlers

Itisrareto haveto sharedatabetween two |RQ handlers, but if youdo, spi n_I ock_i r gsave() should
be used: it is architecture-specific whether all interrupts are disabled inside irq handlers themselves.




Chapter 5. Cheat Sheet For Locking

Pete Zaitcev gives the following summary:

* If you arein a process context (any syscall) and want to lock other process out, use a mutex. Y ou can
takeamutex and sleep (copy_from user*( orkmal | oc(x, G-P_KERNEL) ).

* Otherwise (== data can be touched in an interrupt), use spin_l ock_irqgsave() and
spin_unl ock_irqgrestore().

» Avoid holding spinlock for more than 5 lines of code and across any function call (except accessors
liker eadb).

Table of Minimum Requirements

The following table lists the minimum locking requirements between various contexts. In some cases, the
same context can only be running on one CPU at atime, so no locking is required for that context (eg.
a particular thread can only run on one CPU at atime, but if it needs shares data with another thread,
locking is required).

Remember the advice above: you can awaysusespi n_| ock_i rgsave(), whichisasuperset of all
other spinlock primitives.

Tableb5.1. Table of L ocking Requirements

IRQ IRQ Softirq | Softirqg |Tasklet |Tasklet | Timer A|Timer B|User User
Handler |Handler A B A B Context | Context
A B A B

IRQ None

Handler

A

IRQ SLIS |None

Handler

B

Softirq | SLI SLI SL

A

Softirqg |SLI SLI SL SL

B

Tasklet |SLI SLI SL SL None

A

Tasklet |SLI SLI SL SL SL None

B

Timer A|SLI SLI SL SL SL SL None

Timer B|SLI SLI SL SL SL SL SL None

User SLI SLI SLBH |[SLBH |SLBH |SLBH |SLBH |SLBH [None

Context

A

User SLI SLI SLIBH |SLBH |SLBH |SLBH |SLBH |SLBH |[MLI None

Context

B
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Table5.2. Legend for Locking Requirements Table

SLIS spin_lock_irgsave

SLI spin_lock_irq

SL spin_lock

SLBH spin_lock_bh

MLI mutex_lock_interruptible




Chapter 6. The trylock Functions

Therearefunctionsthat try to acquire alock only once and immediately return avaluetelling about success
or failure to acquire the lock. They can be used if you need no access to the data protected with the lock
when some other thread is holding the lock. Y ou should acquire the lock later if you then need access to
the data protected with the lock.

spi n_tryl ock() does not spin but returns non-zero if it acquires the spinlock on the first try or 0 if
not. Thisfunction can be used in al contextslike spi n_| ock: you must have disabled the contexts that
might interrupt you and acquire the spin lock.

mut ex_tryl ock() doesnot suspend your task but returns non-zero if it could lock the mutex on the
first try or O if not. This function cannot be safely used in hardware or software interrupt contexts despite

not sleeping.

10



Chapter 7. Common Examples

Let's step through a simple example: a cache of number to name mappings. The cache keeps a count of
how often each of the objectsis used, and when it gets full, throws out the least used one.

All In User Context

For our first example, we assume that all operations are in user context (ie. from system calls), so we can
sleep. This means we can use a mutex to protect the cache and al the objects within it. Here's the code:

#include <linux/list.h>
#i ncl ude <l i nux/sl ab. h>
#i nclude <linux/string. h>
#i ncl ude <l i nux/ mut ex. h>
#i ncl ude <asni errno. h>

struct object

{
struct list_head list;
int id;
char nane[ 32];
i nt popularity;
1

/* Protects the cache, cache_num and the objects within it */
static DEFI NE_MJTEX(cache_l ock);

static LIST_HEAD(cache);

static unsigned int cache_num = O;

#defi ne MAX_CACHE_SI ZE 10

/* Must be hol di ng cache_l ock */
static struct object *_ cache_find(int id)

{
struct object *i;
list_for_each_entry(i, &cache, list)
if (i->d==1id) {
i ->popul arity++;
return i;
}
return NULL,;
}

/* Must be hol di ng cache_l ock */
static void _ _cache_del ete(struct object *obj)

{
BUG_ON(! obj);
list_del (&bj->list);
kfree(obj);
cache_num -;

}

11
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/* Must be hol ding cache_l ock */
static void __cache_add(struct object *obj)
{
i st_add(&obj->list, &cache);
i f (++cache_num > MAX CACHE_SI ZE) {
struct object *i, *outcast = NULL
list_for_each_entry(i, &cache, list) {
if (loutcast || i->popularity < outcast->popularity)
outcast = i;

}

__cache_del ete(outcast);

}

i nt cache_add(int id, const char *nane)

{

struct object *obj;

if ((obj = kmall oc(sizeof(*obj), GFP_KERNEL)) == NULL)
return - ENOVEM

strl cpy(obj->name, nanme, sizeof(obj->nane));
obj->id =1id;
obj - >popul arity = 0;

mut ex_| ock( &ache_| ock) ;
__cache_add(obj);

mut ex_unl ock( &cache_| ock) ;
return O;

}

voi d cache_del ete(int id)

{
mut ex_| ock( &ache_| ock) ;
__cache_del ete(__cache_find(id));
mut ex_unl ock( &cache_| ock) ;

}

int cache_find(int id, char *nane)
{

struct object *obj;

int ret = - ENCENT,;

mut ex_| ock( &ache_| ock) ;
obj = _ cache_find(id);
if (obj) {

ret = 0;

strcpy(nane, obj->nane);
}
mut ex_unl ock( &cache_| ock) ;
return ret;

12
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Note that we always make sure we have the cache lock when we add, delete, or look up the cache: both
the cache infrastructureitself and the contents of the objects are protected by thelock. Inthiscaseit's easy,
since we copy the data for the user, and never let them access the objects directly.

Thereisadlight (and common) optimization here: incache_add we set up the fields of the object before
grabbing the lock. Thisis safe, as no-one else can accessit until we put it in cache.

Accessing From Interrupt Context

Now consider the casewherecache_f i nd can be called from interrupt context: either a hardware inter-
rupt or a softirg. An example would be atimer which deletes object from the cache.

The change is shown below, in standard patch format: the - are lines which are taken away, and the + are
lines which are added.

--- cache. c. usercontext 2003-12-09 13:58:54. 000000000 +1100
+++ cache.c.interrupt 2003-12-09 14:07:49. 000000000 +1100
@-12,7 +12,7 @@

i nt popularity;
b

-static DEFI NE_MJTEX(cache_l ock);

+stati ¢ DEFI NE_SPI NLOCK( cache_| ock) ;
static LIST_HEAD(cache);
static unsigned int cache_num = O;
#defi ne MAX_CACHE_SI ZE 10

@m-55,6 +55,7 @@
i nt cache_add(int id, const char *nane)

{
struct object *obj;
+ unsi gned | ong fl ags;

if ((obj = kmall oc(sizeof(*obj), GFP_KERNEL)) == NULL)
return - ENOVEM
@ - 63,30 +64,33 @@
obj->id =id;
obj ->popul arity = 0;

- mut ex_| ock( &ache_| ock) ;

+ spi n_l ock_irgsave(&cache_I| ock, flags);
__cache_add(obj);

- mut ex_unl ock( &ache_| ock) ;

+ spi n_unl ock_i rqgrestore(&cache_I| ock, flags);
return O;
}
voi d cache_del ete(int id)
{

mut ex_| ock( &ache_| ock) ;
unsi gned | ong fl ags;

+ + +

spi n_l ock_irgsave(&cache_I| ock, flags);
__cache_del ete(__cache_find(id));

13
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- mut ex_unl ock( &cache_| ock) ;

+ spi n_unl ock_i rqgrestore(&cache_I| ock, flags);
}
int cache_find(int id, char *nane)
{
struct object *obj;
int ret = - ENOENT,;
+ unsi gned | ong fl ags;

- mut ex_| ock( &ache_| ock) ;

+ spi n_l ock_irgsave(&cache_I| ock, flags);
obj = _ cache_find(id);
if (obj) {
ret = 0;
strcpy(nane, obj->nane);
}
- mut ex_unl ock( &cache_| ock) ;
+ spi n_unl ock_i rqgrestore(&cache_I| ock, flags);
return ret;

}

Note that the spi n_I ock_i r gsave will turn off interrupts if they are on, otherwise does nothing (if
we are dready in an interrupt handler), hence these functions are safe to call from any context.

Unfortunately, cache_add calls kmal | oc with the GFP_KERNEL flag, which is only lega in user
context. | have assumedthat cache_add istill only called in user context, otherwise this should become
aparameter tocache_add.

Exposing Objects Outside This File

If our objects contained more information, it might not be sufficient to copy the information in and out:
other parts of the code might want to keep pointers to these objects, for example, rather than looking up
theid every time. This produces two problems.

Thefirst problem isthat we use the cache lock to protect objects: we'd need to make this non-static so the
rest of the code can useit. This makes locking trickier, asit is no longer al in one place.

The second problem isthe lifetime problem: if another structure keeps a pointer to an object, it presumably
expectsthat pointer to remain valid. Unfortunately, thisis only guaranteed while you hold the lock, other-
wisesomeonemight call cache_del et e and evenworse, add another object, re-using the same address.

Asthereisonly onelock, you can't hold it forever: no-one else would get any work done.

The solution to this problem isto use areference count: everyone who has a pointer to the object increases
it when they first get the object, and drops the reference count when they're finished with it. Whoever
dropsit to zero knows it is unused, and can actually delete it.

Hereisthe code:

--- cache.c.interrupt 2003-12-09 14:25:43. 000000000 +1100
+++ cache. c.refcnt 2003-12-09 14:33: 05. 000000000 +1100
@-7,6 +7,7 @@

struct object

14
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struct list_head list;
+ unsi gned int refcnt;
int id;
char nane[ 32];
i nt popularity;
@-17,6 +18,35 @@
static unsigned int cache_num = O;
#defi ne MAX_CACHE_SI ZE 10

+static void __object_put(struct object *obj)
+{
+

if (--obj->refcnt == 0)
+ kfree(obj);
+}
+
+static void __object_get(struct object *obj)
+{
+ obj - >refcnt ++
+}
+
+voi d object_put (struct object *obj)
+{
+ unsi gned | ong fl ags;
+
+ spi n_l ock_irgsave(&cache_I| ock, flags);
+ __Object_put(obj);
+ spi n_unl ock_i rqgrestore(&cache_I| ock, flags);
+}
+
+voi d object_get(struct object *obj)
+{
+ unsi gned | ong fl ags;
+
+ spi n_l ock_irgsave(&cache_I| ock, flags);
+ __Object_get(obj);
+ spi n_unl ock_i rqgrestore(&cache_I| ock, flags);
+}
+

/* Must be hol di ng cache_l ock */
static struct object *_ cache_find(int id)

{
@-35,6 +65,7 @@
{
BUG_ON(! obj);
list_del (&bj->list);
+ __Object_put(obj);
cache_num -;
}

@m»-63,6 +94,7 @@
strl cpy(obj->name, nane, sizeof(obj->nane));
obj->id =id;
obj - >popul arity = 0;

15
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+ obj->refcnt = 1; /* The cache holds a reference */

spi n_l ock_irgsave(&cache_I| ock, flags);
__cache_add(obj);
@-79,18 +111,15 @@
spi n_unl ock_i rqgrestore(&cache_I| ock, flags);
}

-int cache_find(int id, char *nane)
+struct object *cache_find(int id)

{
struct object *obj;
- int ret = - ENCENT,
unsi gned | ong fl ags;
spi n_l ock_irgsave(&cache_I| ock, flags);
obj = _ cache_find(id);
- if (obj) {
- ret = 0;
- strcpy(nane, obj->nane);
- }
+ if (obj)
+ __object_get(obj);
spi n_unl ock_irqgrestore(&cache_| ock, flags);
- return ret;
+ return obj;
}

We encapsulate the reference counting in the standard 'get' and 'put' functions. Now we can return the
object itself from cache_f i nd which has the advantage that the user can now sleep holding the object
(eg.tocopy_t o_user to nameto userspace).

The other point to note is that | said a reference should be held for every pointer to the object: thus the
reference count is 1 when first inserted into the cache. In some versions the framework does not hold a
reference count, but they are more complicated.

Using Atomic Operations For The Reference Count

In practice, atomic_t would usually be used for r ef cnt . There are anumber of atomic operations defined
ini ncl ude/ asm at omi c. h: these are guaranteed to be seen atomically from all CPUs in the system,
sonolockisrequired. Inthiscase, it issimpler than using spinlocks, although for anything non-trivial using
spinlocksisclearer. Theat omi ¢_i nc andat omi ¢c_dec_and_t est areused instead of the standard
increment and decrement operators, and the lock is no longer used to protect the reference count itself.

--- cache.c.refcnt 2003-12-09 15:00: 35. 000000000 +1100
+++ cache.c.refcnt-atom ¢ 2003-12-11 15:49: 42. 000000000 +1100
@-7,7 +7,7 @@
struct object
{
struct list_head list;
- unsi gned int refcnt;
+ atomc_t refcnt;
int id;
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char nane[ 32];

i nt popularity;
@»- 18,33 +18,15 @@
static unsigned int cache_num = O;
#defi ne MAX_CACHE_SI ZE 10

-static void __object_put(struct object *obj)

-{

- if (--obj->refcnt == 0)

- kfree(obj);

-}

-static void __object_get(struct object *obj)
g

- obj - >refcnt ++

-}

voi d object_put(struct object *obj)

{

- unsi gned | ong fl ags;

- spi n_l ock_irgsave(&cache_I| ock, flags);
- __Object_put(obj);

- spi n_unl ock_i rqgrestore(&cache_I| ock, flags);
+ if (atom c_dec_and_test(&obj->refcnt))
+ kfree(obj);

}

voi d object _get(struct object *obj)

{

- unsi gned | ong fl ags;

- spi n_l ock_irgsave(&cache_I| ock, flags);
- __Object_get(obj);

- spi n_unl ock_i rqgrestore(&cache_I| ock, flags);
+ atom c_i nc(&obj ->refcnt);

}

/* Must be hol di ng cache_l ock */
@-65,7 +47,7 @@

{
BUG_ON(! obj);
list_del (&bj->list);
- __Object_put(obj);
+ obj ect _put (obj);
cache_num -;
}

@m-94,7 +76,7 @@
strl cpy(obj->name, nane, sizeof(obj->nane));
obj->id =id;
obj - >popul arity = 0;
- obj->refcnt = 1; /* The cache holds a reference */
+ atom c_set (&obj->refcnt, 1); /* The cache holds a reference */
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spi n_l ock_irqgsave(&cache_I| ock, flags
__cache_add(obj);

@-119,7 +101,7 @@

}

spin_l ock_irqgsave(&cache_I| ock, flags
obj = _ cache_find(id);
if (obj)

__Object_get(obj);

obj ect _get (obj);
spi n_unl ock_i rqgrestore(&cache_I ock,
return obj;

)

)

flags);

Protecting The Objects Themselves

In these exampl es, we assumed that the objects (except the reference counts) never changed once they are

created. If we wanted to allow the name to change, there are three possibilities:

* You can make cache_lock non-static, and tell people to grab that lock before changing the name in any
object.

* Youcan provideacache_obj _renane which grabs thislock and changes the name for the caller,

and tell everyone to use that function.

» You can make the cache |lock protect only the cache itself, and use another lock to protect the name.

Theoretically, you can make the locks as fine-grained as one lock for every field, for every object. In

practice, the most common variants are:

» One lock which protects the infrastructure (the cache list in this example) and all the objects. Thisis

what we have done so far.

» One lock which protects the infrastructure (including the list pointers inside the objects), and one lock

inside the object which protects the rest of that object.

» Multiple locks to protect the infrastructure (eg. one lock per hash chain), possibly with a separate per-

object lock.

Here isthe "lock-per-abject" implementation:

+++ cache. c. perobj ectl ock 2003-12-11 17:15:03
@-6,11 +6,17 @@

struct object

{

+

/* These two protected by cache_I ock.

struct list_head list;
i nt popularity;

atomc_t refcnt;

/* Doesn't change once created. */
int id;

cache.c.refcnt-atom c 2003-12-11 15:50: 54. 000000000 +1100
. 000000000 +1100

*/
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+

+ spinlock_t lock; /* Protects the nanme */
char nane[ 32];

- i nt popularity;

b

stati c DEFI NE_SPI NLOCK( cache_l| ock);
@w-77,6 +84,7 @@
obj->id =id;
obj - >popul arity = 0;
atom c_set (&obj->refcnt, 1); /* The cache holds a reference */
+ spi n_l ock_i ni t (&obj - >l ock);

spi n_l ock_irgsave(&cache_I| ock, flags);
__cache_add(obj);

Notethat | decidethat thepopul ari t y count should be protected by the cache lock rather than the per-
object lock: thisisbecauseit (likethestruct list_head insidethe object) islogically part of theinfrastructure.
Thisway, | don't need to grab the lock of every objectin __cache_add when seeking the least popular.

| also decided that the i d member is unchangeable, so | don't need to grab each object lock in
__cache_find() toexaminethei d: the object lock is only used by a caller who wants to read or
writethe name field.

Note also that | added a comment describing what data was protected by which locks. Thisis extremely
important, asit describes the runtime behavior of the code, and can be hard to gain from just reading. And
as Alan Cox says, “Lock data, not code”.
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Chapter 8. Common Problems

Deadlock: Simple and Advanced

There is a coding bug where a piece of code tries to grab a spinlock twice: it will spin forever, waiting
for the lock to be released (spinlocks, rwlocks and mutexes are not recursive in Linux). Thisistrivia to
diagnose: not a stay-up-five-nights-talk-to-fluffy-code-bunnies kind of problem.

For adightly more complex case, imagine you have aregion shared by a softirq and user context. If you
useaspi n_| ock() call toprotectit, itis possiblethat the user context will be interrupted by the softirg
while it holds the lock, and the softirq will then spin forever trying to get the same lock.

Both of these are called deadlock, and as shown above, it can occur even with asingle CPU (although not
on UP compiles, since spinlocks vanish on kernel compiles with CONFIG_SMP=n. You'l still get data
corruption in the second example).

This complete lockup is easy to diagnose: on SMP boxes the watchdog timer or compiling with
DEBUG_SPINLOCK set (i ncl ude/ | i nux/ spi nl ock. h) will show this up immediately when it
happens.

A more complex problem is the so-called 'deadly embrace, involving two or more locks. Say you have
a hash table: each entry in the table is a spinlock, and a chain of hashed objects. Inside a softirg handler,
you sometimes want to ater an object from one place in the hash to another: you grab the spinlock of
the old hash chain and the spinlock of the new hash chain, and delete the object from the old one, and
insert it in the new one.

There are two problems here. First, if your code ever tries to move the object to the same chain, it will
deadlock with itself as it tries to lock it twice. Secondly, if the same softirg on another CPU is trying to
move another object in the reverse direction, the following could happen:

Table 8.1. Consequences

CPU 1 CPU 2
Grab lock A -> OK Grab lock B -> OK
Grab lock B -> spin Grablock A -> spin

The two CPUs will spin forever, waiting for the other to give up their lock. It will look, smell, and feel
like a crash.

Preventing Deadlock

Textbookswill tell you that if you alwayslock in the same order, you will never get thiskind of deadlock.
Practice will tell you that this approach doesn't scale: when | create anew lock, | don't understand enough
of the kernel to figure out where in the 5000 lock hierarchy it will fit.

The best |ocks are encapsul ated: they never get exposed in headers, and are never held around callsto non-
trivial functions outside the samefile. Y ou can read through this code and see that it will never deadlock,
because it never tries to grab another lock while it has that one. People using your code don't even need
to know you are using alock.

A classic problem here is when you provide callbacks or hooks: if you call these with the lock held, you
risk simple deadlock, or adeadly embrace (who knows what the callback will do?). Remember, the other
programmers are out to get you, so don't do this.
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Overzealous Prevention Of Deadlocks

Deadlocks are problematic, but not as bad as data corruption. Code which grabs aread lock, searchesalist,
failstofind what it wants, dropstheread lock, grabsawritelock and insertsthe object hasarace condition.

If you don't see why, please stay the fuck away from my code.

Racing Timers: A Kernel Pastime

Timers can produce their own special problemswith races. Consider a collection of objects (list, hash, etc)
where each object has atimer which is due to destroy it.

If you want to destroy the entire collection (say on module removal), you might do the following:
/* THI'S CODE BAD BAD BAD BAD: IF IT WAS ANY WORSE | T WOULD USE
HUNGARI AN NOTATI ON */
spin_l ock_bh(& ist_|ock);

while (list) {

struct foo *next = list->next;
del _timer(&ist->timer);
kfree(list);

list = next;

}

spi n_unl ock_bh(& ist_|ock);

Sooner or later, this will crash on SMP, because a timer can have just gone off before the
spi n_l ock_bh(), and it will only get the lock after we spi n_unl ock_bh(), and then try to free
the element (which has already been freed!).

This can be avoided by checking the result of del _ti mer () :if it returns 1, the timer has been deleted.
If 0, it means (in this case) that it is currently running, so we can do:

retry:
spin_l ock_bh(& ist_I|ock);

while (list) {
struct foo *next = |list->next;
if (!del _tinmer(&ist->tiner)) {
/* Gve tinmer a chance to delete this */
spi n_unl ock_bh(& ist_Iock);
goto retry;

kfree(list);
list = next;

}

spi n_unl ock_bh(& ist_Iock);
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Another common problem is deleting timers which restart themselves (by calingadd_ti ner () at the
end of their timer function). Because this is a fairly common case which is prone to races, you should

usedel tinmer_sync() (i ncl ude/linux/timer. h)tohandlethiscase. It returnsthe number of
times the timer had to be deleted before we finally stopped it from adding itself back in.
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Chapter 9. Locking Speed

There are three main thingsto worry about when considering speed of some code which doeslocking. First
is concurrency: how many things are going to be waiting while someone else is holding alock. Second is
the time taken to actually acquire and release an uncontended lock. Third is using fewer, or smarter locks.
I'm assuming that the lock is used fairly often: otherwise, you wouldn't be concerned about efficiency.

Concurrency depends on how long thelock isusually held: you should hold thelock for aslong as needed,
but no longer. In the cache example, we always create the object without the lock held, and then grab the
lock only when we are ready to insert it in thelist.

Acquisition times depend on how much damage the lock operations do to the pipeline (pipeline stalls) and
how likely it isthat this CPU was the last one to grab the lock (ie. isthelock cache-hot for this CPU): ona
machine with more CPUs, thislikelihood drops fast. Consider a 700MHz Intel Pentium I11: an instruction
takes about 0.7ns, an atomic increment takes about 58ns, a lock which is cache-hot on this CPU takes
160ns, and a cacheline transfer from another CPU takes an additional 170 to 360ns. (These figures from
Paul McKenney's Linux Journal RCU article [http://www.linuxjournal .com/article.php?sid=6993]).

These two aims conflict: holding alock for a short time might be done by splitting locks into parts (such
asinour final per-object-lock example), but thisincreases the number of lock acquisitions, and the results
are often slower than having a single lock. Thisis another reason to advocate locking simplicity.

The third concern is addressed below: there are some methods to reduce the amount of locking which
needs to be done.

Read/Write Lock Variants

Both spinlocks and mutexes have read/write variants: rwlock _t and struct rw_semaphore. These divide
users into two classes: the readers and the writers. If you are only reading the data, you can get a read
lock, but to write to the data you need the write lock. Many people can hold aread lock, but awriter must
be sole holder.

If your code divides neatly along reader/writer lines (as our cache code does), and the lock is held by
readers for significant lengths of time, using these locks can help. They are dightly slower than the normal
locks though, so in practice rwlock_t is not usually worthwhile.

Avoiding Locks: Read Copy Update

There is a specia method of read/write locking called Read Copy Update. Using RCU, the readers can
avoid taking alock altogether: as we expect our cache to be read more often than updated (otherwise the
cacheisawaste of time), it is a candidate for this optimization.

How do we get rid of read locks? Getting rid of read locks means that writers may be changing the list
underneath the readers. That is actually quite simple: we can read alinked list while an element is being
added if the writer adds the element very carefully. For example, adding new to asingle linked list called
list:

new >next = |ist->next;
wb() ;
| i st->next = new,
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Thewrb() isawrite memory barrier. It ensures that the first operation (setting the new element's next
pointer) is complete and will be seen by all CPUSs, before the second operation is (putting the new element
into the list). Thisisimportant, since modern compilers and modern CPUs can both reorder instructions
unless told otherwise: we want a reader to either not see the new element at al, or see the new element
with the next pointer correctly pointing at the rest of thelist.

Fortunately, there is a function to do this for standard struct list_head lists: | i st _add_r cu() (i n-
clude/linux/1ist.h).

Removing an element from thelist iseven simpler: we replace the pointer to the old element with a pointer
to its successor, and readers will either seeit, or skip over it.

| i st->next = ol d->next;

Thereisl i st _del rcu() (i ncl ude/linux/1i st. h)whichdoesthis(thenormal version poisons
the old object, which we don't want).

The reader must also be careful: some CPUs can ook through the next pointer to start reading the contents
of the next element early, but don't realize that the pre-fetched contents is wrong when the next pointer
changes underneath them. Once again, thereisal i st _for _each_entry_rcu() (i ncl ude/lin-
ux/1ist. h) to help you. Of course, writers can just use | i st _for_each_entry(), since there
cannot be two simultaneous writers.

Our final dilemmaisthis: when can we actually destroy the removed element? Remember, areader might
be stepping through this element in thelist right now: if we free this element and the next pointer changes,
the reader will jump off into garbage and crash. We need to wait until we know that all the readers who
were traversing the list when we deleted the element are finished. We use cal | _rcu() to register a
callback which will actually destroy the object once al pre-existing readers are finished. Alternatively,
synchroni ze_r cu() may be used to block until al pre-existing are finished.

But how does Read Copy Update know when the readers are finished? The method is this: firstly, the
readers awaystraversethelistinsider cu_r ead_I| ock() /rcu_read_unl ock() pairs: thesesimply
disable preemption so the reader won't go to sleep while reading the list.

RCU then waits until every other CPU has dlept at least once: since readers cannot sleep, we know that
any readers which were traversing the list during the deletion are finished, and the callback is triggered.
The real Read Copy Update code is a little more optimized than this, but thisis the fundamental idea.

--- cache. c. perobjectl ock 2003-12-11 17:15: 03. 000000000 +1100
+++ cache. c. rcupdate 2003-12-11 17:55: 14. 000000000 +1100
@-1,15 +1,18 @@

#include <linux/list.h>

#i ncl ude <linux/sl ab. h>

#i nclude <linux/string. h>

+#i ncl ude <l i nux/rcupdate. h>

#i ncl ude <l i nux/ mutex. h>

#i ncl ude <asm errno. h>

struct object

{

- /* These two protected by cache_ | ock. */
+ /* This is protected by RCU */
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struct list_head list;
i nt popularity;

+ struct rcu_head rcu
atomc_t refcnt;

/* Doesn't change once created. */
@-40,7 +43,7 @@

{
struct object *i;
- list_for_each_entry(i, &cache, list) {
+ list_for_each_entry rcu(i, &cache, list) {
if (i->d==1id) {
i ->popul arity++;
return i;

@ -49, 19 +52,25 @@
return NULL;
}

+/* Final discard done once we know no readers are | ooking.

+static void cache_delete_rcu(void *arg)
+{
+
+}
+

/* Must be hol di ng cache_l ock */
static void _ _cache_del ete(struct object *obj)

{
BUG_ON(! obj);
- list_del (&bj->list);
- obj ect _put (obj);

obj ect _put (arg);

+ list_del _rcu(&obj->list);
cache_num -;
+ call _rcu(&obj->rcu, cache_delete_rcu);
}

/* Must be hol di ng cache_l ock */

static void __cache_add(struct object *obj)
{

- i st_add(&obj->list, &cache);

+ l'ist_add_rcu(&obj->list, &cache);

i f (++cache_num > MAX CACHE_SI ZE) {
struct object *i, *outcast = NULL
list_for_each_entry(i, &cache, list) {

@»-104, 12 +114,11 @@
struct object *cache_find(int id)
{
struct object *obj;
- unsi gned | ong fl ags;

- spi n_l ock_irgsave(&cache_I| ock, flags);
+ rcu_read_l ock();

*/
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obj = _ cache_find(id);
if (obj)
obj ect _get (obj);
- spi n_unl ock_i rqgrestore(&cache_I| ock, flags);
+ rcu_read_unl ock();
return obj;

}

Note that the reader will alter thepopul ari ty memberin__cache_fi nd(), and now it doesn't hold
alock. One solution would be to make it an atomic _t, but for this usage, we don't really care about races:
an approximate result is good enough, so | didn't changeit.

Theresult isthat cache_f i nd() requires no synchronization with any other functions, so is almost as
fast on SMP asit would be on UP.

There is a further optimization possible here: remember our original cache code, where there were no
reference counts and the caller simply held the lock whenever using the object? This is still possible: if
you hold the lock, no one can delete the object, so you don't need to get and put the reference count.

Now, becausethe 'read lock' in RCU issimply disabling preemption, a caller which always has preemption
disabled between calling cache_fi nd() and obj ect _put () does not need to actually get and put
the reference count: we could expose__cache_f i nd() by making it non-static, and such callers could
simply call that.

The benefit here is that the reference count is not written to: the object is not atered in any way, which
is much faster on SM P machines due to caching.

Per-CPU Data

Another technique for avoiding locking which is used fairly widely is to duplicate information for each
CPU. For example, if you wanted to keep a count of a common condition, you could use a spin lock and
asingle counter. Nice and simple.

If that was too slow (it's usually not, but if you've got a really big machine to test on and can show that
it is), you could instead use a counter for each CPU, then none of them need an exclusive lock. See
DEFI NE_PER _CPU(),get _cpu_var () andput _cpu_var () (i ncl ude/ i nux/ per cpu. h).

Of particular use for simple per-cpu countersisthelocal_ttype, andthecpu_I| ocal _i nc() andrelated
functions, which are more efficient than simple code on some architectures (i ncl ude/ asm' | ocal . h).

Note that there is no simple, reliable way of getting an exact value of such a counter, without introducing
more locks. Thisis not a problem for some uses.

Data Which Mostly Used By An IRQ Handler

If dataisalways accessed from within the same | RQ handler, you don't need alock at al: the kernel already
guarantees that the irg handler will not run simultaneously on multiple CPUs.

Manfred Spraul points out that you can till do this, even if the datais very occasionally accessed in user
context or softirqg/tasklets. The irq handler doesn't use alock, and all other accesses are done as so:

spi n_I ock( & ock) ;
disable_irq(irq);
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é.n;abl e_irq(irq);
spi n_unl ock( & ock) ;

The di sabl e_i rg() preventstheirg handler from running (and waits for it to finish if it's currently
running on other CPUs). The spinlock prevents any other accesses happening at the same time. Naturally,
thisisslower than just aspi n_| ock i rq() cal, soit only makes senseif thistype of access happens
extremely rarely.
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Chapter 10. What Functions Are Safe
To Call From Interrupts?

Many functionsin thekernel sleep (ie. call schedule()) directly or indirectly: you can never call them while
holding a spinlock, or with preemption disabled. This also means you need to be in user context: calling
them from an interrupt isillegal.

Some Functions Which Sleep

The most common ones are listed below, but you usually have to read the code to find out if other calls
are safe. If everyone else who calls it can sleep, you probably need to be able to sleep, too. In particular,
registration and deregistration functions usually expect to be called from user context, and can sleep.

* Accesses to userspace:
e copy_fromuser ()
e copy_to_user()
e get _user()
e put _user()
« kmal | oc( GFP_KERNEL)
 nutex_| ock_interruptible() andmut ex_I| ock()

Thereisanut ex_tryl ock() which doesnot sleep. Still, it must not be used inside interrupt context
since its implementation is not safe for that. nut ex_unl ock() will aso never sleep. It cannot be
used in interrupt context either since a mutex must be released by the same task that acquired it.

Some Functions Which Don't Sleep

Some functions are safe to call from any context, or holding almost any lock.
o printk()
* kfree()

e add_timer() anddel _tiner()
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Mutex API reference

Name

mutex_init — initialize the mutex
Synopsis

mutex_init ( nutex);
Arguments

mut ex the mutex to beinitialized
Description

Initialize the mutex to unlocked state.

It isnot allowed to initialize an aready locked mutex.

30



Mutex API reference

Name
mutex_is _locked — isthe mutex locked
Synopsis
int mutex_is |locked (struct nutex * |ock);
Arguments
| ock the mutex to be queried
Description

Returns 1 if the mutex islocked, O if unlocked.
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Name
mutex_lock — acquire the mutex
Synopsis

void _ sched nutex_l ock (struct nmutex * |ock);

Arguments

| ock the mutex to be acquired

Description

Lock the mutex exclusively for thistask. If the mutex is not available right now, it will sleep until it can
Qget it.

The mutex must later on be released by the same task that acquired it. Recursive locking is not allowed.
The task may not exit without first unlocking the mutex. Also, kernel memory where the mutex resides
must not be freed with the mutex still locked. The mutex must first be initialized (or statically defined)
before it can be locked. menset -ing the mutex to 0 is not allowed.

( The CONFIG_DEBUG_MUTEXES .config option turns on debugging checks that will enforce the re-
strictions and will also do deadlock debugging. )

This function is similar to (but not equivalent to) down.
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Name

mutex_unlock — release the mutex
Synopsis
void __sched nutex_unlock (struct nutex * |ock);

Arguments

| ock the mutex to be released

Description

Unlock a mutex that has been locked by thistask previoudly.

This function must not be used in interrupt context. Unlocking of anot locked mutex is not allowed.

Thisfunction issimilar to (but not equivalent to) up.
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Name

ww_mutex_unlock — release the w/w mutex

Synopsis

void __sched ww _nutex_unlock (struct ww nmutex * |ock);

Arguments

| ock the mutex to be released

Description

Unlock a mutex that has been locked by this task previously with any of the ww_mutex_lock* functions
(with or without an acquire context). It isforbidden to rel ease the locks after rel easing the acquire context.

This function must not be used in interrupt context. Unlocking of a unlocked mutex is not allowed.




Mutex API reference

Name

mutex_lock_interruptible — acquire the mutex, interruptible

Synopsis

int _ sched mutex_lock_ interruptible (struct mutex * |ock);

Arguments

| ock the mutex to be acquired

Description

Lock the mutex like mut ex_| ock, and return O if the mutex has been acquired or sleep until the mutex
becomes available. If asignal arrives while waiting for the lock then this function returns -EINTR.

Thisfunction issimilar to (but not equivalent to) down_i nt errupti bl e.
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Name

mutex_trylock — try to acquire the mutex, without waiting
Synopsis
int _ sched mutex_trylock (struct mutex * |ock);

Arguments

| ock the mutex to be acquired

Description

Try to acquire the mutex atomically. Returns 1 if the mutex has been acquired successfully, and 0 on
contention.

NOTE

thisfunction followsthe spi n_t r yl ock convention, so it is negated from thedown_t r yl ock return
values! Be careful about this when converting semaphore users to mutexes.

This function must not be used in interrupt context. The mutex must be released by the same task that
acquired it.
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Name

atomic_dec_and_mutex_lock — return holding mutex if we dec to 0

Synopsis

int atom c_dec_and_mutex_lock (atomc_t * cnt, struct nutex * |ock);

Arguments

cnt the atomic which we are to dec

| ock the mutex to return holding if we decto O

Description

return true and hold lock if we dec to O, return false otherwise
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Futex API reference

Name
struct futex_q — The hashed futex queue entry, one per waiting task

Synopsis

struct futex_q {
struct plist_node list;
struct task struct * task;
spinlock_t * lock _ptr;
uni on futex_key key;
struct futex_pi_state * pi_state;
struct rt_nutex waiter * rt_waiter;
uni on futex_key * requeue_pi _key;

u32 bitset;
I
Members
list priority-sorted list of tasks waiting on this futex
task the task waiting on the futex
lock_ptr the hash bucket lock
key the key the futex is hashed on
pi_state optional priority inheritance state
rt_waiter rt_waiter storage for use with requeue_pi
requeue pi_key the requeue_pi target futex key
bitset bitset for the optional bitmasked wakeup
Description

We use this hashed waitqueue, instead of a normal wait_queue t, so we can wake only the relevant ones
(hashed queues may be shared).

A futex_g has a woken state, just like tasks have TASK_RUNNING. It is considered woken when
plist_node_empty(g->list) || g->lock_ptr == 0. The order of wakeup is always to make the first condition
true, then the second.

Pl futexes are typically woken before they are removed from the hash list via the rt_mutex code. See
unqueue_ne_pi .
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Name
get_futex_key — Get parameters which are the keys for a futex
Synopsis
int get futex_key (u32 __user * uaddr, int fshared, union futex_key *
key, int rw;
Arguments
uaddr virtual address of the futex

fshared OforaPROCESS PRIVATE futex, 1 for PROCESS_SHARED

key address where result is stored.
rw mapping needs to be read/write (values: VERIFY _READ, VERIFY_WRITE)
Return

anegative error code or 0
The key words are stored in *key on success.

For shared mappings, it's (page->index, file_inode(vma->vm _file), offset_within_page). For private map-
pings, it's (uaddr, current->mm). We can usually work out the index without swapping in the page.

| ock_page might sleep, the caller should not hold a spinlock.
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Futex API reference

Name

fault_in_user_writeable — Fault in user address and verify RW access
Synopsis
int fault_in_user_witeable (u32 _ user * uaddr);

Arguments

uaddr pointer to faulting user space address

Description

Slow path to fixup the fault we just took in the atomic write accessto uaddr .

We have no generic implementation of a non-destructive write to the user address. We know that we
faulted in the atomic pagefault disabled section so we can as well avoid the #PF overhead by calling
get _user _pages right away.
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Futex API reference

Name

futex_top_waiter — Return the highest priority waiter on afutex

Synopsis

struct futex q * futex_top_waiter (struct futex_hash_bucket * hb, union
futex_key * key);

Arguments

hb  the hash bucket the futex_g'sresidein

key thefutex key (to distinguish it from other futex futex_('s)

Description

Must be called with the hb lock held.
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Futex API reference

Name
futex_lock_pi_atomic — Atomic work required to acquire a pi aware futex
Synopsis

int futex_ lock pi_atomc (u32 _ _user * uaddr, struct futex_hash_bucket
* hb, union futex_key * key, struct futex_pi_state ** ps, struct
task_struct * task, int set_waiters);

Arguments
uaddr the pi futex user address
hb the pi futex hash bucket
key the futex key associated with uaddr and hb
ps the pi_state pointer where we store the result of the lookup
t ask the task to perform the atomic lock work for. Thiswill be “current” except in the case

of requeue pi.
set _waiters forcesettingthe FUTEX_WAITERS bit (1) or not (0)
Return

0 - ready to wait; 1 - acquired the lock; <O - error

The hb->lock and futex_key refs shall be held by the caller.
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Futex API reference

Name

__unqueue_futex — Remove the futex_q from its futex_hash_bucket
Synopsis

void __unqueue _futex (struct futex_q * q):
Arguments

q Thefutex_qto unqueue
Description

The g->lock_ptr must not be NULL and must be held by the caller.




Futex API reference

Name

requeue_futex — Requeue a futex_q from one hb to another
Synopsis

voi d requeue_futex (struct futex_qgq * g, struct futex_hash_bucket * hbl,
struct futex_hash_bucket * hb2, union futex_key * key2);

Arguments
q the futex_q to requeue
hbl  the source hash_bucket
hb2  thetarget hash bucket

key2 thenew key for the requeued futex_q
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Futex API reference

Name
requeue pi_wake futex — Wake atask that acquired the lock during requeue
Synopsis

voi d requeue_pi _wake futex (struct futex_gq * g, union futex_key * key,
struct futex_hash_bucket * hb);

Arguments

q the futex_q
key thekey of the requeue target futex

hb  the hash_bucket of the requeue target futex

Description

During futex_requeue, with requeue pi=1, it is possible to acquire the target futex if it is uncontended or
viaalock steal. Set the futex_q key to the requeue target futex so the waiter can detect the wakeup on the
right futex, but removeit from the hb and NULL thert_waiter so it can detect atomic lock acquisition. Set
the g->lock_ptr to the requeue target hb->lock to protect access to the pi_state to fixup the owner later.
Must be called with both g->lock_ptr and hb->lock held.
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Futex API reference

futex_proxy_trylock_atomic — Attempt an atomic lock for the top waiter

Synopsis

i nt futex_proxy_trylock_atomc (u32 __ user * pi f ut ex, st ruct
fut ex_hash_bucket * hbl, struct futex_hash_bucket * hb2, union futex_key
* keyl, union futex key * key2, struct futex pi_state ** ps, int

set_waiters);

Arguments

pi f ut ex the user address of the to futex

hbl the from futex hash bucket, must be locked by the caller
hb2 the to futex hash bucket, must be locked by the caller
keyl the from futex key

key2 theto futex key

ps addressto store the pi_state pointer

set _waiters forcesettingthe FUTEX WAITERS bit (1) or not (0)

Description

Try and get the lock on behalf of the top waiter if we can do it atomically. Wake the top waiter if we
succeed. If the caller specified set_waiters, then direct f ut ex_| ock_pi _at omi ¢ to force setting the
FUTEX_WAITERS hit. hbl and hb2 must be held by the caller.

Return

0 - failed to acquire the lock atomically; >0 - acquired the lock, return value is vpid of the top_waiter
<0 - error
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Futex API reference

Name

futex_requeue — Requeue waiters from uaddrl to uaddr2
Synopsis

int futex_requeue (u32 _ user * uaddrl, unsigned int flags, u32 __user

* uaddr2, int nr_wake, int nr_requeue, u32 * cmpval, int requeue_pi);
Arguments

uaddr 1 source futex user address

flags futex flags (FLAGS_SHARED, etc.)

uaddr 2 target futex user address

nr_wake number of waiters to wake (must be 1 for requeue pi)

nr_requeue number of waitersto requeue (O-INT_MAX)
cnpval uaddr 1 expected value (or NULL)

requeue_pi if weare attempting to requeue from a non-pi futex to a pi futex (pi to pi requeue is not
supported)

Description

Requeue waiters on uaddrl to uaddr2. In the requeue pi case, try to acquire uaddr2 atomically on behalf
of the top waiter.

Return

>=0 - on success, the number of tasks requeued or woken; <0 - on error
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Futex API reference

Name

gueue_me — Enqueue the futex_q on the futex_hash bucket

Synopsis

voi d queue_ne (struct futex_gq * g, struct futex_hash_bucket * hb);

Arguments

g Thefutex_gtoenqueue

hb The destination hash bucket

Description

The hb->lock must be held by the caller, and is released here. A call to queue_ne is typically paired
with exactly one call to unqueue_e. The exceptions involve the Pl related operations, which may use
unqueue_ne_pi or nothing if the unqueue is done as part of the wake process and the unqueue state is
implicit in the state of woken task (seef ut ex_wai t _r equeue_pi for an example).
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Futex API reference

Name

unqueue_me — Remove the futex_q from its futex_hash_bucket
Synopsis
i nt unqueue_me (struct futex_q * q);

Arguments

g Thefutex_qto ungqueue

Description

The g->lock_ptr must not be held by the caller. A call to unqueue_ e must be paired with exactly one
earlier call toqueue_ne.

Return

1-if the futex_q was still queued (and we removed unqueued it); O - if the futex_q was already removed
by the waking thread
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Futex API reference

Name

fixup_owner — Post lock pi_state and corner case management
Synopsis
int fixup_owner (u32 _ user * uaddr, struct futex_qgq * q, int |ocked);

Arguments

uaddr user address of the futex
o} futex_q (contains pi_state and access to the rt_mutex)

| ocked if the attempt to take the rt_mutex succeeded (1) or not (0)

Description

After attempting to lock an rt_mutex, thisfunction iscalled to cleanup the pi_state owner aswell ashandle
race conditions that may allow us to acquire the lock. Must be called with the hb lock held.

Return

1 - success, lock taken; 0 - success, lock not taken; <0 - on error (-EFAULT)
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Futex API reference

Name

futex_wait_gqueue_me — queue_ e and wait for wakeup, timeout, or signal
Synopsis

void futex_wait_queue_ne (struct futex_hash_bucket * hb, struct futex_qg
* g, struct hrtinmer_sleeper * tineout);

Arguments
hb the futex hash bucket, must be locked by the caller
o} the futex_q to queue up on

ti meout the prepared hrtimer_sleeper, or null for no timeout
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Futex API reference

Name

futex_wait_setup — Prepare to wait on a futex
Synopsis

int futex wait_setup (u32 _ user * uaddr, u32 val, unsigned int flags,
struct futex_gq * g, struct futex_hash_bucket ** hb);

Arguments
uaddr thefutex userspace address
val the expected value

flags futexflags(FLAGS SHARED, etc.)

q the associated futex_q
hb storage for hash_bucket pointer to be returned to caller
Description

Setup the futex_q and locate the hash_bucket. Get the futex value and compare it with the expected val-
ue. Handle atomic faults internally. Return with the hb lock held and a g.key reference on success, and
unlocked with no g.key reference on failure.

Return

0 - uaddr contains val and hb has been locked; <1 - -EFAULT or -EWOULDBLOCK (uaddr does not
contain val) and hb is unlocked

53



Futex API reference

Name
handle_early _requeue pi_wakeup — Detect early wakeup on theinitial futex

Synopsis

int handle_early_requeue_pi_wakeup (struct futex_hash_bucket * hb,
struct futex q * g, union futex_key * key2, struct hrtiner_sleeper *

ti meout);

Arguments
hb the hash_bucket futex_q was original engqueued on
q the futex_q woken while waiting to be requeued
key2 the futex_key of the requeue target futex

ti meout thetimeout associated with the wait (NULL if none)

Description
Detect if the task was woken on the initial futex as opposed to the requeue target futex. If so, determine

if it was atimeout or asignal that caused the wakeup and return the appropriate error code to the caller.
Must be called with the hb lock held.

Return

0 = no early wakeup detected; <0 = -ETIMEDOUT or -ERESTARTNOINTR




Futex API reference

Name
futex_wait_requeue pi — Wait on uaddr and take uaddr2

Synopsis

int futex_ wait_requeue_pi (u32 _ user * uaddr, unsigned int flags, u32
val, ktine_t * abs_tine, u32 bitset, u32 _ _user * uaddr2);

Arguments
uaddr the futex we initially wait on (non-pi)
flags futex flags (FLAGS _SHARED, FLAGS CLOCKRT, etc.), they must be the same type, no
regueueing from private to shared, etc.
val the expected value of uaddr

abs _time absolutetimeout
bi t set 32 hit wakeup bitset set by userspace, defaultsto all

uaddr 2 the pi futex we will take prior to returning to user-space

Description

The caller will wait on uaddr and will be requeued by f ut ex_r equeue to uaddr2 which must be Pl
aware and unique from uaddr. Normal wakeup will wake on uaddr2 and complete the acquisition of the
rt_mutex prior to returning to userspace. Thisensuresthert_mutex maintainsan owner whenit haswaiters;
without one, the pi logic would not know which task to boost/deboost, if there was a need to.

We call schedule in f ut ex_wai t _queue_ne when we enqueue and return there via the following--
1) wakeup on uaddr2 after an atomic lock acquisition by f ut ex_r equeue 2) wakeup on uaddr2 after
arequeue 3) signal 4) timeout

If 3, cleanup and return -ERESTARTNOINTR.

If 2, we may then block ontrying totakethert_mutex and return via: 5) successful lock 6) signal 7) timeout
8) other lock acquisition failure

If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
If 4 or 7, we cleanup and return with -ETIMEDOUT.

Return

0 - On success; <0 - On error
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Futex API reference

Name
sys set robust_list — Set the robust-futex list head of atask

Synopsis
| ong sys_set _robust _list (struct robust _|ist_head __ _user * head, size_t
l en);

Arguments

head pointer to the list-head

I en length of the list-head, as userspace expects
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Futex API reference

Name
sys get_robust_list — Get the robust-futex list head of atask

Synopsis

long sys get _robust list (int pid, struct robust_list_head
* _user * head_ptr, size t _ _user * len_ptr);

Arguments
pi d pid of the process [zero for current task]
head_ptr pointer to alist-head pointer, the kernel fillsit in

len_ptr pointer to alength field, the kernel fillsin the header size

__user
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Chapter 13. Further reading

« Docurent ati on/ | ocki ng/ spi nl ocks. t xt : Linus Torvalds' spinlocking tutorial in the kernel
SOurces.

» Unix Systemsfor Modern Architectures. Symmetric Multiprocessing and Caching for Kernel Program-
mers.

Curt Schimmel's very good introduction to kernel level locking (not written for Linux, but nearly every-
thing applies). The book isexpensive, but really worth every penny to understand SMP locking. [ISBN:
0201633388]
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Chapter 14. Thanks

Thanks to Telsa Gwynne for DocBooking, neatening and adding style.

Thanksto Martin Poal, Philipp Rumpf, Stephen Rothwell, Paul Mackerras, Ruedi Aschwanden, Alan Cox,
Manfred Spraul, Tim Waugh, Pete Zaitcev, James Morris, Robert Love, Paul McKenney, John Ashby for
proofreading, correcting, flaming, commenting.

Thanks to the cabal for having no influence on this document.
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Glossary

preemption

bh

Hardware Interrupt / Hardware
IRQ
Interrupt Context

SMP

Software Interrupt / softirg

tasklet

timer

upP

User Context

Userspace

Prior to 2.5, or when CONFIG_PREEMPT is unset, processes in user context in-
side the kernel would not preempt each other (ie. you had that CPU until you gave
it up, except for interrupts). With the addition of CONFIG_PREEMPT in 2.5.4,
this changed: when in user context, higher priority tasks can "cut in": spinlocks
were changed to disable preemption, even on UP.

Bottom Half: for historical reasons, functionswith'_bh'in them often now refer to
any software interrupt, e.g. spi n_| ock_bh() blocksany software interrupt on
the current CPU. Bottom halves are deprecated, and will eventually be replaced
by tasklets. Only one bottom half will be running at any time.

Hardware interrupt request. i n_i r q() returnstruein ahardware interrupt han-
dler.

Not user context: processing a hardware irq or software irg. Indicated by the
i n_interrupt () macro returning true.

Symmetric Multi-Processor: kernels compiled for multiple-CPU machines.
(CONFIG_SMP=y).

Software interrupt handler. i n_i r q() returnsfase; i n_softirq() returns
true. Tasklets and softirgs both fall into the category of 'software interrupts.

Strictly speaking a softirq isone of up to 32 enumerated software interrupts which
can run on multiple CPUs at once. Sometimes used to refer to tasklets aswell (ie.
al software interrupts).

A dynamically-registrable software interrupt, which is guaranteed to only run on
one CPU at atime.

A dynamically-registrable software interrupt, which is run at (or close to) a giv-
en time. When running, it is just like a tasklet (in fact, they are called from the
TIMER_SOFTIRQ).

Uni-Processor: Non-SMP. (CONFIG_SMP=n).

The kernel executing on behalf of a particular process (ie. a system call or trap)
or kernel thread. Y ou can tell which process with the current macro.) Not to be
confused with userspace. Can be interrupted by software or hardware interrupts.

A process executing its own code outside the kernel.
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